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Abstract. The objective of this paper is to assess the perfor-
mance of methods that predict low flows and flood runoff in
ungauged catchments. The aim is to learn from the similari-
ties and differences between catchments in different places,
and to interpret the differences in performance in terms of
the underlying climate-landscape controls. The assessment
is performed at two levels. The Level 1 assessment is a meta-
analysis of 14 low flow prediction studies reported in the lit-
erature involving 3112 catchments, and 20 flood prediction
studies involving 3023 catchments. The Level 2 assessment
consists of a more focused and detailed analysis of individual
basins from selected studies from Level 1 in terms of how
the leave-one-out cross-validation performance depends on
climate and catchment characteristics as well as on the re-
gionalisation method. The results indicate that both flood and
low flow predictions in ungauged catchments tend to be less
accurate in arid than in humid climates and more accurate
in large than in small catchments. There is also a tendency
towards a somewhat lower performance of regressions than
other methods in those studies that apply different methods
in the same region, while geostatistical methods tend to per-
form better than other methods. Of the various flood region-
alisation approaches, index methods show significantly lower
performance in arid catchments than regression methods or
geostatistical methods. For low flow regionalisation, regional
regressions are generally better than global regressions.

1 Introduction

Estimating flood and low flow discharges in ungauged basins
are among the most fundamental challenges in catchment hy-
drology. There is a long track record in statistical hydrology
of developing methods to estimate, in an optimal way, these
discharges from runoff observations in neighbouring catch-
ments and from catchment characteristics. Common to these
statistical methods is the idea of catchment grouping, i.e. the
notion that extreme events that have not been observed in a
particular location could already have been observed some-
where else. Therefore runoff data (on floods or low flows)
from many sites are pooled in order to obtain a representative
sample of what could happen in a particular location. One of
the key aspects of the methods consists of exactly how this
pooling is performed.

There are a number of options. The classical approach con-
sists of subdividing the study domain into a number of fixed,
contiguous regions which are used to regionalise floods or
low flows for all catchments in the area (e.g. as used in the
index flood method, Dalrymple, 1960). The assumption of
this method is that areas close to each other are characterised
by similar climate, topography, geology, soils and land use,
which gives rise to similar catchment hydrological response
and therefore to similar floods or low flows. The grouping
is usually found by geographical boundaries, by combining
maps of the catchment characteristics in some way (Beable
and McKerchar, 1982) or by a diverse set of statistical meth-
ods. These include cluster analysis using catchment char-
acteristics (Nathan and McMahon, 1990), residuals from a
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2638 J. L. Salinas et al.: Part 2: Flood and low flow studies

regression model (Wandle, 1977; Hayes, 1992), regression
trees (Laaha and Blöschl, 2006a), and pattern identification
on the basis of the seasonality of runoff as an indicator of
flood and low flow processes in the catchment (Laaha and
Blöschl, 2006b; Piock-Ellena et al., 1999). An alternative is
the region of influence (ROI) approach (Burn, 1990) which
assigns a different pooling group to each catchment of inter-
est. Similarity between catchments is usually measured by
the root mean square difference of all the catchment and cli-
mate characteristics in a pair of catchments. A typical ap-
plication of the ROI approach is given in the UK Flood Esti-
mation Handbook (IH, 1999). The catchments characteristics
for the grouping usually include mean annual rainfall, catch-
ment area and soil characteristics.

Once the pooling group has been identified there are again
a number of options of how to estimate the flood or low
flow discharges. Again a classical one is the index flood
method (Dalrymple, 1960) where the flood distribution func-
tion scaled by the index flood (e.g. the mean annual flood) is
assumed to be homogenous within the region. The procedure
consists of first estimating the index flood in the ungauged
catchment (e.g. by a regression against catchment character-
istics) and then multiplying that index flood with the regional
scaled flood distribution function (IH, 1999) or by multiply-
ing that index low flow with the regional scaled low flow
distribution function (Clausen and Pearson, 1995; Madsen
and Rosbjerg, 1998). With the advent of geographic informa-
tion systems, alternative methods of using the flood quantiles
or low flow quantiles directly in regressions against catch-
ment characteristics have become popular (see, e.g. Cun-
nane, 1988, and Griffis and Stedinger, 2007, for the case of
floods, and Gustard et al., 1992, and Engeland and Hisdal,
2009, for the case of low flows). More recently, geostatisti-
cal methods that exploit the spatial correlation of floods (or
low flows) either in space (Merz and Blöschl, 2005) or along
the stream network (see Skøien et al. (2006) for the case of
floods and Laaha et al. (2012) for the case of low flows) have
become popular. One of the strengths of the geostatistical
approach is that it directly exploits the spatial correlations
of the discharges and there is no need for defining pooling
groups explicitly, but a relatively dense stream gauge net-
work is needed. There are also methods that estimate flood
statistics in ungauged catchments from rainfall (e.g. Moretti
and Montanari, 2008).

When reviewing the rich literature on estimating extreme
discharges in ungauged basins it is interesting that many of
the statistical methods for floods and low flows are similar
if not identical. Given this similarity, it is quite surprising
that there are very few studies that directly compared the
estimation methods for floods and low flows. Another in-
teresting finding is that the predictive performance for un-
gauged basins strongly depends on the hydrological or cli-
matological setting of the region (Meigh et al., 1997; Far-
quharson et al., 1992). There is no consensus in the literature
on whether one method always outperforms another. This

is because there have been few attempts in generalising the
findings on the predictive performance of estimation meth-
ods beyond individual case studies. Yet, it would be very in-
teresting to understand whether there are general patterns of
performance, i.e. whether particular methods generally per-
form better than others in a given environment. These are
the issues, this paper is concerned with. Specifically, in this
paper we perform a meta-analysis of the literature on predic-
tive performance of flood and low flow estimation methods
in ungauged basins. In a second step we analyse a number
of more detailed datasets, again focusing on the performance
of the methods. The aim is to learn from the similarities and
differences between catchments in different places, and to
interpret the differences in predictive performance in terms
of the underlying climate–landscape controls. The following
research questions are addressed:

i. How good are the predictions of hydrological extremes
in different climates?

ii. Which regionalisation method performs best?

iii. How does data availability impact performance?

iv. To what extent does runoff prediction performance de-
pend on climate and catchment characteristics?

This paper is part of a set of three papers that are all con-
cerned with assessing the performance of estimating runoff
characteristics in ungauged basins. The two companion pa-
pers (Parajka et al., 2013; Viglione et al., 2013) deal with
estimating runoff hydrographs in ungauged basins and es-
timating a set of different runoff characteristics in Austria,
respectively.

2 Method of comparative assessment

For the comparative assessment of both flood and low flow
predictions in ungauged basins, the same two step process as
in Parajka et al. (2013) has been adopted in this paper and is
presented below.

Level 1 assessment: in a first step, a literature survey was
performed. Publications in the international refereed liter-
ature were scrutinised for results of the predictive perfor-
mance of both floods and low flows. The Level 1 assess-
ment is a meta-analysis of prior studies performed by the
hydrological community. The advantage of this type of meta-
analysis is that a wide range of environments, climates and
hydrological processes can be covered that go beyond what
can be reasonably achieved by a single study. It is a compar-
ative assessment that synthesises the results from the avail-
able international literature. However, the level of detail of
the information provided is often limited. The results in the
literature were almost always reported in an aggregated way,
i.e. as average or median performance over the study region
or part of the study region.
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Level 2 assessment: to complement the Level 1 assess-
ment, a second assessment step was performed, termed Level
2 assessment. In this step, some of the authors of the publica-
tions from Level 1 were approached to provide data on their
floods and low flow predictionsfor individual basins. The
data they provided included information on the catchment
and climate characteristics, on the method used, the data
availability, and predictive performance. The overall num-
ber of catchments involved was smaller than in the Level 1
assessment, so the spectrum of hydrological processes cov-
ered in the assessment could be potentially narrower. How-
ever, the amount and detail of information available in par-
ticular catchments was much higher. As in Level 1, the
cross-validation performance for ungauged basins was anal-
ysed; however, information on individual catchments was
now available. The cross-validation performance was esti-
mated by a leave-one-out strategy, where each gauged catch-
ment was in turn considered as ungauged and the estimated
low flow or flood index was compared with the observed one.

The comparative assessment conducted in this paper strat-
ifies the analyses into three main groups:

1. Analysis of process controls on the predictive perfor-
mance. A number of climate and catchment character-
istics have been identified. A large number of catch-
ments and modelling studies around the world have then
been organised according to these climate and catch-
ment characteristics, with the objective of learning from
their differences and similarities in performance in a
general way.

2. Analysis of predictive performance for different types
of methods. The methods for estimating flood and low
flow indexes in ungauged basins have been grouped into
the classes discussed in Sect. 3. Rather than evaluating
specific methods the focus has been on types of method,
so to be able to generalise beyond individual studies.

3. Analysis of data availability. The quality of predictions
of extremes in ungauged basins not only depends on the
hydrological setting and the regionalisation method but
also, importantly, on the data that are available for the
information transfer. The comparison therefore also ex-
amines the number of stream gauges available in a par-
ticular study as an index to characterise data availability.

3 Studies and datasets used

3.1 Low flow studies

Table 1 lists the 14 low flow prediction studies used in this
paper. It includes summary information about the study re-
gion, regionalisation method applied and the predictive per-
formance in terms of the coefficient of determination (R2),

defined as follows:

R2
= 1−

∑(
Qi,pred− Qi,obs

)2∑(
Qi,obs− Qobs

)2
, (1)

where

Qi,pred: predicted specific discharge in cross-validation at
gaugei,

Qi,obs: observed specific discharge at gaugei,

Qobs: spatial mean of the observed specific discharge.

In the great majority of the papers considered, the per-
formance is given in terms of the described coefficient of
determination in cross validation, which reports the amount
of explained variance by the model, and is also affected by
both bias and dispersion of the estimators. The target low
flow index, on which this performance is reported, is mainly
the q95 specific discharge quantile, i.e. the discharge value
exceeded 95 % of the time divided by the catchment area,
but there were studies presenting performances on other
low flow indicators includingq7,10 (7 days 10 yr specific
runoff), qmon,5 (monthly 5 day minimum),q96, q97 (96–
97 % specific runoff quantiles),q95/qA (q95 specific runoff
quantile normalised by the mean annual specific runoffqA)
and baseflow index (BFI). Both the performance measure
and the low flow index used in the analysis represent a
trade-off between the amount of studies potentially to be
included in the analysis and their need to be comparable; the
same applies to the flood studies. Several studies compare
different regionalisation approaches and/or subsets of data
which results in a total of 28 assessments of predictive
performance. These results are the base for the Level 1
assessment which represents at total of 3112 catchments
(Table 2). Geographically, most of the cross-validation
assessments were performed in Europe and North America
and only a few studies cover Australia and Asia (Fig. 1,
top and Table 1). Six study authors out of the Level 1
assessment provided detailed information about climate and
catchment characteristics in a consistent way and reported
the regionalisation performance for each catchment (Level 2
assessment). In this sense, the potential of learning from the
catchment-by-catchment errors in contrast to the aggregated,
regional measures of Level 1 represents a motivation for the
Level 2 assessment. Predictive performance on a catchment
basis was given as the absolute normalised error (ANE),
defined as

ANEi =

∣∣∣∣Qi,pred− Qi,obs

Qi,obs

∣∣∣∣ . (2)

The dataset for Level 2 assessment combines data from
1895 catchments. Three catchment characteristics are anal-
ysed: aridity index, mean elevation and catchment area.

www.hydrol-earth-syst-sci.net/17/2637/2013/ Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013
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Table 1.Summary assessment of studies for low flow estimation in ungauged catchments used in Level 1 assessment. Performance indicates
the leave-one-out assessment of model efficiency in terms of the coefficient of determinationR2. Low flow regionalisation methods include:
process based (PB), global regression (GR), regional regression (RR), geostatistics (G) and short records (SR). Predicted variable indicates
the low flow index estimated in the study and includes: 7 days 10 yr specific runoff (q7,10), monthly 5 day minimum specific runoff (qmon,5),
95–97 % specific runoff quantiles (q95, q96, q97), normalisedq95 specific runoff quantile (q95/qA) and baseflow index (BFI). Ranges or
various values forR2 represent variations of the methods or the same method applied on different subsamples from the same region.

Study Region Climate Number of
catchments

Regionalisation
method

Predicted
variable

Performance
(R2)

Used in Level 2

Eng et al. (2011) eastern USA Humid 516, 125, 422 SR q7,10 0.96, 0.99, 0.97 X

Castiglioni et
al. (2011)

central Italy Humid 51 G q97 0.89

Plasse and
Sauquet (2010)

France Humid 1003 GR, RR, G, G qmon,5 0.43, 0.53–0.74,
0.61, 0.63–0.73

X

Vezza et al. (2010) northwest Italy Cold 41 GR, RR q95 0.57, 0.53–0.69

Engeland and
Hisdal (2009)

southwest Norway Cold 51 RR, PB q96 0.82, 0.32 X

Laaha and
Blöschl (2007)

Austria Cold 325 RR q95 0.75

Laaha et al. (2007) Austria Cold 298 G q95 0.75 X

Laaha and
Blöschl (2006a, b)

Austria Cold 325 GR, RR q95 0.57, 0.59–0.70 X

Laaha and
Blöschl (2005)

Austria Cold 325 SR q95 0.62, 0.93 X

Rees et al. (2002) Himalayas, Nepal
and India

Humid 40 GR q95/qA 0.45, 0.53

Aschwanden and
Kan (1999)

Switzerland Cold 143 GR, RR q95 0.51, 0.59-0.84

Demuth and
Hagemann (1994)

Germany (Baden-
Württemberg)

Humid 54 GR BFI 0.86

Demuth (1993) Germany (Baden-
Württemberg)

Humid 54 GR BFI 0.81, 0.84

Nathan and
McMahon (1990, 1992)

Australia (New
South Wales,
Victoria)

Arid 184 RR, GR BFI 0.75–0.83, 0.71

These characteristics represent a trade-off between the data
availability of the studies, and the literature reports on the
main controls of flood and low flow regimes. Aridity (the ra-
tio of potential evaporationEPA and precipitationPA on a
long-term basis, averaged across the catchment) is an indi-
cator of the competition between energy and water affecting
the water balance. Elevation (average topographic elevation
within the catchment) is a composite indicator including a
range of processes, such as long-term precipitation and hence
soil moisture availability, and air temperature. In some envi-
ronments there is a relationship between elevation and aridity
and elevation and snow processes. Catchment area is an in-
dicator of the degree of aggregation of catchment processes
related to scale effects (Skøien et al., 2003); an indicator of
storage within the catchment. Catchment size also acts as an
indicator of the quality of rainfall data that is available for
runoff estimation in ungauged basins, as for a constant rain-
gauge density, the mean areal rainfall estimation variance de-

creases with increasing the catchment area. This areal rainfall
might also be biased by increasing the number of stations lo-
cated in lower parts of the catchment (Lebel et al., 1987) The
low flow regionalisation methods have been classified into
the following groups.

– Process-based methods (PB): there is only a single
cross-validation study we encountered in the literature
(Engeland and Hisdal, 2009) of this type. The proce-
dure consisted of regionalising the parameters of a con-
ceptual rainfall–runoff model from gauged to ungauged
catchments in the region. The low flow characteristics
were then derived from the simulated daily hydrographs
at the ungauged location of interest.

– Global Regression (GR): in the global regression
approach a single relationship between the low runoff
statistic of interest, such asq95, and catchment/climate
characteristics is established. Both additive and

Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013 www.hydrol-earth-syst-sci.net/17/2637/2013/
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Low flows

Floods

Fig. 1. Map indicating the countries included in the meta-analysis
of low flow studies (top) and flood studies (down) reported in the
literature (Level 1 assessment).

multiplicative regression models were used. A critical
issue in the regression is the choice of the catch-
ment/climate characteristics which include mean
annual precipitation and geologic characteristics in
the literature. It has been noted that it is important to
interpret the catchment/climate characteristics that are
found to be significant during a regression analysis from
a hydrological perspective, i.e. to link the statistical
analysis to the hydrological processes operating at the
catchment scale.

– Regional regression (RR): here the procedure is similar,
however the entire domain is subdivided into regions
and a regression model is applied to each region sepa-
rately. The main rationale of regional regression is that
different processes may operate in the regressions so the
catchment/climate characteristics will control low flows
in different ways. A number of methods exist for iden-
tifying the regions or pooling groups, including cluster
analysis of catchment/climate characteristics, residuals
from a regression model and pattern identification on
the basis of the seasonality of runoff.

– Geostatistical methods (G): geostatistical methods ex-
ploit the spatial correlations of low flows based on the
rationale that catchments that are geographically close
to each other may exhibit similar processes. While some
approaches use Euclidean distance as a similarity mea-
sure, other approaches use the correlations along the

Table 2. Number of studies (in brackets number of results) and
number of catchments used. Level 1 refers to an assessment of the
average performance of studies, Level 2 to an assessment of the per-
formance for individual catchments.

Level 1 Level 2

No. of No. of No. of No. of
studies catchments studies catchments

Low flows 14 (28) 3112 6 1895
Floods 20 (57) 3023 5 1422

river network. To account for spatially heterogeneous
regions, the geostatistical method has been extended
to combine it with multiple regressions by using the
residuals of the regression for the spatial geostatistical
estimation.

– Short records (SR): in some instances there may be
short runoff records available for a catchment that is
otherwise ungauged. These runoff records may not be
representative of the longer time period that is normally
used for the estimation of low flows. Methods are there-
fore used that relate the low flow estimates from the
short runoff records to the longer hydrological history
of the basin on the basis of regional information, usually
involving some element of correlation analysis (Laaha
and Bl̈oschl, 2005).

3.2 Flood studies

Table 3 lists the 20 flood prediction studies used in this paper.
It includes summary information about the study region, re-
gionalisation method applied and the predictive performance
in terms of the root mean square normalised error (RMSNE),
defined as follows:

RMSNE=

√
1

n
·

∑(
Qi,pred− Qi,obs

Qi,obs

)2

. (3)

The cross-validation performance is given, in the great ma-
jority of the papers considered, as the defined root mean
squared normalised error, a very common error measure for
estimators, combining both the bias and the dispersion com-
ponent of the error. The target flood index, on which this per-
formance was mainly reported, was the 100 yr specific flood
quantileq100, i.e. the peak discharge value that occurs on
average every 100 yr divided by the catchment area. There
are three exceptions, namely Srinivas et al. (2008), Cunderlik
and Burn (2002), Jingyi and Hall (2004), where the predic-
tive performance is calculated on volumes and not on specific
discharges (Table 3). These studies are plotted as crosses in
Figs. 2–4. It is worth mentioning, that the quantities defined
as observed dischargesQi,obs, are actually the flood quan-
tiles estimated from local data and are subject to a certain

www.hydrol-earth-syst-sci.net/17/2637/2013/ Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013
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Table 3. Summary assessment of studies for flood estimation in ungauged catchments used in Level 1 assessment. Error measure indicates
the leave-one-out assessment of model efficiency in terms of the root mean square normalised error RMSNE. Flood regionalisation methods
include: regression methods (R), index methods (IM) and geostatistics (G). Predicted variable indicates the flood discharge estimated in
the study and includes: 100 yr specific flood runoff (q100), 100 yr flood runoff (Q100) and 100 yr flood runoff standardised by the mean
annual flood (Q100/Qm). Ranges or various values for RMSNE represent variations of the methods or the same method applied on different
subsamples from the same region.

Study Region Climate Number
of
catch-
ments

Regionalisation
method

Predicted
variable

Error measure
(RMSNE)

Used in
Level 2

Jimenez et al. (2012) Spain Arid 217 R q100 0.54 X

Walther et al. (2011) Germany (Saxony) Cold 170 G, IM q100 0.46, 0.49 X

Kjeldsen and Jones (2010) United Kingdom Humid 602 IM q100 0.51, 0.50 X

Guse et al. (2010) Germany (Saxony) Cold 90 R qmax 0.81, 0.88

Saf (2009) Turkey Arid 47 IM Q100/Qm 0.43

Chebana and Ouarda (2008) Canada (southern Quebec) Cold 151 R q100 0.44–0.45, 0.49,
0.64

Srinivas et al. (2008) USA (Indiana) Cold 245 IM q100,
Q100

0.69, 0.27 X

Ouarda et al. (2008) Mexico Tropical 29 R, R, IM, IM,
G, G

q100 0.74, 0.66,
0.67, 0.67, 0.51,
0.52

Leclerc and Ouarda (2007) Canada, USA Cold 29 R q100 0.61

Ouarda et al. (2008) Canada (southern Quebec) Cold 63 IM q100 0.40

Merz and Bl̈oschl (2005) Austria Cold 575 G, R, IM q100 0.30, 0.46, 0.43 X

Jingyi and Hall (2004) China (Gan-Ming River) Humid 86 IM Q20,
Q50,
Q100,
Q200

0.31

Chokmani and Ouarda (2004) Canada (southern Quebec) Cold 151 R q100 0.70, 0.51

Cunderlik and Burn (2002) United Kingdom Humid 424 IM Q100/Qm 0.29

Javelle et al. (2002) Canada (Quebec, Ontario) Cold 158 IM q100 0.50

Pandey and Nguyen (1999) Canada (Quebec) Cold 71 R q100 0.64, 0.81

Madsen et al. (1997) New Zealand (South Island) Humid 48 IM q100 0.41, 0.39

Meigh et al. (1997) Brazil, Ivory Coast, Mali,
Guinea, Ghana, Togo,
Benin, Malawi, Namibia,
Zimbabwe, South Africa
and Botswana, Saudi
Arabia, Iran, India

Tropic,
Humid,
Arid

59, 35,
86, 41,
16, 46,
28, 40,
234,
109, 28,
24, 75

IM q100 0.42, 0.47, 0.50,
0.53, 0.59, 0.42,
0.69, 0.63, 0.52,
0.69, 0.73, 0.65,
0.58

GREHYS (1996) Canada (Quebec, Ontario) Cold 33 IM q100 0.45

Farquharson et al. (1992) Arid and semi-arid basins
worldwide

Arid 162 IM q100 0.73

Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013 www.hydrol-earth-syst-sci.net/17/2637/2013/
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Fig. 2. Coefficient of determination of predicting low flows in ungauged basins (left) and root mean squared normalised error of predicting
floods in ungauged basins (right), stratified by climate (Level 1 assessment). Each symbol refers to a result from the studies in Tables 1 and
3. Circles represent performances calculated on specific discharges (m3 s−1 km−2), crosses represent performances calculated on discharges
(m3 s−1). Boxes show 25–75 % quantiles.

degree if uncertainty and the same applies to the observed
95 % low flow quantiles. Several studies compare different
regionalisation approaches and/or subsets of data which re-
sults in a total of 57 assessments of predictive performance.
These results are the base for the Level 1 assessment which
represents at total of 3023 catchments (Table 2). Figure 1
(bottom) and Table 3 show that the studies are rather evenly
spread around the world. Five study authors out of the Level
1 assessment provided detailed information about climate
and catchment characteristics in a consistent way and re-
ported the regionalisation performance for each catchment in
terms of the absolute normalised error ANE (Level 2 assess-
ment). This dataset combines data from 1422 catchments. As
in the case of low flows, three catchment characteristics are
analysed: aridity index, mean elevation and catchment area
(see Sect. 3.1). The flood regionalisation methods have been
classified into the following groups:

– Regression methods: the regression methods for flood
discharges are similar to those of low flows where the
flood runoff is related to catchment/climate character-
istics such as catchment area and mean annual precip-
itation. As is the case of low flows, it is important to
interpret the regression coefficients obtained from a hy-
drological perspective (Merz and Blöschl, 2008a, b).

– Index methods: the index methods consist of a group
of approaches where the flood distribution function is
scaled by the index flood (e.g. the mean annual flood or
the median annual flood) and assumed to be homoge-
nous within the region. One first estimates the index
flood in the ungauged catchment (e.g. by a regression
against catchment characteristics) and then multiplies
that index flood with the regional-scaled flood distribu-

tion function. The methods usually differ in terms of
how the homogeneous groups are obtained.

– Geostatistical methods: geostatistical methods are anal-
ogous to those in use for regionalising low flows (see
Sect. 3.1).

4 Results and discussion

4.1 How good are the predictions of hydrological
extremes in different climates?

Figure 2 (left) shows the Level 1 results of estimating low
flows in ungauged basins. The distribution of the studies by
climatic region is as follows: 2 are considered as arid, 12 as
cold and 14 as humid. The highest performance is obtained
for humid catchments, but there are also studies in humid cli-
mates that report a significantly lower performance. In arid
climates, the performance is never very high, but more stud-
ies are needed to clearly show this behaviour. The most likely
reason for this finding is that arid regions tend to be very
heterogeneous with a high variability of low flow produc-
ing processes, and low flows generally tend to be lower and
more variable, and therefore harder to predict. Cold environ-
ments exhibit the largest performance range. This could be
because this class contains sub-polar and mountainous envi-
ronments which may be hydrologically very complex with
many different storage types that complicate low flow be-
haviours (ice/groundwater).

The results for the flood regionalisation (Fig. 2, right)
present 10 studies from arid regions, 12 from tropical, 26
from cold and 9 from humid regions. They show that the pre-
dictions in humid regions exhibit the smallest errors and arid
regions have the largest errors. This means that the predictive
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Fig. 3. Coefficient of determination of predicting low flows in ungauged basins (left) and root mean squared normalised error of predicting
floods in ungauged basins (right), stratified by regionalisation method (Level 1 assessment). Each symbol refers to a result from the studies
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lated on discharges (m3 s−1). Lines indicate studies that compared different methods for the same set of catchments. Boxes show 25–75 %
quantiles.

performance clearly decreases with increasing aridity. There
are a number of factors that may contribute to this depen-
dence. The interannual variability (e.g. in terms of coefficient
of variation of the annual peak runoff time series) of floods
in arid regions is usually bigger than in other climates, due to
the associated stronger non-linearities and threshold effects
in drier regions and the the larger interannual variability and
skewness of rainfall intensities more typical for arid climates.
This means that floods are more difficult to estimate from
short records. The stronger non-linearity also implies that the
spatial hydrological variability in the flood producing pro-
cesses will impact more strongly the flood frequency curve,
so catchments that are close to each other may exhibit quite
different flood frequency curves, which reflects poorly on the
regionalised predictions. A possible explanation for this non-
linearity in arid catchments is given in Goodrich et al. (1997),
where the increasingly non-linear response is attributed to the
increasing importance of ephemeral channel losses and par-
tial storm area coverage. In contrast, humid catchments tend
to be more linear, so the predictability is larger. The biggest
range of performances is found in cold climates. This may
be partly related to the larger number of studies available for
these regions. Also, in cold regions a wide variety of flood
producing processes may exist, including snow and rain-on-
snow which may lead to different performance, depending on
the prevailing processes. For example, snow melt floods tend
to be more predictable than rain-on-snow floods (e.g. Sui and
Koehler, 2001).

4.2 Which regionalisation method performs best?

The low flow regionalisation methods represented in the as-
sessment included 1 result from the process-based meth-

ods group (continuous runoff models); 4 results from the
geostatistical group of methods where runoff at the target
site was estimated as a weighted mean of runoff at the sur-
rounding gauges; 11 global regression and 7 regional regres-
sion results from the regression methods group; and 5 re-
sults from the short records group that used various meth-
ods. The assessments in each group are not based on ex-
actly the same regionalisation approach, but the methodol-
ogy is similar. There are also differences in the low flow
indices used. They includeq95 (95 % exceedance probabil-
ity specific runoff),q7,10 (7 days 10 yr specific runoff), and
qmon,5 (monthly 5 day minimum), all standardised by catch-
ment area or mean flow, and the dimensionless BFI. In par-
ticularq95 low flows are usually closely correlated toq7,10 so
that a comparison across the various indices should provide
consistent results at the level of detail used for the compar-
isons. Figure 3 (left) shows a large performance range across
the regionalisation methods. Overall, it is clear that low flow
predictions from short records (R2

= 0.62 to 0.99) perform
best. The method performs significantly better than all other
methods, provided continuous runoff measurements from at
least 3–5 yr of observations at the site of interest are used.
A lower performance (0.62) is obtained when using a single
flow measurement during the low flow period. The perfor-
mance of global regression ranges from 0.43 to 0.86. Studies
from high-mountain environments have a lower performance
(Austria: 0.57, Switzerland: 0.51, Nepal: 0.53, India: 0.45)
perhaps because the heterogeneity of the low flow process in
the landscape (including snow) pose difficulties for applying
one single regionalisation model for the entire domain, so di-
vision into subregions may be necessary. Global regression
is better suited to smaller regions (e.g. the German region of
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Baden-Ẅurttemberg) and studies in climates less controlled
by snow seasonality (e.g. New South Wales and Victoria in
Australia). The four results from geostatistical models give
on average the highest performances between 0.61 and 0.89.
A continuous runoff model, tested in only one study used in
the meta-analysis, gave lower performance than the statisti-
cal methods. The studies examined differ in terms of the hy-
drological characteristics and data availability, so a compar-
ison of methods for different regions will involve some un-
certainty. It is therefore useful to apply each different method
to the same catchment. A number of studies are available in
the literature that have performed such a comparison and the
results are indicated as grey lines in Fig. 3 (left). Most of the
studies compare global and regional regressions. The com-
parisons clearly show that the regional regressions always
perform better than the global regressions. The studies that
conduct this comparison show that the average performance
of global regressions is around 0.5 and increases to 0.7 for re-
gional regression. It should be noted that the performance re-
ported is cross-validation performance for ungauged basins,
so better performance is related to better predictions rather
than to improved goodness of fit of the regressions. There
are also a few studies that compared geostatistical methods
with regional regression methods. In one study from France
(Plasse and Sauquet, 2010) the geostatistical method was
based on distance between the catchment centres of gravity.
The performance was larger than for global regression and
lower than that of regional regression. If the stream network
structure is taken into account, the performance of geosta-
tistical methods can in fact be higher than that of regional
regression as illustrated in the Austrian case studies (Laaha
et al., 2007, 2012). Finally, one study (Engeland and His-
dal, 2009) compared process-based methods with regional
regressions and found that the regressions gave better re-

sults. Clearly, application of process-based methods does not
per seinclude the performance of low flow estimation but
their value depends on the amount of information available
for careful parameterisation of the model. However, process-
based methods have more potential to explore the impact of
environmental change than statistical methods.

The flood regionalisation methods represented in the as-
sessment included (i) regression methods, 18 results from
different regression models where the flood quantiles or the
distribution parameters had been transferred to ungauged
basins; (ii) index methods, 34 results where a regional growth
curve had been defined for homogeneous regions; (iii) geo-
statistical methods, 5 results where runoff at the target site
was estimated as a weighted mean of runoff at the sur-
rounding gauges. While the assessments made by each group
are not based on exactly the same regionalisation approach,
the methodology is similar. Figure 3 (right) shows that the
geostatistical methods perform best (RMSNE of 0.30–0.52)
across the studies analysed, although the number of studies is
small compared to the other groups. For example, Merz and
Blöschl (2005) in Austria and Walther et al. (2011) in Saxony
(Germany), provide the combination of the necessary stream
network density and non-arid climate that causes their lower
RMSNE values (0.30 and 0.46 respectively). The regression
methods have the lowest performance, i.e. the largest predic-
tive errors (median RMSNE of 0.62), and the index meth-
ods fall in between. As an illustrative example, we find the
low performances (average RMSNE of 0.57) of the index
flood method in the arid and semi-arid regions of Meigh
et al. (1997) and even lower (RMSNE between 0.81–0.88)
for the regression approaches in a cold climate in Guse et
al. (2010). The result of the overall ranking of methods is
confirmed by studies that compared different approaches in
the same region (grey lines in Fig. 3, right). It appears that it
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Table 4.Methods with the highest and lowest cross-validation performance of runoff predictions in ungauged basins. Arid relates to catch-
ments with an aridity index> 1. Level 1 refers to an assessment of the average performance of studies, Level 2 to an assessment of the
performance for individual catchments. For the number of studies and catchments see Table 2.

Level 1 Level 2

Highest cross-validation
performance

Lowest cross- validation
performance

Highest cross-
validation performance

Lowest cross-
validation performance

Low flows Short records,
Geostatistics

Global regressions Short records,
Geostatistics (arid)

Global regressions

Floods Geostatistics, Index
methods

Regression methods Geostatistics Index methods (arid),
Regression methods

may be difficult to find catchment characteristics that are rep-
resentative of the flood generating processes. For example,
subsurface characteristics are an important control for flood
generation and these are difficult to capture unless detailed
field surveys are available. Index methods and geostatistical
methods are less dependent on the catchment characteristics
as they usually take advantage of both spatial proximity (ei-
ther through spatial correlations or homogeneous regions)
and correlations to catchment characteristics. It is also the
case that the geostatistical studies in Table 3 have been per-
formed in data-rich environments, which may partly explain
their better performance. It is interesting to note that the num-
ber of studies applying regression and index methods is much
larger than those applying geostatistical methods, which is
because they have a longer tradition in hydrology. The first
two columns in Table 4 present a summary of the methods
with the highest and lowest predictive performances in the
Level 1 assessments of low flow and flood studies.

4.3 How does data availability impact performance?

While the information on the data used was never very de-
tailed in the studies examined, some inferences on data avail-
ability can be drawn from the number of catchments used
in the studies. These are usually those catchments used both
for the cross validation and for regionalising runoff to neigh-
bouring catchments. Figure 4 (left) shows the predictive per-
formance (R2) for the case of low flows as a function of the
number of catchments analysed in each study. It is clear that
the studies with less than 100 catchments have, on average,
the lowest performance and performance increases with the
number of catchments used in analysis. Possibly, this is due
to the lower stream gauge density in studies with a smaller
number of stream gauges, but more detailed analyses on the
precise geographic extent of the studies would be needed
to ascertain the data controls on performance. The perfor-
mance decreases for very large datasets (> 250 catchments).
This decrease is related to the higher heterogeneity of larger
study areas and to the fact that a number of the studies used
global regression methods that did not perform very well in
these regions.

Figure 4 (right) shows the RMSNE for the case of floods
as a function of the number of catchments analysed in each
study. The errors clearly decrease and the performance in-
creases with the number of catchments included in the analy-
sis. This is possibly because of the higher stream gauge den-
sity in the larger studies with a bigger number of stations
involved, which makes the transfer of floods across the land-
scape more accurate, in particular if there is a stream gauge
upstream or downstream of the target site. Also, the region-
alisation methods may be more robust if the total number of
stations is larger.

4.4 To what extent does runoff prediction performance
depend on climate and catchment characteristics?

The assessment of the predictive performance of the low
flow regionalisation methods with respect to three climate
and catchment characteristics (Level 2 assessment) is pre-
sented in Fig. 5. The lines indicate the median runoff predic-
tion performance of catchments belonging to the same study.
Overall, the absolute normalised error (ANE, see Sect. 3.1),
clearly increase with increasing aridity. This means that the
performance is consistently lower in drier, and more arid en-
vironments. These are regions that tend to be particularly het-
erogeneous, with a high presence of intermittent rivers (Ja-
cobson and Jacobson, 2013) and where low flows may be
small, which makes them particularly hard to predict.

Figure 5 also indicates that there is a tendency for perfor-
mance to increase with catchment elevation. The average of
all methods shows that errors decrease from 0.37 for low-
land catchments (mean elevation< 200 m a.s.l.) to 0.16 for
high mountain catchments. This may be partially due to the
higher specific discharges of mountainous catchments com-
pared to lowland catchments which may increase predictabil-
ity. Also, in the high mountains, low flows may be of a win-
ter low flow type, so low flows may depend on frost strength
which is closely related to catchment elevation. The bottom
panels in the figure show the performance as a function of
catchment scale. For all methods the performance increases
with catchment scale. This may be related to both data avail-
ability and space–time aggregation of runoff processes in the
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Fig. 5. Absolute normalised error of predictingq95 low flows (m3 s−1 km−2) in ungauged basins as a function of aridity (EPA/PA), mean
elevation and catchment area for different regionalisation methods (Level 2 assessment). Lines connect median errors for the same study.
Boxes are 40–60 % quantiles, whiskers are 20–80 % quantiles.

catchments, which will increase the predictability. The ex-
ceptions are methods that use short runoff records at the site
of interest. In these cases, the performance dependence on
catchment size is less pronounced than for the other meth-
ods. These types of methods may be more dependent on the
representativeness of the short runoff record to the tempo-
ral variability of low flows, so the dependence on the spatial
variability and therefore catchment size may be lower.

The left panels in Fig. 6 summarise the performance for
different regionalisation approaches, stratified by the aridity
index. The left-top, left-middle and left-bottom panels show
the performance for all catchments, catchments with an arid-
ity index below and catchments with an aridity index above
1, respectively. Overall, for all catchments the performance
of the global regression is much lower than that of any other
method. This is consistent with the Level 1 assessment. In
the arid catchments the performance of the global regression
is particularly low and the absolute normalised errors are on
average around 1.1. In the humid regions the short records

perform better than any other method. This is, again, consis-
tent with the Level 1 assessment. However, this is no longer
the case for the arid catchments. For the arid catchments, the
performance of the short records is in fact lower than those of
the geostatistical methods and regional regression. It appears
that, in arid regions, the variability of the low flows between
years may be larger than in other climates, what makes the
method more dependent on an appropriate donor site. The ap-
propriateness of a donor depends on gauging density which
is often lower in the more arid countries. Methods may be
needed in arid regions that specifically account for the runoff
generation processes in the region, and preferably are based
on proxy data that account for these processes.

The Level 2 assessment for flood prediction studies,
i.e. the assessment of the ANE measure with respect to the
three climate and catchment characteristics is presented in
Fig. 7. The lines indicate again the median runoff predic-
tion performance of catchments belonging to the same study.
The top panel shows that the errors clearly increase with
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increasing aridity, i.e. there is a decrease in performance with
aridity for all three methods. This is also supported by the
lines representing comparative studies. This clear trend is in
line with the Level 1 assessment for floods, but also with both
assessment levels for low flows. Arid regions tend to be more
heterogeneous than humid regions and runoff processes are
more non-linear, which makes the predictions for both floods
and low flows more difficult. There is a slight increase in
performance with elevation but, in contrast to aridity, the er-
rors do not change much with elevation. In the studies ex-
amined here, the highest elevation catchments are influenced
by snowmelt, so there is a tendency for the flood predictions
to improve if snow melt is involved in the flood generation
processes.

The results stratified by catchment area (Fig. 7, bottom
panels) indicate a clear increase in performance (decrease of
ANE) with increasing catchment area for all methods. The
increasing performance with catchment size is likely related
to two factors. The first is related to the data availability. As
the catchment size increases the likelihood that gauged sub-
catchments are available as donor stations increases. This
will lead to more reliable transfer of the flood characteristics.
Additionally, for larger catchments, there are aggregation ef-
fects on the flood generating processes, so floods tend to be
less flashy and therefore easier to predict.

The right panels in Fig. 6 summarise the runoff prediction
performance of different regionalisation approaches, strati-
fied by the aridity index. Again, the right-top, right-middle

Hydrol. Earth Syst. Sci., 17, 2637–2652, 2013 www.hydrol-earth-syst-sci.net/17/2637/2013/



J. L. Salinas et al.: Part 2: Flood and low flow studies 2649

1.2

0.8

0.4

0.0

A
N

E
 (
-)

0.05 0.1 0.5 1 5
Area (103 km2)

0.05 0.1 0.5 1 5
Area (103 km2)

0.05 0.1 0.5 1 5
Area (103 km2)

1.2

0.8

0.4

0.0

A
N

E
 (
-)

3 6 9 12 15
Elevation (102 m a.s.l.)

3 6 9 12 15
Elevation (102 m a.s.l.)

3 6 9 12 15
Elevation (102 m a.s.l.)

1.2

0.8

0.4

0.0

A
N

E
 (
-)

0.4 0.6 0.8 1.0 2.0
Aridity index (EPA/PA)

0.4 0.6 0.8 1.0 2.0
Aridity index (EPA/PA)

0.4 0.6 0.8 1.0 2.0
Aridity index (EPA/PA)

Regression Index method Geostatistics

Fig. 7. Absolute normalised error of predictingq100 floods
(m3 s−1 km−2) in ungauged basins as a function of aridity
(EPA/PA), mean elevation and catchment area for different region-
alisation methods (Level 2 assessment). Lines connect median er-
rors for the same study. Boxes are 40–60 % quantiles, whiskers are
20–80 % quantiles.

and right-bottom panels show the performance for all catch-
ments; catchments with an aridity index below and catch-
ments with an aridity index above 1, respectively. Analy-
sis of the overall performance of the three methods shows
that performance is similar for geostatistical and index meth-
ods, which have a slightly better performance than the re-
gression methods. For humid catchments, again, the perfor-
mance of geostatistical methods is slightly better than index
methods, and the performance of the regression methods is
slightly lower. For dry catchments, however, the index meth-
ods performs significantly worse than the other two methods.
The low performance of the index flood method in arid re-
gions may be related to the underlying assumption of using
the same non-dimensional flood frequency curve (i.e. growth
curve) in the entire regions. Arid regions may be spatially
more heterogeneous, leading to lower performance. More

importantly, most arid catchments have the larger errors for
the index methods, as the result of the prediction overesti-
mate on the 100 yr floods (Fig. 7, top centre). The median
absolute normalised error is 1.0, and the errors were in the
vast majority positive (presented in Blöschl et al., 2013), in-
dicating that typically the methods predict around twice the
floods actually observed. If a homogeneous region contains
both arid catchments with relatively lower floods and wet-
ter catchments with higher floods, the homogeneity assump-
tion will tend to lead to an overestimation in those catch-
ments with the lower floods. The last two columns in Table 4
present a summary of the methods with the highest and low-
est predictive performances in the Level 2 assessments of low
flows and floods.

5 Conclusions

This paper has compared the performance of predicting low
flow and flood discharges in ungauged basins using differ-
ent regionalisation methods. Two kinds of assessments were
performed; a Level 1 assessment which constitutes a meta-
analysis from the literature; and a Level 2 assessment which
analyses individual catchments in more detail. The results in-
dicate that the Level 1 and Level 2 assessments are consistent
while shedding light on different aspects of the prediction
problem. The assessment of flood and low flow estimation
methods in this paper represents the largest existing meta-
analysis of regionalisation studies of hydrological extremes.
However, it is clear that the analysis cannot cover all facets
of hydrological variability worldwide. Arid and tropical cli-
mates are missing in the case of low flows. Arid climates
are especially prone to droughts, so it would be of worth to
pursue more detailed research on assessing predictions of ex-
treme low flows in these areas. Also, some of the methods,
e.g. process-based methods, are under-represented in the lit-
erature and a more detailed analysis of these would be of in-
terest. For the flood regionalisation studies, the coverage of
climates is more uniform, but there is a clear dominance of
the regression-type and index-flood methods over geostatisti-
cal approaches. The increasing trend in the application of the
latter group of methods is likely to lead to a sizeable sample
of studies in the literature which will allow more comprehen-
sive tests of their performance in the near future.

The Level 1 analysis suggests that in humid regions the
performance of predicting both low flows and floods in un-
gauged basins tends to be better than in other climates. For
the case of floods the performance tends to be lowest in arid
regions. For the case of low flows, geostatistical methods
can perform better than regional regressions in regions with
medium to high stream gauge density if the stream network
structure is taken into account. Regional regressions that di-
vide a domain into subregions and apply regression models
separately always perform much better than global regres-
sions. For the case of floods, geostatistical methods tend to
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perform better than the other methods, regressions tend to
have the lowest performance, and index methods lie between
geostatistic and regression methods. This suggests that it may
be difficult to find catchment characteristics that are suitable
for regression methods, both for low flows and floods. Again,
for both low flows and floods the performance tends to in-
crease with number of stations in a region highlighting the
value of stream gauge data in the region of interest, even for
the case of ungauged basins.

The results of the more detailed analysis (Level 2) are
mostly consistent with those of the meta-analysis from the
literature (Level 1). For the case of low flows the predic-
tive performance tends to decrease with increasing aridity
(both Level 1 and Level 2 assessments). The performance
improves with increasing catchment area (Level 2 assess-
ment), apparently because of the presence of longer water
flow pathways that accompany increasing catchment size.
The availability of short records is particularly useful to im-
prove performance of low flow predictions (both Levels 1
and 2), especially in humid regions, and are perhaps not as
useful in arid regions because of the strong interannual vari-
ability together with the usually low stream gauge density
in arid regions (Level 2). Of the various methods, regional
regressions have been shown to be better than global regres-
sions (from Level 1 and Level 2 assessments). For the case of
floods, the predictive performance also tends to decrease with
increasing aridity (both Level 1 and Level 2 assessments).
As expected, predictive performance increases with increas-
ing catchment area (Level 2 assessment). Both Level 1 and
Level 2 assessments indicated that the geostatistical methods
have the best performance (especially when data availability
is high), index methods work next best, and regression meth-
ods have the relatively lowest performance. In arid conditions
the index methods are significantly biased and significantly
overestimate the 100 yr floods in the catchments analysed.
The Level 2 assessment also indicated that index methods do
not work well in arid regions. Arid regions would therefore
need more gauges to capture the temporal and spatial vari-
ability, but achieving this is unrealistic in many arid parts of
the world where (due to economic reasons) data density is
typically lower than in humid regions. Methods that are able
to exploit the specifics of the region would be needed here.
Use of readily available landscape information, such as ero-
sional patterns, based on the idea of reading the landscape,
may assist in improving the predictions of runoff extremes.
More research on arid hydrology is urgently needed. Scale,
uncertainty, and choice of proxy data are likely important
considerations in this body of research (e.g. Blöschl, 2006;
Koutsoyiannis et al., 2009).

The meta-analysis of the literature highlighted that the
results on predictive performance of low flows and floods
are presented in widely diverse ways, using different perfor-
mance measures, different ways of aggregating the informa-
tion of the regions of interest, and different levels of details
on the hydrological characteristics of the regions. It appears
that, to make the results more useful to the hydrological com-
munity, it would be essential to adjust the reporting of results
and make them more comparable. This would assist in gen-
eralising the findings from individual case studies. We need
techniques to exploit information from individual catchment
studies, as well as the compilation of all studies from around
the world. As a community collectively we need to go be-
yond that, and find systematic ways to generate knowledge,
in terms of the patterns that connect across the multitude of
studies and thereby provide a higher level of predictability
as to what will happen next and understanding that will en-
able extrapolation to new situations. This points to the im-
portance of hydrological synthesis as a vehicle for creating
these connections.
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