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Abstract. Predicting and understanding subsurface flow-
paths is still a crucial issue in hydrological research. We
present an experimental approach to reveal present and past
subsurface flowpaths of water in the unsaturated and satu-
rated zone. Two hillslopes in a humid mountainous catch-
ment have been investigated. The H2O(liquid) – H2O(vapor)
equilibration laser spectroscopy method was used to obtain
high resolutionδ2H vertical depth profiles of pore water at
various points along two fall lines of a pasture hillslope in
the southern Black Forest, Germany. The Porewater-based
Stable Isotope Profile (PSIP) approach was developed to use
the integrated information of several vertical depth profiles
of deuterium along transects at the hillslope.

Different shapes of depth profiles were observed in rela-
tion to hillslope position. The statistical variability (inter-
quartile range and standard deviation) of each profile was
used to characterize different types of depth profiles. The
profiles upslope or with a weak affinity for saturation as
indicated by a low topographic wetness index preserve the
isotopic input signal by precipitation with a distinct sea-
sonal variability. These observations indicate mainly vertical
movement of soil water in the upper part of the hillslope be-
fore sampling. The profiles downslope or at locations with a
strong affinity for saturation do not show a similar seasonal
isotopic signal. The input signal is erased in the foothills
and a large proportion of pore water samples are close to the
isotopic values ofδ2H in streamwater during base flow con-
ditions indicating the importance of the groundwater compo-
nent in the catchment. Near the stream indications for effi-
cient mixing of water from lateral subsurface flow paths with
vertical percolation are found.

1 Introduction

The stable isotope ratios of deuterium (2H) to hydrogen (1H)
and of oxygen-18 (18O) to oxygen-16 (16O) of water have
been used as natural tracers in many studies in order to ex-
plore hydrological processes at the hillslope and catchment
scale (e.g. McDonnell, 1990; Kendall and McDonnell, 1998;
Uhlenbrook et al., 2002; Vitvar et al., 2005; Tetzlaff et
al., 2009). As the stable isotope ratios of precipitation are
strongly correlated with air temperature, a distinct seasonal
pattern of rainfall more enriched in heavy isotopes during
summer and more depleted in winter is found in humid cli-
mates (Dansgaard, 1964). In the absence of kinetic fraction-
ation this variability determines the atmospheric boundary
condition for hydrological stable isotope studies at the plot
scale. The propagation and attenuation of the seasonal iso-
tope signal with increasing soil depth allows for an investi-
gation of vertical water movement in the unsaturated zone at
the plot scale (Zimmermann et al., 1967; Maloszewski et al.,
1983; Stewart and McDonnell, 1991; Gehrels et al., 1998).
Vertical stable isotope pore water profiles in the unsaturated
zone have also been used to investigate recharge mechanisms
and recharge rates in the vadose zone (e.g. McConville et al.,
2001; Saxena, 1984).

The water isotopes in soil water fractionate only slightly
in humid climates. An enrichment of heavy isotopes in the
subsurface may occur in the uppermost part of the soil col-
umn due to evaporation. Evaporation from plant intercep-
tion or from ponding water in filled surface depressions en-
tails kinetic fractionation effects, however transpiration is
a non-fractionating process from a hydrological perspective
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(Zimmermann et al., 1967; Allison et al., 1984). Mixing, wa-
ter uptake by plants and hydrodynamic dispersion alter the
meteoric input signal in the unsaturated zone of humid en-
vironments (Barnes and Turner, 1998). As a result of these
processes an increased attenuation of the isotopic precipita-
tion signal with increasing soil depth can be observed reg-
ularly. Time series of the stable isotope signature of pore
water derived with suction lysimeters at different soil depths
show this damping behavior (Maloszewski et al., 1983, 2002;
Stewart and McDonnell, 1991; DeWalle et al., 1997; Asano
et al., 2002; Wenninger, 2007).

McDonnell et al. (1991) showed that the age of subsurface
water along a hillslope characterized by an almost imperme-
able bedrock base and shallow soil increases considerably
in downslope direction. This lateral aging of soil water is
caused by a constant lateral movement of soil water in the
soil matrix between storms. In a small Japanese catchment
with weathered bedrock material, Asano et al. (2002) iden-
tified only vertical aging of percolating water while no ev-
idence of an increase of residence time was found downs-
lope. Uchida et al. (2006) integrated these findings and con-
cluded that bedrock permeability and soil depth have an ef-
fect on the direction of increases of residence time in the
unsaturated zone.

Stewart and McDonnell (1991) identified a mean residence
time of more than 100 days for soil water near streams and
14 days for soil water upslope. Soil water at shallow depth in
unsaturated soil responded to recent rainfall input, whereas
deeper soil water and water near the stream showed much
less variation compared to local precipitation and was con-
siderably delayed and attenuated by ongoing mixing and pro-
gressive displacement of subsurface water. This behavior
has also been shown by Horton and Hawkins (1965) and
Zimmermann et al. (1966) with tritiated (3H) water.

There are numerous techniques for extracting pore water
from soil for stable isotope analysis (e.g. suction lysimeter,
centrifugation of soil samples, distillation techniques). These
methods are technically complex and time-consuming. Com-
parisons of pore water extraction techniques reveal large vari-
ations in the obtained data and the results appeared not very
accurate (Ingraham and Shadel, 1992; Walker et al., 1994).
Nevertheless these techniques have often been used to extract
pore water from soil in certain temporal intervals to gain sub-
surface information in hillslope studies. Therefore there is
a need for experimental techniques that can be rapidly and
efficiently applied at the hillslope scale and that provide use-
ful information about subsurface processes and hydrologi-
cal hillslope behavior. In this study we further develop the
H2O(liquid) – H2O(vapor) equilibration and laser spectroscopy
method presented by Wassennaar et al. (2008) to obtain
stable isotope data of pore water of vertical depth profiles
along two transects at a study hillslope. This Porewater-
based Stable Isotope Profile (PSIP) approach will be used
to explore the potential of this approach for the investigation
of subsurface hydrological processes at the hillslope scale.

We hypothesize that there are locations along the hillslope
where the isotopic precipitation input signal is preserved in
the unsaturated zone and locations that show an attenua-
tion of the meteoric isotope input signal due to mixing and
hydrodynamic dispersion.

2 Materials and methods

2.1 Study site

The study area is a 0.9 km2, humid catchment in the south-
ern Black Forest, Germany (48◦1′45′′ N, 7◦53′27′′ E). Mean
annual precipitation amounts to approximately 1070 mm for
the study area (Trenkle, 1988), the mean annual temperature
is about 9◦C and the mean annual actual evapotranspiration
is around 600 mm (WaBoa, 2007). The study was conducted
on a north-west facing hillslope covered with pasture and at
an elevation of 290 m a.s.l. at the stream and 360 m a.s.l. at
the water divide. There are only a few trees at the water-
shed divide and a solitary tree on the hillslope (Fig. 1). The
length of the hillslope is about 300 m and the mean slope
is 13◦. The soil at the hillslope site is a cambisol with a
sandy texture. The soil in the riparian zone is an alluvial
soil with a sandy-loamy texture. Typical cambisols in the
study area have a coarse stone material content from 10 %
to 40 %. The transition to the compact bedrock consists of a
well-evolved weathering zone. The bedrock is a paragneiss
with a fine-grained configuration (Groschopf and Schreiner,
1980). The hydrogeology of the bedrock is determined by a
system of connected fissures. The volumetric porosity of the
gneiss bedrock is between 0.1 % and 2.1 % and the hydraulic
conductivity range from 10−10 m s−1 to 10−5 m s−1 (Sto-
ber, 1995). Baseflow components originate from the frac-
tured bedrock and the deeper parts of the weathering zone
(Uhlenbrook, 1999). There is no evidence for periglacial
drift covers in the study area.

2.2 Fieldwork

The field work was conducted at the end of August 2009.
The weather conditions during the field campaign were warm
and sunny with daytime temperatures around 25◦C. The to-
tal precipitation for August was about 50 mm which is below
the long-term mean, whereas July was above the long-term
mean. Within two field days 15 soil profiles with a depth be-
tween 90 cm and 250 cm and a horizontal spacing of approx-
imately 40 m were extracted with a gas-powered soil core
drill along two hillslope catenas, labeled as transect T1 and
transect T2 (Fig. 1). Since the hillslope has no clear planar
topography, transect T1 was sampled on a convex part of the
hillslope and transect T2 in a concave situation. In order to
achieve data consistency, the sampling of each transect was
conducted within one day. Since we had no experience re-
garding the time it takes to sample one transect, we started
the first transect (T1) with soil core depths of one meter. We
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Fig. 1. Transect T1 and transect T2 along the study hillslope from above (left) and from below (right).

recognized that sampling of deeper soil profiles is feasible
within one day and therefore drilled deeper soil cores at tran-
sect T2. The soil cores were divided in the field into sub-
samples of 8 cm length, packed into plastic Ziploc bags and
stored in a cool box in order to determine the stable isotopic
composition of the pore water, the gravimetric soil moisture
and the soil texture in the lab. Streamwater and groundwa-
ter was sampled for stable isotope analysis on the second
field day (20 August 2009). The streamwater was sampled at
the foot of the study hillslope, whereas the groundwater was
sampled in a well about 200 m distance from the hillslope.

2.3 Stable isotope analysis

The stable isotope signature of the pore water was deter-
mined by the H2O(liquid) - H2O(vapor) equilibration and laser
spectroscopy method. This technique provides the possibil-
ity to obtainδ-values of the pore water by measuring the sta-
ble isotopic composition of the headspace water vapor in a
bag with the sampled soil material (Wassennaar et al., 2008).

After breaking the soil samples into smaller aggregates
the Ziploc backs were filled with completely dehumidified
air and heat sealed in another plastic back to reduce diffu-
sion as much as possible. For calibration two samples with
completely dried soil material from the experimental hills-
lope were moistened with different water isotope standards
of known isotopic composition and treated the same way
as described above. After 15 h in a temperature controlled
and air-conditioned room an isotopic equilibrium between
the headspace water vapor and the liquid pore water of the
soil material in the plastic bags was assumed. The stable iso-
tope analysis of the headspace water vapor of the soil sam-
ples and the calibration standards was conducted with aPi-
carro Wavelength-Scanned Cavity Ring Down Spectroscopy
(WS-CRDS) analyzer. The measurement accuracy for this
analysis was 0.16 ‰ forδ18O and 0.6 ‰ forδ2H, respec-

tively. Since the WS-CRDS analyzer measuresδ-values rel-
ative to an interior standard we used the calibration standard
to calculatedδ-values of the headspace water vapor relative
to the Vienna Standard Mean Ocean Water (VSMOW). Un-
der the assumption of isotopic equilibrium the phase change
in the water liquid – water vapor system can be calculated
with the fractionation factorα. Sinceα is temperature de-
pendent we used the equilibration coefficients according to
Majoube (1971) for the measured equilibration temperature
(25◦C) of the 15 h equilibration period. Theδ2H values
of the headspace vapor were subsequently converted via the
fractionation factorα into δ2H values of the pore water of the
soil samples. The results are reported inδ notation relative to
VSMOW. Because for laser isotope spectrometry the relative
measurement accuracy is better for deuterium than for18O
and deuterium is less sensitive to kinetic fractionation effects
(e.g. evaporation) we used the deuterium values to study the
vertical depth profiles of the pore water.

2.4 Additional data analysis

In order to describe the variability of the collected pore water
deuterium values we show the data per site as boxplots. The
inter quartile range (IQR) of the data describes the variabil-
ity between the 25th and the 75th percentiles. The standard
deviations (SD) of the deuterium profile data were calculated
as additional statistical indices describing the variability of
each vertical depth profile. As a result of dispersion the vari-
ability of isotope values along a depth profile is in inverse
proportion to the residence time of water.

To describe the topographic location of each profile along
the transects a LiDAR derived DEM with a resolution of 1 m
was resampled to a spatial resolution of 5 m. The higher
resolution appears too susceptible to micro-topographic in-
fluences and a slightly lower resolution yields more realis-
tic results for hydrological landscape analysis (Jencso et al.,
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Fig. 2. Gravimetric soil moisture and soil texture with matrix permeability after Scherrer (2006) of soil samples from every vertical depth
profile for both study hillslope transects.

2009). The topographic wetness index (TWI) was calculated
for every profile position along the study hillslope according
to the approach described by Beven and Kirkby (1979) with
the multiple triangular flow direction algorithm (Seibert and
McGlynn, 2007).

3 Results

The results of the soil texture analysis and the gravimetric
soil moisture are presented in Fig. 2. The soils at the upper
parts of the study hillslope have a high sand content. The
tendency for finer particle sizes is increasing in downslope
direction. The highest soil moisture values were observed
at the hillslope foot and also hydromorphic features could
be found at these near stream profiles. The observed soil
moisture patterns of the upper hillslope soil profiles are very
similar. The soil properties along the hillslope are very ho-
mogenous revealing a high content of sand and therefore a
good matrix permeability.

The relation betweenδ18O andδ2H of pore water, ground-
water and streamwater is presented in Fig. 3. Theδ18O
of the pore water samples range from−12.0 ‰ to about
0 ‰ and from−85 ‰ to about−10.0 ‰ for δ2H, respec-
tively. Streamwater and groundwater samples plot close to
the global meteoric water line (GMWL) and within a very
narrow range isotopically close to each other. A linear re-
gression of pore water samples from T1 and T2 has a slope
of 6.6 and deviates from the global meteoric water line with
slope 8 and intercept 10. This is an indication of a weak
isotopic enrichment of some pore water samples. Since soil
evaporation is dependent on atmospheric boundary condi-
tions and soil characteristics (Gonfiantini et al., 1998) the ob-

Fig. 3. δ2H – δ18O plot of the pore water samples of the soil,
streamwater and groundwater.

served enrichment of heavy isotopes may have occurred by
evaporation of soil water in the uppermost soil layers. Most
care was taken to avoid kinetic fractionation during sampling
and transport, still a weak secondary enrichment cannot be
strictly excluded.

Figure 4 shows the vertical depth profiles for deuterium of
the pore water along the studied hillslope transects. On the
x-axis theδ2H values in per mill relative to VSMOW and
on the y-axis the soil depth in cm of the deuterium profiles
is given. The vertical dashed line highlights theδ2H value
of the sampled streamwater (−58.15 ‰). Figure 5 shows the
seasonalδ2H dynamics in precipitation. We can clearly see a
seasonal variation with enrichedδ2H values in summer and
depletedδ2H values during the winter months.
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Fig. 4. Longitudinal profile of transect T1 (top) and transect T2 below with the vertical depth deuterium profiles of pore water. There is
a reference plot indicating the soil depth and the deuterium values of the profiles in each study hillslope cross-section. The dashed line
represents the value of the sampled streamwater.

All vertical depth profiles at transect T1 show a simi-
lar characteristic. Theδ2H values are getting continuously
lighter with increasing soil depth. The soil depth with the
lightest deuterium value can be interpreted as the precipi-
tation falling during the winter with the lightest deuterium
values. In most profiles the winter minimum is observed at
a depth of 45 to 65 cm. Below this peak there is a trend to-
wards heavierδ2H values again. Thus, the vertical depth deu-
terium profiles along transect T1 show a typical seasonal pat-
tern: soil water stemming from summer rainfall near the sur-

face and an increasing proportion of soil water from winter
precipitation with increasing soil depth.

In contrast to hillslope transect T1, the deuterium profiles
at T2 show a partly different behavior. The deuterium pro-
files T2-1, T2-2, T2-3 and T2-4 also still exhibit the seasonal
variation described before. The values are getting more de-
pleted with depth and the peak of the winter precipitation is
found between 62 cm and 87 cm from the soil surface. Be-
low the winter-peak values are getting isotopically enriched
again. Deuterium profile T2-5 shows a continuous decline of

www.hydrol-earth-syst-sci.net/16/631/2012/ Hydrol. Earth Syst. Sci., 16, 631–640, 2012



636 J. Garvelmann et al.: Investigation of subsurface hydrological processes

Fig. 5. Deuterium variability and monthly amounts of precipitation from January 2008 through December 2009 sampled about 10 km
north-west from the study hillslope.

deuterium values with increasing soil depth down to 50 cm
without any indication of a clear peak. Deuterium profile
T2-6 is characterized by similarδ2H values throughout the
whole sampling depth. Profile T2-7 is the deepest profile
and it has a relatively small variation inδ2H values close
to streamwater composition with some erratic outliers. The
deuterium profile closest to the stream (T2-8) is character-
ized by decreasing deuterium values down to a soil depth of
80 cm. All samples below that depth plot very close or even
on the dashed line representing the streamwater deuterium
signature.

Boxplots and standard deviations of data from each verti-
cal depth deuterium profile were calculated in order to quan-
tify deuterium variability at each profile position along the
experimental hillslope (Fig. 6a, b). The 2nd to 4th downs-
lope profile of transect T2 indicate a clear deviation from the
other profiles with a lower standard deviation and also have
a different range and median highlighted by the boxplots. In
order to allow a direct comparison of the soil profile data
from transect T1 with the deeper soil profiles along T2 we
additionally plotted the boxplots and standard deviations for
the upper 1 m of the T2 profiles.

Figure 7a shows the mean gravimetric soil moisture of the
vertical depth profiles along the two experimental transects.
At transect T2 there is an increase of soil moisture in down
slope direction. The soil moisture is highest near the stream
and lowest in upslope positions close to the watershed divide.
The observed soil moisture at the T1 profiles is very similar
with values between 12 % and 17 % along the whole transect.
A similar pattern can be observed when plotting the TWI
along the experimental hillslope (Fig. 7b). At transect T2
there is a distinct increase of the TWI in downslope direction,
whereas at transect T1 there is no continuous trend along the
hillslope. The TWI is very similar along the whole transect.

A positive correlation withR2
= 0.55 between mean

gravimetric soil moisture and TWI supports the observed
similarity among the two variables. Since, the Topographic
Wetness Index (TWI) can be interpreted as a relative wet-
ness index it can be used to indicate the landscape position
wetness affinity. We did not observe saturated conditions
along the two transects. However, there is still a tendency

Fig. 6. Boxplots (a) and standard deviation(b) of the deuterium
data of the total vertical depth profiles and for a direct comparison
of the profiles along both study transects the upper 1 m of the T2
profiles.

Fig. 7. Mean gravimetric soil moisture in weight %(a) and TWI
(b) along the study hillslope transects (T1 and T2).
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Fig. 8. Relationship between TWI and the Inter Quartile Range IQR
(a) and standard deviation SD(b) of the vertical depth deuterium
profiles.

Fig. 9. Difference from streamwaterδ2H as a function of soil depth
and distance to the stream for all samples along both study hillslope
transects (n = 248).

for wetter soils and in average a lower depth to groundwa-
ter in downslope direction (especially at the concave transect
T2) indicated by the calculated TWI.

The observed deuterium variability along the hillslope as
described by the IQR has a negative correlation (R2 = 0.47)
with the relative wetness index TWI (Fig. 8a). A sim-
ilar result is obtained using SD as a variability indica-
tor (Fig. 8b). In other words, the variability within the
vertical depth profiles of deuterium is decreasing as a
function of increasing wetness or relative saturation along
the experimental hillslopes.

Figure 9 shows the difference between the vertical depth
profileδ2H data and the sampled streamwaterδ2H as a func-
tion of soil depth and distance to the stream in order to study
the relevance of the pore water deuterium signature on the
streamwater stable isotope signal observed during the sam-
pling campaign in summer. A positive difference indicates
an enrichment of pore waterδ2H, a negative difference indi-
cates depletion of pore waterδ2H, compared to the sampled

Table 1. Percentage of the vertical depth deuterium profile
data along T1 and T2 between +10 ‰ and−10 ‰ difference to
streamwaterδ2H.

Profile Hillslope Hillslope<100 m

Entire vertical 56.05 % 81.61 %
depth profiles (n = 248) (n = 119)
Vertical depth 82.61 % 87.50 %
profiles>0.8 m (n = 69) (n = 48)

streamwater. The percentage of data points with a differ-
ence between +10 ‰ and−10 ‰ to streamwaterδ2H was
calculated (Table 1).

As a result of this classification we found a high percent-
age of similar isotope values (within±10 ‰ from streamwa-
ter δ2H) as profiles got deeper and closer to the stream.
The pore water deuterium signature of the soil samples at
the foot of the experimental hilllslope and in the riparian
zone was very similar to the observed streamwater deuterium
signature.

4 Discussion

In several studies time series of the stable isotope signature
of pore water in different soil depths has been collected with
suction lysimeters in order to use the variability of the stable
isotope time series signal for the investigation of subsurface
hillslope processes and behavior (McDonnell et al., 1991;
Stewart and McDonnell, 1991; Asano et al., 2002). However,
the suction lysimeter technique is very time consuming and
a useful dataset needs a sampling period of at least one year.
The presented approach allows collecting comparable stable
isotope data within one or few field working days. The verti-
cal depth profiles of the pore water deuterium signature pre-
sented in this study provide time series information because
one can see precipitation water from different seasons. With
this information it is possible to explore the history of sub-
surface flowpaths at the hillslope scale within the timeframe
of the observed isotopic signal.

Altitude effects could be neglected in the study because of
a limited elevation range of the hillslope. Therefore, one can
expect a spatially uniform stable isotope precipitation sig-
nal along the whole hillslope. In a completely flat environ-
ment with homogeneous soil properties and only vertical wa-
ter movement, all vertical depth profiles of deuterium should
be relatively similar. This behavior was not observed on the
study hillslope and implies that the observed variations of
the vertical depth profiles are caused by lateral subsurface
flow pathways of the experimental hillslope and by mixing
with streamwater of indirect stream recharge. The presented
data show that the upslope profiles and the profiles along the
whole transect T1 with a convex morphology still reflect the
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Fig. 10. Perceptual model of subsurface hydrological processes at the study hillslope.

seasonal variability of the meteoric input signal of about one
year with isotopically enriched summer rainfall in the upper
soil profile and isotopically depleted winter precipitation in
the lower profile. This can be clearly seen when comparing
the upper 1 m of the T2 profiles with the T1 profiles hav-
ing the same depth. This variability was not observed for the
deuterium profiles in the lowest part of the hillslope close to
the stream which were only sampled at transect T2. This also
entailed a lower statistical variability of the deuterium verti-
cal depth profiles. Both observations indicate that the vari-
ability of seasonal stable isotope input is modified by other
processes.

We observed that the streamwater stable isotope value was
comparable to the groundwater deuterium signature within
the catchment. This would imply that the catchment was in
baseflow conditions during the sampling campaign. Base-
flow usually reflects a stable deuterium signature if the mean
residence time is long enough to fully attenuate and disperse
the seasonal and recharge-weighted input. In order to show
that groundwater flows through the soil in the riparian zone
and dominates streamflow during baseflow conditions, we
compared the observed deuterium pore water values with the
streamwater stable isotope signature, which are comparable
to the sampled groundwater. This comparison indicated that
the percentage of pore water soil samples with a very sim-
ilar streamwater deuterium signature is increasing towards
the stream channel. Figure 10 summarizes the findings of
this study in a perceptual model. The deuterium pore water
profiles at upslope positions reflect the variability of the me-

teoric input signal. At these positions the history of the soil
water movement is dominated by vertical infiltration (dashed
vertical arrows). Contrary to this the observed pore water
deuterium profiles at positions along the hillslope foot and
close to the stream with a high affinity for saturation (TWI)
do not reflect this signal and it seems that the input signal is
damped at these positions. This observation supports the idea
of a subsurface mixing zone characterized by a long transit
time history of the flowpaths (dashed horizontal arrows).

The data collected in this study could also be used to
benchmark hydrological hillslope models like HYDRUS-2D
(Simunek et al., 1996) and HillVi (Weiler and McDonnell,
2004) that are able to simulate the observed pore water sta-
ble isotope signatures. But also with models unable to sim-
ulate transport processes, the simulated groundwater level
variations and flow pathways could be compared with the
observed isotopic depth profiles. Furthermore the PSIP ap-
proach could be used to collect data from various hillslopes
in order to verify hydrological catchment models. For this
study groundwater level was not monitored at the hillslope
site. In future, it would also be interesting to compare the
stable isotope data of sampled profiles with groundwater
level data at the base of a hillslope in order to improve the
understanding of the dynamic of the saturated zone along
the hillslope.
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5 Conclusions

The Porewater-based Stable Isotope Profile (PSIP) approach
presented in this study was applied to an experimental hills-
lope in order to cover the variability of possible stable isotope
profiles from the watershed divide to the stream. 15 vertical
soil profiles were extracted along two catenas at the experi-
mental hillslope. The collected soil samples were used to an-
alyze the pore water deuterium signature with an innovative
measurement technique obtaining vertical depth deuterium
profiles of the pore water to investigate subsurface hydrologi-
cal processes. The results suggest a vertical movement of soil
water at upslope positions indicated by a preservation of the
seasonal precipitation trend in the subsurface. This charac-
teristic signal is destroyed for the isotope profiles at the hill-
slope foot and close to the stream. The topographic wetness
index provided a good indicator for the relative influence of
direct vertical recharge and indirect lateral subsurface flow.

The presented approach is less time consuming than con-
ventional techniques used in hillslope and catchment hy-
drology to observe subsurface processes. The approach is
suited to investigate and characterize subsurface hydrologi-
cal processes at the hillslope scale and could be used to ver-
ify the performance of hydrological hillslope models. We
could show that the PSIP approach could be used to deter-
mine dominant flow pathways of the last several months in
a hillslope and potentially also for a catchment by only col-
lecting soil water samples of stable isotopes at a high vertical
resolution.
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