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Abstract. The formulation of objective procedures for the
delineation of homogeneous groups of catchments is a fun-
damental issue in both operational and research hydrology.
For assessing catchment similarity, a variety of hydrological
information may be considered; in this paper, gauged sites
are characterised by a set of streamflow signatures that in-
clude a representation, albeit simplified, of the properties of
fine time-scale flow series and in particular of the dynamic
components of the data, in order to keep into account the
sequential order and the stochastic nature of the streamflow
process.

The streamflow signatures are provided in input to a clus-
tering algorithm based on unsupervised SOM neural net-
works, obtaining groups of catchments with a clear hydro-
logical distinctiveness, as highlighted by the identification of
the main patterns of the input variables in the different classes
and the interpretation of their interrelations. In addition, even
if no geographical, morphological nor climatological infor-
mation is provided in input to the SOM network, the clusters
exhibit an overall consistency as far as location, altitude and
precipitation regime are concerned.

In order to assign ungauged sites to such groups, the
catchments are represented through a parsimonious set of
morphometric and pluviometric variables, including also in-
dexes that attempt to synthesise the variability and correla-
tion properties of the precipitation time series, thus provid-
ing information on the type of weather forcing that is spe-
cific to each basin. Following a principal components anal-
ysis, needed for synthesizing and better understanding the
morpho-pluviometric catchment properties, a discriminant
analysis finally assigns the ungauged catchments, through
a leave-one-out cross validation, to one of the above iden-
tified hydrologic response classes. The approach delivers a

quite satisfactory identification of the membership of un-
gauged catchments to the streamflow-based classes, since the
comparison of the two cluster sets shows a misclassification
rate of around 20 %.

Overall results indicate that the inclusion of information
on the properties of the fine time-scale streamflow and rain-
fall time series may be a promising way for better represent-
ing the hydrologic and climatic character of the study catch-
ments.

1 Introduction

The identification of groups of hydrologically similar catch-
ments is a fundamental issue in both operational and research
hydrology: it is essential to ensure the transferability of infor-
mation when applying regionalisation methods, but can also
provide valuable indications to improve the understanding
of the dominant physical phenomena in the different groups
(McDonnell and Woods, 2004; Wagener et al., 2007; Sawicz
et al., 2011). The similarity may be evaluated in terms of
signatures of catchments’ functional responses, quantifying
the characteristics of the hydrologic response that provide
insight into the behaviour of the catchment (Atkinson et al.,
2002; Wagener et al., 2007; Yilmaz et al., 2008; Oudin et
al., 2010). A comprehensive set of measures describing all
aspects of the catchment hydrology (such as meteorologi-
cal observations, soil moisture content, vegetation patterns,
etc.) should in principle be analyzed in order to fully un-
derstand these functional characteristics, but unfortunately
such measures are not available in the majority of catch-
ments. It is therefore worthy analyzing the information con-
tent embedded in data far more generally available, such as
streamflow measures, even if acknowledging that in this way,
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1150 E. Toth: Catchment classification

while it is possible to include in the study a much greater
number of catchments, the similarity analysis can provide
only a first-order classification (Wagener et al., 2007; Sawicz
et al., 2011). On the other hand, streamflow may be seen as
an integrator of all climatic and morphologic conditions of
a given basin (Samaniego et al., 2010), thus justifying such
an empirical approach. To this end, a variety of indexes based
on streamflow measurements may be adopted, characteriz-
ing in a different way the hydrological response of the basin,
generally depending on the type of analysis to be carried out.
The most frequent and compelling need for the assessment
of regional similarity in catchment response is in fact for is-
suing predictions in ungauged catchments, and the choice of
the streamflow indexes to be compared depends on the fi-
nality of the regional analysis, that is on the variable to be
predicted.

The large majority of regionalisation studies performing
an objective catchment classification, through the use of clus-
tering techniques, has concerned, since the 80s, flood fre-
quency analysis (e.g.Hosking et al., 1985; Lettenmaier et
al., 1987; Burn, 1989; Burn et al., 1997; Burn and Goel,
2000; Castellarin et al., 2001; Merz and Bloeschl, 2005). For
such analyses, the main representative streamflow variables
are, naturally, the flood peaks values. If the objective is, in-
stead, the assessment of water availability, the streamflow in-
dexes to be predicted may be for example mean annual or
monthly flows (e.g.Haines et al., 1988; Holmes et al., 1999;
Viglione et al., 2006) or low flow percentiles (e.g.Nathan
and McMahon, 1990; Laaha and Bloeschl, 2006; Vezza et
al., 2010) or the entire flow duration curve (e.g.Singh et al.,
2001; Ley et al., 2011; Patil and Stieglitz, 2011; Sauquet and
Catalogne, 2011). On the other hand, such representations
do not allow to take into account the sequential order and the
stochastic nature of the streamflow process; these properties
would, for example, be crucial if the regionalisation aimed,
as often needed in the hydrological practice, at the param-
eterisation of a rainfall–runoff model at fine temporal scale
and the catchment similarity should therefore be guaranteed
in terms of continuous streamflow generation.

It may therefore be important also representing and com-
paring, in addition to mean values or percentiles, the prop-
erties of the low time-scale streamflow series and in par-
ticular the dynamic components of the data. Information on
the effect of complex driving factors on the hydrological re-
sponse (not always easy to recognise) are in fact embedded
in the temporal dynamics of the streamflow series (Chiang
et al., 2002; Corduas, 2011). Important differences among
the streamflow processes may be highlighted by the analysis
of their temporal correlation structure, representable through
the global autocorrelation function ACF (or the correspond-
ing power spectrum). Since the time series autocorrelation
functions might differ strongly one from another in shape,
their comparison and classification through a visual inspec-
tion or a synthesising index is not straightforward. To tackle
this issue, recent studies (De Thomasis and Grimaldi, 2001;

Chiang et al., 2002; Grimaldi, 2004; Corduas, 2011) pro-
posed to analyze the streamflow temporal dynamics through
the parameter sets of linear models estimated on the corre-
sponding streamflow time series. A more parsimonious, but
less refined and necessarily approximated, approach is ap-
plied here for representing the autocorrelation structure: in
addition to the lag-1 autocorrelation coefficient (previously
used in regionalisation studies, for example, byMontanari
and Toth(2007); Castiglioni et al.(2010); Lombardi et al.
(2012) for the parameterisation of a rainfall–runoff model),
it is here proposed to use an index representing the shape
of the ACF, i.e. the correlation scaling exponent. Such index
has been used for analysing the scale properties of meteo-
rological and hydrological data (see, e.g.,Menabde et al.,
1997; Marani, 2003; Molnar and Burlando, 2008; Ozger et
al., 2012), but never, so far, for catchment classification pur-
poses.

Section 2 presents the study area and the indexes estimated
for both gauged and ungauged catchments; in Sect. 3, the set
of descriptors summarising the main statistical features of
the streamflow time series (including the coefficients above
cited for representing the temporal correlation structure) are
provided in input to a clustering algorithm based on unsu-
pervised SOM neural networks, recently proposed for catch-
ment classification, but so far never utilised for classifying
attributes based on time series properties.

The final aim of the study is the assignment of ungauged
catchments to the classes obtained from the similarity of
the river flow time series, presented in Sect. 4. To this end,
the ungauged catchments are characterised through a set of
indexes describing their morphology and the main rainfall
properties. In particular, besides the morphological indices,
it was deemed appropriate to rely on the information content
of long, high-resolution rainfall time series, given the impor-
tance of such information for understanding the prevailing
patterns in discharge time series (see, e.g.,Thomas et al.,
2012). In analogy with the streamflow series representation,
the rainfall attributes include also the indexes describing the
temporal variability of the series, that allow to incorporate
information on the dynamics of the process, thus character-
izing the type of weather forcing that is specific to each basin.
The present paper provides the first ever catchment classifica-
tion to be performed including coefficients (and in particular
the correlation scaling exponent) characterising the fine time-
scale variability and correlation structure of both streamflow
and rainfall fine-resolution time series. Following a princi-
pal components analysis (Sect. 4.1), needed for synthesis-
ing and better understanding the morpho-pluviometric catch-
ment properties, a discriminant analysis (Sect. 4.2) is then
applied in a leave-one-out cross validation approach, to iden-
tify the membership of ungauged catchments to the original
hydrometric classes. It is therefore finally possible to deter-
mine the error rate for classifying the streamflow properties
based on catchment descriptors that are available also in ab-
sence of hydrometric measurements.
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2 Study area and classification attributes

2.1 Study area and data

The study region includes 44 catchments, spanning the north-
eastern side of the Apennine mountains and piedmont area
(Emilia-Romagna), in Italy. The Apennines of north-central
Italy are a fold-and-thrust mountain chain related to an oro-
genic system (chain-foredeep-foreland), derived from the
post-Eocene collisional history between the European and
African plates and from a complex, multi-staged evolution.
The topographic relief is made up of a series of ridges elon-
gated in directions that vary from S–N to SW–NE, separated
one from the other by narrow valleys or by wide intermon-
tane tectonic depressions (Piacentini et al., 2011). The land-
scape is rougher and steeper in the western chain, whereas
the Adriatic piedmont areas are characterised mostly by gen-
tly reliefs down to the coastal lowlands.

The south-eastern part of the region (namedRomagna) is
actually a different hydrographic region, since it is formed by
rivers flowing directly in the Adriatic Sea, while the remain-
ing catchments are all headwater tributaries to the Po River
(the most important Italian river), belonging to the western
part of the region (Emilia). Also the climate varies between
the two areas from mountainous to maritime, going from the
higher crests of the western side to the eastern coastal and
hilly area. The western side of the region experiences more
rain, with annual rainfall depths that exceed 2000 mm in the
mountains, whereas the climate in the Romagna area changes
due to the wind exposition, to the influence of the sea, to
the lower orography and also to the lower latitude. Figure1
shows mean annual precipitation depths and elevation of the
Emilia-Romagna Region.

For each of the study catchments, time series data of
hourly streamflow were collected for a total number of obser-
vations ranging, for the different river sections, from 31 519
to 85 469 (that would correspond respectively to more than
3.5 and almost 10 yr of continuous monitoring but, as a mat-
ter of fact, embrace periods of missing data). Hourly stream-
flow data are expressed as spatial averaged runoff depths
(mm h−1). Areal precipitation estimates, again at hourly step
(mm h−1), were interpolated with Thiessen-polygon weight-
ing from nearby rain-gauges.

2.2 Streamflow signatures

The first step of the proposed approach is to cluster the catch-
ments on the basis of the hydrologic response, as defined
by key signatures of the streamflow time series. The cho-
sen signatures are (i) average runoff,µQ, (ii) the standard
deviation,σQ, and (iii–iv) the 5th and 95th percentiles,PQ,5
andPQ,95 of hourly data. To describe the correlation struc-
ture of the series, representing the dynamic component of the
process, two metrics were computed: (v) the lag-1 autocor-
relation coefficient,ρQ(1), and (vi) thecorrelation scaling
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Fig. 1. Mean annual precipitation (“Precipitazioni annue – Periodo
1991–2008”, ARPA Regione Emilia Romagna) and digital elevation
model of the Emilia-Romagna region.

exponent(see for exampleMenabde et al., 1997, andMolnar
and Burlando, 2008, for precipitation data, and the recent ap-
plication byOzger et al., 2012, to streamflow time series),
that is the exponent that characterises the correlation func-
tion with a power law:

ρQ(τ ) ∝ τ−αQ , (1)

whereρQ is the autocorrelation function,τ is the time lag,
and αQ is the correlation scaling exponent. Values ofαQ

tending to 0 indicate strongly correlated data, values close
or higher than 1 show absence of correlation. Actually, the
analysis of the correlation structures would require stationary
time series, whereas streamflow observations (as well as rain-
fall ones) exhibit a strong dependency on the season (see also
the recent analysis byPatil and Stieglitz, 2011); to solve this
problem, the above cited papers assume stationarity on a sea-
sonal basis, estimating separate coefficients for the different
seasons or months. In addition, if trends were present, Eq. (1)
may not be capable of characterizing the structure of data in
terms of multifractality and correlation dimension (see, e.g.
Ozger et al., 2012). Nonetheless, due to the limited number of
catchments in the data set, it was deemed appropriate, in this
first study, to retain the smallest possible number of stream-
flow signatures, in order to avoid over-parameterisation ef-
fects in the classification technique; for this reason, even if
acknowledging the strong limitations of this approximation,
stationarity was hypothesised and only one value forαQ was
estimated for each time series.

www.hydrol-earth-syst-sci.net/17/1149/2013/ Hydrol. Earth Syst. Sci., 17, 1149–1159, 2013
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2.3 Catchment descriptors

In order to extend the analysis of the hydrological similar-
ity also to catchments devoid of flow measurements, indexes
describing the basins from the geo-morphological and clima-
tological point of view are identified. The main geographical
and morphometric attributes are derived from digital catch-
ment boundaries coupled with the digital elevation model:
(i)–(ii) the geographical coordinates UTMX andY of the
stream gauges; (iii) drainage area,A, (iv)–(v) minimum and
average catchment elevation,Hmin andHmed, and (vi) main
stream length,L. In addition, to better describe the catch-
ments as far as the rainfall–runoff transformation is con-
cerned, indexes obtained from the high-resolution areal rain-
fall time series are estimated, thus attempting to characterise
the fine time-scale variability and correlation structure of the
precipitation process. The chosen pluviometric attributes are
(i)–(ii) the mean and the standard deviation of the hourly
data,µP andσP ; (iii) the average proportion of wet hours
(hours with more than 0.2 mm of rain),PWet; finally, in anal-
ogy with the streamflow signatures, (iv) the lag-1 autocorre-
lation coefficient,ρP (1), and (v) the correlation scaling ex-
ponent,αP , of the precipitation time series are computed.

The chosen streamflow signatures and catchment at-
tributes (pluviometric and morphometric) are listed in Ta-
ble 1, along with the corresponding observation ranges over
the data-set.

3 Classification of streamflow signatures with SOM
neural networks

In the past three decades a number of applications of cluster
analysis techniques have been presented in the hydrologic
literature for the objective identification of catchments hav-
ing similar attributes (either geographic, morphometric, cli-
matic and/or based on streamflow observations). In the recent
years, also non-supervised neural networks, and in particular
of the SOM (self-organising mapping) type, were success-
fully applied (and sometimes compared with other methods
such as K-means or Fuzzy C-means) for catchments classi-
fication purposes (Hall and Minns, 1999; Hall et al., 2002;
Jingyi and Hall, 2004; Chang et al., 2008; Srinivas et al.,
2008; Di Prinzio et al., 2011; Ley et al., 2011). SOM-type
neural networks learn to cluster the input data by recogniz-
ing different patterns organising the data on the basis of their
similarity, quantified by means of a distance measure (in the
present case, like in the majority of applications, the Eu-
clidean distance). More details on the SOMs and in partic-
ular on their use as classification techniques may be found
for example inHerbst and Casper(2008) or in Toth (2009).
The networks are formed by two layers of interconnected
nodes (or neurons): each attribute of the entity to be clas-
sified (i.e. a catchment) is fed to one of the input nodes,
while the output nodes correspond to the classes to which the

entities are assigned. An input vectorx = (x1,x2, . . . ,xn) ac-
tivates in fact only one output node, representing its class, us-
ing the Kohonen competitive learning rule (Kohonen, 1997).
Each output node is characterised by the weights connect-
ing it to the input nodes. Initially the weights between the
n input nodes and each output node are randomly assigned.
When, in the training phase, an input is sent through the net-
work, each output neuron computes the distance between its
weightsW = (w1,w2, . . . ,wn) and the input vector:

‖x − W‖ =

√√√√ n∑
i=1

(xi − wi)2. (2)

The output node responding maximally to the given input
vector – specifically, the weights vector having the minimum
distance from the input vector – is the winning neuron. At
each training iterationt , the weights of the winning node and
of its neighbouring nodes change, so to further reduce the
distance between the weights and the input vector:

W (t + 1) = W (t) + µ(t)hlm(x − W (t)), (3)

whereµ is the learning rate,∈[0 1], l andm are the positions
of the winning and its neighbouring output nodes andhlm

is the neighbourhood shape, that reduces the adjustment for
increasing distance, namely,

hlm = exp

(
−

‖l − m‖
2

2θ(t)2

)
, (4)

where‖l −m‖ is the lateral distance betweenl andm on the
output grid andθ is the width of the topological neighbour-
hood.

Lateral interaction between neighbouring output nodes en-
sures that learning is a topology-preserving process in which
the network adapts to respond in different locations of the
output layer for inputs that differ, while similar input patterns
activate adjacent output units, corresponding to akin classes,
as will be shown in the next subsections.

The values of the streamflow signatures (i.e. the input vec-
tors) are standardized to zero mean and unit variance, so to
give them equal importance in the evaluation of the distance
measure.

The number of input variables (six in the present case) cor-
responds to the dimension of the input layer, whereas the di-
mension of the output layer is equal to the number of classes
to be determined.

3.1 SOM classification in 6 clusters

There is no principled definitive statistical method for choos-
ing the most appropriate number of partitions in a data set,
and such choice mainly depends on the clustering resolution
desired by the user.

Hydrol. Earth Syst. Sci., 17, 1149–1159, 2013 www.hydrol-earth-syst-sci.net/17/1149/2013/
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Table 1.Streamflow signatures, pluviometric and morphometric attributes.

Streamflow signatures Observations Range

Average runoff µQ (mm h−1) 0.013–0.233
Standard deviation runoff σQ (mm h−1) 0.036–0.588
Percentile 95 % runoff PQ,95 (mm h−1) 0.035–0.767
Percentile 5 % runoff PQ,5 (mm h−1) 0.000–0.021
Lag-1 autocorrelation runoff ρQ(1) 0.962–0.998
Correlation scaling exponent runoff αQ 0.088–0.474

Pluviometric attributes Observations Range

Average precipitation µP (mm h−1) 0.084–0.258
Standard deviation precipitation σP (mm h−1) 0.480–1.309
Proportion of wet hours PWet 0.065–0.122
Lag-1 autocorrelation precipitation ρP (1) 0.517–0.826
Correlation scaling exponent precipitationαP 0.715–1.071

Morphometric attributes Observations Range

CoordinateX UTM stream gauge X (m) 525 736–758 845
CoordinateY UTM stream gauge Y (m) 4 869 659–4 982 633
Drainage area A (km2) 18–1303
Minimum catchment elevation Hmin (m a.s.l.) 8–896
Average catchment elevation Hmed (m a.s.l.) 308–1411
Main stream length L (km) 3–93

In the present work, a first SOM application partitions the
streamflow attributes vectors into six classes, i.e. in a rela-
tively large (in reference to the number of entities to be clas-
sified) number of groups, aiming at a sufficiently detailed
discrimination between the classes, so to highlight the most
important features of the data drawn from the input space.
The SOM may in fact be seen also as an information content
extractor, projecting the analysed entities (streamflow signa-
tures vectors) on the output layer, which has a lower dimen-
sion (2-dim) than that of the inputs (6-dim). The SOM output
layer is set equal to 3×2 nodes, corresponding to 6 clusters of
similar catchments organised on a hexagonal lattice, so that
diagonal neighbours have the same distance as horizontal and
vertical ones.

When the training is complete, each vector of streamflow
signatures is assigned to its winning node, that corresponds
to the class. Figure2 shows the closure sections of the catch-
ments associated to the six obtained clusters, along with a
representation of the hexagonal output layer.

Following the presentation methodology proposed in
Chang et al.(2010), a topology map is presented in Fig.3.
Such a map shows the mean value of each streamflow at-
tribute (standardised to zero mean and unit variance) for the
catchments of each cluster.

The topology, that is the relative location of the nodes,
allows to visualise the variation of the streamflow features
along the different classes, characterising the behaviour of
the input variables and their interrelations. Class A (top-left
hand corner) corresponds to the catchments with the maxi-
mum runoff, having the highest values ofµQ, σQ,PQ,5 and

PQ,95. The adjacent cluster B retains values ofPQ,5 and
PQ,95 higher than the regional average (even if to a lesser
extent than Class A), whereasµQ andσQ are very close to
the mean (zero) value. In Class C, which is adjacent to both A
and B, but also to the remaining three classes, all the stream-
flow signatures are squeezed close to the mean values. On the
other hand (and on the opposite part of the lattice), groups D,
E and especially F (the furthest from the most humid cluster
A) correspond to the catchments with the lowest runoff, with
negative standardised values ofµQ, σQ,PQ,5 andPQ,95.

When considering the indexes devised for representing the
dynamic component of the process, we can identify the most
highly correlated streamflows (largeρQ(1) and smallαQ),
on the top-right hand side (Classes B and D), whereas the
less temporally correlated ones (very low values ofρQ(1)

and highαQ) characterise Class E, on the opposite corner.
Classes A and C (top-left corner) haveρQ(1) andαQ close to
the regional mean and the bottom right-hand corner (F) lies in
between its neighbours E and D, with positive (standardised)
values for bothαQ andρQ(1).

The topology map evidences the core morphological and
climatological features of the different groups of catchments,
as may be inferred from their geographical location, compar-
ing Fig. 2 with Fig. 1: the top-left hand class A (black dia-
monds) is formed by very rainy but small (due to the reduced
size, the streamflow is not strongly correlated) catchments:
they are located in the mountainous (southern) part of the
western area.

The elements in class B (top but right hand side, white
diamonds) have high runoff (but less than those in A) and

www.hydrol-earth-syst-sci.net/17/1149/2013/ Hydrol. Earth Syst. Sci., 17, 1149–1159, 2013
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Fig. 2.Catchments of the 6-cluster classification identified by SOM
based on streamflow signatures.

show a significant temporal correlation: they are located in
the western (more rainy) region too, but more downstream,
and have larger areas, so that both the humid climate and the
size induce a significant correlation.

Classes F and D (bottom right-hand side) correspond to the
less humid catchments: to the first class belong those – from
east to west – at lower altitudes (see the position of the red di-
amonds, in the piedmont or flat part of the region), where the
impact of orographic precipitation is limited; the elements of
D (yellow) are instead almost all located in the eastern, cli-
matologically less rainy, part of the region (Romagna).

Cluster E (orange) is formed by small basins (the size is
consistent on the lattice topology, since the nodes on the left
side, A and E, correspond to the smallest catchments) with
modest runoff, characterised by the lowest temporal correla-
tion.

Lastly, class C is the less markedly characterised, with all
streamflow indexes close to the regional averages, as topo-
logically consistent with its position on the lattice, being the
neuron that is at equal distance from all the other five. Such
more “amorphous” catchments are a minority, four in total,
whereas the other groups are formed by 7 to 9 elements, high-
lighting a good balance in the numerousness of the classes.

3.2 SOM classification in 3 clusters

A second SOM application was set up for partitioning the
watersheds in three, instead of six, classes. In fact the dis-
criminant analysis to be performed in the second part of
the study – aimed at assigning ungauged catchments to the
classes identified as a function of the streamflow signatures
– needs a less detailed clustering resolution, in order to avoid
the effects of overparameterisation. In detail, the number of
discriminant variables multiplied by the number of classes
should be not greater than one fourth of the total number of
records (Hand, 1997; Sanborn and Bledsoe, 2006).

It was hence decided, in this second classification ex-
periment, to limit to three the number of hydrologically
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Fig. 3. Topology map of 6-cluster (3× 2) SOM classification of
streamflow signature vectors.

homogeneous clusters, with an output layer consisting of
only 3 nodes.

Figure4 indicates the closure sections of the catchments
associated to each of the three classes, whereas the topology
map (Fig.5) shows the mean value – for each cluster – of the
standardised streamflow attributes.

The trained network associates to Class 1 (magenta) al-
most half of the study catchments (21 over 44) formed by the
previous (6-cluster) adjacent classes F and D, plus the major-
ity of class E (contiguous to F). Consistently with the more
refined partitioning, such catchments are those that generate
the lowest runoff (small values ofµQ, PQ,5, PQ,95 andσQ,
as illustrated in the topology map).

It may be observed in Fig.4 that Class 1 includes almost
all the basins of the south-eastern part of the study area (Ro-
magna) and other lower-altitude and drier catchments located
in the downstream (northern) part of the western valleys. It
is realistic that the Romagna catchments – that are close to
each other and belong, as said in Sect. 2.1, to a distinct hydro-
graphic region – seem to behave in a hydrologically similar
way according to this second, coarser classification. In fact
such a contiguous area is certainly characterised by similar
climate, topography and geology, and all other characteris-
tics deriving from them, such as soil type, vegetation, etc.
(Merz and Bloeschl, 2005; Patil et al., 2012).

On the other hand it is evident, as expectable, that the
coarser clustering is not able to fully capture the differences
among the hydrometric signatures, and in particular among
the dynamic components of the streamflow process. Class 1
in fact is characterised, on average, by series that are slightly
less autocorrelated than the regional averages (smallerρQ(1)

and greaterαQ), but it merges basins characterised by very
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Fig. 4.Catchments of the 3-cluster classification identified by SOM
based on streamflow signatures.

different temporal correlation indexes: the less correlated
ones (belonging to Class E of the 6-cluster grouping) along
with time series that are instead more correlated (Class D)
or characterised by a mixed condition (Class F, having both
ρQ(1) andαQ values above the regional averages). As a con-
sequence, the autocorrelation coefficient and the correlation
scaling exponent have limited discriminant power in the 3-
cluster analysis.

Class 3 (11 elements) incorporates the 6-cluster Class A
and a part of Class B, corresponding to the highest runoff (as
evidenced by the topology maps) and to a temporal correla-
tion which is, on average, slightly higher than the regional
means. Consistently with the geographical location of the el-
ements of Class A (and Class B), Class 3 mainly includes the
mountainous catchments of the western area, characterised
by higher altitude and precipitation.

Finally, Class 2 (12 catchments) stands in between the
other two clusters, adding to the “amorphous” Class C the
catchments of Class E that fit less in the new 3-cluster Class
1 and a few from Classes B and D that do not fit in Class 3.

Comparing the results of the two classifications (6-cluster
and 3-cluster), it is demonstrated that the topological order
of the SOM structure guarantees that solutions with more
clusters are correctly nested within the solutions that have
fewer clusters. On the other hand, the coarser classification
is mainly led by the signatures representing runoff magni-
tude and, while it clearly separates the higher and lower val-
ues ofµQ, PQ,5, PQ,95 andσQ, those ofρQ(1) andαQ are,
instead, extremely variable inside each class, indicating that
the dynamic component of the process is not given sufficient
consideration.

Despite the above mentioned limitation, the SOM classifi-
cations (both 3-cluster and 6-cluster) based on streamflow
signatures seem overall to indicate a good grouping abil-
ity, as highlighted by the consistent interpretation of how
the main features of the input variables vary in the differ-
ent classes and of their interrelations, as illustrated through
the analysis of their topology maps. In addition, even if no
geographical, morphological nor climatological information
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Fig. 5.Topology map of 3-cluster SOM classification of streamflow
signatures vectors.

is provided in input to the SOM network, the clusters exhibit
an overall consistency as far as location, altitude and precip-
itation regime are concerned.

4 Application to ungauged catchments

One of the primary practical objectives for delineating hy-
drological homogeneous regions is to assess the member-
ship of ungauged sites, thus inferring indications on the re-
sponse behaviour of such catchments. An important feature
of a cluster analysis aimed at identifying homogeneous clus-
ters is therefore the ability to discriminate between them on
the basis of variables that are different from the streamflow
signatures, namely, a set of physical and climatic character-
istics of the watersheds. In Sect. 3, the SOM was applied as
an unsupervised methodology for grouping together catch-
ments that are similar from the hydrometric point of view.
The objective of the methodology presented in this section
is to assign to such classes any new watershed where the
streamflow attributes are not available. A discriminant analy-
sis is applied as a supervised learning technique, that assigns
each record to predefined groups. To this end, it constructs
a classification rule based on the knowledge, for the same
catchments, of (i) the morphologic and pluviometric proper-
ties presented in Sect. 2.3 (chosen as discriminant) and (ii)
the hydrometric class: the clusters obtained by the unsuper-
vised 3-cluster SOM based on streamflow indexes become,
in this second analysis, the predefined reference classifica-
tion. The goodness of the discriminant analysis is then as-
sessed through the capability of assigning a catchment, on
the basis of its morpho-pluviometric attributes only, to the
same class to which it would be assigned if its streamflow at-
tributes were known. This approach is similar to that applied
by Bhaskar and O’Connor(1989), Chiang et al.(2002) and
Sanborn and Bledsoe(2006), albeit with different hydromet-
ric and morpho-climatic sets of indices and different cluster
analysis techniques.

4.1 Principal component analysis of catchment
descriptors

The chosen morphometric and pluviometric catchment
descriptors available for ungauged stream-sections (see
Sect. 2.3) are a total of 11 (X, Y , A, Hmin, Hmed, L, µP ,
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Table 2. Morpho-pluviometric variables with the highest loadings
on the first three PCs and total explained variance (in parentheses).

PC1 (47.8 %) PC2 (25.1 %) PC3 (16.0 %)

µP A Y

Hmin ρP (1) −X

σP L −αP

Hmed
−αP , −X

σP , PWet, ρP (1), αP ). Also due to the above cited over-
parameterisation constraints, the catchment descriptor vec-
tors are subjected to a principal component analysis to iden-
tify a smaller number of uncorrelated variables that describe
the dominant patterns of variance in the data.

The principal component analysis shows how the first
three principal components (PCs) explain, together, 89 % of
the total variance (and the fourth one adds only another 4.6 %
of explanation). Table2 presents the original variables that
mostly affect the first three PCs (i.e. those with the highest
loadings) and the percentage of total variance explained by
each PC.

The principal component analysis helps to interpret the
differences and similarities of the data; in fact each PC de-
scribes a specific aspect of the variability of the catchment
attributes and the variables with the highest loadings on a PC
best explain that “dimension” of the data (Chiang et al., 2002;
Sanborn and Bledsoe, 2006). The first PC is positively asso-
ciated withHmin, Hmed, µP , σP , thus representing the in-
fluence of elevation, corresponding to higher rainfall values
(due to orographic effect), whereas the correlation scaling
exponent,αP (and also theX coordinate, since the eastern
part of the study region is less markedly rugged and receives
less rainfall) contributes with the opposite sign, and there-
fore with lower values (associated to higher correlation) for
increasing altitude. This result is consistent with the findings
of Molnar and Burlando(2008), where the most elevated ar-
eas exhibit lowerαP -values (and therefore a stronger corre-
lation, indicating that the orographic forcing leads to better
organised and long-lasting precipitation fields). The second
PC, associated toA, L andρP (1), substantially represents
the catchment dimension, increasing along with the lag-1
autocorrelation of the spatially averaged rainfall. The third
component, associated with negativeX and positiveY val-
ues, represents the geographical location; moving along the
Apennine ridge from SE to NW,αP decreases. This shows
that the precipitation on the Emilia area tends to be more tem-
porally correlated than that on the Romagna area, the latter
being less mountainous and less rainy, due also to the influ-
ence of the sea and of the southern currents.

 

2 3
1

1
 

 
2 31 

Fig. 6. Classification identified by discriminant analysis based on
the first three PCs of the catchment descriptors.

4.2 Discriminant analysis for classification of ungauged
catchments

Discriminant analysis is a supervised learning technique that
treats a set of observations with one classification variable
and one or more quantitative variables (or discriminants) to
describe each classified entity. On the basis of such informa-
tion, the algorithm constructs a classification rule as a func-
tion of the quantitative variables that allows to assign any
new record to one of the predefined groups. The analysis
identifies the combination of the quantitative variables that
maximises the ratio between the inter-classes variance and
the intra-classes variance (thus maximising the inter-class
separability and the intra-class compactness of the data sam-
ples in a low-dimensional vector space), finding the one that
can most effectively partition the predefined groups (Hand,
1981; Krzanowski, 1988).

In the present application, the quantitative variables de-
scribing each entity are the first three principal compo-
nents of the catchment descriptors (presented above) and the
classes are the three clusters identified by the SOM network
based on the streamflow signatures (see Sect. 3.2). This is
consistent with the indications (cited in the same section)
that, for an optimal discriminant analysis, it is preferable that
the number of discriminant variables multiplied by the num-
ber of classes is less than one fourth of the total number of
records to be classified (44 in the present case).

The discriminant capacity is assessed through the com-
parison between the streamflow signatures classification and
the one derived by the catchment attributes. It was here per-
formed a leave-one-out cross validation, considering, in turn,
each basin as ungauged and therefore excluding it from the
data used to construct the discriminant criterion. It is finally
possible to determine the percentage of gauged sites correctly
classified in the discriminant-based approach. The classifica-
tion obtained with the discriminant analysis is represented in
Fig. 6.

Comparing Figs.4 and6, it may be seen that 9 catchments
are misclassified (i.e. an error rate around 20 %): five errors
occurred when Class 3 entities were assigned to Class 2 or
viceversa; the remaining four errors result from exchanges
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between Class 1 and Class 2. It is worthy observing that there
are no instances in which catchments belonging to Class 1 are
assigned to Class 3 or the other way round. This is a merit
of the topological properties of the SOM network, unique
among the other clustering techniques: the relative position
of the nodes on the output layer allows, indeed, to take into
consideration the affinity among the classes, since nodes that
are nearby may be considered representative of akin classes.
Classes 1 and 3 correspond, in fact, to the less similar groups,
while Class 2 is intermediate between the two. It is hence
comforting to observe that the two most different clusters re-
sult separately in both classifications and that the only errors
are exchanges with the intermediate cluster.

5 Conclusions

The methodology developed in this study first provides
a means for identifying groups of similar catchments on the
basis of streamflow indexes (signatures) and successively
classifies, in the same clusters, ungauged basins on the basis
of climate and landscape characteristics. The main novelty of
the approach lies in the inclusion, both in the streamflow and
in the rainfall characterisation, of information derived by the
fine-scale continuous time series, through indexes attempt-
ing to synthesise, in a parsimonious way, the variability and
correlation structure of the respective processes.

The streamflow signatures are fed to two unsupervised
self-organising mapping networks, forming respectively 3
and 6 groups of similar catchments, and obtaining – espe-
cially for the more refined 6-cluster partition – classes with
a clear hydrological distinctiveness. This is highlighted not
only by the consistent interpretation of how the main features
of the input variables vary in the different classes and of their
multi-relations (shown by the topology maps), but also by
the spatial distribution of the groups of homogeneous catch-
ments. In fact, even if no geographical, morphological nor
climatological information is provided in input to the SOM
network, the clusters exhibit an overall consistency as far as
location, altitude and precipitation regime are concerned.

On the other hand, as expected, the coarser clustering is
not able to fully capture the differences among the hydromet-
ric signatures, and in particular among the dynamic compo-
nents of the streamflow process: the 3-cluster classification
is in fact mainly led by the signatures representing runoff
magnitude but it merges basins characterised by very differ-
ent temporal correlation indexes, indicating that the dynamic
component of the process is not given sufficient considera-
tion.

In order to classify new observations (ungauged sites) to
an appropriate streamflow response group, a set of morpho-
logic and pluviometric attributes are identified for describ-
ing each catchment. The analysis of the principal compo-
nents (PCs) of the morpho-pluviometric attributes shows that
each of the first three PCs seems able to represent a specific

aspect of the differences among the catchments, highlighting,
in particular, the role and the dependence among the vari-
ables characterising the precipitation regime and its correla-
tion structure.

The limited data set prevented the use of the more de-
tailed (6-cluster) classification in the discriminant analysis
(applied for assigning ungauged catchments to the predeter-
mined SOM classes based on streamflow signatures), due to
over-parameterisation constraints, but it is intended, in future
work, to try to enlarge the number of study catchments for al-
lowing also such investigation.

The results of the discriminant analysis, that identifies
the membership of ungauged catchments (described by the
corresponding three first PCs) in a leave-one-out cross-
validation scheme, evidence a quite satisfactory agreement
with the 3-cluster SOM classification that is assumed as a
reference partition. Moreover, the discriminant analysis clus-
tering is able to clearly distinguish the two less similar groups
(Class 1 and Class 3) identified in the streamflow-based SOM
classification: in fact all the misclassification errors are ex-
changes with the intermediate Class 2.

Of course it is arduous aspiring at a fully appropriate hy-
drological classification with the set of catchment attributes
that are available for this study. For a better characterisation
of the phenomena governing the streamflow process, a more
comprehensive data set would be needed, including informa-
tion on the geo-pedological, vegetation and land-use proper-
ties of the drainage areas, as well as additional climatic in-
dexes.

In addition, the chosen signatures represent a very simpli-
fied description of the autocorrelation function and in partic-
ular the assumption of stationarity is indeed a relevant ap-
proximation, given the strong seasonality of the streamflow
process. It would be worthy, provided that a larger sample of
streamflow time series is available, to provide a more refined
representation of the correlation structure, in particular for
testing the potential advantages of a seasonal interpretation
of the data.

Notwithstanding all the above cited limitations, the results
confirm the potential of the proposed approach for charac-
terising the catchments. The inclusion of information on the
properties of the fine time-scale streamflow and rainfall time
series appears a promising way for better delineating the hy-
drologic and climatic character of the catchments, at least as
far as the present study area is concerned.
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