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Abstract. We analyze the scaling behaviors of two field-
scale log permeability data sets showing heavy-tailed fre-
quency distributions in three and two spatial dimensions, re-
spectively. One set consists of 1-m scale pneumatic packer
test data from six vertical and inclined boreholes spanning
a decameters scale block of unsaturated fractured tuffs near
Superior, Arizona, the other of pneumatic minipermeameter
data measured at a spacing of 15 cm along three horizontal
transects on a 21 m long and 6 m high outcrop of the Up-
per Cretaceous Straight Cliffs Formation, including lower-
shoreface bioturbated and cross-bedded sandstone near Es-
calante, Utah. Orderq sample structure functions of each
data set scale as a powerξ(q) of separation scale or lag,
s, over limited ranges ofs. A procedure known as extended
self-similarity (ESS) extends this range to all lags and yields
a nonlinear (concave) functional relationship betweenξ(q)

andq. Whereas the literature tends to associate extended and
nonlinear power-law scaling with multifractals or fractional
Laplace motions, we have shown elsewhere that (a) ESS of
data having a normal frequency distribution is theoretically
consistent with (Gaussian) truncated (additive, self-affine,
monofractal) fractional Brownian motion (tfBm), the latter
being unique in predicting a breakdown in power-law scaling
at small and large lags, and (b) nonlinear power-law scaling
of data having either normal or heavy-tailed frequency dis-
tributions is consistent with samples from sub-Gaussian ran-
dom fields or processes subordinated to tfBm or truncated
fractional Gaussian noise (tfGn), stemming from lack of er-
godicity which causes sample moments to scale differently
than do their ensemble counterparts. Here we (i) demonstrate
that the above two data sets are consistent with sub-Gaussian

random fields subordinated to tfBm or tfGn and (ii) provide
maximum likelihood estimates of parameters characterizing
the corresponding Ĺevy stable subordinators and tfBm or
tfGn functions.

1 Introduction

Many earth and environmental (as well as physical, ecolog-
ical, biological and financial) variables exhibit power-law
scaling of the following type. Let

S
q
N (s) =

1

N (s)

N(s)∑
n=1

|1Yn (s)|q (1)

be an orderq sample structure function of a random function
Y (x) defined on a continuum of pointsx in one- or multi-
dimensional space (or time),1Yn (s) = Y (xn + s · m) −

Y (xn) being a sampled increment ofY (x) over a separation
distance (lag)s in one or multiple directions, defined by one
or more unit vectorsm, between two points andN (s) the
number of measured increments. Power-law scaling ofY (x)

is described by

S
q
N (s) ∝ sξ(q) (2)

where the power or scaling exponent,ξ (q), is indepen-
dent of s. When the scaling exponent is linearly propor-
tional to q, ξ (q) = Hq, Y (x) is interpreted to be a self-
affine (additive, monofractal) random field (or process) with
Hurst exponentH . When ξ (q) varies nonlinearly withq,
Y (x) has traditionally been taken to represent multiplicative,
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multifractal random fields or processes (Neuman, 2010a;
Guadagnini et al., 2012). Nonlinear power-law scaling is also
exhibited by fractional Laplace motions (Meerschaert et al.,
2004; Kozubowski et al., 2006) recently applied to sediment
transport data by Ganti et al. (2009).

Power-law scaling is typically assessed by employing
the method of moments to analyze samples of measured
variables. This entails inferring sample structure functions
(Eq. 1) for a setq1, q2, ..., qn of q values at various lags.
The structure functionSqi

N is related tos by linear regression
on a log-log scale, the powerξ (qi) (i = 1, 2, . . . ,n) being
set equal to the slope of the regression line. Linear or near-
linear dependence of logSqi

N on logs is typically limited to
intermediate ranges of separation scales,sI < s < sII , outside
of which power-law scaling breaks down. The lower and up-
per limits,sI andsII respectively, which demarcate the range
of power-law scaling are defined theoretically or, in most
cases, empirically (Siena et al., 2012; Stumpf and Porter,
2012). Benzi et al. (1993a, b) provided empirical evidence
that a procedure they had termed extended self-similarity
(ESS) allows widening significantly the range of lags over
which velocities in fully developed turbulence (wheresI is
taken to be governed by the Kolmogorov’s dissipation scale)
scale in a manner consistent with Eq. (2). Writing Eq. (2) as
Sn (s) = C(n) sξ(n) andSm (s) = C(m) sξ(m), solving one of
these equations fors and substituting into the other yields the
ESS expression

Sn (s) ∝ Sm (s)β(n,m) (3)

whereβ(n,m) = ξ(n)/ξ(m) is a ratio of scaling powers. Al-
though the literature does not explain how and why Eq. (3)
should apply to lagss < sI ands > sII where power-law scal-
ing (Eq.2) breaks down, it nevertheless includes numerous
examples demonstrating this to be the case. In addition to the
classic case of turbulent velocities (Chakraborty et al., 2010),
these examples include geographical (e.g. Earth and Mars
topographic profiles), hydraulic (e.g. river morphology and
sediment dynamics), atmospheric, astrophysical, (e.g. solar
quiescent prominence, low-energy cosmic rays, cosmic mi-
crowave background radiation, turbulent boundary layers of
the Earth’s magnetosphere), biological (e.g. human heart-
beat temporal dynamics), financial time series and ecological
variables (see Guadagnini and Neuman (2011), Leonardis et
al. (2012) and references therein). In virtually all these exam-
ples, ESS yields improved estimates ofξ (q) and shows it to
vary in a nonlinear fashion withq, a finding commonly taken
to imply that the variables are multifractal. Yet computational
analyses by Guadagnini and Neuman (2011) have shown that
this need not be the case: they found signals constructed from
sub-Gaussian processes subordinated to truncated (additive,
self-affine, monofractal) fractional Brownian motion (tfBm)
to display ESS scaling as well as typical symptoms of mul-
tifractality, such as nonlinear scaling and intermittency, even
though the signals differ from multifractals in a fundamental
way (Neuman, 2010a, b, 2011; Guadagnini et al., 2012).

Siena et al. (2012) have pointed out that since multifrac-
tals and fractional Laplace motions do not capture observed
breakdowns in power-law scaling at small and large lags,
they cannot explain how and why ESS does. Instead, they
have proven theoretically that ESS of data having a nor-
mal frequency distribution is theoretically consistent with
tfBm. This allowed them to identify the functional form and
estimate all parameters of the particular tfBm correspond-
ing to log air-permeability data collected by Tidwell and
Wilson (1999) on the faces of a laboratory-scale block of
Topopah Spring tuff. In this paper we employ ESS to analyze
the scaling behaviors of two log permeability data sets show-
ing heavy-tailed frequency distributions in three and two spa-
tial dimensions, respectively. One set consists of 1-m scale
pneumatic packer test data from six vertical and inclined
boreholes spanning a decameters-scale block of unsaturated
fractured tuffs near Superior, Arizona (Guzman et al., 1996).
Another set contains pneumatic minipermeameter data mea-
sured at a spacing of 15 cm along three horizontal transects
on a 21 m long and 6 m high outcrop of the Upper Cretaceous
Straight Cliffs Formation, including lower-shoreface biotur-
bated and cross-bedded sandstone near Escalante, Utah (Cas-
tle et al., 2004). Our analysis (a) demonstrates that the two
data sets are statistically and theoretically consistent with
sub-Gaussian random fields subordinated to tfBm or trun-
cated fractional Gaussian noise (tfGn) and (b) provides max-
imum likelihood estimates of parameters characterizing the
corresponding Ĺevy stable subordinators and tfBm or tfGn
functions.

2 Theoretical background

We start by recounting the theory that underlies our analysis
of the data.

2.1 Sub-Gaussian processes subordinated to truncated
fractional Brownian motion (tfBm)

Following Guadagnini et al. (2012), we limit (for simplicity)
our theoretical exposé to a single space or time coordinate
x, considering random functionsY (x) characterized by con-
stant mean and sub-Gaussian fluctuations (Samorodnitsky
and Taqqu, 1994; Adler et al., 2010)

Y ′ (x;λl,λu) = W1/2G′ (x;λl,λu) (4)

about the mean. HereW1/2 is an α/2-stable random vari-
able, totally skewed to the right of zero with width parameter
σW =

(
cosπα

4

)2/α, unit skewnessβ = 1 and zero shift,µ =

0; for a precise definition of these parameters see Eq. (18) be-
low. The variableW is independent ofG′ (x;λl,λu), which
in turn is a zero-mean Gaussian random field (or process)
described by truncated power variogram (TPV)

γ 2
i (s;λl,λu) = γ 2

i (s;λu) − γ 2
i (s;λl) (5)
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where form = l,u,

γ 2
i (s;λm) = σ 2 (λm)ρi (s/λm)

σ 2 (λm) = Aλ2H
m /2H

ρ1 (s/λm) =

[
1− exp(−s/λm) + (s/λm)2H

0(1− 2H,s/λm)
]

0 < H < 0.5

ρ2 (s/λm) =

[
1− exp

(
−π (s/λm)2/4

)
+

(
π (s/λm)2/4

)H

0
(
1− H,π (s/λm)2/4

)]
0 < H < 1

A being a constant0(·, ·) the incomplete gamma function
(other functional forms ofρ being theoretically possible, and
λu andλl lower and upper cutoff scales, respectively). For
λu < ∞, the increments1Y ′ (x,s;λl,λu) are stationary with
zero-mean symmetric Ĺevy stable distribution characterized
by 1< α ≤ 2 and scale or width function (semi-structure
function whenα = 2; Samorodnitsky and Taqqu, 1994)

σα (s;λl,λu) =

[
γ 2
i (s;λl,λu)

]α/2
. (6)

In the limits λl → 0 and λu → ∞, the TPV
γ 2
i (s;λl,λu) converges to a power variogram (PV)

γ 2
i (s) = Ais

2H where A1 = A0(1− 2H)/2H and
A2 = A(π/4)2H/20(1− 2H/2)/2H . Correspond-
ingly, σα (s;λl,λu) converges to a power law
γ α
i (s) = Ais

αH where A1 = A0(1− αH)/αH and
A2 = A(π/4)αH/20(1− αH/2)/αH . The resultant
non-stationary field G′ (x;0,∞) thus constitutes frac-
tional Brownian motion (fBm); its stationary increments
1G′ (x,s;0,∞) forming fractional Gaussian noise (fGn);
the non-stationary fieldY ′ (x;0,∞) constructed from
increments 1Y ′ (s;0,∞) = W1/21G(x,s;0,∞) consti-
tutes fractional Ĺevy motion (fLm; fBm whenα = 2), the
increments forming sub-Gaussian fractional Lévy noise (fLn
or fsn for fractional stable noise, e.g. Samorodnitsky and
Taqqu, 1994; Samorodnitsky, 2006).

It is possible to select a subordinatorW1/2
≥ 0 having a

heavy-tailed distribution other than Lévy such as, for ex-
ample, a log-normalW1/2

= eV with 〈V 〉 = 0 and
〈
V 2
〉
=

(2− α)2. Samples generated through subordination of trun-
cated monofractal fBm in the above manner exhibit apparent
multifractal scaling (Guadagnini et al., 2012).

2.2 Extended power-law scaling of sub-Gaussian
processes subordinated to tfBm

It is important to note that whereas power-law scaling ex-
pressed by Eq. (2) implies ESS scaling in the form of Eq. (3),
the reverse is not necessarily true because Eq. (3) follows
from the more general relationship

Sq (s) ∝ f (s) ξ(q) (7)

where f (s) is a (possibly nonlinear) function ofs
(Kozubowski and Molz, 2011; Siena et al., 2012).

Following Neuman et al. (2012), we first consider subor-
dinatorsW1/2

≥ 0 that have finite moments
〈
W q/2

〉
of all or-

dersq, such as the log-normal form mentioned earlier. Then,
in a manner analogous to Siena et al. (2012), the centralqth-
order moments of absolute values of zero-mean stationary in-
crements1Y ′ (x,s;λl,λu) = W1/21G′ (x,s;λl,λu) can be
expressed as

Sq
=
〈∣∣1Y ′ (s; λl,λu)

∣∣q 〉
=
〈
W q/2

〉 〈∣∣1G′ (s; λl,λu)
∣∣q 〉

=
〈
W q/2

〉[√
2γ 2

i (s; λl,λu)

]q

(q − 1)!!{√
2
π

if q is odd

1 if q is even

(8)

q = 1,2,3...

Here !! represents double factorial, i.e.q!! = q(q-2) (q-4). . . 2
if q is even andq!! = q(q-2) (q-4). . . 3 if q is odd, and
γ 2
i (s; λl,λu) is the (truncated power) variogram (TPV) of

G′ (x; λl,λu). The ratio between structure functions of or-
der (q+1) andq is then

Sq+1

Sq
= g (q)


√

π
q!!

(q−1)!!

√
γ 2
i (s; λl,λu) if q is odd

2
√

π

q!!

(q−1)!!

√
γ 2
i (s; λl,λu) if q is even

(9)

q = 1,2,3...

where g (q) depends on the choice of subordina-
tor but not on s. In the log-normal case where
W1/2

= eV with 〈V 〉 = 0 and
〈
V 2
〉
= (2− α)2 one

obtains
〈
W q/2

〉
= exp

[
q2 (2− α)2/2

]
and g (q) =〈

W (q+1)/2
〉
/
〈
W q/2

〉
= exp

[
(1+ 2q)(2− α)2/2

]
. It then

follows from Eqs. (8) and (9) that

Sq+1
= g (q)


√

π
2

[√
π
2

1
(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq
]1+

1
q if q is odd√

2
π

[
1

(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq
]1+

1
q if q is even

(10)

q = 1,2,3...

showing that logSq+1 is linear in logSq , in accord with the
ESS expression Eq. (3), regardless of the choice of subordi-

nator or the model employed for
〈
1G′ (s; λl,λu)

2
〉
. On log-

log plot, this line is characterized by a slope which tends to
unity asq → ∞, being equal to 2 atq = 1. Equation (10) is a
consequence of the equivalence between Eq. (8) and ESS ex-

pression Eq. (7) in which nowf (s) =

[√
2γ 2 (s; λl,λu)

]
. It

shows that extended power-law scaling, or ESS, at all lags is
an intrinsic property of sub-Gaussian processes subordinated
to tfBm (or tfGn) with subordinators, such as the log normal,
which have finite moments of all orders.
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We noted earlier that, in the limitsλl → 0 andλu → ∞,
the TPVγ 2

i (s;λl,λu) converges to a PVγ 2
i (s) = Ais

2H . It
follows that Eq. (8) can be rewritten in terms of a power-law

Sq
=

〈
W q/2

〉
(q − 1)!!

[√
2Ai

]q
sqH

{ √
2
π

if q is odd

1 if q is even

(11)

q = 1,2,3...

where it is clear that a log-log plot ofSq versuss is linear at
all lags and associated with a constant slopeqH.

Following Neuman et al. (2012), we now consider sub-
ordinatorsW1/2

≥ 0 that have divergent ensemble moments〈
W q/2

〉
of all ordersq ≥ 2α, as does the previously discussed

Lévy subordinator with stability indexα. In practical appli-
cations,

〈∣∣1Y ′ (s;λl,λu)
∣∣q 〉 is typically estimated through a

sample structure function

S
q
|1Y |,N,M (s;λl,λu) =

1

N (s)M

M∑
m=1

N(s)∑
n=1

|1ym (xn, s;λl,λu)|
q q = 1,2,3... (12)

where 1ym (xn, s;λl,λu) denotes a collection ofM < ∞

sets ofN (s) < ∞ sampled increments each; for simplic-
ity, we ignore possible variations ofN (s) and xn with m.
Writing 1ym (xn, s;λl,λu) = w

1/2
m 1gm (xn, s;λl,λu) where

1gm (xn, s;λl,λu) represents samples of1G′ (s; λl,λu) al-
lows rewriting Eq. (12) as

S
q
|1Y |,N,M (s;λl,λu) =

1

M

M∑
m=1

w
q/2
m

1

N (s)

N(s)∑
n=1

|1gm (xn, s;λl,λu)|
q . q = 1,2,3... (13)

Since orderq ≥ 2α moments ofw1/2
m diverge while all mo-

ments of1gm (xn, s;λl,λu) converge, one can approximate
Eq. (13) for a sufficiently large sample sizeN (s) by

S
q
|1Y |,N,M (s;λl,λu) '

(
1

M

M∑
m=1

w
q/2
m

)〈∣∣1G′ (s; λl,λu)
∣∣q 〉

=

(
1

M

M∑
m=1

w
q/2
m

)[√
2γ 2

i (s; λl,λu)

]q

(q − 1)!!{ √
2
π

if q is odd

1 if q is even

q = 1,2,3... (14)

which, for finiteM, is always finite. One can then write

S
q+1
|1Y |,N,M (s;λl,λu)

S
q
|1Y |,N,M (s;λl,λu)

'

M∑
m=1

w
(q+1)/2
m

M∑
m=1

w
q/2
m

(15)


√

π
q!!

(q−1)!!

√
γ 2
i (s; λl,λu) if q is odd

2
√

π

q!!

(q−1)!!

√
γ 2
i (s; λl,λu) if q is even

q = 1,2,3...

or, in analogy to Eq. (10),

S
q+1
|1Y |,N,M (s;λl,λu) '

M∑
m=1

w
(q+1)/2
m

M∑
m=1

w
q/2
m



√
π
2

[√
π
2

1
(q−1)!!

] 1
q q!!

(q−1)!!

[
S

q
|1Y |,N,M (s;λl,λu)

]1+
1
q

if q is odd√
2
π

[
1

(q−1)!!

] 1
q q!!

(q−1)!!

[
S

q
|1Y |,N,M (s;λl,λu)

]1+
1
q

if q is even

q = 1,2,3... (16)

This indicates thatSq+1
|1Y |,N,M (s;λl,λu) is approximately lin-

ear inS
q
|1Y |,N,M (s;λl,λu) on log-log scale, in accord with

ESS expression (Eq.3), regardless of the functional form〈
1G′ (s; λl,λu)

2
〉

takes. The slope of this line is character-

ized by the same asymptotic behavior as that observed be-
fore. The approximate equivalence between Eq. (14) and the

ESS expression (Eq.7), wheref (s) =

[√
2γ 2

i (s; λl,λu)

]
, is

the basis for Eq. (16) and its asymptotic tendency. It follows
that extended power-law scaling, or ESS, at all lags is an in-
trinsic property of samples from sub-Gaussian processes sub-
ordinated to tfBm (or tfGn) with subordinators, such as Lévy,
which have divergent ensemble moments of ordersq ≥ 2α.

Note that in the limitsλl → 0 andλu → ∞, Eq. (14) be-
comes a power-law

Sq
'

(
1

M

M∑
m=1

w
q/2
m

)
(q − 1)!!

[√
2Ai

]q
sqH

{ √
2
π

if q is odd

1 if q is even
q = 1,2,3... (17)

rendering logSq linear in logs with constant slopeqH.

3 Analysis of log air permeabilities from borehole tests
in unsaturated fractured tuff near Superior, Arizona

We analyze (natural) log air-permeability (Y = logk, k being
permeability) data from unsaturated fractured tuff at a former
University of Arizona research site near Superior, Arizona.
Our analysis focuses on logk values obtained by Guzman et
al. (1996) from steady state interpretations of 184 pneumatic
injection tests in 1-m long intervals along 6 boreholes at the
site (Fig. 1). Five of the boreholes (V2, W2a, X2, Y2, Z2) are
30 m long and one (Y3) has a length of 45 m; five (W2a, X2,
Y2, Y3, Z2) are inclined at 45◦ and one (V2) is vertical. The
boreholes cover a horizontal area of 25.83× 21.43 m2.
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Figure 1

Y3

Y2

V2
Z2

X2

W2A

Fig. 1.Spatial locations along each borehole of Arizona data. Mod-
ified after Guzman et al. (1996).

Riva et al. (2012) analyzed the probability distributions of
1-m scale (natural) logk measurements and their increments
at the ALRS. They hypothesized that the data derive from a
Lévy stable distribution, estimated the parameters of this dis-
tribution by three different methods and examined the degree
to which each distribution estimate fits the data. Treating the
data as a sample from a sub-Gaussian random field subordi-
nated to tfBm via a Ĺevy stable subordinator and settingi = 1
in Eq. (5), they obtained the following ML estimates of the
parameters characterizing the process:H = 0.33,σ 2

G = 4.05,
λl = 0.48 m andλu = 9.98 m, thus yieldingA = 0.67 by virtue
of Eq. (9) in Riva et al. (2012).

Here we analyze structure functions and scaling of the
same data using the ESS approach. We focus here on param-
eter estimates obtained by Riva et al. (2012) using a maxi-
mum likelihood (ML) approach applied to a log characteris-
tic function

ln
〈
eiϕX

〉
= iµϕ − σα

|ϕ|
α
[
1+ iβ sign(ϕ)ω(ϕ,α)

]
ω(ϕ,α) =

{
− tanπα

2 if α 6= 1
2
π

ln |ϕ| if α = 1
(18)

of an α-stable variable,X; ϕ is a real-valued parameter;
sign(ϕ) = 1, 0,−1 if ϕ > 0, = 0, < 0, respectively;α ∈ (0,
2] is stability or Ĺevy index;β∈[−1, 1] is skewness parame-
ter;σ > 0 is scale or width parameter; andµ is shift or loca-
tion parameter. The authors foundY ′

= logk − 〈logk〉 to fit
Eq. (18) with parameter estimatesα̂ = 2.0±0.00,σ̂ = 1.42±
0.15 andµ̂ = 0.00± 0.29. Note that it is difficult to estimate

0.01

0.1

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2

� Data
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data from all boreholes
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a

Fig. 2. (a) Frequency distribution (symbols) and ML esti-
mated probability density function (solid curve) of Arizona data;
(b) Q-Q plot of empirical data versus theoretical estimate of
stable distribution.

β reliably whenα̂ ≈ 2 because, atα = 2, the distribution is
insensitive toβ.

Figure 2a compares the frequency distribution of the data
with their ML estimated probability density function and
Fig. 2b depicts a correspondingQ-Q plot. The fits are am-
biguous enough to suggest that their near-Gaussian appear-
ance could in fact indicate a Lévy stable distribution withα
just slightly smaller than 2. That this is likely the case follows
from the tendency of̂α, fitted to the distributions of logk
increments, to increase from 1.46± 0.21 at 1 m lag through
1.84± 0.16 at lag 2 m and 1.91± 0.12 at lag 3 m to 2 at lags
equal to or exceeding 4 m. Increments corresponding to lags
smaller than 4 m are thus clearly heavy tailed (and hence
non-Gaussian) as evidenced further by Fig. 3, which com-
pares frequency distributions and ML estimated probability
density functions ofY ′

= logk−〈logk〉 data and logk incre-
ments at lags 1 m, 2 m and 5 m. Had the original logk data
been genuinely Gaussian, the same would have to be true for
their increments.
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taken to representξ (1), was fitted toS1

N
.

Figure 4 depicts omnidirectional structure functions,S
q
N ,

of ordersq = 1, 2, 3, 4, 5 computed for the same data accord-
ing to Eq. (12). To compute them we ascribe each measure-
ment to the midpoint of the corresponding 1-m scale bore-
hole test interval. We then associate (as is common in geo-
statistical practice) data pairs separated by distances of 0.5–
1.5 m with a lag of 1 m, those separated by distances of 1.5–
2.5 m with a lag of 2 m, and so on up to the largest separation
distances of 29.5–30.5 m, which we associate with a lag of
30 m. Figure 5 shows that the number of data pairs associated
in this manner with each lag is largest at intermediate lags,
causing logk increments to be comparatively undersampled
at small and large lags. Such undersampling may explain in
part why the structure functions in Fig. 4 scale differently
with separation scale at small, intermediate and large lags.
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Standard moment analysis would entail fitting straight lines
to these functions at intermediate lags by regression and con-
sidering their slopes to represent power-law exponentsξ (q)

in Eq. (2). However, deciding what constitutes an appropri-
ate range of intermediate lags for such analysis would, in the
case of Fig. 4, be fraught with ambiguity.

We avoid this ambiguity by plotting in Fig. 6Sq
N versus

S
q−1
N for 2 ≤ q ≤ 5 on log-log scale for the entire range of

available lags. Also shown in Fig. 6 are linear regression fits
to each of these relationships, the corresponding regression
equations and coefficients of determination,R2. As the lat-
ter exceed 0.99 in all cases, we conclude with a high degree
of confidence thatSq

N is a powerβ(q,q − 1) of S
q−1
N for 2

≤ q ≤ 5 at all lags, in accord with ESS expression (Eq.3).
This power, given by the slopes of the regression lines in
Fig. 6, decreases from 1.66 atq = 2 through 1.29 atq = 3 and
1.18 atq = 4 to 1.13 toq = 5, appearing to tend asymptoti-
cally toward 1 with increasingq. ConsideringSq

N to vary as
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Fig. 7. ξ (q) as a function ofq (symbols) obtained via ESS based
on ξ (1) = 0.56 computed for Arizona data by method of moments.
Solid line has slopeξ (1) = 0.56 and dashed line slopeH = 0.33
estimated for these data based on our theory, using maximum like-
lihood, by Riva et al. (2012).

a powerξ (q) of s according to Eq. (2) at intermediate lags,
as suggested by Fig. 4, allows expressing the power ofS

q
N in

Eq. (3) asβ(q,q−1) = ξ(q)/ξ(q−1). Asymptotic tendency
of β(q,q − 1) toward 1 then implies asymptotic tendency of
ξ (q) toward a straight line. This commonly observed ten-
dency, which the multifractal literature attributes to diver-
gence of higher-order moments, is according to our theory
(Neuman, 2010a; Guadagnini and Neuman, 2011) unrelated
to such divergence, arising instead from the presence of an
upper cutoff scale,λu.

Figure 4 includes two vertical broken lines demarcating a
mid-range of lags within which logS1

N appears to be quite
unambiguously linear in logs. Fitting a straight line to the
corresponding data by regression yieldsξ (1) = 0.56 with a
high coefficient of determination,R2 = 0.97. This, together
with values ofβ(q,q −1) = ξ(q)/ξ(q −1) corresponding to
2 ≤ q ≤ 5 in Fig. 6, allows us to computeξ (q) for this entire
range ofq values, as depicted in Fig. 7. Figure 7 also includes
for reference one straight line having slopeξ (1) = 0.56 and
another having slopeH = 0.33, estimated for the same data
by Riva et al. (2012). It is evident thatξ(q) in Fig. 7 is non-
linear concave inq in the range 2≤ q ≤ 5. Though such non-
linear scaling is typical of multifractals or fractional Laplace
motions, we have demonstrated theoretically earlier that it is
in fact consistent with a random field subordinated to tfBm
via a heavy-tailed subordinator.

4 Analysis of nitrogen minipermeameter data from
sandstone near Escalante, Utah

Castle et al. (2004) describe nitrogen minipermeameter mea-
surements conducted on a flat, nearly vertical outcrop of
Straight Cliffs Formation sandstones about 10 km northwest
of Escalante, Utah. The outcrop, measuring approximately

21 m across and 6 m high, includes a lower bioturbated facies
and an upper cross-bedded facies (Fig. 8). A total of 515 per-
meability measurements were taken in triplicate at a sample
spacing of 15 cm along three horizontal transects (380 mea-
surements) and four vertical profiles (135 measurements).
Castle et al. (2004) found that whereas sample statistics of
(natural) log permeability, logk, vary depending on which fa-
cies are considered, the frequency distributions of horizontal
logk increments in the two facies are similar. Lu et al. (2002)
used a fBm model to generate logk increments within a mix
of distinct facies. They showed that, when data from different
facies are analyzed jointly, the simulated logk increments ex-
hibit an apparent non-Gaussian distribution. They concluded
that observed Ĺevy-like behavior of sample probability dis-
tributions of permeability data can in some cases be an arti-
fact of mixing data from disparate facies. Accordingly, Moltz
et al. (2007) focused their analysis on increments along hor-
izontal transects D and H (Fig. 8) within the lower biotur-
bated facies. They found the horizontal logk increments to
be well represented by a fractional Laplace noise model. We
note however that this same model would not have allowed
them to characterize statistically the logk data themselves.

In this paper we analyze the frequency distributions
and scaling of logk values and their horizontal increments
(a) along transects D and H within the lower bioturbated fa-
cies and (b) jointly along transects D, H and X (Fig. 8) in the
two facies. We also attempted to perform a similar analysis
of logk values and their increments along the four vertical
transects at the site but found the corresponding samples too
small to yield meaningful statistics.

Transect H contains 133 data points, transect D 136 points
and transect X 111 points. In a manner consistent with
Riva et al. (2012), we analyze the frequency distribution
of Y ′

= logk − 〈logk〉 and use the computer code STABLE
(Nolan, 1997, 2001) to obtain reliable ML estimates of sta-
ble densities. Figure 9a compares the frequency distribution
of Y ′ data from transects D and H on semi-logarithmic scale
with a probability density function (pdf) fitted to it via ML.
Treating the data as if they were Lévy stable yields ML
parameter estimateŝα = 1.99± 0.05, σ̂ = 0.28± 0.02,β = 0
and µ̂ = 0.00± 0.05. As α̂ ≈ 2, the distribution appears to
be Gaussian. Yet Kolmogorov-Smirnov and Shapiro- Wilk
tests reject the Gaussianity hypothesis at a 0.1 % signifi-
cance level. The frequency distribution ofY ′ data from all
three horizontal transects D, H and X in Fig. 9b is positively
skewed with ML parameter estimatesα̂ = 1.20± 0.12,β̂ = 1,
σ̂ = 0.39± 0.04 andµ̂ = 0.726± 0.07. We conclude that the
two facies contain distinctly different log permeability popu-
lationsY ′.

Figure 10 compares frequency distributions and ML esti-
mated probability density functions of logk increments along
transects D and H, and jointly along transects D, H and X, at
horizontal lags of 0.15 m, 0.45 m, 1.5 m and 4.5 m. Whereas
at small lags the two distributions are similar (Fig. 10a, b), at
larger lags the joint set from both facies exhibits heavier tails.
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Fig. 8. Locations of nitrogen minipermeameter measurements along sandstone outcrop near Escalante, Utah. Modified after Castle et
al. (2004).
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ability density function (curves) of UtahY ′

= logk − 〈logk〉 data
on horizontal(a) transects D and H (bioturbated sandstone) and
(b) transects D, H and X (bioturbated sandstone and cross-bedded
sandstone).
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Fig. 10.Frequency distributions (symbols) and ML estimated prob-
ability density functions (curves) of Utah logk increments for tran-
sects D and H (bioturbated sandstone) and transects D, H and X
(bioturbated sandstone and cross-bedded sandstone) at horizontal
lags(a) 0.15 m,(b) 0.45 m,(c) 1.5 m, and(d) 4.5 m.

Kolmogorov-Smirnov and Shapiro-Wilk tests generally re-
ject the hypothesis that the increments, at any lag, are Gaus-
sian at a 0.1 % significance level. Aχ2 test applied to hori-
zontal increments along transects D and H at a lag of 0.15 m

Figure 11
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Fig. 11.Variations of ML Lévy index estimateŝα and scale parame-
ter estimateŝσ of Utah log permeability increments with horizontal
lag for transects D and H (bioturbated sandstone) and transects D,
H and X (bioturbated sandstone and cross-bedded sandstone).

by Castle et al. (2004) has shown them to be Gaussian only
at a 51 % confidence level.

As shown in Fig. 11, ML estimateŝα of the Lévy
index of log permeability increments along transects D
and H vary from 1.89± 0.13 at horizontal lag 0.15 m
through 1.86± 0.14 at lag 0.3 m, 1.66± 0.18 at lag 0.45 m,
1.86± 0.14 at lag 0.6 m, 1.82± 0.16 at lag 0.75 m, 1.99 at lag
0.9 m to 2.00 at larger lags. Hence, the distributions of the in-
crements have heavier tails at small rather than at larger lags.
ML estimatesα̂ obtained from all three horizontal transects
oscillate around 1.75 without any identifiable trend. ML esti-
matesσ̂ of the scale parameter in Fig. 11 increase monoton-
ically with lag toward a constant asymptote of 0.32 for data
along transects D and H and 0.44 for data along transects D,
H and X. Both phenomena are consistent with the observa-
tion of Lu et al. (2002) that mixing data from the two facies
may cause the tails of incremental frequency distributions to
increase.

Results based on data sampled along transects D and H
in the bioturbated sandstone facies are consistent with a
sub-Gaussian random field subordinated to tfBm via a Lévy
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Fig. 12.Experimental scale parameter (diamonds) and their theoret-
ical equivalents based on ML fit (solid curve) of TPV (6) based on
data from transects D and H (bioturbated sandstone). Dashed curves
represent 95 % confidence limits of correspondingλu estimates.

stable subordinator. The observed increase inα̂ with lag is
consistent with a version of such a field considered by Riva et
al. (2012). Following their approach, Eq. (6) allows us to es-
timate the associated Hurst coefficient from the log-log slope
of σ̂ (s) in Fig. 11 at lags small enough to avoid the asymp-
tote. This slope yields an estimateH = 0.13. From Eq. (6) it
follows that, asymptotically,̂σ 2

G = 2σ̂ 2 whereG′ (s;λl,λu)

is our tfBm. This, coupled with our ML estimates ofσ̂ for
the logk−〈logk〉 data, yieldŝσ 2

G = 2×(0.28)2
= 0.16. Hav-

ing thus estimatedH andσ 2
G, we are now in a position to

estimate the remaining parameters of the TPVγ 2
G (s;λl,λu)

of G′ (s;λl,λu) defined in Eq. (5). Settingi = 1 in Eq. (5),
we obtain the following ML estimates of the cutoff scales,
λl ≈ 0.0 m andλu = 16.97 m (with 95 % confidence limits
3.45 m and 30.47 m; settingi = 2 yields a less satisfactory
fit, suggesting thati = 1 is a better choice), thus yielding
A = 2.05× 10−2 by virtue of Eq. (9) in Riva et al. (2012). Our
estimate ofλl is consistent with the small support scale of the
minipermeameter. Our estimate ofλu is slightly smaller than
the lengths of the D and H transects (on the order of 20 m),
as expected from theory (Guadagnini et al., 2012). Figure 12
depicts experimental scale parameters and their theoretical
equivalents based on the above ML estimates ofσ̂ 2

G, H , λl

and λu. Dashed curves in the figure represent 95 % confi-
dence limits of correspondingλu estimates.

Results based on data sampled jointly along transects D, H
and X in the bioturbated and cross-bedded sandstone facies
are not fully consistent with our theory, which considers both
Y ′ and its increments to have symmetric distributions. As the
distributions of the corresponding increments are in fact sym-
metric, it is possible to treat these increments as random field
subordinated to truncated fractional Gaussian noise (tfGn)
forming truncated sub-Gaussian fractional Lévy noise (tfLn)
as discussed by Riva et al. (2012). Such processes are charac-
terized by Ĺevy indicesα that are independent of lag. Repeat-
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Fig. 13. Sample structure functions of orderq = 1, 2, 3, 4, 5, 6 of
Utah data from transects D and H (bioturbated sandstone). Light
vertical broken lines demarcate mid-range of lags within which
heavy inclined broken line, with slope taken to representξ (1), was
fitted toS1

N
.

ing the above procedure, we obtain estimatesH = 0.21,σ̂ 2
G ≈

0.34, λl ≈ 0.0 m andλu = 29.04 m (with 95 % confidence
limits 16.23 m and 41.85 m), thus yieldingA = 4.32× 10−2

by virtue of Eq. (9) in Riva et al. (2012). Though this esti-
mate ofH exceeds that obtained previously on the basis of
data from transects D and H alone, both are small and indica-
tive of strong anti-persistence typical of log permeabilities in
fractured and porous rocks worldwide (Neuman, 1990).

Figure 13 depicts sample structure functions of orderq = 1,
2, 3, 4, 5, 6 for the data collected along transects D and H.
Vertical lines demarcate the mid-range of lags within which
a regression line, the slope of which was taken to repre-
sentξ (1), had been fitted toS1

N . The latter was found to be
ξ (1) = 0.12 with coefficient of determinationR2 = 0.93. This
value is only slightly smaller than that obtained earlier from
the log-log slope of̂σ(s) in Fig. 11. Figure 14 shows log-
log plots ofSq

N versusSq−1
N for 2 ≤ q ≤ 6 and correspond-

ing linear regression fits. The fits are characterized by co-
efficients of determination,R2, two of which exceed 0.98
and three 0.99. The slope of the fitted lines decreases from
1.86 atq = 2 through 1.39 atq = 3, 1.25 atq = 4, and 1.18 at
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represent indicated regression fits. Linear regression equations and
related regression coefficients (R2) are also reported.

q = 5 to 1.15 atq = 6, appearing to tend asymptotically to-
ward 1 as expected. Adopting the above value ofξ (1) = 0.12
allows computingξ (q) for 2 ≤ q ≤ 6 using the ESS relation-
shipβ(q,q − 1) = ξ(q)/ξ(q − 1). The results are plotted in
Fig. 15 together with straight lines having slopesξ (1) = 0.12
andH = 0.13. It is clear thatξ(q) is nonlinear concave inq
within the range 2≤ q ≤ 6. Though such nonlinear scaling
is typical of multifractals or fractional Laplace motions, we
have demonstrated theoretically earlier that it is in fact con-
sistent with a random field subordinated to tfBm via a heavy-
tailed subordinator.

Qualitatively similar results (details not given) are ob-
tained from structure functions of orderq computed jointly
for horizontal increments along transects D, H and X in
the two facies. Following the above procedure we obtain
ξ (1) = 0.26, consistent with an analysis ofσ̂ (s) which yields
H = 0.21. Applying ESS yields a nonlinear concave func-
tional form forξ(q) in Fig. 16, which also depicts for refer-
ence straight lines having slopesξ (1) = 0.26 andH = 0.21.
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ξ(q)

Figure 15
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q

Fig. 15.ξ (q) as a function ofq (symbols) obtained via ESS based
on ξ (1) = 0.12 computed for Utah data from transects D and H
(bioturbated sandstone) by method of moments. Solid line has slope
ξ (1) = 0.12 and broken line has slopeH = 0.13.
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Fig. 16.ξ (q) as a function ofq (symbols) obtained via ESS based
on ξ (1) = 0.26 computed for Utah data from transects D, H, and
X (bioturbated sandstone and cross-bedded sandstone) by method
of moments. Solid line has slopeξ (1) = 0.26 and broken line has
slopeH = 0.21.

5 Conclusions

Our analyses lead to the following major conclusions:

1. Extended power-law scaling, commonly known as ex-
tended self similarity or ESS, is an intrinsic property
of sub-Gaussian random fields or processes subordi-
nated to truncated fractional Brownian motion (tfBm) or
truncated fractional Gaussian noise (tfGn). Such fields
and processes are theoretically consistent with standard
power-law scaling at intermediate lags and with ESS at
all lags, including small and large lags at which power-
law scaling breaks down.

2. Multifractals and fractional Laplace motions are the-
oretically consistent with standard power-law scaling
at all lags. As such, they neither reproduce observed
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breakdown in power-law scaling at small and large lags
nor explain how ESS extends power-law scaling to such
lags.

3. 1-m scale pneumatic packer test data from unsatu-
rated fractured tuffs near Superior, Arizona, and nitro-
gen minipermeameter data from bioturbated and cross-
bedded sandstones near Escalante, Utah and their in-
crements show heavy-tailed frequency distributions that
can be fitted with a high level of confidence to Lévy sta-
ble distributions.

4. Orderq sample structure functions of each data set scale
as a powerξ (q) of separation scale or lag,s, over lim-
ited ranges ofs. ESS extends this range to all lags and
yields a nonlinear concave functional relationship be-
tweenξ (q) andq.

5. The data sets we analyze are consistent with sub-
Gaussian random fields subordinated to tfBm or to tfGn
via Lévy stable subordinators.

6. This consistency allows estimating all tfBm or tfGn
parameters (most notably the Hurst exponent and up-
per/lower cutoff scales) solely on the basis of the corre-
sponding truncated power variograms.

7. The consistency further implies that nonlinear scaling
of both data sets, manifested in a nonlinear concave re-
lationship between their power-law exponentsξ (q) and
q, is not an indication of multifractality but an artifact of
sampling as explained theoretically by Neuman (2010a)
and Guadagnini et al. (2012).
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