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Abstract. The paper reports on a four-pronged study of the
physical controls on regional patterns of the flow duration
curve (FDC). This involved a comparative analysis of long-
term continuous data from nearly 200 catchments around the
US, encompassing a wide range of climates, geology, and
ecology. The analysis was done from three different perspec-
tives – statistical analysis, process-based modeling, and data-
based classification – followed by a synthesis, which is the
focus of this paper. Streamflow data were separated into fast
and slow flow responses, and associated signatures, and both
total flow and its components were analyzed to generate pat-
terns. Regional patterns emerged in all aspects of the study.
The mixed gamma distribution described well the shape of
the FDC; regression analysis indicated that certain climate
and catchment properties were first-order controls on the
shape of the FDC. In order to understand the spatial patterns
revealed by the statistical study, and guided by the hypothesis
that the middle portion of the FDC is a function of the regime
curve (RC, mean within-year variation of flow), we set out
to classify these catchments, both empirically and through
process-based modeling, in terms of their regime behavior.
The classification analysis showed that climate seasonality
and aridity, either directly (empirical classes) or through phe-
nology (vegetation processes), were the dominant controls
on the RC. Quantitative synthesis of these results determined
that these classes were indeed related to the FDC through its
slope and related statistical parameters. Qualitative synthe-
sis revealed much diversity in the shapes of the FDCs even

within each climate-based homogeneous class, especially in
the low-flow tails, suggesting that catchment properties may
have become the dominant controls. Thus, while the mid-
dle portion of the FDC contains the average response of the
catchment, and is mainly controlled by climate, the tails of
the FDC, notably the low-flow tails, are mainly controlled by
catchment properties such as geology and soils. The regime
behavior explains only part of the FDC; to gain a deeper un-
derstanding of the physical controls on the FDC, these ex-
tremes must be analyzed as well. Thus, to completely sep-
arate the climate controls from the catchment controls, the
roles of catchment properties such as soils, geology, topog-
raphy etc. must be explored in detail.

1 Introduction

Catchment signatures quantify hydrologic responses to rain-
fall inputs in a compact manner; by distilling catchment be-
havior into a few signatures, classification of variable be-
havior across many different catchments can be made. One
such signature, the regime curve (RC), describes the intra-
annual variability of monthly (or even daily) average (en-
semble mean) streamflows. Another signature, the flow du-
ration curve (FDC), plots daily streamflow magnitude (on a
log scale) as a function of the percent of time it is exceeded.
Encoded within these signatures are the combined impacts
of climate, geology, topography, ecology, and even human
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activities. We hypothesize that some function relates each hy-
drologic signature, the FDC included, to both the climate and
the landscape, thus connecting the variability of climate in-
puts to the variability of runoff. This function can then be
determined empirically, through the application of complex
process-based models, or some combination thereof, both in
detail for a small region via a process-based (Newtonian) ap-
proach, or through a comparative, data-based (Darwinian)
approach. On the basis of these analyses, unique functions
can then be defined for regions of similar catchment and
landscape properties. With this idea of regionalization based
on clusters of similar behavior, the prediction of the FDC or
any other hydrologic signature can be greatly improved in
cases where this function is not easily determined, such as
ungauged basins.

The FDC is a signature of the within-year variability of
the runoff in a watershed and represents the relationship be-
tween magnitude and frequency of streamflows at some lo-
cation in the basin (Botter et al., 2008). Although the FDC is
widely used in practice, and with much empirical knowledge
in specific regions having been gained, the physical controls
on the shape of the FDC are still not well understood (Yokoo
and Sivapalan, 2011). Because of its wide usage and the sim-
ple data demands on its construction, the FDC is an impor-
tant catchment signature. In a rapidly changing world, such
signatures can be used to track catchment responses to per-
turbations, in addition to the more traditional application to
analyze or interpret long-term catchment responses (Vogel
and Fennessey, 1995). Improved understanding of the physi-
cal processes controlling the shape of the FDC would allow
for better comparisons of catchments across diverse regions
as well as over long time periods for a single catchment. Ul-
timately, an increased understanding of the controls on the
FDC would enable better estimation and prediction of the re-
sponse from ungauged catchments, as well as improving our
ability to carry out hydrologic space-for-time substitutions
when making predictions under change.

In the past, FDCs have been generally analyzed through
purely graphical means (e.g., Vogel and Fennesy, 1994,
1995) or stochastically by fitting appropriate statistical distri-
butions (e.g., Le Boutillier and Waylen, 1993; Castellarin et
al., 2004, 2007). Recently, the stochastic approach has been
augmented with a more process-based approach, wherein the
different components of the catchment’s dynamic response
are incorporated into stochastic models (Botter et al., 2007a,
b, 2009; Muneepeerakul et al., 2010), thus allowing for a
more complete picture of the streamflow variability of dif-
ferent catchments. Their complete model contains many un-
derlying physical properties of a catchment but still uses a
Poisson assumption for the arrival of rainfall events, which
enables an analytical solution to be obtained. The model is
applied seasonally, and, since there is no carryover of soil
moisture storage between seasons, the results are not appli-
cable to the whole year. This may not be realistic in all cases,
especially in regions that exhibit strong seasonal variations

of climate and water storage, and highlights the need for a
more general framework, one for the entire year that captures
within-year variations in climate and soil moisture storage.

The numerical study of Yokoo and Sivapalan (2011) fol-
lowed this process-based framework with one important ex-
ception: there is no Poisson assumption. Rather, their numer-
ical water balance modeling framework uses precipitation
data (either observed or synthetic) to both provide the ran-
domness inherent in precipitation at the event scale and yet
capture the seasonal variability of climate. Carryover of soil
moisture storage across the year allows for antecedent soil
moisture conditions to affect the runoff response of the catch-
ment. As a result of this work, they hypothesized that the flow
duration curve could be divided into three parts, or limbs.
The upper limb corresponds to the fast flow response of a
catchment to precipitation; the middle limb is related to the
slow flow response of the catchment, and as such is a func-
tion of the monthly regime curve; and the tail limb could be
related to evaporation from variable saturated regions in the
catchment impacting low flows. This insight, to separate the
streamflow into fast flow and slow flow and look at the FDC
the same way, provided the motivation for this four-pronged
study, which was undertaken to further explore the possible
physical controls on the FDC. While the Yokoo and Siva-
palan work was mainly hypothetical and used synthetic in-
puts to a hydrological model, the present four-pronged study
that follows it is empirically based, using long-term continu-
ous daily climate and streamflow data from about 200 catch-
ments in the MOPEX database. Using this data, the possible
controls on the FDC were explored from three angles: statis-
tically to identify patterns, through the use of a simple physi-
cally based model to separate climate and landscape controls,
and through catchment classification to organize the patterns
into classes.

The first angle of exploration was empirical (Cheng et al.,
2012), and was accomplished by first separating total stream-
flow (Q) into fast flow (Qf) and slow flow (Qu) and fitting
each of their duration curves as well as that of precipitation
(P) to a mixed gamma distribution, which has three parame-
ters:κ, θ , andα. The first two parameters – the shape param-
eterκ, which affects the shape of the curve, and the scale pa-
rameterθ , which stretches or shrinks the curve and is related
to the magnitude of the variable in question – are embedded
in the standard gamma distribution. However, for the dura-
tion curves ofP andQf , as well asQ of catchments in arid
regions, the duration can be less than 100 %. Thus a third pa-
rameter,α, the fraction (or ratio) of no rain or flow days, was
introduced to capture this (see Cheng et al., 2012 for further
details of the fitting). Spatial plots of the gamma parameters
obtained for the long-term (covering the entire record) dura-
tion curves for all catchments as well as the annual duration
curves of a few selected catchments showed interesting re-
gional (between catchment) patterns and between-year vari-
ations. Moreover, both the between-catchment and between-
year analyses demonstrated that the physical properties of
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the catchment, represented in the baseflow index (BI), are
the dominant controls on the shape of the FDCs ofQ and
Qu, while climate (precipitation) is the dominant control on
the shape of the FDC ofQf . However, this dominance was
by no means absolute, which meant that other factors may
be controlling the shapes as well, and this in turn led to the
modeling portion of the study as a way to further elucidate
these other controlling factors.

The second angle of exploration involved top-down pro-
cess modeling (Ye et al., 2012), using a simple two-stage hy-
drologic model following the modeling framework outlined
in Yokoo and Sivapalan (2011). The regime curve (RC) is
used as the signature of comparison during the model cal-
ibration since, as previously mentioned, the middle portion
of the FDC, which connects the high flows to the low flows,
is related to the RC, and both the FDC and the RC are nec-
essary for understanding the catchment response. Where the
base model failed to capture fully the shape of the RC, pro-
cesses were added to the model in a systematic fashion, but
always guided by the data. Controlling processes were then
identified for each catchment, and, when plotted spatially,
these also showed interesting regional patterns. As an ex-
ample, phenology (vegetation-induced seasonality in stream-
flow) and snowmelt processes dominated the northeast por-
tion of the US, with both becoming less dominant towards
the south and west. In some cases, however, very different
catchments had the same controlling process. For instance,
precipitation seasonality dominated in both the mountainous
Pacific Northwest and in the flat peninsula region of Florida,
highlighting the fact that dominant processes alone may not
make catchments similar, and pointing towards a need for
further classification of catchment response.

The third angle of exploration involved the development
of a classification system using information readily obtained
from the daily RC (Coopersmith et al., 2012). Unlike the pre-
vious two studies, all 428 catchments in the MOPEX dataset
were used in order have the highest possible variation in cli-
mate and location, since most of the long-term hydrologic
data in the US tend to be concentrated in the more humid,
eastern half of the country. As with the modeling study, the
RC was chosen as the signature of comparison instead of the
FDC and for much the same reasons, with one addition: the
RC contains much more easily interpretable information than
does the FDC. This may indeed be one of the reasons the
FDC is still not well-understood, even after much use and
much study. From the RCs ofP , potential evaporation (Ep),
Q and its componentsQf andQu, one can establish the av-
erage aridity and seasonality of the climate, as well as when
P andQ peak for a particular catchment. Using these four
similarity indices and an objective function that minimized
within-group variance, catchments were clustered along a
decision tree until further splitting ceased when catchments
within a terminal node were sufficiently similar or there was
no further reduction in variability by splitting again. Over
three-fourths of the catchments studied fell into only six

classes, with the first major distinction between catchments
being seasonality. The eastern portion of the US experiences
very low seasonality in precipitation, with a wet/dry seasonal
pattern becoming more pronounced as one moves further
west across the continent. Again, interesting regional pat-
terns emerged when the catchment classes were displayed
spatially. As with the model processes, the Northeastern US
formed a different cluster than the Southeast, and the Mid-
west US formed two major clusters, but this time the Pacific
Northwest and Florida in the extreme Southeast fell into two
different classes. This shows that while both regions experi-
ence high seasonality inP (the dominant model process), the
amount of rainfall each region receives (more overall in the
NW,) as well as the timing of the wet season (in the NW it
is out of phase withEp, while in FL it is in phase), distin-
guishes Florida from the Pacific NW. This analysis leads to
the conclusion that there may be some connection between
the results of each of these studies, and elucidation of this
connection could lead to deeper insights into the controls on
the FDC.

Each approach outlined above produced valuable insights
into the controls on the FDC and showed tantalizing spa-
tial patterns that pointed toward some underlying structure
or controlling process(es). However, since the main focus of
the modeling study and the classification scheme was the RC,
not the FDC, there still remains a need to extract information
from these three studies and apply it to the FDC and its possi-
ble controls, i.e., to synthesize the results. What, then, is syn-
thesis? Because catchments are complex systems that have
co-evolved over time to reach their present state, the prob-
lem of predicting future behavior can quickly become multi-
dimensional. Since a catchment can be thought of as a “fil-
ter” of the precipitation inputs, with various interactions and
feedbacks among the various processes at work within the
catchment, one way to deal with this problem of complex-
ity is to look for emergent patterns in the catchment signa-
tures, and thereby gain some fundamental understanding of
catchment functioning. Sivapalan et al. (2011a) in their call
for a synthesis approach to hydrology define these patterns
as consistent trends of similarity or difference across time
and/or space. A focus on patterns in order to gain understand-
ing of the underlying processes and to bring together various
research efforts into one integrated body of work forms the
framework for our synthesis approach. Using the hypothesis
of Yokoo and Sivapalan (2011) as the basis for analysis and
combining the results from the first three parts of our study
of hydrologic signatures, the synthesis approach is applied to
the current problem. The goal of this paper, the last in the
four-part series outlined in the preceding paragraphs, is to
map the possible connections between the parameters of the
mixed gamma distribution obtained in the empirical study,
the dominant model processes, and the catchment classifica-
tion. It is in finding the common ground between the empir-
ical, modeling, and classification work, and building further
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on this synthesis that a deeper understanding of the physical
processes controlling the shape of the FDC can be gained.

This paper is divided into four sections. In Sect. 1, we have
introduced the FDC, and the ideas of regionalization, similar-
ity, and synthesis as a way to better understand the physical
controls on the shape of the FDC. Section 2 describes the
study site, data used, and the specific methods used in the
synthesis, and Sect. 3 presents the results of the synthesis. In
Sect. 4 the conclusions of the entire four-part study are sum-
marized. We conclude with a discussion of the limitations of
the study and a look towards future work that will overcome
these limitations.

2 Data and methods

2.1 Study site and data description

Out of the 428 catchments in the MOPEX database, 197
catchments were chosen for their long-term, continuous
daily datasets. The data used in the present work (area-
averaged daily precipitation, total streamflow, baseflow-
separated streamflow, and potential evaporation, all in units
of mm) were assembled into a processed database as part
of the Hydrologic Synthesis Project (Sivapalan et al., 2011b;
Brooks et al., 2011) and is freely available athttp://voda.hwr.
arizona.edu/mopex/. While the overall spatial distribution of
these catchments covers the entire continental United States
and therefore represents most of the climate and geographic
variability found there, a majority of the catchments are lo-
cated east of the Mississippi River (Fig. 1). In the empiri-
cal, modeling, and classification studies, the common theme
of emergent regional patterns in the spatial distribution of
the gamma parameters, the dominant model processes, and
the catchment classes provided visual evidence of some un-
derlying organization. Clear spatial patterns are also seen in
climate indicators such as the aridity index (Ep/P ), which
exhibits the typical continental pattern of increasing aridity
with increasing distance from the coast and with decreasing
latitude in the Western US, as well as the seasonality index
(Fig. 1a), adapted from Walsh and Lawler (1981) and defined
here as

SI =

∑365
i=1

∣∣∣∣Pi −

∑365
i=1Pi

365

∣∣∣∣∑365
i=1Pi

365

(1)

wherePi is the daily precipitation at each site. Less clear
is the spatial organization of catchment-related indices such
as the baseflow index(Qu/Q), shown in Fig. 1b. Since the
baseflow index is related in large part to geology, which tends
to vary at the local scale, its spatial pattern shows a more
localized clustering compared to the climate indices, which
tend to vary along a gradient.

Daily data from the processed MOPEX database were
first normalized before being used in this study, withP

Baseflow Index
0.83 - 0.89
0.78 - 0.82
0.73 - 0.77
0.71 - 0.72
0.67 - 0.70

0.64 - 0.66
0.58 - 0.63
0.51 - 0.57
0.41 - 0.50
0.32 - 0.40

Seasonality Index
0.62 - 0.87
0.45 - 0.61
0.34 - 0.44
0.24 - 0.33
0.19 - 0.23

0.16 - 0.18
0.13 - 0.15
0.11 - 0.12
0.09 - 0.10
0.04 - 0.08

(a)

(b)

Fig. 1. Spatial patterns of seasonality index(a) and baseflow index
(b) across the continental US.

normalized by the mean annual daily precipitation for the
54 yr time period, andQ, Qf , andQu all normalized by the
corresponding mean flow values for the same time period.
The duration curves ofP , Q, Qf , Qu analyzed herein were
produced using the quantile method (Vogel and Fennessey,
1994); i.e., only data points corresponding to the 0.5, 1.0,
1.5, ..., 99.0, and 99.5 exceedance percentages from the 54
years of normalized daily data were considered. In addition
to the processed daily time-series data, results from the first
three parts of the four-part study described previously were
used to create a database for the synthesis analysis. From the
empirical analysis (Cheng et al., 2012), the fitted parameters
of the mixed gamma distributionα, κ, andθ for P , Q, Qf ,
andQu for each catchment were obtained. From the mod-
eling study (Ye et al., 2012), the dominant model process
“class” (i.e., that combination of processes that were found
to be necessary for good model prediction for a given catch-
ment) for each of the 197 catchments was extracted. From
the catchment classification study (Coopersmith et al., 2012),
the class associated with each of these catchments was added
to this new database. Lastly, daily regime curves used in the
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previous two studies will also be used. These are calculated
using the entire period of record by finding the average flow
for each Julian day of the year, then smoothing with a 30-day
circular moving average (see Coopersmith et al., 2012, for
further details).

2.2 Synthesis methods

As discussed earlier, all the work done in these related stud-
ies, including the present one, has been guided by the frame-
work laid out in Yokoo and Sivapalan (2011), which is pre-
sented visually in Fig. 2. This conceptual model was built on
the partitioning idea outlined by L’vovich (1979), wherein
P is partitioned intoQf and catchment wetting (infiltration),
and this wetting is then further partitioned intoQu and va-
porization (ET). Thus the upper portion of the FDC, which
represents the high flows that are exceeded rarely, is con-
trolled by Qf , a simple function ofP . The middle portion
of the FDC, which represents the average flows, is controlled
by Qu, which is a function of the monthly flow regime. The
lower portion of the FDC, which represents the extreme low
flows that are exceeded most of the time, may be a function
of evaporation from saturated areas, among other things. In
this framework, the RC, which contains the average flows
experienced by a catchment throughout the year, forms the
bridge between the low flows and the high flows in the FDC.
Thus the results from the modeling and classification studies
can be used to learn more about the physical controls on the
FDC.

Because the middle limb of the FDC forms the connection
between the extreme high flows and the extreme low flows,
and is related to the average flow regime of a catchment, the
slope of this portion of the FDC is often used in modeling
and classification studies as a means of quantifying the shape
of the FDC (Carillo et al., 2011; Sawicz et al., 2011; Yadav
et al., 2007). The fitted gamma parameters also quantify the
shape of the FDC, but they encompass all of the FDC, not
just the middle portion. Since the middle part of the FDC re-
lates to the RC and therefore the modeling and classification
studies, it is included here as a way to synthesize the findings
of these studies. From the three papers cited above, the slope
of the flow duration curve is defined as

SlopeFDC =
ln(Q0.33) − ln(Q0.66)

(0.66− 0.33)
(2)

whereQ0.33 andQ0.66 are the flow values exceeded 33 %
and 66% of the time, respectively. SinceP andQf are ei-
ther zero or some extremely small number (< 0.001 mm) and
usually exceeded at or less than 66 % of the time in nearly all
the catchments, the slopes (as defined here) of these duration
curves were not mathematically meaningful, and thus only
the slopes only the slopes of theQ andQu FDCs were used
for this analysis.

The three previous studies – empirical, modeling, and clas-
sification – form three angles of what can conceptually be

Qu controls the middle part

Qf controls the upper part

Qf: a simple 
function of P

Qu: a simple 
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monthly flow 
regime
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D
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Fig. 2. Conceptual model of the controls on the FDC (adapted
from Yokoo and Sivapalan, 2011); hereQf is the fast flow (surface
runoff) andQu is the slow flow (sub-surface runoff).

described as a synthesis “triangle” (Fig. 3). The parameters
of the mixed gamma distribution form the apex of the trian-
gle, and at the base, moving clockwise from the top, are the
dominant model processes and the catchment classes. The
goal of the synthesis analysis is to make connections be-
tween each of these three angles, thus forming the “legs”
and completing the triangle. To map the FDC to possible
controlling processes, a two-stage analysis is conducted: for
each leg of the synthesis triangle, a qualitative visual group-
ing analysis is followed by a quantitative variability analysis.
Additionally, because two of the legs of the triangle are de-
rived from the RC, the synthesis analysis will zoom in on
the middle portion of the FDC and the same visual group-
ing and variability analysis will be performed on the slope
of the FDCs sorted by both catchment class and dominant
processes. Lastly, because of the regression relationship seen
between the shape parameter of the mixed gamma distribu-
tion κ and the baseflow and seasonality indices, the slope of
the FDC will also be compared to these indices. Sinceκ rep-
resents the entire FDC and the FDC slope represents just the
middle portion of the FDC, a strong relationship may help
clarify the underlying controls. Thus the analysis of the slope
of the FDC builds on the three-way mapping outlined by the
synthesis triangle.

The variability analysis must be done between sets of
quantitative data (parameters of the mixed gamma distribu-
tion, the slopes and quantiles of the FDCs) as well as be-
tween sets of qualitative data (the dominant model processes
and catchment classes). For the quantitative data, this is ac-
complished by determining self-organizing behavior with a
decision tree (Breiman et al., 1993). Consider a dataset of
sizen, with varianceσ 2. Next, partition that dataset intom
subsets, using an existing decision tree. Each subseti of size
Si is characterized by a varianceσ 2

i . Let a variance measure
of the data, using the partitions implied by the tree, be calcu-
lated as follows:
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Gamma 
Parameters

Synthesis

Catchment 
Classes 

Dominant 
Processes

Visual mapping and 
variance analysis 

within and between 
groupings

Visual mapping and 
variance analysis 

within and between 
groupings

Visual mapping and 
variance analysis 

within and between 
groupings

Fig. 3. Connections to be explored between the three aspects of the
FDC study.

σ 2
=

m

6
i=1

Siσ
2
i

n
. (3)

In essence, the average of the variance of each subset is cal-
culated, weighted by the number of members of each subset.
For the qualitative data, this is accomplished by determin-
ing self-organization into distinct classes. Again, consider a
dataset of sizen, which now is characterized byk distinct,
qualitatively described classes. Let the entropy of any group
of that data be defined as

E = −
k

6
j=1

pj logk pj (4)

wherepj represents the proportion of the group of classj .
Equation (4) returns a value between 0 (minimum entropy,
all elements within a set of the same class) and 1 (maximum
entropy, equal proportions of a set of each of thek classes).
Next, partition the dataset of sizen into m subsets of size
Si , each with an entropyEi , calculated with Eq. (4). Let the
entropy of the data, using the partitions implied by the tree,
analogous to Eq. (3), be calculated as follows:

E =

m

6
i=1

SiEi

n
. (5)

If the variance measure calculated in Eq. (3) and the entropy
calculated in Eq. (5) are lower than that of the entire dataset,
we can conclude that the tree structure explains, in part, the
variability of the parameters/classes we desire to map.

3 Results: three-way mapping and synthesis

3.1 Catchment classes and dominant processes

Figure 4 shows the FDCs of catchments in the four largest
catchment classes, which together account for about two-
thirds of all the catchments in the study, grouped within each
class by dominant model process. The class LJ (low season-
ality, wetter spring), which includes 68 catchments and en-
compasses most of the Atlantic coast region of the US, and
the class LWC (low seasonality, wetter winters), which cov-
ers the southern Appalachian Mountain region and the south-
ern Gulf states, show remarkably little difference between
FDCs for high flows exceeded about 15–20 % of the time
(Fig. 4c and d). The curves begin to diverge at the mid- to
low-flow end, as well as at the extreme high flow end, but
even there the range is less than that of the intermediate sea-
sonality classes ISQJ and ITC, which include catchments in
the Midwest from the humid Corn Belt region in Illinois and
Iowa to the drier Plains regions south and west of the Corn
Belt (Fig. 4a and b). Of note is that the catchments in these
two intermediate seasonality classes are also where the sim-
ple process model had difficulty in satisfactorily reproducing
the regime curve (Ye et al., 2012), while the two dominant
low-seasonality classes are largely made up of model process
classes relating to forest and snow processes.

In Fig. 5 the grouping is reversed; here the FDCs of catch-
ments in the four largest dominant model process classes,
which together account for about half of all the catchments
in the study, are grouped within by catchment classification.
Again, we see two of these classes (b and c) have smaller
range of FDC variability than the other two. A closer inspec-
tion reveals that both (b) and (c) seem to taper at the top
(largest flows) while (a) and (d) do not. Since the vertical
axis of an FDC is on a log scale, any differences that appear
small at this end are actually quite large, while differences
between FDCs at the low end, which appear large, are actu-
ally very small. It can be further noted that both (b) and (c)
contain subsurface-influencedQf , and it may be due in part
to this underlying process control that (b) and (c) have more
similar high flows. Also of note in Fig. 5 is that three of the
four main dominant model processes involve vegetation (in-
terception, phenology, or both), and thus the two large classes
LJ and LWC, which are dominated by catchments in the NE
and mid-Atlantic regions of the US, feature prominently in
these groupings (Fig. 5b, c, and d). The base model clus-
ter features the majority of the extreme seasonality classes as
well as the more seasonal of the intermediate classes. In these
catchments, the strong seasonal signal in precipitation over-
rides even the vegetation signature in the streamflow regime
curve; the effect on the FDC is not so evident. However a lack
of precipitation shows up very strongly in the FDC, where the
drier catchments in the southern and western regions (e.g.,
IAQ and XADB in Fig. 5a, LPC and ISQJ in Fig. 5b, and
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Fig. 4. FDCs for total streamflow within the 4 main catchment
classes, grouped by model process class (Note that(a) and(b) rep-
resent drier catchments with mildly seasonal rainfallP , while (c)
and(d) represent wetter catchments with little seasonality inP).

ISQJ in Fig. 5d) have a markedly different curve than their
more humid counterparts.

The visual analysis of Figs. 4 and 5 presented here shows
strong regional patterns as the large number of catchments
are divided into a small number of groupings. This reflects
the fact that the co-evolution of catchments with the climate
and the underlying geology is reflected in both the vegeta-
tion and the soils in which they grow. Thus the humid east
coast with its steady supply of rainfall during the year has
the ability to support large areas of deciduous forest, while
the drier inter-continental regions with more variable rainfall
tend to support more grassland. These differences in vege-
tation canopies, the underlying soils and topography, in ad-
dition to the presence or absence of a winter snowpack, all
affect how a catchment stores and filters precipitation, and
this is reflected in these groupings. This idea is further il-
lustrated by another large model process class that does not
appear in Fig. 5 but does feature prominently in two of the
largest catchment classes (Fig. 4a and b). In a large part of
the Midwest, where human activity has greatly altered this
co-evolution by changing the catchment storage and drainage
properties (tile drainage) and even the vegetation type (agri-
culture), the model, based on natural processes, cannot sat-
isfactorily reproduce the RC for these catchments (the “No
Model” class).

In order to quantify in an objective way the findings from
the visual inspection of patterns conducted so far, the connec-
tion between the catchment classes and the dominant model
processes was also examined using the variability analysis
described in Sect. 2.2; the result is summarized in Table 1.
There is a significant reduction in entropy as the dominant
model processes are sorted along the classification tree (i.e.,
the variance within each model grouping is less than that
between the groups); thus the model processes display an
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Fig. 5.FDCs for total streamflow within the 4 main dominant model
process classes, grouped by catchment class. (L, I, and X denote low
to high seasonality inP , while V, H, T, S, and A denote low to high
aridity).

Table 1.Entropy reduction in dominant model processes sorted by
class.

Number of % of entropy remaining in
Splits dominant model processes

Level 0 100.0%
Level 1 90.9 %
Level 2 86.2 %
Level 3 77.0 %
Level 4 69.3 %
Level 5 65.0 %
Level 6 62.8 %
Level 7 45.6 %

Bold signifies a significant decrease in entropy
(p < 1 %).

underlying organization expressible quantitatively. This was
seen qualitatively in Fig. 4 where even the largest classes
contained distinct model processes associated with them. Al-
though the reduction in entropy was fairly consistent for each
split of the tree, with entropy being reduced by about half
overall, the largest drop occurred at the most bifurcated layer
of the tree (Level 7). This is where many of the most sea-
sonal catchments clustered, and these had fewer dominant
model processes associated with them. In fact, this level con-
tains the two catchment classes (ITC and ISCJ) where the
model did not perform well in most cases, as well as three
catchment classes where snow was a dominant factor. These
catchments also cluster regionally, with most being located
in the northwest-central portion of the US.
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3.2 Catchment classes and the parameters of the mixed
gamma distribution

The visual mapping of the three parameters of the mixed
gamma distribution onto the catchment classes consisted of
grouping the parameter values by class. For theQ duration
curve, as expected, theα parameter was 0 except for classes
containing arid catchments. For the scale parameterθ of the
Q duration curve (Fig. 6), catchments with low seasonality,
which in this dataset are also generally more humid, have
lower values (θ < 20), reflecting the strong similarity in mean
amount ofP andQ experienced within these classes. Catch-
ments with higher seasonality are characterized by a wider
range ofθ -values, and, within the group of intermediate to
high seasonality catchments, those that are more arid (A or S
in the abbreviation) tend to have a higherθ than those that
are more humid. For the shape parameterκ of the Q du-
ration curve, the pattern is not so clear. Although FDCs of
arid catchments have a distinct shape, as was seen in Fig. 5a
(IAQ and XADB, both arid catchment classes), the catch-
ment classes, which group mainly on climate properties, may
not always capture the differences in shape related to catch-
ment properties, which are reflected inκ.

As before, the visual mapping of the connection between
the catchment classes and the three parameters of the mixed
gamma distribution was followed by a quantitative variabil-
ity analysis; the result is summarized in Table 2. These results
show that, with each step down the tree, the overall variabil-
ity of all three parameters decreases, and thus these, like the
dominant model processes, are explained by the classifica-
tion tree in quantitative terms. However, not all parameters
sort equally well; bothα andθ show significant reduction in
variance whileκ does not. This may be explained by the ba-
sis for the classification scheme: the four criteria are mainly

Table 2.Variance reduction in parameters of the mixed gamma dis-
tribution sorted by catchment class.

Number
% of Variance in Gamma Parameters

of
Remaining

Splits α κ θ

Level 0 100 % 100 % 100 %
Level 1 75.0 % 96.5 % 70.1 %
Level 2 60.8 % 93.5 % 60.5 %
Level 3 57.8 % 87.0 % 54.8 %
Level 4 51.9 % 79.0 % 43.2 %
Level 5 46.4 % 75.3 % 40.2 %
Level 6 45.8 % 74.8 % 39.8 %
Level 7 44.9 % 72.2 % 38.8 %

Bold signifies a significant decrease in variance (p < 1 %).

climate-oriented, as isα, and they utilize the RC, which re-
flects the average values ofP andQ over a long time pe-
riod, as doesθ . Where variance reductionis significant, it
is greater in the first few splits on the tree than at the later
branches. Forα, this is becauseα is nonzero when there is
noP or Q; the larger theα is, the more intermittent the rain-
fall or streamflow. The first two branchings of the tree imme-
diately split off a large portion of humid catchments, where
α ≈ 0 for Q andQu and is small forP andQf , from the rest,
thus providing an immediate, and large, reduction in vari-
ance. From the visual mapping, these same catchments also
experienced very low seasonality and had very small ranges
of θ -values; thus splitting them off from their more variable
counterparts provided immediate organization with respect
to θ .

3.3 Dominant processes and the parameters of the
mixed gamma distribution

The last part of the three-way mapping was the connection
between the dominant model processes and the parameters
of the mixed gamma distribution. Forα, the story is the same
as outlined in the previous section. For the shape parameter,
the process class “Vegetation” showed a wider variability of
κ-values relative to most of the other classes, notably large
classes such as “Snow, Vegetation”, “Snow, SubQf , Vegeta-
tion”, and even “SubQf , Vegetation” (where “SubQf” refers
to subsurface-influencedQf) as seen in Fig. 7. Vegetation as
the sole dominant process seems to produce a large variabil-
ity in the shape parameterκ. Although vegetation processes
were lumped together into one model process class, different
kinds of vegetation (grassland, forest) affect the streamflow
RC in different ways – the phenology signature of forested
catchments, for example, shows up clearly as a significant
drop in summer streamflow. On the other hand, snowmelt
affects the RC in one way – a sharp peak in spring. While
not visually obvious when plotting the FDCs, these variations
may be showing up in the shape parameter of the fitted FDC
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as a wider range ofκ-values. However, when snow and/or
subsurface-influencedQf share dominance with vegetation,
the variability seems to be lessened. From our inspection of
the shapes of the FDCs in Fig. 5, this seems to be borne out,
at least for “Snow, SubQf , Vegetation” and “SubQf , Vege-
tation”, and may be caused by the presence of subsurface-
influenceQf . We also saw from Ye et al. (2012) and Coop-
ersmith et al. (2012) that snow-dominated catchments share
similar climate and physical properties; in addition, the pres-
ence of snow in heavily vegetated areas further groups the
catchments by climate and geology/topography, as the major-
ity of these catchments are found in the northeastern US. This
may explain in part the smaller variation inκ-values for pro-
cess classes containing snow and vegetation. However, pro-
cess classes with snow but without vegetation contain many
fewer catchments, and thus a more quantitative examination
is necessary to determine if the smaller variability in theκ pa-
rameter is significant. Forθ , the trend was not so clear, likely
due to the wide range of climates (and therefore averageP

andQ) experienced within some model process classes.
As shown in Fig. 7, some process classes contained fewer

catchments than others, and so a visual assessment alone is
insufficient to analyze differences between classes. Thus the
connection between the dominant model processes and the
three parameters of the mixed gamma distribution was ana-
lyzed quantitatively using the variability analysis described
in Sect. 2.2; the result is summarized in Table 3. As before,
the results show a decrease in variance when the parameters
are grouped compared to when they are not. Interestingly,
when the parameters are grouped by dominant model pro-
cess, the opposite is seen compared to when they are grouped
by catchment class. Hereκ shows statistically significant
variance reduction whileα andθ do not; thus the shape pa-
rameterκ is better described by the dominant model pro-
cesses while both the scale parameterθ andα, the fraction of

Table 3.Variance reduction in the parameters of the mixed gamma
distribution grouped by dominant model process.

% of Variance Remaining

Grouping α κ θ

Ungrouped 100 % 100 % 100 %
By Model Process 95.6 % 92.0 % 93.3 %

Bold signifies a significant decrease in variance (p < 1 %).

no rainy or flow days, are better described by the catchment
classification system. This may be because the classification
system is based in large part on the climate – the amount and
timing of water available to a catchment – while the domi-
nant model processes are more closely related to catchment
function, since they explicitly take into account the effect of
interception, phenology, and subsurface-influencedQf .

3.4 Synthesis: the slope of the FDC

As was previously discussed, there is more than one way
of quantifying the FDC: the fitted parameters of the mixed
gamma distribution (α, κ, θ) or the slope of the FDC. How-
ever, the three parameters describe the entire FDC, while the
slope as defined here only describes the middle limb – the
bridge between the high flows and the low flows. By focus-
ing on one limb of the FDC at a time, more specific con-
trols may be identified, since the analyses in previous sec-
tions were not able to fully untangle the climate from the
catchment controls. In this paper we only examine the slope
of the middle limb of the FDC, as it is closely related to the
RC, on which the modeling and classification studies were
based; the upper and lower limbs are left for future work.
The slopes of the FDC forQ andQu were grouped first by
class (Fig. 8) and then by dominant model process (Fig. 9).
The box plots provide a visual assessment of the variability
of the magnitudes of the slope of the FDC within each group-
ing: the size of the box represents the 25th–75th percentile,
while the whiskers show the minimum and maximum val-
ues. Because of the way the slope is calculated, catchments
with ephemeral streams or those for which the streamflow
becomes very small at higher percent exceedance (i.e., drier
catchments) will have very large slopes. This is clearly il-
lustrated by the class XADB (high seasonality, arid, wetter
winters) in Fig. 8, which consists entirely of arid catchments
in southern California.

In general, the FDCs of classes with low seasonality (those
with L in their designation) tended to have smaller slopes
and less variability in slope values than did those classes
with higher seasonality (those with I or X in their designa-
tion). The FDCs of more arid catchments (those with S and A
in their designation) with higher seasonality tended to have
steeper slopes. In general, the majority of catchments with
snow as a dominant process tended to have less variability in
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Fig. 8.Total streamflow FDC slopes grouped by catchment class.

slopes than did those without (Fig. 9). However, from previ-
ous examination (Fig. 7) we see that some of these process
classes are quite small in size compared to others. Neverthe-
less, when examining the four largest process classes aside
from “Base Model” and “No Model”, the majority of the
catchments in “Snow, SubQf , Vegetation” and “Snow, Veg-
etation” showed more narrow ranges of FDC slopes than did
“SubQf , Vegetation” and “Vegetation”. These results mirror
those of the visual mapping done in previous sections, where
low seasonality reduced variability inθ -values, and where
snow processes reduced the variability inκ-values.

As with the three-way mapping, the visual assessment was
followed by a variability analysis. Both the slope of the FDCs
and the FDC quantiles were sorted on the catchment classi-
fication decision tree. When the FDC quantiles were sorted
along the tree, there was a monotonic decrease in variance
for all duration curves, yet as before the most variance was
explained in the first two levels. The result for theQ FDC
was significant (Table 4a), while that forQu was not. When
the slopes of theQ andQu FDCs were sorted along the tree,
the same pattern of early reduction of variance leveling off
with further branching was repeated, but this time the slopes
of theQu FDC showed a more significant reduction in vari-
ance than those ofQ (Table 4b). The overall pattern seen
here is similar to the reduction in variance obtained by sort-
ing the gamma parameters on the classification tree; there
too the decrease in variance (where significant) was greater
in the early branchings than in the outer branches. This may
again be explained in part by the way that the classifica-
tion tree branches – the early splits remove a large portion
of the low-seasonality, humid catchments from the distribu-
tion, which (as visually mapped in Fig. 4c and d) have very
similar FDCs, with the majority of the differences between
the FDCs in each class seen at flows occurring> 66 % of the
time – i.e., the lower limb of the FDC.

Returning to the conceptual model presented in Sect. 1 of
this paper, we have now analyzed the catchment response in-
dicator, in the form of the FDC, from both the perspective
of the entire FDC (parameters of mixed gamma distribution)
and the middle limb of the FDC/regime curve (slope). What
remains is to examine more closely the relationship between
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Table 4. Variance reduction in FDC quantiles (a) and slopes (b)
sorted by catchment class.

% of Variance Remaining

Number (a) FDC (b) FDC Slope

of Splits Q Qu Q Qu

Level 0 100 % 100 % 100 % 100 %
Level 1 85.6 % 89.8 % 84.2 % 81.9 %
Level 2 68.2 % 85.1 % 76.0 % 71.6 %
Level 3 63.2 % 83.3 % 74.8 % 68.2 %
Level 4 54.2 % 78.9 % 68.4 % 61.9 %
Level 5 46.7 % 74.2 % 63.3 % 57.0 %
Level 6 46.8 % 74.1 % 63.2 % 58.2 %
Level 7 46.4 % 72.5 % 62.1 % 57.2 %

Bold signifies a significant decrease in variance (p < 1 %).

the FDC and the climate and catchment properties that define
its shape. TheQ FDC was plotted against both the season-
ality index (SI), representing the climate, and the baseflow
index (BI), representing the catchment (although we should
note that climate factors into BI as well). As an additional
layer of analysis, the slopes of the FDCs were grouped first
by catchment class (Fig. 10) and then by dominant model
process (Fig. 11) in order to determine if any clustering be-
comes evident, which could help bring out which process
governs which part of the FDC and could aid in regional-
ization.

From both Figs. 10 and 11, it can be seen that there is a
much stronger relationship between the slope of theQ FDC
and BI than with SI, although this seems to break down at
higher slopes (in arid catchments other processes may be af-
fecting slow flow). The catchments with the highest slopes
all belong to arid or semi-arid classes with mid- to high cli-
mate seasonality. The dominant model processes for these
same catchments vary between “No Model” (in some arid
catchments, the simple model was not complex enough to
capture the regime curve) and “Base Model” (here the cli-
mate seasonality is the only complexity needed). Of these
arid catchments with a large FDC slope are two that at first
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Fig. 10. Relationship between baseflow index(a) and seasonality
index (b) and total streamflow FDC slopes (grouped by catchment
class).

glance may seem at odds with the aridity of the region: one
is dominated by vegetation processes, and the other by both
snowmelt and vegetation processes. The first catchment is on
the Caney River in Kansas, one of the Great Plains states,
and closer inspection reveals a lush riparian corridor. Due to
the aridity of the region, the stream may become dry in the
summer months, thus causing the large FDC slope. In dry
regions, phreatophytes may make up a large portion of the
woody riparian vegetation. These deep-rooted plants, by tap-
ping into shallow groundwater, draw down the water table;
this can reduce streamflow, thus contributing in part to the
steep slopes seen in these FDCs. The second catchment is on
the Bad River in South Dakota, and is a snow-fed tributary
of the Missouri River that flows in part through a national
prairie grassland. The plot of the slope of theQu FDC (not
shown here for brevity) follows that for theQ FDC, except
shifted slightly to the left, as the slope of theQu FDC is gen-
erally less than that ofQ. This is likely due to the extreme
high flows present in theQ FDC pulling the curve upwards,
thus steepening the overall slope.
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4 Discussion

4.1 Comparative analysis: regionalization

In all three studies – statistical, modeling, and classification
– one common theme emerged: patterns, both spatial and
empirical, pointed toward an underlying structure or control.
The current work has attempted to draw connections between
the results of previous work to elucidate the nature of these
controls. This pooling of information is the essence of syn-
thesis; examining the information gained from several anal-
yses leads to a deeper understanding of the questions, which
can then lead to better answers, as well as guide the direc-
tion of future work. Our four-part study has been compara-
tive in nature, encompassing nearly 200 catchments with a
wide gradient of climate and catchment properties. This pro-
cess of learning from different places (a Darwinian approach)
runs counter to the current general ethos of hydrology, which
is to learn from an individual place in great detail (the New-
tonian approach). Our method has been to step back and look
at this issue holistically through a combined approach, where
information gained from detailed studies of individual catch-
ments augments the information gained from the study of
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a population of catchments. By examining the entire dataset
across a population of catchments, we have identified regions
of homogeneity, and have attempted to classify them in dif-
ferent ways, as well as make connections between them in
order to clarify how catchments behave in different locations,
thus partitioning the nation into regions of similarity. By de-
termining the underlying processes within a region, and in
turn how they might vary by region, we gain understanding
of the physical controls and in this way step closer to the ulti-
mate goal, the prediction of the FDC, in any ungauged basin.

The regional patterns highlighted in these four papers led
to the groupings that have been explored both qualitatively
and quantitatively in this synthesis analysis. We have shown
that the variance within these groups, both in the three-way
mapping and in the FDC slope analysis, was less than that
between groups, thus objectively demonstrating that these
groupings are meaningful. This is consistent with the idea
that classification and catchment grouping is useful for es-
timation of the FDC in ungauged catchments, particularly
in large areas (see e.g., Sauquet and Catalogne, 2011). Of
note is one region that was highlighted in all of our stud-
ies, particularly the modeling and catchment classification:
the Midwestern US. This is a mid-continent region of tran-
sition to higher climate seasonality and aridity, and is also
this country’s main agricultural region. While the MOPEX
catchments are ostensibly minimally impacted by human be-
havior (Duan et al., 2006), recent work by Wang and He-
jazi (2011) has shown that this is not always the case. These
human alterations have, in part, become dominant processes
themselves, as illustrated by the simple model’s inability to
perform satisfactorily in this part of the US, and thus must be
taken into account in any regionalization studies with signif-
icant anthropogenic activities.

The synthesis analysis of these groups showed that while
the classification tree described well the scale parameterθ ,
and the zero exceedance parameterα, the dominant model
processes better described the shape parameterκ. Since the
model processes focus more on catchment function, this
gives first-order physical meaning to the shape parameter.
However, there was no unique value ofκ for each model
process, which points to the need for a more complex model
than we use here, such as the process-based model of Car-
illo et al. (2011) and others like it that can capture catchment
properties in greater detail and thus bring out their controls
on the FDC. Since the climate and catchment function are so
closely linked through geologic time by co-evolution, more
specific properties of the catchment, such as topography, soil
types, etc., all of which determine in part the filtering of infil-
trated precipitation and thus the FDC at the outlet, may need
to be included. Thus, with the catchment more explicitly de-
fined in the model, the effects of the catchment itself may
be separated from the effects of the climate it experiences.
In addition, the parameter fitting itself was strongly affected
by the tails of the FDC. Parameter values containing more

close fits to the tails would likely produce stronger synthesis
relationships with the model processes.

Further analysis into the slope of theQ FDC revealed that
the baseflow index was a stronger control on it than was the
seasonality index. The slope of the FDC as defined here is re-
lated to the RC, which is a function of long-term catchment
response, and this would confirm the idea that the middle
limb of the FDC is related to the RC. Clustering of classes
and model processes was seen in the scatter plots (Figs. 10
and 11); catchments in the region where snowmelt is the
dominant process tended to all have higher BI, while the veg-
etation process dominated regions explored a larger range of
BI. Combining the results of this study and the empirical
one, we see that catchments with largerκ-values tended to
also have larger BI (a greater proportion ofQ exits asQu)

and flatterQ andQu FDC slopes. These results seem to in-
dicate that catchment properties rather than the more time-
dependent climate properties are the dominant controls on
the FDC. Climate seasonality does affect the catchment re-
sponse as the classification study highlighted, and to some
extent the shape of the FDC, as the empirical study high-
lighted, but the control is secondary to the catchment proper-
ties, as evidenced by the stronger relationship of the slope of
the FDC to BI compared to SI, and the more significant vari-
ance reduction of theQu FDC compared to theQ FDC when
sorted on the classification tree. Seasonality implies timing;
the FDC removes the time element, and by doing so may also
provide a first-order separation of climate influence from that
of catchment properties.

That the relationship is stronger with BI may be due to
the way the slope of the FDC is calculated. A slope obtained
using Eq. (2) represents the middle limb of the FDC, which
itself represents the long-term, averaged response from the
catchment. Since the baseflow index also is a measure of
these processes, and as such is governed more by the to-
pography and other earth processes than by climate pro-
cesses, this result confirms the hypothesis of Yokoo and Siva-
palan (2011) that the middle limb of the FDC is a function
of the RC. This relationship of the shape of the FDC with
groundwater-related measures has also been seen previously
in the literature, in studies not limited to the US. For example,
Claps and Fiorentino (1997) use BI to regionalize the FDC in
Basilicata, in southern Italy. Similarly, in the UK the HOST
classification of soils is used as a surrogate for the geology
(Holmes et al., 2002). Sauquet and Catalogne (2011) found
that the catchment yield and the percentage of impermeable
substratum (which are more or less related to the geology)
are among the most important explanatory variables to re-
gionalize the FDC in France.

Regarding seasonality, which showed a weaker relation-
ship to the slope of the FDC, not many papers use it explic-
itly to regionalize the FDC. One example is Sauquet and Cat-
alogne (2011) who use the seasonality index to group French
catchments into regions of different regression applications.
On the other hand, the seasonality is implicitly accounted
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for in other works. For example, in Arora et al. (2005) and
Ganora et al. (2009) the mean catchment elevation is used to
discriminate between regions with different FDCs in Nepal
and Italy respectively, and it is argued that elevation is a
proxy for distinguishing areas more or less influenced by
snow mechanisms (and therefore different seasonality). Li et
al. (2010) found that the leaf area index is correlated to the
shape of the FDC in south-eastern Australia; vegetation im-
pacts ET differentially between summer and winter, increas-
ing the slope of the FDC and the probability of having zero
flow for some portion of the year, similar to what was seen in
some of the more arid regions in the US. These implicit sea-
sonality effects were also seen in the MOPEX catchments
when vegetation-related dominant model processes led to
higher variability and steeper slopes in the FDC. Thus the
findings of this study, based solely on catchments in the con-
tinental US, correlate with findings from a more global per-
spective and further highlight this co-evolutionary relation-
ship between climate and catchment properties.

4.2 Comparative analysis: regime curve and the flow
duration curve

The aim of this study was to determine the underlying phys-
ical controls on the FDC. However, another, less expected,
theme that kept surfacing throughout the entire study was
that the differences between catchment responses are more
readily seen in the RC than in the FDC. These differences
between catchments appear more obviously, and the reasons
for those differences are far more straightforward, in the RC
in part because the temporal pattern remains intact, while in
the FDC this information is removed. From both the catch-
ment classification study (Coopersmith et al., 2012) and the
process modeling study (Ye et al., 2012), it was shown that
many of the processes controlling the catchment response are
time-dependent, for example, the seasonality of precipitation
or the vegetation processes of tree leaf-out and leaf-drop. In
addition, it is not uncommon for more than one hydrologic
control process to be at work in a given catchment; thus one
complicating factor in relating the regional patterns seen in
these studies to the physical controls on the FDC is that the
patterns obtained for both the dominant model processes and
the classification system were based on the RC, not the FDC.
The guiding principle behind these two studies was that the
RC and middle limb of the FDC are related to each other, and
we have seen evidence of this in both this paper and in the sta-
tistical study (Cheng et al., 2012). To further understand this
relationship between the RC and the FDC, we have again ap-
proached it both qualitatively, by examining RCs and FDCs
from a few selected catchments in the study, and quantita-
tively, by comparing the slopes of both the FDC and the RC
plotted as an FDC.

Qualitatively, the information about process controls on
the catchment response contained within the FDC is more
subtle, since removal of the time element filters out what

this work has shown to be crucial information. This might
lead one to think that two catchments with different regime
curves could have the same FDC. However, as Fig. 12 shows,
this is not always true; there is still some information to be
gained from the FDC. For the catchment in Montana (MT),
when looking at the RC, the peak in streamflow caused by
snowmelt is quite prominent, but, for the rest of the year,Q

is relatively constant. This can be seen in the FDC of MT as
a fairly flat slope through most of the curve, with a slight
uptick at the rarely exceeded (high flows) end, as in this
catchment the highest flows generally correspond to the an-
nual snowmelt events. Contrast this with the semi-arid catch-
ment in Kansas (KS), where the streamflow varies a great
deal throughout the year. This is seen in the FDC of KS as a
much steeper slope overall, with the aridity of the catchment
indicated by the curve tending to zero flow before 100 % ex-
ceedance. Thus catchments with very different RCs also have
different FDCs, although this difference is much less pro-
nounced. Catchments with very similar RCs have even more
similar FDCs, as illustrated by the two forested catchments in
Pennsylvania (PA) and Virginia (VA); here the seasonal pat-
terns of leaf-out in the spring and leaf-drop in the fall are seen
in the RC as a decrease in streamflow from about May to Oc-
tober, even though the precipitation for the east coast of the
US is fairly constant all year. This phenology signature is less
clear in the FDC, where the two catchments are nearly indis-
tinguishable from one another – except at the extreme ends
– and not substantially different from the MT catchment de-
scribed earlier. In spite of this, some differences in the shape
of the FDCs can be related to possible physical controls, the
arid catchment in Kansas being a good example of this. Note
that the major differences in these example FDCs are in the
tails; this is where the story of the FDC may lie, and it is pos-
sible that an analysis of extremes may illuminate this further.
Also, this example only highlighted theQ FDC; it may also
be that the FDCs of the componentsQf andQu, as well as
their tails, may further elucidate the physical controls on the
FDC.

The qualitative visual analysis of Fig. 12 highlighted the
information contained in the RC that does not readily ap-
pear in the FDC. However, by examining both signatures in
a quantitative fashion, it becomes clear that there is informa-
tion in the FDC that is not contained in the RC. When the
smoothed daily RC is normalized by its mean, then sorted
and plotted as an FDC, the slope of the resulting curve can be
calculated using Eq. (2), but with the highest and lowest val-
ues instead of the middle third. Figure 13 shows these slopes
plotted against the slopes of the middle third of the FDC,
and grouped by catchment class. In general, the slopes of the
FDCs are larger than those of the RC FDCs. This is because
the FDC contains information about the extreme flows (both
high and low) that a catchment experiences, and these pull
the middle limb of the FDC in opposite directions, thus in-
creasing the slope. The daily RC, being a long-term average
of all these flows, has the extremes smoothed out; thus the

www.hydrol-earth-syst-sci.net/16/4483/2012/ Hydrol. Earth Syst. Sci., 16, 4483–4498, 2012



4496 M. Yaeger et al.: Controls of regional patterns of flow duration curves – Part 4: Synthesis

1 31 61 91 121 151 181 211 241 271 301 331 361
0

1

2

3

4

Julian Day

S
m

o
o

th
ed

 d
ai

ly
 Q

 (
m

m
) 

/ 
M

ea
n

 a
n

n
u

al
 d

ai
ly

 Q
 (

m
m

)

 

 

PA, LJ, Snow, Sub Qf, Vegetation
MT, LPQ, Snow
North CA, XHD, Subsurface−influenced Q

f

KS, ISQJ, Vegetation
VA, LJ, Snow

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Probability of Exceedance

D
ai

ly
 Q

 (
m

m
) 

/  
   

   
  

M
ea

n
 a

n
n

u
al

 d
ai

ly
 Q

 (
m

m
)

 

 

PA, LJ, Snow, Sub Qf, Vegetation
MT, LPQ, Snow
North CA, XHD, Subsurface−influenced Q

f

KS, ISQJ, Vegetation
VA, LJ, Snow

Fig. 12.Smoothed regime curve of total streamflow (top) and cor-
responding flow duration curve (bottom), both at the daily scale and
normalized by mean annual daily flow. (Legend description is given
as US state abbrev., catchment class, dominant model process).

slope of an RC FDC is much lower than the corresponding
FDC middle limb. By grouping these slopes by catchment
classes, we see some interesting regional patterns emerge.
The catchments where the RC FDC slope is the same or
larger than the corresponding FDC cluster mainly in the low-
to-mid seasonality, more humid catchments in the northwest
central US (e.g., LBMH, LPQ, IHM). This region is domi-
nated by snowmelt processes, as illustrated by the MT catch-
ment shown in Fig. 12, and this is seen quantitatively in both
the RC and the FDC through their slopes. Catchments in the
low-seasonality, humid east coast (e.g., classes LJ and LWC)
tended to have RC FDC slopes closer to those of their cor-
responding FDC than did the intermediate-seasonality catch-
ments in the mid-continent region (e.g., ISQJ and ITC). In the
eastern, deciduous-forested catchments, the spring flow peak
followed by the sharp decline in streamflow during the sum-
mer months (as illustrated by the PA catchment in Fig. 12)
serves to mimic the extremes seen in the FDC tails, thus
steepening the RC FDC somewhat. This, combined with the
flatter overall slope of FDCs in humid regions, brings the
RC FDC slope closer to the slope of the corresponding FDC.
However, this clear spring peak/summer low flow regime be-
havior is generally not seen in the RCs of catchments in the
Midwest, which are dominated by grassland and more sea-
sonal precipitation. Because the averaging processes inher-
ent in producing a regime curve further smooth out the dif-
ferences between the extreme flows, RC FDC slopes from
catchments in this region deviate even further from their cor-
responding FDC slope.
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Fig. 13. Relationship between the slope of the FDC and the slope
of the RC when plotted as an FDC (grouped by catchment class). A
1 : 1 line is provided for reference.

5 Conclusions

Each aspect of this four-pronged analysis revealed regional
patterns that led to insights into the first-order controls on the
flow regimes and flow duration curves in nearly 200 catch-
ments across the continental US and laid the foundation for a
framework that can be built upon in the future. The empirical
study of the FDC (Cheng et al., 2012) showed that geology
and landscape properties of the catchment have a stronger
influence on the shape of the FDC than do climate proper-
ties, but the scatter in this relationship shows that even here
climate is exerting some influence. Regional patterns in the
values of the parameters of the mixed gamma function led
us to classification as a way to organize and explain the un-
derlying controls. Guided by the hypothesis that the RC pro-
vides the backbone to the shape of the FDC (Yokoo and Siva-
palan, 2011), we classified these same catchments in terms
of their regime behavior. This classification was done both
empirically (Coopersmith et al., 2012) and with the aid of
process-based modeling (Ye et al., 2012), and both methods
showed that climate seasonality followed by aridity were the
dominant controls on the regime behavior across the conti-
nent, overriding the catchment controls of topography, soils,
etc. Quantitative analysis performed in this synthesis paper
showed that both the process and empirical classes, which
are based on the RC, were connected to the broad proper-
ties of the flow duration curve (the slope of the middle limb
and the parameters of the mixed gamma function). However,
the regime behavior captures different aspects of variability
compared to what is reflected in the FDC. While the regime
curve smoothes out the high and low flow behaviors, which
together can impact the slope of the middle limb of the dura-
tion curve, the FDC retains this information in the upper and
lower tails. Thus in the FDC, time information (seasonality)
is lost, but information about the extreme flows is gained.
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The visual mapping done here showed that, within each
regime class, both process and empirical, there was a great
deal of heterogeneity in the shapes of the FDC, which was
most noticeable in the tails. This emphasized a finding of the
first study, where the statistical fitting was strongly affected
by the tails of the FDC. While the upper tail is most affected
by the precipitation intensity, the lower tail is affected more
by catchment properties of landscape, soils, geology, etc.
than by climate. Thus further analysis of the tails of the FDC,
especially the low flows, may separate the physical controls
on the shape of the FDC more effectively. In moving for-
ward, the modeling study must also be enhanced to incorpo-
rate these high and low flow processes. The similar regions
delineated in this study, based on the regime curve, can be
used to “zoom in” on a particular class, guiding the appli-
cation or development of more detailed models to bring out
the differences in the underlying physical (as well as anthro-
pogenic) controls at work in each region. Under this frame-
work, the coupled soil-water-plant growth analytical model
of Feng et al. (2012) and the detailed process-based model
of Carillo et al. (2011) are the kind of models that would be
better suited to fully separate the catchment controls of the
FDC from the climate controls. We leave the pursuit of this
exploration to future research.
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