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Abstract. Spatial patterns of water flux in the stream bed
are controlled by the distribution of hydraulic conductivity,
bedform-induced head gradients and the connectivity to the
adjoining groundwater system. The water fluxes vary over
time driven by short-term flood events or seasonal variations
in stream flow and groundwater level. Variations of electrical
conductivity (EC) are used as a natural tracer to detect tran-
sient travel times and flow velocities in an in-stream gravel
bar. We present a method to estimate travel times between
the stream and measuring locations in the gravel bar by non-
linearly matching the EC signals in the time domain. The
amount of temporal distortion required to obtain the optimal
matching is related to the travel time of the signal. Our anal-
ysis revealed that the travel times increase at higher stream
flows because lateral head gradients across the gravel bar be-
come significantly smaller at the time.

1 Introduction

The interface between streams and groundwater has long
been recognised as an important reactive zone for coupled
stream–groundwater systems (e.g. Triska et al., 1993; Find-
lay, 1995). Typically, steep biogeochemical gradients occur
as a result of the direction and magnitude of water fluxes and
the reaction kinetics (Geist and Auerswald, 2007; Boano et
al., 2010; Schmidt et al., 2011). Understanding water flow
and solute transport at the stream–groundwater interface re-
quires elucidating both spatial patterns and temporal dynam-
ics of flow paths and travel times. The spatial pattern of water
fluxes are controlled by the heterogeneity of stream bed sed-
iments and the resulting hydraulic conductivity distribution

(Sawyer and Cardenas, 2009; Salehin et al., 2004), stream
bed and stream morphology that cause pressure gradients
across the stream bed (Stonedahl et al., 2010) as well as
the spatial connectivity to the adjoining groundwater system
(Storey et al., 2003). Temporal variations of flow are a re-
sult of varying hydraulic conditions in both the stream and
the aquifer (Schmidt et al., 2011). Changes of flow velocity
and flow direction in the stream bed can be induced by flood
events (e.g. Vogt et al., 2010a) by seasonal variations of flow
systems (Wroblicky et al., 1998) or by rising groundwater
levels caused by increased recharge (Schmidt et al., 2011) or
combinations of various factors (Käser et al., 2009). Quasi-
regular variations of hydraulic conditions may be induced
by dam operation (Sawyer et al., 2009), tidally influenced
streams (Westbrook et al., 2005; Bianchin et al., 2010) or di-
urnal groundwater level variation induced by evapotranspi-
ration of riparian vegetation (Valett, 1993). Lateral hydraulic
gradients can exist between branching channels. The lateral
flow through islands and bars varies with changing water
levels in the individual channels (Kasahara and Wondzell,
2003).

Time series of temperature (e.g. Constantz, 2008) and
electrical conductivity (Cirpka et al., 2007) have been
used to study spatial patterns and temporal variations of
groundwater–surface water interactions. The growing use of
heat and EC as natural tracers has also been facilitated by the
increasing availability of commercialised sensors and data
loggers that allow the simple collection of highly resolved
temperature and EC time series. Detecting temporal varia-
tions of water flow in the field requires measurements at a
time interval shorter than that of the temporal variation of
interest.
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Time series of hydraulic heads and the subsequent calcu-
lation of hydraulic gradients may not be a good indicator of
flow. Heads in the stream bed may increase proportionally to
the water level in the stream reflecting the hydraulic connec-
tion and the pressure propagation but not the magnitude and
direction of flow (K̈aser et al., 2009; Vogt et al., 2010b).

Natural fluctuations of water temperature and EC can be
used as a tracer for flow in the stream bed and thus provid-
ing a direct estimate of travel times. It is important to note
that EC in this paper always refers to the temperature com-
pensated electrical conductivity. The use of heat as tracer has
steadily increased in recent years and has practically become
the standard natural tracer for groundwater-surface water in-
teraction studies (Constantz, 2008). Particularly, diurnal tem-
perature variations in the surface water provide a convenient,
periodic signal that can be easily extracted and evaluated for
the advective heat flow component and thus for vertical wa-
ter flux (Keery et al., 2007; Hatch et al., 2006; Rau et al.,
2012; Vogt et al., 2010a; Schmidt et al., 2011). Heat tracing
methods have recently been advanced by vertical high reso-
lution fibre-optic distributed temperature sensors allowing to
determining spatial and temporal variations of vertical water
fluxes (Briggs et al., 2012; Vogt et al., 2010a). Besides tem-
perature, EC of stream water also fluctuates driven by vari-
ations in temperature, stream flow and anthropogenic inputs
(Cirpka et al., 2007; Vogt et al., 2010b). Temperature varia-
tions at the surface are strongly attenuated with depth since
heat is conducted through both the solids and the water of
the bulk sediment. In contrast, solute transport is realised by
fluid flow and diffusion in the pore spaces. Therefore, fluc-
tuations of solute concentrations (expressed by EC) are typ-
ically attenuated less and can propagate further into the sed-
iment than temperature variations (Vogt et al., 2010b). De-
spite this advantage, however, only a few studies have anal-
ysed EC time series (Cirpka et al., 2007; Vogt et al., 2010b;
Sheets et al., 2002). Possible reasons for that could be that not
all streams show sufficient EC fluctuations and that devices
for logging EC-time series are comparably more expensive
than standard temperature sensors.

Travel times can be generally inferred from continuous
natural tracers by estimating the time lags between the in-
put and the output signals. The time lag between two con-
tinuous signals can be regarded as the dominant advective
travel time of the tracer. This would be equal to the tim-
ing of the peak breakthrough of a tracer pulse. Assuming a
stationary process, the characteristic time lag can be easily
estimated by cross correlation (Sheets et al., 2002; Vogt et
al., 2010b). More sophisticated non parametric deconvolu-
tion can be used to obtain a model-free transfer function that
characterises the time lag and the impulse response of the
system (Cirpka et al., 2007; Vogt et al., 2010b). It is assumed
that the EC time series in the stream bed is a response to the
EC input series in the stream. Since we expect variable flow
conditions in the stream bed (e.g. Lewandowski et al., 2011),
the assumption of stationarity does not hold. Thus, a transient

method is needed. In their analysis Vogt et al. (2010a) have
shown that dynamic harmonic regression (DHR) can be used
to derive transient time lags from temperature time series.
However, DHR requires periodic signals, which are not nec-
essarily found for EC in streams.

Windowed cross correlation may be used to capture tran-
sient time lags. The basic idea is to slide overlapping sub-
sequences of a certain length (the window) to construct a
matrix with correlation coefficients with time indices ver-
sus time lags (Boker et al., 2002). However, the analysis
by Boker et al. (2002) was limited to visual inspection of
the correlation matrix. A quantitative analysis of the data re-
quires an automated extraction of the optimal time lag over
time. We propose to apply a dynamic time warping (DTW)
algorithm to estimate variable time lags. DTW has long been
used for speech recognition (e.g. Sakoe and Chiba, 1978),
where the sound signals of different speakers often exhibit
speed and acceleration shifts. DTW performs an element by
element alignment. Thus, rather than just shifting a time se-
ries along the time axis it allows non-linear shrinking and
extending, which is summarised by the term warping. The
time lag between two time series can be inferred from the
amount of warping required to obtain the optimal fit. In this
study we introduce a modified DTW algorithm with a sliding
window to evaluate the variability of advective travel times
between the stream and the stream bed based on time series
of EC. We provide the general theory and an application of
the method. The underlying idea of our approach is to create
a distance matrix similar to conventional DTW, but instead of
an element by element alignment, subsequences of the time
series are aligned. This reduces the sensitivity of the method
to noisy data. To our best knowledge a DTW approach based
on the alignment of subsequences has not been published.
We show how this transient analysis and interpretation of EC
time series can provide deeper insight into flow processes in
the stream bed and the hyporheic zone.

2 Theory

2.1 Fluctuations of electrical conductivity

Natural tracers that can be easily recorded with automated
data loggers are a suitable means to study transient flow pro-
cesses. Tracing diurnal temperature variations has become a
well-established method for assessing stream–groundwater
exchange. The amplitude damping and the phase shift be-
tween the diurnal temperature signal in the stream and some
depths in the stream bed is related to the magnitude and di-
rection (upward or downward) of water flow (e.g. Constantz,
2008). However, diurnal temperature signals are strongly at-
tenuated in sediments as conductive heat exchange with the
matrix of the porous medium results in significant damping
of the signal (Vogt et al., 2010b). Particularly for gaining con-
ditions the diurnal temperature fluctuations do not propagate
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deeper than 0.2 m (Conant, 2004; Schmidt et al., 2007; Keery
et al., 2007). In contrast EC, a parameter related to the con-
centration of solute ions in the water, shows much less atten-
uation. EC in streams also exhibits fluctuations that can be
used as a tracer similarly to temperature variations (Vogt et
al., 2010b). A variety of factors influences EC fluctuations
in streams. Increasing discharge resulting from rains events
is associated with decreasing EC due to a diluting effect of
the rain water. Conversely, evapotranspiration can result in
an increase of EC and a decrease of discharge (Calles, 1982).
Changes of groundwater discharge may also influence EC in
the stream since groundwater has typically higher EC values.
The uptake of CO2 by primary production causes a reduc-
tion of bicarbonate and this may cause a reduction of EC,
typically at diurnal temperature maxima (Ort and Siegrist,
2009). Effluents from wastewater treatment plants (WWTP)
typically increase stream EC values. Effluent discharges are
higher during the day and have thus an increasing effect
on EC during day times. Dam operations can also influence
downstream EC since the released water can have a different
EC signature. Fluctuations of EC at our study location show
the diluting effect of rain events. Intraday fluctuations of EC
coincident with fluctuations of stream flow, induced by the
operation of a water mill located upstream of the site. Gen-
erally, the mill-driven discharge peaks decrease stream water
EC at our site.

2.2 Dynamic time warping

Given two discrete time seriesA andB of lengthn andm

with A = a1,a2,...ai ,...an andB = b1, b2,...bj ,...bm, we can
build an bym distance matrix where each element(i,j) con-

tains the pairwise squared distancesd(ai,bj ) =

√
(ai − bj )2.

An alignment betweenA andB can be found by minimizing
the cumulative distanceD(i,j) between the current element
d(ai,bj ) and the adjacent elements in the distance matrix
starting atd(a1,b1) and ending atd(an,bm). In other words,
the algorithm finds the minimum cost path through the dis-
tance matrix. The minimum cost path aligns (warps) the time
axis of the two series. The recursive algorithm to find the
minimum cost path through a distance matrix is given by
(e.g. Sakoe and Chiba, 1978):

D(i,j) = d(ai,bj ) + min{D(i − 1,j − 1),

D(i − 1,j),D(i,j − 1)} . (1)

Once the minimum cost path through the cumulative distance
matrix has been determined, the time lag for each element of
A andB can be obtained from the shift of the minimum cost
path from unity. Equal or non-time shifted time series would
result in a minimum cost path through the distance matrix
exactly on the diagonal of the matrix. Whenever a time lag
exists, the minimum cost path will deviate from the diago-
nal. Hence, for each element ofA there is a time lagτ that
minimises the distance measure.

For our example we can constrain the minimum cost path
p(i,j) to be continuous so thati andj maximally increase
by one at each step along the path and to be monotonic soi

andj can only increase or stay the same. We can further con-
strainp(i,j) to be located at one side of the diagonal of the
distance matrix since the EC signal cannot be observed in the
stream bed before it occurred in the stream (p(j) > =p(i)).
Figure 1a shows two time series where the black line rep-
resents the input series and the blue line depicts the lagged
response. It can be seen that the time lag steadily decreases
with time. In Fig. 1b the resulting distance matrix with the
minimum cost path is visualised. The distance between iden-
tity (diagonal through the distance matrix) and the minimum
cost path decreases with time in accordance with the decreas-
ing time lag between the two signals in Fig. 1a).

2.3 Dynamic time warping with sliding window

The element by element alignment of two measured time
series with data containing noise may result in noisy, non-
smooth minimum cost paths. Local differences of amplitudes
may lead to artificial warping paths with singularities where
a single point in time of one time series is mapped onto a sub-
section of the other time series (Keogh and Pazzani, 2001).
To avoid noisy warping paths with singularities, we modified
the original DTW approach. We create a distance matrix in
which each element represents the distance between two sub-
series ofA andB defined by the window length rather than
creating a pairwise distance matrix.

d(ai,bj ) = dist(ai ...ai+1...ai+w,bj ...bj+1...bj+w) (2)

wherew is the length of the sliding window given by the
number of discrete elements and dist is a distance measure
which is not necessarily the Euclidean distance. The win-
dowed distance matrix will be cut at the edges at a value
equal to the time series length minus the window length
imax = n − w,jmax = m − w.

The window length should be selected in a way that it con-
tains a sufficient number of features such as sharp inflections
and local minima and maxima to ensure a clear minimum in
the function for the distance measured at perfect alignment.
For example, to align two sinusoidal signals, we recommend
using a sliding window not shorter than the semi-period of
the signal.

Euclidean distance is the common distance measure for
DTW and other optimization and classification applications.
However, Euclidean distance does not provide a standardized
measure for the goodness of fit. A distance matrix based on
correlation coefficients is a good alternative. Instead of cal-
culating the Euclidean distance between the subsequences of
lengthw of the signal, we use the Pearson sample correla-
tion coefficient. By using the correlation coefficient, we can
easily obtain information on how good the two subsequences
actually match when they are optimally aligned.
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Fig. 1. (a) Two time series with variable time lag. The blue series
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distance matrix based on the two time series in(a) with the mini-
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Instead of finding the minimum cost path, searching the op-
timal path through a correlation matrix requires maximizing
the cumulative distance which represents the sum of the cor-
relation coefficients along the path. The maximum correla-
tion path (MCP) for correlation coefficients ranging from−1
to 1 can be easily found by minimizing the cost path through
the correlation matrix containing elements calculated by

d
(
ai,bj

)
MCP = 1− d

(
ai,bj

)
r

(4)

wheredMCP is the distance measure to be used by the algo-
rithm given in Eq. (1). The implementation of the algorithm
leads to a distance matrix where the correlation coefficient
can be visualised over time and the time lag at this time. The
local time difference from the minimum cost path to the unity
(zero time lag) can be interpreted as the local time lag be-
tween the two EC signals.

3 Study site and experimental setup

3.1 Study site

The study site is located in an alluvial floodplain at a reach of
the Selke River characterised by pronounced meanders, pool
riffle sequences and point and mid-channel bars (Fig. 2a).
The catchment of the Selke River drains an area of 458 km2,
the long-term mean discharge is 1.5 m3 s−1. The alluvial
aquifer is 5 to 6 m thick and consists of interbedded sands
and gravels that are underlain by less permeable triassic lime
and sand stone. The gravel stream bed has hydraulic conduc-
tivities ranging from 2.7× 10−4 to 6.0× 10−3 ms−1, which
were determined by falling head slug tests. The mean hor-
izontal hydraulic conductivity is 4× 10−4 ms−1. For a de-
tailed description of the slug test method see Schmidt et

Fig. 2. (a) Aerial photograph (source: K̈unzelmann, UFZ) of the
studied in-stream gravel bar showing the location of the EC and
pressure sensors,(b) the gravel bar during low flow (note the hy-
draulic gradient between the main channel and the side channel),
(c) the same spot during high flow with the gravel bar submerged
and the side channel fully connected. During high flow the lateral
hydraulic gradients are absent. The tree marked in red is the same
in each picture for better orientation.

al. (2006). The hydraulic gradients between the stream and
the groundwater have been found to alternate seasonally
based on stream water level data and head measurements in
adjacent groundwater monitoring wells. The in-stream gravel
bar is characterised by visually observable lateral hydraulic
gradients between the main and the side channel (Fig. 2b).
The differences in water level arise from the steeper slope
of the side channel at the upstream end of the gravel bar. As
the stream flow increases this morphologic effect levels off
(Fig. 2c).

The mean EC is lowest in the stream with 576 µS cm−1. In
the stream bed the mean EC is 588 µS cm−1 at the USS and
601 µS cm−1 at the DSS location, respectively. These values
are similar to observed EC values measured manually in ob-
servation wells located close to the stream banks indicating
the mixing of stream water with the adjacent groundwater.
EC of groundwater that is potentially not influenced by the
stream is around 1020 to 1170 µS cm−1 manually measured
in two wells located approximately 160 m and 500 m away
from the left and right river banks, respectively.

3.2 Experimental setup and data collection

Self-contained EC, pressure and temperature sensors with
data loggers (Solinst 3001 LTC Levelogger Junior) were de-
ployed in the stream and at two locations in the stream bed at
the upstream (Upstream Stream bed Sensor ,USS) and down-
stream (Downstream Stream bed Sensor, DSS) end of an in
stream gravel bar (Fig. 2a). To install the stream bed loggers
a screened steel tube with a drive point was driven into the
stream bed. The EC sensor is placed inside the tube exactly
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Screen

LTC Logger

Threaded lid

Fig. 3. Conceptual sketch of the pressure tight steel tube for the
logger installations.

at the 2 cm long screen at the bottom of the device (Fig. 3).
Unlike with a piezometer, the top of the tube is at level with
the stream bed surface and does not rise into the water col-
umn to avoid any surface flow obstruction. After the logger
deployment, the tube is closed with a threaded lid at the top
to ensure that the pressure measurements are not affected by
hydrostatic pressure when the device is submerged. The cen-
tre of the screen of each tube is located at a depth of 0.44 m
below the stream bed surface. The accuracies of the sensors
as reported by the manufacturer are 1 cm for pressure, 0.1◦C
for temperature and 20 µS cm−1 for EC. Measured EC val-
ues are internally compensated for temperature to derive spe-
cific electrical conductivities normalised to 25◦C. Through-
out the paper we refer to the temperature-compensated EC.
The data was recorded at a 10 min interval between 13 July
and 2 September 2011.

4 Results

4.1 Time series data

Figure 4a shows the water level in the stream and the total hy-
draulic head recorded in the stream bed (m a.s.l.). Generally,
during the data collection period in summer 2011 losing con-
ditions were prevalent. However, the flood pulse around the
25 August apparently diminishes the hydraulic head differ-
ences. Superimposed onto the general water level are short-
term pulse-like fluctuations which increase the water level by
5 to 10 cm. These peaks are due to mill operations upstream
of the study site.

The general pattern of EC inversely follows the water level
of rain events. High water level and thus stream flow is as-
sociated with lower EC due to a dilution effect of rain wa-
ter (Fig. 4b). The mill-induced, pulse-like water level fluc-
tuations also decrease the EC but not to the same extent as
rain events. Variations of EC in the stream range between
354 and 694 µS cm−1.The lowest value was observed during

the flood event and was interpreted as a dilution effect. The
EC variation in the stream has an approximate mean period
of 16 h. The mean period was estimated based on the num-
ber of zero crossings of the entire EC signal (normalised to
zero mean). The mean EC amplitude in the stream during
one period is 21 µS cm−1. The EC signal in the stream bed
lags the stream signal at both the USS and DSS location.
The time lags between the stream and the stream bed sensors
change over time. As illustrated in Fig. 5a between 17 July
and 19 July, the DSS response occurs later than the one at
the USS. Between 18 August and 20 August, for example,
the USS response occurs before the DSS response (Fig. 5b).
The characteristic features and amplitudes in all time series
are similar, indicating no general dampening or smearing of
the signal. This indicates short flow paths. However, we have
detected a period with low correlation between the stream
and the stream bed EC around 24 and 25 July (Figs. 5c, 6).
The short-term fluctuations (double peak) of EC do not prop-
agate sufficiently deep into the sediment to be detected by the
stream bed sensors (Fig. 5c). The damping of the varying EC
signal depends not only on dispersion and diffusion but also
on the frequency.

4.2 Time lags

Figure 6 shows the estimates of the characteristic transient
time lags for the USS and DSS and the underlying correla-
tion matrixd(ai,bj )r rotated by 45◦ to map the diagonal on
the x-axis. The mean time lags of both stream bed sensors
are similar with 2 h 21 min for the USS and 2 h 54 min for
the DSS, respectively. However, the DSS is characterised by
a shorter mode of 1 h 40 min, while the mode of the USS is
2 h 20 min. At the downstream location a wider range of time
lags was observed than at the USS location (standard devia-
tions: USS 56 min, DSS 2 h 29 min). For comparison cross-
correlation analysis reveals a time lag of 2 h for the USS and
1 h 40 min for the DSS. These values are exactly (1 h 40 min)
and close to (2 h 20 min), respectively, the modes of the tran-
sient time lag.

During and after the flood event between 24 and 25 Au-
gust occur the highest differences of the estimated time lags.
Clearly the USS shows a different response to the flood event.
The time lag remains relatively unaffected. This is in accor-
dance with the hydraulic gradient. At the peak of the flood
event the hydraulic head difference almost reached zero at
the DSS location, while at the USS a smaller but still losing
gradient was observed. Accordingly, at the DSS location the
time lag quickly increases during the flood pulse from less
than 2 h to 11 h and remains high for the rest of the analysed
time span. Thus, the USS and DSS locations have a different
response to flood pulse for both the hydraulic gradient and
the EC – based characteristic time lag.

The similar time lags between the stream and both the
USS and DSS suggest similar flow path lengths from the
stream to the sensors. Longer hyporheic flow paths resulting
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Fig. 4. (a) Time series of water level in the Selke River (blue) and hydraulic heads in the stream bed at the USS and DSS location of the
gravel bar.(b) Time series of electrical conductivity.

Double peak

Fig. 5. Close-up of EC fluctuations for three two-day windows(a) the DSS lags behind the USS(b) USS lags behind the DSS(c) a period
with low correlation coefficients. The double peak in the stream EC signal does not propagate to the stream bed sensors.

from downwelling of stream water at the upstream side of the
gravel bar (at the USS) and reemergence at the downstream
end (at the DSS) would have caused an observable dampen-
ing of the signal and a longer time shift at the DSS.

The correlation matrices optically reveal the band of high
correlation that encloses the optimal MCP (Fig. 6a and b). In
general, there is an excellent correlation of the EC time se-
ries along the (MCP), whose correlations coefficients (rMCP)

have a mean of 0.80 at the downstream and 0.87 at the USS.
Median values of 0.84 and 0.91 indicate that the distribution
is slightly skewed towards higherrMCP .

For both sensors vertical bands of high correlation occur.
These high correlation bands have a similar timing and shape
for both sensors. They are a result of low amplitudes in the
stream EC signal. An extreme case would be a constant sig-
nal with no variations. This would result in a correlation

coefficient of 1 when two constant subsequences are slid-
ing along each other. The confidence intervals of the corre-
lation coefficient were estimated applying Fisher transforma-
tion. The confidence interval varies over time and so does the
range of plausible time lags. Wide confidence bounds occur
when the correlation coefficients are similar for a wide range
of time lags. For example both sensors show relatively low
correlation coefficients (∼ 0.2–∼ 0.6) between 25–27 July
for all time lags and hence a high uncertainty of the time lag
estimate. Wide confidence bounds also occur when moder-
ate correlation coefficients (∼ 0.5–∼ 0.75) occur over a wide
range of time lags as for instance at the downstream sensor
on 14 August and after the flood event.
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Fig. 6. Correlation matrices of the DSS and USS. Solid black line: characteristic transient time lag at the(a) USS(b) DSS location. Shaded
white area: 95 % confidence interval. The data is truncated to visualise only the range of the time lags.

5 Discussion and conclusion

The time-varying lag of the EC signal between the stream
and the stream bed sensor can be interpreted as the advec-
tive travel time of water. Knowing the lengths of the flow
paths would provide flow velocities. However, the true flow
paths remain unknown. The vertical component of the total
flow vector in the stream bed can be estimated from the time
lag and the depths of the sensors. The distance between the
stream bed surface and the sensor location is the shortest pos-
sible flow path. At the USS and DSS, the mean apparent ver-
tical flow velocities are 5.4 m d−1 with a standard deviation
of 2.6 m d−1 and 6.3 m d−1(standard deviation: 5.3 m d−1),
respectively. The velocities from the shortest possible flow
path represent the lower bound since longer flow paths would
require higher velocities for the same time lag. The flow ve-
locities are similar to that estimated based on Darcy’s law
from hydraulic head measurements. Vertical hydraulic gra-
dients may not provide a good indication for direction and
magnitude of water flow particularly under variable hydro-
logic conditions (K̈aser et al., 2009). Apart from the good
match during the flood event, hydraulic head differences and
EC time lag are not always consistent. Some uncertainty
arises from the stream water level data during very low flows
where the depth of the water column is close to the limit of
the applicability of the pressure sensor. However, there are

other observations that cannot be attributed to measurement
errors. For instance there is no indication in the hydraulic
data for the relatively high time lag at the downstream sensor
at the beginning of the observation period. Moreover, the ex-
tremely short time lag on 24 August can also not be explained
from the hydraulic head difference at this time.

The original DTW-approach is prone to noisy estimates of
travel times. The DTW algorithm may also produce singular-
ities where several points in time in one series are mapped to
a single point in the other time series. To avoid noise and sin-
gularities the standard DTW algorithm was modified by ap-
plying a sliding window to ensure smooth and unique travel
time variations. The method generally provides robust results
when no pronounced damping of the output signal by diffu-
sion and dispersion occurs. The characteristic shape of the
input and output signal should be nearly the same as it is in
our case. However, similarly to cross-correlation analysis a
filter can be applied to the input series in order to obtain a
similar degree of smoothness for both time series.

The correlation matrix shown in Fig. 5 provides additional
information on how close the stream bed EC is related to the
stream water EC. Low correlation coefficients for any time
lag may indicate relevant dispersive and diffusive processes
during transport through the stream bed or simply a sen-
sor failure. Low correlation coefficients are associated with
high uncertainty of the estimated time lag. High correlation
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coefficients over a range of possible time lags are caused by
small gradual EC variations or portions of the EC time series
that contain little or no fluctuations on the time scale of the
sliding window length.

By using the correlation coefficient as distance measure
in the proposed sliding window DTW, the resulting distance
matrix is basically the same as for windowed cross correla-
tion providing the windows are shifted by a single time step.
However, both methods start from different points. Cross cor-
relation is typically applied for the entire data series, whereas
windowing allows to estimate the cross-correlation function
for subsequences of the data. DTW was originally developed
for element wise alignment of series. Aligning subsequences
of the data series can be viewed as a kind of upscaling from
the element perspective, while windowed cross correlation
represents a downscaling from the entire-series perspective.
Despite this similarity DTW has particular advantages com-
pared to cross correlation with sliding window. First, the dis-
tance measure is not limited to the correlation coefficient
and can be selected based upon the individual problem, i.e.
the conventional measure is Euclidean distance. Second, in
cross correlation with sliding window the window size and
the maximum lag depend on each other. Searching for larger
lags requires larger windows. In DTW analysis they are in-
dependent since the optimal distance is found by searching
the entire distance matrix rather than only the subsequences
in the window.

In DTW the time series are optimally aligned by finding
the minimum cost path through the distance matrix. Thus,
the transient time shift that is required to optimally align to
time series is also inherent in the minimum cost path. As
such this provides an automated method to detect the time
lags between two signals. A similar algorithm could be used
to automatically extract the optimal alignment from a win-
dowed cross-correlation matrix.

The transient DTW based time series analysis can provide
insights into the temporal dynamics of advective travel times
in the stream beds that are not easily obtained from other
methods. Using a sliding window instead of element by ele-
ment warping makes the methods less sensitive to noise.
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