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Abstract. We analyze the scaling behaviors of two field- random fields subordinated to tfBm or tfGn and (ii) provide
scale log permeability data sets showing heavy-tailed fre-maximum likelihood estimates of parameters characterizing
guency distributions in three and two spatial dimensions, rethe corresponding &vy stable subordinators and tfBm or
spectively. One set consists of 1-m scale pneumatic packeffGn functions.

test data from six vertical and inclined boreholes spanning
a decameters scale block of unsaturated fractured tuffs near

Superior, Arizona, the other of pneumatic minipermeameter; |ntroduction

data measured at a spacing of 15cm along three horizontal

transects on a 21 m long and 6 m high outcrop of the Up-Many earth and environmental (as well as physical, ecolog-
per Cretaceous Straight Cliffs Formation, including lower- ical, biological and financial) variables exhibit power-law
shoreface bioturbated and cross-bedded sandstone near Egaling of the following type. Let

calante, Utah. Ordeg sample structure functions of each

data set scale as a powgfg) of separation scale or lag, 1
s, over limited ranges of. A procedure known as extended Sy () = N_(s)
self-similarity (ESS) extends this range to all lags and yields

a nonlinear (concave) functional relationship betwéep)  be an ordey; sample structure function of a random function
andq. Whereas the literature tends to associate extended angl (x) defined on a continuum of pointsin one- or multi-
nonlinear power-law scaling with multifractals or fractional dimensional space (or time)AY, (s) =Y (x, +s-m) —
Laplace motions, we have shown elsewhere that (a) ESS of (x,,) being a sampled increment Bf(x) over a separation
data having a normal frequency distribution is theoretically distance (lag) in one or multiple directions, defined by one
consistent with (Gaussian) truncated (additive, self-affine,or more unit vectorsn, between two points and¥ (s) the
monofractal) fractional Brownian motion (thm), the latter number of measured increments. Power-law Sca"ng(af)
being unique in predicting a breakdown in power-law scalingis described by

at small and large lags, and (b) nonlinear power-law scaling

of data having either normal or heavy-tailed frequency dis-S;’\, (s) o s5@ 2
tributions is consistent with samples from sub-Gaussian ran-

dom fields or processes subordinated to tfBm or truncatedvhere the power or scaling exponeity), is indepen-
fractional Gaussian noise (tfGn), stemming from lack of er-dent of s. When the scaling exponent is linearly propor-
godicity which causes sample moments to scale differentlytional to ¢, & (¢) = Hq, Y (x) is interpreted to be a self-
than do their ensemble counterparts. Here we (i) demonstrat@ffine (additive, monofractal) random field (or process) with

that the above two data sets are consistent with sub-GaussidmHrst exponentt{. Wheng(g) varies nonlinearly withy,
Y (x) has traditionally been taken to represent multiplicative,

N(s)

PISAGIK @)
n=1

Published by Copernicus Publications on behalf of the European Geosciences Union.



3250 A. Guadagnini et al.: Heavy-tailed random air-permeability fields in fractured and sedimentary rocks

multifractal random fields or processes (Neuman, 2010a; Siena et al. (2012) have pointed out that since multifrac-
Guadagnini et al., 2012). Nonlinear power-law scaling is alsotals and fractional Laplace motions do not capture observed
exhibited by fractional Laplace motions (Meerschaert et al.,breakdowns in power-law scaling at small and large lags,
2004; Kozubowski et al., 2006) recently applied to sedimentthey cannot explain how and why ESS does. Instead, they
transport data by Ganti et al. (2009). have proven theoretically that ESS of data having a nor-
Power-law scaling is typically assessed by employingmal frequency distribution is theoretically consistent with
the method of moments to analyze samples of measureddBm. This allowed them to identify the functional form and
variables. This entails inferring sample structure functionsestimate all parameters of the particular tfBm correspond-
(Eq. 1) for a setq1, g2, ..., gn Of ¢ values at various lags. ing to log air-permeability data collected by Tidwell and
The structure functiob‘j{," is related tos by linear regression  Wilson (1999) on the faces of a laboratory-scale block of
on a log-log scale, the powéi(g;) (i =1, 2, ...,n) being  Topopah Spring tuff. In this paper we employ ESS to analyze
set equal to the slope of the regression line. Linear or nearthe scaling behaviors of two log permeability data sets show-
linear dependence of Ioﬁ," on logs is typically limited to  ing heavy-tailed frequency distributions in three and two spa-
intermediate ranges of separation scales, s < sy, outside  tial dimensions, respectively. One set consists of 1-m scale
of which power-law scaling breaks down. The lower and up-pneumatic packer test data from six vertical and inclined
per limits,s; ands; respectively, which demarcate the range boreholes spanning a decameters-scale block of unsaturated
of power-law scaling are defined theoretically or, in most fractured tuffs near Superior, Arizona (Guzman et al., 1996).
cases, empirically (Siena et al., 2012; Stumpf and PorterAnother set contains pneumatic minipermeameter data mea-
2012). Benzi et al. (1993a, b) provided empirical evidencesured at a spacing of 15cm along three horizontal transects
that a procedure they had termed extended self-similarityon a 21 m long and 6 m high outcrop of the Upper Cretaceous
(ESS) allows widening significantly the range of lags over Straight Cliffs Formation, including lower-shoreface biotur-
which velocities in fully developed turbulence (wheteis bated and cross-bedded sandstone near Escalante, Utah (Cas-
taken to be governed by the Kolmogorov’s dissipation scaleltle et al., 2004). Our analysis (a) demonstrates that the two
scale in a manner consistent with ER).(Writing Eq. @) as  data sets are statistically and theoretically consistent with
S"(s) = C(n) s5™ andS™ (s) = C(m) s*™, solving one of  sub-Gaussian random fields subordinated to tfBm or trun-
these equations farand substituting into the other yields the cated fractional Gaussian noise (tfGn) and (b) provides max-

ESS expression imum likelihood estimates of parameters characterizing the
S (5) o S™ (5)B0m) 3) ;:l?r:rciizp:]c;r.]dmg evy stable subordinators and tfBm or tfGn

whereB(n,m) = &£(n)/&(m) is a ratio of scaling powers. Al-
though the literature does not explain how and why Bj. ( ]
should apply to lags < s, ands > s where power-lawscal- 2 Theoretical background

ing (Eq. 2) breaks down, it nevertheless includes numerous

examples demonstrating this to be the case. In addition to tthe start by recounting the theory that underlies our analysis

classic case of turbulent velocities (Chakraborty et al., 2010),Of the data.

these examples include geographical (e.g. Earth and Mar
topographic profiles), hydraulic (e.g. river morphology and
sediment dynamics), atmospheric, astrophysical, (e.g. solar

quiescent prominence, low-energy cosmic rays, cosmic mMire|lowing Guadagnini et al. (2012), we limit (for simplicity)
crowave background radiation, turbulent boundary layers ofoyy theoretical expdsto a single space or time coordinate
the Earth’s magnetosphere), biological (e.g. human hearty considering random functiori(x) characterized by con-

beat temporal dynamics), financial time series and ecologicatant mean and sub-Gaussian fluctuations (Samorodnitsky
variables (see Guadagnini and Neuman (2011), Leonardis &jng Taqqu, 1994; Adler et al., 2010)

al. (2012) and references therein). In virtually all these exam-

ples, ESS yields improved estimatess@f/) and shows itto v’ (x; A, Ay) = WY2G (x: A1, Aw) (4)
vary in a nonlinear fashion witf, a finding commonly taken

to imply that the variables are multifractal. Yet computational about the mean. Her®&1/? is an«/2-stable random vari-
analyses by Guadagnini and Neuman (2011) have shown thatble, totally skewed to the right of zero with width parameter
this need not be the case: they found signals constructed fromg,, = (COS%)Z/D‘, unit skewnesg = 1 and zero shifty =
sub-Gaussian processes subordinated to truncated (additive; for a precise definition of these parameters see ) be-
self-affine, monofractal) fractional Brownian motion (tfBm) |ow. The variableW is independent o6’ (x; A1, Ay), Which

to display ESS scaling as well as typical symptoms of mul-in turn is a zero-mean Gaussian random field (or process)
tifractality, such as nonlinear scaling and intermittency, evendescribed by truncated power variogram (TPV)

though the signals differ from multifractals in a fundamental

way (Neuman, 2010a, b, 2011; Guadagnini et al., 2012).  y2(s; A1, ) = ¥ (55 Au) — 2 (5: M) (5)

3.1 Sub-Gaussian processes subordinated to truncated
fractional Brownian motion (tfBm)
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where form =1, u, where f(s) is a (possibly nonlinear) function of
) ) (Kozubowski and Molz, 2011; Siena et al., 2012).
Vi (s3hm) = 0= () pi (8 /Am) Following Neuman et al. (2012), we first consider subor-

dinatorsw¥/2 > 0 that have finite momenta4/2) of all or-

2 2H
Am) = ALY /2H ) .
o (Am) m/ dersg, such as the log-normal form mentioned earlier. Then,

01(5/Am) = [1 —exp(—s/Am) + (s/k,n)ZH in a manner analogous to Siena et al. (2012), the cegitnal
order moments of absolute values of zero-mean stationary in-
ra- 2H,s/)»m)] 0<H <05 crementsAY’ (x, s; A, Au) = WY2AG' (x, 51 41, Ay) can be

expressed as
p2 (s /hm) = 1= exp( = (s/1n)? /4)

/\/\

|AY’ (55 M, a0)|7)
q/zmw (5t 1 2w")

wo) | 2r2 i m | - @

+(n (s/xm)2/4)Hr (1— H 7 (s/km)2/4):| 0<H<1

A being a constanf (-, -) the incomplete gamma function

r——
N /\
9N

(other functional forms op being theoretically possible, and if g is odd

Au @and A lower and upper cutoff scales, respectively). For if ¢ is even

Au < 00, theincrementaY’ (x, s; A1, Ay) are stationary with

zero-mean symmetricdvy stable distribution characterized q=123..

by 1<a <2 and scale or width function (semi-structure pere 11 represents double factorial, ig@! = ¢(g-2) (g-4). .

function whenx = 2; Samorodnitsky and Taqqu, 1994) if ¢ is even andg!! = ¢(g-2) (g-4)...3 if ¢ is odd, and
af2 yl_z (s; A1, Ay) is the (truncated power) variogram (TPV) of

o% (s M, hy) = [J/iz (s; )\I:)\u)] : (6) G’ (x; M, iu). The ratio between structure functions of or-

- der +1) andg is then
In the Ilimits A —0 and Ay— oo, the TPV

yl 2(s:M,Ay) converges to a power variogram (PV) i1 ! \/2— .
y2(s)=Ais?  where Ai=AT(1—2H)/2H and ST _ () ﬁw;l)” vi“(ss M Aw) - if g s odd
Az = A (/4?21 (1—-2H/2) /2H. Correspond- 57 %ﬁ\/)ﬁz (s; MyAg)  if g iseven
ingly, o“(s;A,Ay) converges to a power law 9)
y¥(s)=A;s*"  where A;=AT(1-aH)/eH and

Ay =A@ /82T (1—aH/2)JaH. The resultant g=123..

non-stationary field G’ (x;0,00) thus constitutes frac- where g(g) depends on the choice of subordina-
tional Brownian motion (fBm); its stationary increments (,. put not on s. In the log-normal case where
AG' (x,s;0,00) forming fractional Gaussian noise (fGn); WY2=¢V with (V)=0 and (V2)= 2—a)? one
the non-stationary fieldY’(x;0,00) constructed from . 2 2 2

increments AY’(s; 0, 00) = WY2AG (x,5:0,00) consti- obt(aTls)/z <Wq//)2=eXp[q @-a)*/2] zand g =
tutes fractional Evy motion (fLm; fBm whena = 2), the (wath/iz) /(wa/2) = exp[(1429) 2—«)?/2]. 1t then
increments forming sub-Gaussian fractional noise (fLn follows from Egs. §) and @) that
or fsn for fractional stable noise, e.g. Samorodnitsky and

1+
Taqqu, 1994; Samorodnitsky, 2006). g+l \/ [\/ 2= 1).,] s 1)'. 4] if ¢ is odd
. ) s , ST =g (@) (10)
It is possible to select a subordinat'/? > 0 having a 2 T g0 eyl o
. S p = 1),,} Gopn [59]7 e if ¢ is even
heavy-tailed distribution other thanéky such as, for ex- - -
ample, a log-normaW/2 =¢" with (V) =0 and(V?) = g=1,23..

(2—a)?. Samples generated through subordination of trun-
cated monofractal fBm in the above manner exhibit apparen
multifractal scaling (Guadagnini et al., 2012).

howing that logg?*1 is linear in logS?, in accord with the
SS expression Eq3), regardless of the choice of subordi-
nator or the model employed f()AG’ (s; M,Au)z). On log-
2.2 Extended power-law scaling of sub-Gaussian log plot, this line is characterized by a slope which tends to
processes subordinated to tfBm unity asq — oo, being equal to 2 a = 1. Equation {0) is a
consequence of the equivalence between &ar{d ESS ex-
pression Eq.q) in which now f (s) = [\/Zyz(s; M,Au)]. It

shows that extended power-law scaling, or ESS, at all lags is

It is important to note that whereas power-law scaling ex-
pressed by Eq2) implies ESS scaling in the form of EB)(
the reverse is not necessarily true because Bqfoflows

from the more general relationship an intrinsic property of sub-Gaussian processes subordinated
to tfBm (or tfGn) with subordinators, such as the log normal,
§9(s) o f(s) £@ (7)  which have finite moments of all orders.
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We noted earlier that, in the limit§ — 0 andiAy, — oo,
the TPVy2 (s; M, Ay) converges to a PY2(s) = A;s2H. It
follows that Eq. 8) can be rewritten in terms of a power-law

54 =<Wq/2>(q_1)!![m]qqu[ \/g if ¢ is odd

1 if ¢ is even
11)
q=123..

where it is clear that a log-log plot ¢f versuss is linear at
all lags and associated with a constant slqpe

Following Neuman et al. (2012), we now consider sub-
ordinatorsW1/2 > 0 that have divergent ensemble moments
(W‘f/z) of all ordersq > 2, as does the previously discussed
Lévy subordinator with stability index. In practical appli-
cations,(|AY’ (s; A, Ap)|?) is typically estimated through a
sample structure function

M N(s)
S\AYlNM(s A A N()MZZ
m=1n=
|A)’m(xn,sa)\la U)|q q=1’2’3 (12)

where Ay,, (x,, s; A, Ay) denotes a collection oM < oo
sets of N (s) < oo sampled increments each; for simplic-
ity, we ignore possible variations d@¥ (s) andx, with m.
WIItiNG Ay G, 834, Aw) = Wl 2Agm (4, 53 A, Au) Where
Agm (xn, 55 M, Ay) represents samples 8fG’ (s; A, Ay) al-
lows rewriting Eq. 12) as

)2 1 N(s)
S\AYlNM(S M, U)__Z N(S)Z
wﬂ q=123 (13)

Since ordely > 20 moments ofwy/? diverge while all mo-
ments ofAg,, (xn,s; Al, Ay) CONverge, one can approxmate
Eq. (13) for a sufficiently large sample sizé (s) by

1 M
(55 A1, Au) = (M > wz/z) ([AG" (53 21, 20)[7)

m=1

q
( Z w/ 2) [\/2y,-2 (s M, Au)] (¢ =D
J2 ifqisodd

|Agm (Xn, 83 A1,

S‘]

|AY|,N.M

1 if ¢ is even
qg=123.. s
which, for finite M, is always finite. One can then write
M
(q+1)/2
S\qA+Y| N (83 A5 Au) mi_:lwm
T (15)
S{ay v 85 A5 A %4: 2
m=1
7L/ v2 (53 A if g is odd
‘/—((1 nn yz u q q=1’ 2’3

gl
f(q @-D

v V,‘z (55 Al Aw)
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or, in analogy to Eq.X0),

Z w(q+1)/2
1 m=1
SFIA_‘_}/‘,N‘M (85 A1, Ay) I
> wil®
m=1
1 1
7 __q q , *a
\F[ 2 1>”] @Dn [S\AYLN,M(S’A"W]
if g is odd
1 l+,
2 1 g g q
\/; I:(qfl)!!] @on I:SlAY\NM(S A, Au)]
if g is even
q=1223.. (16)

This indicates thaﬁl"gyl"N’M (s; A1, Ay) is approximately lin-
ear in Sl‘]AY| ~ m (8501, 2u) on log-log scale, in accord with
ESS expression (E®), regardless of the functional form
AG' (s;: M, y)?) takes. The slope of this line is character-

ized by the same asymptotic behavior as that observed be-
fore. The approximate equivalence between Ed) and the

ESS expression (EQ), wheref (s) = |:,/2)/i2 (s; k|,)\u):|, is

the basis for Eq.16) and its asymptotic tendency. It follows
that extended power-law scaling, or ESS, at all lags is an in-
trinsic property of samples from sub-Gaussian processes sub-
ordinated to tfBm (or tfGn) with subordinators, such &y,
which have divergent ensemble moments of orgers2cx.

Note that in the limitsy) — 0 andiy — oo, Eq. (L4) be-
comes a power-law

( 2 wq/z) - v1[v2a]" s
|

if g is odd
rendering logs? linear in logs with constant slopgH.

m

g=123.. (17)

1 if ¢ is even

3 Analysis of log air permeabilities from borehole tests
in unsaturated fractured tuff near Superior, Arizona

We analyze (natural) log air-permeability €logk, k& being
permeability) data from unsaturated fractured tuff at a former
University of Arizona research site near Superior, Arizona.
Our analysis focuses on lagvalues obtained by Guzman et
al. (1996) from steady state interpretations of 184 pneumatic
injection tests in 1-m long intervals along 6 boreholes at the
site (Fig. 1). Five of the boreholes (V2, W2a, X2, Y2, Z2) are
30 m long and one (Y3) has a length of 45 m; five (W2a, X2,
Y2, Y3, Z2) are inclined at 45and one (V2) is vertical. The
boreholes cover a horizontal area of 25:831.43 n?.

www.hydrol-earth-syst-sci.net/16/3249/2012/
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1.0 m measurment scale (a)
data from all boreholes

Frequency distribution

0.01
S04 -3 20 -] 0 1 2 3 4 5
Y'=logk —(logk)

S 34
<
A
G
c 1
=2
=
S
=1
Fig. 1. Spatial locations along each borehole of Arizona data. Mod- o
ified after Guzman et al. (1996). 37
" — 95% confidence interval
-5 T T T T
5 -3 -1 1 3 5

Riva et al. (2012) analyzed the probability distributions of
1-m scale (natural) log measurements and their increments Quantile of fit distribution
vy sable ditibtion, cotmated the parameters o ths distd, 2 (&) Fieauency dsirbuton (symbols) and ML esi-

o7 . ’ . mated probability density function (solid curve) of Arizona data;
tr|but|pn by threg dl_ffer(_ent me_thods gnd examined the .degre?b) Q-0 plot of empirical data versus theoretical estimate of
to which each distribution estimate fits the data. Treating theispje distribution.
data as a sample from a sub-Gaussian random field subordi-
nated to ttBm via a Evy stable subordinator and setting 1
in Eg. (), they obtained the following ML estimates of the B reliably whena =~ 2 because, at = 2, the distribution is

parameters characterizing the procels: 0.33,05=4.05,  insensitive tos.
A1 =0.48 m andv, =9.98 m, thus yieldingd =0.67 by virtue Figure 2a compares the frequency distribution of the data
of Eq. @) in Riva et al. (2012). with their ML estimated probability density function and

Here we analyze structure functions and scaling of theFig. 2b depicts a correspondir@-Q plot. The fits are am-
same data using the ESS approach. We focus here on parariguous enough to suggest that their near-Gaussian appear-
eter estimates obtained by Riva et al. (2012) using a maxi@nce could in fact indicate aélvy stable distribution witl
mum likelihood (ML) approach applied to a log characteris- just slightly smaller than 2. That this is likely the case follows

tic function from the tendency o#&, fitted to the distributions of log
. increments, to increase from 1.468).21 at 1 m lag through
In(e”"X> = ipp —o|e|* [14iB sign(p) w (¢, )] 1.84+0.16 atlag 2m and 1.240.12 at lag 3m to 2 at lags

equal to or exceeding 4 m. Increments corresponding to lags
(18) smaller than 4 m are thus clearly heavy tailed (and hence
non-Gaussian) as evidenced further by Fig. 3, which com-
pares frequency distributions and ML estimated probability
density functions o’ = logk — (logk) data and log incre-
ments at lags 1 m, 2m and 5m. Had the originaldadpta
been genuinely Gaussian, the same would have to be true for
their increments.

—tan®¢ ifa#1
w(p,a) = .

(¢, ) { 2|yl if o= 1
of an «-stable variable X; ¢ is a real-valued parameter;
sign(p)=1, 0,—1if ¢ >0, =0, < 0, respectivelyp € (0,

2] is stability or Levy index;8€[—1, 1] is skewness parame-
ter;o > 0 is scale or width parameter; apds shift or loca-
tion parameter. The authors fouid = logk — (logk) to fit
Eq. (18) with parameter estimatés= 2.0+0.00,6 = 1.42+
0.15 andg = 0.0040.29. Note that it is difficult to estimate

www.hydrol-earth-syst-sci.net/16/3249/2012/ Hydrol. Earth Syst. Sci., 16, 324226Q 2012
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Fig. 3. Frequency distributions (symbols) and ML estimated proba-

bility density functions (curves) of Arizons’ = logk —(logk) data  Fig. 5. Number of Arizona data pairs associated with each lag.
(red) and log increments at lags=1m (black), 2m (green), and

5m (blue).
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¢™ order sample structure functions

-%--

x X - %=

14 T — 7 T ——
gq-1
1 10 100 SN

Lag [m] Fig. 6. Log-log variations ofS?\, of Arizona data WithS;{/_l for 2

Fig. 4. Sample structure functions of ordeys- 1, 2, 3, 4, 5 of Ari- <¢ < 5. Solid lines represent indicated regression fits.

zona data versus lag. Light vertical broken lines demarcate mid-

range of lags within which heavy inclined broken line, with slope

taken to represergt(1), was fitted toS,{,. Standard moment analysis would entail fitting straight lines
to these functions at intermediate lags by regression and con-
sidering their slopes to represent power-law expongiis

in Eq. @). However, deciding what constitutes an appropri-

Figure 4 depicts omnidirectional structure functioﬂ%,, X ) > X
g-ate range of intermediate lags for such analysis would, in the

of ordersq =1, 2, 3, 4, 5 computed for the same data accor i ) s
ing to Eqg. L2). To compute them we ascribe each measure-£ase Of F'Q- 4,_be frau_ghF with ambl_gmt_y. g

ment to the midpoint of the corresponding 1-m scale bore- V\ie avoid this ambiguity by plotting in Fig. 8y versus

hole test interval. We then associate (as is common in geoSy ~ for 2<g <5 on log-log scale for the entire range of
statistical practice) data pairs separated by distances of 0.5available lags. Also shown in Fig. 6 are linear regression fits
1.5 m with a lag of 1 m, those separated by distances of 1.5t0 each of these relationships, the corresponding regression
2.5 m with a lag of 2m, and so on up to the largest separatiorequa'[ions and coefficients of determinatid?, As the lat-
distances of 29.5-30.5m, which we associate with a lag ofer exceed 0.99 in all cases, we conclude with a high degree
30 m. Figure 5 shows that the number of data pairs associatedf confidence thaslq\, is a powerB(g,q — 1) of Sf{,_l for 2

in this manner with each lag is largest at intermediate lags< ¢ < 5 at all lags, in accord with ESS expression (Bj.
causing log increments to be comparatively undersampled This power, given by the slopes of the regression lines in
at small and large lags. Such undersampling may explain irFig. 6, decreases from 1.66¢t 2 through 1.29 ay =3 and

part why the structure functions in Fig. 4 scale differently 1.18 atq =4 to 1.13 tog =5, appearing to tend asymptoti-
with separation scale at small, intermediate and large lagscally toward 1 with increasing. Considering?j{, to vary as

Hydrol. Earth Syst. Sci., 16, 3249326Q 2012 www.hydrol-earth-syst-sci.net/16/3249/2012/
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3 21 m across and 6 m high, includes a lower bioturbated facies
and an upper cross-bedded facies (Fig. 8). A total of 515 per-
meability measurements were taken in triplicate at a sample
spacing of 15 cm along three horizontal transects (380 mea-
surements) and four vertical profiles (135 measurements).
q) .- Castle et al. (2004) found that whereas sample statistics of
n _-- (natural) log permeability, log, vary depending on which fa-
I [ -7 cies are considered, the frequency distributions of horizontal
e logk increments in the two facies are similar. Lu et al. (2002)
- used a fBm model to generate lbgncrements within a mix
0 < : ‘ of distinct facies. They showed that, when data from different

0 1 o) 3 4 5 facies are analyzed jointly, the simulated kogcrements ex-
hibit an apparent non-Gaussian distribution. They concluded
that observed évy-like behavior of sample probability dis-
Fig. 7. £(¢q) as a function of; (symbols) obtained via ESS based tributions of permeability data can in some cases be an arti-
oné (1) = 0.56 computed for Arizona data by method of moments. fact of mixing data from disparate facies. Accordingly, Moltz
Solid line has slopg (1) =0.56 and dashed line slopd =0.33 et al. (2007) focused their analysis on increments along hor-
gstimated fqr these data based on our theory, using maximum likejzontal transects D and H (Fig. 8) within the lower biotur-
lihood, by Riva et al. (2012). bated facies. They found the horizontal loincrements to
be well represented by a fractional Laplace noise model. We
note however that this same model would not have allowed
them to characterize statistically the lbgata themselves.

In this paper we analyze the frequency distributions
and scaling of log values and their horizontal increments
. . . (a) along transects D and H within the lower bioturbated fa-
& (¢) toward a straight line. This commonly observed ten- cies and (b) jointly along transects D, H and X (Fig. 8) in the

dency, which the multifractal literature attributes to diver- : N ;
) . . two facies. We also attempted to perform a similar analysis
gence of higher-order moments, is according to our theory o ;
f logk values and their increments along the four vertical

(Neuman, 2010a; Guadagnini and Neuman, 2011) unrelate . )
: S0 ransects at the site but found the corresponding samples too
to such divergence, arising instead from the presence of an . : .
small to yield meaningful statistics.

upper cutoff scalei,.

Figure 4 includes two vertical broken lines demarcating a Transect H contains 133 data points, transect D 136 points

. s . 1 . and transect X 111 points. In a manner consistent with
mid-range of lags within which lo§, appears to be quite _. o
. ) . I~ . : Riva et al. (2012), we analyze the frequency distribution
unambiguously linear in log Fitting a straight line to the

. . . . of Y’ =logk — {logk) and use the computer code STABLE
corresponding data by regression yiefdd) = 0.56 with a ) . . i
high coefficient of determinatiork? = 0.97. This, together (Nolan, 1997, 2001) to obtain reliable ML estimates of sta

; T B . ble densities. Figure 9a compares the frequency distribution
with vaIue; Of’?(q’ q—D=:§@)/qg—1) correqundlng o of Y’ data from transects D and H on semi-logarithmic scale
2 < g <5inFig. 6, allows us to computgq) for this entire

range ofz values, as depicted in Fig. 7. Figure 7 also inCIudeswith a probability density function (pdf) fitted to it via ML.
for reference one straight line having slapél) = 0.56 and Treating the data as if they weresly stable yields ML

) . . parameter estimates = 1.99+ 0.05,6 =0.28+0.02,8=0
another having slopél B} 0'3.3’ estlmated_for _the same data and 1 =0.00£0.05. As& ~ 2, the distribution appears to
by Riva et al. (2012). It is evident th&tg) in Fig. 7 is non- : : : .

: o be Gaussian. Yet Kolmogorov-Smirnov and Shapiro- Wilk
linear concave i in the range % ¢ < 5. Though such non-

linear scaling is typical of multifractals or fractional Laplace tests reject the Gaussianity hypothesis at a 0.1% signifi-
gistyp b cance level. The frequency distribution Bf data from all

motions, we have demonstrated theoretically earlier that it isthree horizontal transects D, H and X in Fig. 9b is positively
in fact consistent with a random field subordinated to tfBm skewed with ML parameter estimatés 1_2():':0.12,& -1,

via a heavy-tailed subordinator. 6 =0.394+0.04 andi =0.726+ 0.07. We conclude that the
two facies contain distinctly different log permeability popu-

4 Analysis of nitrogen minipermeameter data from lationsY’.

sandstone near Escalante, Utah Figure 10 compares frequency distributions and ML esti-

mated probability density functions of légncrements along

Castle et al. (2004) describe nitrogen minipermeameter mearansects D and H, and jointly along transects D, H and X, at

surements conducted on a flat, nearly vertical outcrop ofhorizontal lags of 0.15m, 0.45m, 1.5m and 4.5 m. Whereas

Straight Cliffs Formation sandstones about 10 km northwestt small lags the two distributions are similar (Fig. 10a, b), at

of Escalante, Utah. The outcrop, measuring approximateljarger lags the joint set from both facies exhibits heavier tails.

a poweré (g) of s according to Eq.2) at intermediate lags,
as suggested by Fig. 4, allows expressing the pow@ﬁ,dh

Eq. @) asB(q,q—1) = &(q)/&(g —1). Asymptotic tendency
of B(¢,q — 1) toward 1 then implies asymptotic tendency of
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Cross-bedded sandstone Transect X
——————————————— S B T
Bioturbated sandstone Transect H
Transect D
I m
V-1 V-4 1m
V-2
V-3

Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near Escalante, Utah. Modified after Castle et
al. (2004).
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sandstone). Lag [m]
Fig. 11.Variations of ML Lévy index estimate® and scale parame-

1000 ® ter estimateg of Utah log permeability increments with horizontal

lag for transects D and H (bioturbated sandstone) and transects D,

H and X (bioturbated sandstone and cross-bedded sandstone).

3
=3
3

Transects Dand H  Transects D, Hand X ()
<& Data x  Data
— MLfit

S

S
)

Frequency distribution
Frequency distribution

Lag=0.15m

T s we os o s M e e by Castle et al. (2004) has shown them to be Gaussian only
Increments of log k at a 51 % confidence level.
e @] " @ As shown in Fig. 11, ML estimateg of the Lévy

index of log permeability increments along transects D
and H vary from 1.8%0.13 at horizontal lag 0.15m
through 1.86:0.14 at lag 0.3m, 1.66 0.18 at lag 0.45m,
1.86+0.14 atlag 0.6 m, 1.82 0.16 atlag 0.75m, 1.99 at lag
T _ 20 L o o om 1o amo a0 0.9mto 2.00 at larger lags. Hence, the distributions of the in-
Increments of log k Increments of log k crements have heavier tails at small rather than at larger lags.
ML estimatesx obtained from all three horizontal transects
oscillate around 1.75 without any identifiable trend. ML esti-

sects D and H (bioturbated sandstone) and transects D, H and atess of the scale parameter in Fig. 11 increase monoton-

(bioturbated sandstone and cross-bedded sandstone) at horizonfgﬁ"y with lag toward a constant asymptote of 0.32 for data
lags(a) 0.15m,(b) 0.45m,(c) 1.5m, andd) 4.5m. along transects D and H and 0.44 for data along transects D,

H and X. Both phenomena are consistent with the observa-
tion of Lu et al. (2002) that mixing data from the two facies
may cause the tails of incremental frequency distributions to
Kolmogorov-Smirnov and Shapiro-Wilk tests generally re- increase.
ject the hypothesis that the increments, at any lag, are Gaus- Results based on data sampled along transects D and H
sian at a 0.1 % significance level. #¢ test applied to hori- in the bioturbated sandstone facies are consistent with a
zontal increments along transects D and H at a lag of 0.15 nsub-Gaussian random field subordinated to tfBm vig&aylL

)
S

0.10

Frequency distribution
Frequency distribution

e
o

Fig. 10.Frequency distributions (symbols) and ML estimated prob-
ability density functions (curves) of Utah légncrements for tran-
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Fig. 12.Experimental scale parameter (diamonds) and their theoret- (b)
ical equivalents based on ML fit (solid curve) of TP§) pased on @«
data from transects D and H (bioturbated sandstone). Dashed curve % §
represent 95 % confidence limits of correspondipgstimates. =) g N
;2 8
"Qg) % 0.1 | 8
stable subordinator. The observed increasé imith lag is Eo S 2 :
consistent with a version of such a field considered by Rivaet = £ ] -
al. (2012). Following their approach, Ed) @llows us to es- O g=5
timate the associated Hurst coefficient from the log-log slope A g=6
of 6 (s) in Fig. 11 at lags small enough to avoid the asymp- 0.01 ‘
tote. This slope yields an estimake=0.13. From Eq.§) it 0.1 10

1
follows that, asymptoticallyg}é =262 where G’ (s; A, Au) Lag [m]

is our ttBm. This, coupled with our ML estimates &ffor Fig. 13. Sample structure functions of order 1, 2, 3, 4, 5, 6 of
the logk — (logk) data, yields53 = 2x (0.28)> =0.16. Hav-  Utah data from transects D and H (bioturbated sandstone). Light
ing thus estimateds and 0(2;, we are now in a position to vertical broken lines demarcate mid-range of lags within which
estimate the remaining parameters of the T;PGZ\,(s; M, M) heavy inclined broken line, with slope taken to repregeid), was

of G’ (s; 1, u) defined in Eq. §). Settingi = 1 in Eq. §),  fitted toS},.

we obtain the following ML estimates of the cutoff scales,

A ~0.0m andA, =16.97 m (with 95% confidence limits

3.45m and 30.47 m; setting=2 vields a less satisfactory iNg the above procedure, we obtain estimafes0.21,6; ~

fit, suggesting that = 1 is a better choice), thus yielding 0-34, 4/ ~0.0m and, =29.04m (with 95% confidence
A=2.05x 102 by virtue of Eq. §) in Riva etal. (2012). Our  limits 16.23m and 41.85m), thus yielding=4.32x 10~
estimate of.; is consistent with the small support scale of the Py virtue of Eq. @) in Riva et al. (2012). Though this esti-
minipermeameter. Our estimategf is slightly smaller than ~ Mate of H exceeds that obtained previously on the basis of
the lengths of the D and H transects (on the order of 20 m),data from transects D and H alone, both are small and indica-
as expected from theory (Guadagnini et al., 2012). Figure 14ive of strong anti-persistence typical of log permeabilities in
depicts experimental scale parameters and their theoreticdfactured and porous rocks worldwide (Neuman, 1990).

equivalents based on the above ML estimateé@f H, i, Figure 13 depicts sample structure functions of ogded,
and 1. Dashed curves in the figure represent 95% confi-2: 3, 4, 5, 6 for the data collected along transects D and H.
dence ||m|ts Of Correspondin’gl estimates' Vel’tlca| I|neS demarcate the m|d'range Of IagS W|th|n Wh|Ch

Results based on data sampled jointly along transects D, & regression line, the slope of which was taken to repre-
and X in the bioturbated and cross-bedded sandstone faciggnté (1), had been fitted tsy,. The latter was found to be
are not fully consistent with our theory, which considers both&(1) =0.12 with coefficient of determinatioR? = 0.93. This
Y’ and its increments to have symmetric distributions. As thevalue is only slightly smaller than that obtained earlier from
distributions of the corresponding increments are in fact symthe log-log slope o6 (s) in Fig. 11. Figure 14 shows log-
metric, it is possible to treat these increments as random fieldog plots ofSIq\, versusSj{,_l for 2 < ¢ < 6 and correspond-
subordinated to truncated fractional Gaussian noise (tfGnjng linear regression fits. The fits are characterized by co-
forming truncated sub-Gaussian fractionéMy noise (tfLn)  efficients of determinationR?, two of which exceed 0.98
as discussed by Riva et al. (2012). Such processes are charaand three 0.99. The slope of the fitted lines decreases from
terized by levy indicesx that are independent of lag. Repeat- 1.86 atg =2 through 1.39 ay =3, 1.25 aly =4, and 1.18 at
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1 v Fig. 15.£(¢) as a function of; (symbols) obtained via ESS based
(b) on & (1) =0.12 computed for Utah data from transects D and H
(bioturbated sandstone) by method of moments. Solid line has slope
£ (1) =0.12 and broken line has slogé=0.13.
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Fig. 14. Log-log variations ofSI’{, of Utah data from transects D 0
and H (bioturbated sandstone) W'ﬂﬁ,_l for 2 < ¢ < 6. Solid lines 0 o) 4 6
represent indicated regression fits. Linear regression equations ani q

related regression coefficientg?) are also reported. ) ) ) )
Fig. 16.£(¢) as a function of; (symbols) obtained via ESS based

on & (1) = 0.26 computed for Utah data from transects D, H, and

X (bioturbated sandstone and cross-bedded sandstone) by method
of moments. Solid line has sloggl) = 0.26 and broken line has
slopeH =0.21.

g =510 1.15 atg =6, appearing to tend asymptotically to-
ward 1 as expected. Adopting the above valug(@ =0.12
allows computing: (¢) for 2 < ¢ < 6 using the ESS relation-
shipB(g,q —1) =&(q)/E(q — 1). The results are plotted in
Fig. 15 together with straight lines having slogg4) = 0.12
and H =0.13. It is clear that (¢) is nonlinear concave ig
within the range 2< ¢ < 6. Though such nonlinear scaling our analyses lead to the following major conclusions:

is typical of multifractals or fractional Laplace motions, we

have demonstrated theoretically earlier that it is in fact con- 1. Extended power-law scaling, commonly known as ex-

5 Conclusions

sistent with a random field subordinated to tfBm via a heavy- tended self similarity or ESS, is an intrinsic property

tailed subordinator. of sub-Gaussian random fields or processes subordi-
Qualitatively similar results (details not given) are ob- nated to truncated fractional Brownian motion (tfBm) or

tained from structure functions of ordgrcomputed jointly truncated fractional Gaussian noise (tfGn). Such fields

for horizontal increments along transects D, H and X in and processes are theoretically consistent with standard

the two facies. Following the above procedure we obtain power-law scaling at intermediate lags and with ESS at

£(1) =0.26, consistent with an analysis@fs) which yields all lags, including small and large lags at which power-

H =0.21. Applying ESS yields a nonlinear concave func- law scaling breaks down.

tional form for&(g) in Fig. 16, which also depicts for refer- ] ) )

ence straight lines having slopggl) = 0.26 andH =0.21. 2. Multifractals and fractional Laplace motions are the-

oretically consistent with standard power-law scaling
at all lags. As such, they neither reproduce observed
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breakdown in power-law scaling at small and large lagsCastle, J. W., Molz, F J., Lu, S., and Dinwiddie, C. L.: Sedimentol-

nor explain how ESS extends power-law scaling to such ogy and fractal-based analysis of permeability data, John Henry

lags. Member, Straight Cliffs Formation (Upper Cretaceous), Utah,
USA, J. Sed. Res., 74, 270-284, 2004.

3. 1-m scale pneumatic packer test data from unsatuLChakraborty, S., Frisch, U., and Ray, S. S.: Extended self-similarity
rated fractured tuffs near Superior, Arizona, and nitro-  Works for the Burgers equation and why, J. Fluid Mech., 649,
gen minipermeameter data from bioturbated and cross- 275-285d0i:10.1017/S002211201000052910. _
bedded sandstones near Escalante, Utah and their iff221> V- Singh, A., Passalacqua, P., and Foufoula-Georgiu,

. s E.: Subordinated Brownian motion model for sedi-
crements show heavy-tailed frequency distributions that .,
. . ; . ; ment transport, Phys. Rev. E, 80, 011111, doi:1539-

can b_e f|_tteo_l with a high level of confidence téuy sta- 5663755/2009/80)/0111118), 2009.
ble distributions. Guadagnini, A. and Neuman S. P.: Extended Self-Affinity of Sig-

. nals Exhibiting Apparent Multifractality, Geophys. Res. Lett.,

4. Orderg sample structure fgnctlons of each data set scale 3g | 13403d0i:10.1029/2011GL047722011.
as a powek (¢) of separation scale or lag, over lim-  Guadagnini, A., Neuman, S. P., and Riva, M.: Numerical Investiga-
ited ranges of. ESS extends this range to all lags and  tion of Apparent Multifractality of Samples from Processes Sub-
yields a nonlinear concave functional relationship be- ordinated to Truncated fBm, Hydrol. Process., 26, 2894-2908,
tweené (¢) andg. doi:10.1002/hyp.8358012.

Guzman, A. G., Geddis, A. M., Henrich, M. J., Lohrstorfer, C. F.,

5. The data sets we analyze are consistent with sub- and Neuman, S. P.. Summary of Air Permeability Data From
Gaussian random fields subordinated to tfBm or to tfGn  Single-Hole Injection Tests in Unsaturated Fractured Tuffs at the
via Lévy stable subordinators. Apache Leap Research Site: Results of Steady-State Test Inter-

pretation. NUREG/CR-6360, US Nuclear Regulatory Commis-

6. This consistency allows estimating all ttBBm or tfGn  sion, Washington, D.C., 1996.
parameters (most notably the Hurst exponent and upKozubowski, T. J. and Molz, F. J.: Interactive discussion of the dis-

per/lower cutoff scales) solely on the basis of the corre- cussion paper “Extended power-law scaling of air permeabili-
sponding truncated power variograms ties measured on a block of tu?” by Siena, M., Guadagnini, A.,

Riva, M., and Neuman, S. P., Hydrol. Earth Syst. Sci. Discuss.,

7. The consistency further implies that nonlinear scaling KOilJZ)?)SVSSI_(Zgi?ng:1%5616-?:(2222??-?\78&5-2g:rlfi)l;.o dgorski, K.

of .bOth Qata sets, man!fested in a nonlinear concave re- Fractional Laplace motion, Adv. Appl. Probab., 38, 451-464,
lationship between their power-law exponentg) and doi:10.1239/aap/1151337072006.
q,is not an indication of multifractality but an artifact of | eonardis, E., Chapman, S. C., and Foullon, C.: Turbulent char-
sampling as explained theoretically by Neuman (2010a) acteristics in the intensity fluctuations of a solar quiescent
and Guadagnini et al. (2012). prominence observed by the Hinode Solar Optical Telescope,
The Astrophysical Journal, 745, 185 (8 ppulpi:10.1088/0004-
637X/745/2/1852012.
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