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Abstract. We investigate the variability of the shape of the
renormalized drop diameter instantaneous distribution using
of the third order central moment: theskewness. Disdrome-
ter data, collected at Darwin Australia, are considered either
as whole or as divided in convective and stratiform precip-
itation intervals. We show that in all cases the distribution
of the skewness is strongly peaked around 0.64. This allows
to identify a most common distribution of renormalized drop
diameters and two main variations, one with larger and one
with smaller skewness. The distributions shapes are indepen-
dent from the stratiform vs. convective classification.

1 Introduction

The term drop size distribution (DSD) acknowledges the
stochastic nature of the occurrence of drop diameters. In par-
ticular the DSD is the concentrationN(D) of drops per unit
volume and unit diameter, namely

N(D) = NV p(D) (1)

whereNV is the number of drops per cubic meter andp(D)

is the density per diameter millimeter.Marshall and Palmer
(1948) used an exponential functional form for the density
p(D). However it was soon clear that the exponential form
was a result of the long (as long as 30 min) time intervals
used for sampling drop diameters. The shape of DSDs is
highly variable even inside a single shower, a property which
has ledJoss and Gori(1978) to introduce the concept of in-
stantaneous DSDs (distributions sampled over 1–2 min time
intervals).Ulbrich (1983) introduced the gamma distribution

as functional form for fitting the instantaneous DSDs. Al-
though other functional forms have been proposed (Feingold
and Levin, 1987), the gamma distribution is the one adopted
in the overwhelming majority of cases.

Aside from the search of a proper functional form to best
describe the DSD, investigations have been made to link the
high variability of DSDs to few parameters following the in-
troduction of “renormalized” DSDs bySekhon and Srivas-
tava(1971). The goal of this type of analysis is to describe
DSDs in terms of rainfall bulk variables (e.g. rainfall rate,
liquid water content, mean volume diameter) and/or identify
a possible “universal”, invariant in space and time, shape for
the renormalized DSD. So far many different renormaliza-
tion procedures have been proposed (Willis , 1984; Sempere
Torres et al., 1994; Maki et al., 2001; Testud et al., 2001;
Uijlenhoet et al., 2003; Campos et al., 2006; Hazenberg et
al., 2011). The results are not conclusive in the sense that
an “universal” shape as not been identified, yet the existing
evidences indicate that indeed the great variability observed
in the distributions of drop sizes could be described with few
parameters.

A novel renormalization procedure has been introduced
recently byIgnaccolo et al.(2009). The renormalized spec-
tra have shown (Ignaccolo and De Michele, 2010) to posses
the following properties. (1) Synoptic origin invariance
for a fixed observation site (Darwin, AUS): convective and
stratiform precipitation databases have same distribution.
(2) Rainfall rate invariance for a fixed observation site (Dar-
win, AUS): databases built according to different rainfall rate
classes (Tokay and Short, 1996) share a common distribu-
tion. (3) Cross invariance: the distributions in (1) and (2) are
essentiallyidentical.
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Do these results indicate the possible existence of a “uni-
versal” drop diameters distribution? In this paper we inves-
tigate this matter. More in particular we want to discuss the
possible invariance of instantaneous, 1 min sampling, renor-
malized drop spectra. In fact, the properties (1), (2), and (3),
above mentioned, refer to “averaged” renormalized spectra
(see Sect.2 for details). Are these results just due to “aver-
aging” or they reflect an intrinsic dynamical property of rain-
fall? If the instantaneous renormalized spectra are all equal
(strong equality→ existence of a universal distribution) the
invariance of “averaged” renormalized spectra (Ignaccolo et
al., 2009) and (Ignaccolo and De Michele, 2010) is a triv-
ial consequence of the existence of a “universal” distribu-
tion. If the instantaneous renormalized spectra manifest a
high degree of variability not reducible to a definite criterion
(weak/no equality) the invariant properties reported inIgnac-
colo et al.(2009) andIgnaccolo and De Michele(2010) are
merely an accident. A third possibility is the occurrence of a
case in between these two extremes: moderate invariance.

To answer these questions, we investigate the skewness
γ of instantaneous drop size distributions in addition to the
two renormalization parameters adopted inIgnaccolo et al.
(2009), the mean,µ, and the standard deviation,σ , of the
drop diameter. In the case of strong equality the skewness
of renormalized instantaneous spectra is a fixed value, while
in the case of weak/no equality one expects a flat distribu-
tion of skewness value. The work is organized as follows.
Section2 illustrates the methodology adopted for our analy-
sis, while Sect.3 illustrates how data are processed prior to
analysis. We present our results in Sect.4 and then draw our
conclusion, Sect. 5.

2 Methodology

2.1 Renormalization

Given a renormalization time intervalI , of length typically
in the range 1–5 min, the renormalization procedures usually
adopted in Literature (Willis , 1984; Sempere Torres et al.,
1994; Maki et al., 2001; Testud et al., 2001; Uijlenhoet et al.,
2003; Campos et al., 2006; Hazenberg et al., 2011) operate a
rescaling of both the diameterD and the instantaneous drop
size distributionNI (D), the DSD relative to the drops inside
the renormalization time interval:{

(D, NI (D)) →
(
D∗

= D/XI , N ∗

I (D∗) = NI (D)
/
YI

)
NI (D) =

NI

AT
pG,I (D)

v(D)

. (2)

The variablesXI and YI are instantaneous bulk variables
(e.g. volume mean diameter and liquid water content respec-
tively) or power functions of those bulk variables used to
obtain the renormalized diameterD∗ and renormalized in-
stantaneous spectraN ∗

I (D∗). The existence of an invari-
ant spectrum would result in a “single” shape for the graph

(D∗, N ∗

I (D)). The bottom equality of Eq. (2) is the rela-
tionship between the instantaneous DSD and the instanta-
neous probability density of diameter observed at the ground
pG,I (D). The parameterA is the base area, in m2, of the
unit volume whereNI (D) is the concentration (for disdrom-
eter dataA is the catchment area of the instrument),T is the
length of the renormalization time interval in seconds, while
NI is the total drop count during the time intervalT . Finally,
v(D) is the falling speed, in m s−1, of a drop of diameterD.

The renormalization procedure proposed byIgnaccolo et
al. (2009) andIgnaccolo and De Michele(2010) operates as
follows. For each renormalization time intervalI :{

D → DR =
D − µI

σI

pG,I (D) → pG,I (DR) = σI pG,I (σI DR + µI )
(3)

whereµI andσI are the mean, and standard deviation of the
drop diameter observed at the ground. This renormalization
procedure operates a change of variable from the diameter
D to the renormalized diameterDR having zero mean and
unit variance. The instantaneous renormalized spectrum is
in this case the instantaneous probability densitypG,I (DR)

of the renormalized drop diameter. This density is obtained
from that of drop diameter observed at the groundpG,I (D)

using the second identity of Eq. (3). The rationale behind this
choice of Eq. (3) is that the time series{Dk}, k = 1, 2, 3, ...,
of drop diameters is derived from a stochastic process which
would be stationary if it were not for a variable mean and a
variable standard deviation (e.g. the works ofKostinski and
Jameson, 1997andSmith, 1993support this ansatz). If so
the renormalization procedure removes the non-stationarity,
so that sequences of renormalized diameters relative to two
different datasets should have the same probability density
pG(DR). This is precisely what is observed inIgnaccolo et
al. (2009) andIgnaccolo and De Michele(2010).

Disdrometers categorize drops in diameter classes. A drop
in the j -th class has to be considered as the occurrence
of a drop with a random diameter valueD uniformly dis-
tributed in the range [Dj − 1j/2, Dj +1j/2], whereDj

and 1j are the central value and the width of the class.
We refer to this inaccuracy as the quantization error. Us-
ing the first relationship of Eq. (3), the renormalized drop
diameterDR associated to a drop in thej−th disdrometer
class can be any number, with equal probability, in the inter-
val [(Dj − 1j/2− µI )/σI , (Dj +1j/2 +µI )/σI ]. Another
consequence of the quantization error is that the probabil-
ity densitypG,I (D) of drop diameter, as estimated from dis-
drometer drop counts, has to be considered as a step function,
namely

pG,I (D) =

∑
j

p
j
G,I χj (D) =

∑
j

nI,j

NI 1j

χj (D) (4)

where the value of the indicator functionχj (D) is 1 if D

is inside the boundary of thej -th diameter class, otherwise
χj (D) = 0. The symbolpj

G,I indicates the value ofpG,I (D)
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inside thej -th diameter class, which is the ratio between
nI,j , the drop count in thej -th diameter class, and the prod-
uct between1j , the width of thej -th diameter class, andNI ,
the total disdrometer count inside the renormalization time
interval considered. The instantaneous renormalized spectra
pG,I (DR) is also a step function as it is obtained applying
both relations of Eq. (3) to Eq. (4).

An advantage of the renormalization procedure of Eq. (3)
with respect classical renormalizations, Eq. (2), is that one
can associate to a data set of disdrometer counts a se-
quence of renormalized drop diameters, and thus define
the corresponding renormalized spectra of the entire data
set: πG(DR). This association is done as follows. In-
side each renormalization time interval a random number
uniformly distributed in the interval [(Dj − 1j/2− µI )/σI ,
(Dj +1j/2 +µI )/σI ] is selected for each drop in thej -th
diameter class. One problem with this procedure is that it
is not unique, so that each repetition creates a new sequence
of renormalized drop diameters and therefore a new prob-
ability densityπG(DR). A possibility is that of repeating
the renormalization procedureM times and define the prob-
ability densitypG(DR) of a particular dataset as the average
density of theM realizations:

pG(DR) =
1

M

M∑
k=1

πk
G(DR) (5)

where the symbolπk
G(DR) is the renormalized spectra rel-

ative to thek-th renormalization procedure.Ignaccolo and
De Michele(2010) show that already forM = 100 one ob-
tains a fairly stable average value and the fluctuations around
the average are negligible down to a frequency of∼100/N ,
with N being the total number of drops in the dataset. Al-
ternatively, the probability density of renormalized drop di-
ameter obtained with a single run of the renormalization
procedure significantly deviates from the averagepG(DR)

obtained from many realizations only for frequency values
.100/N . Hereby we will denote bypG(DR) the average
density for an infinite number of realizations of the renormal-
ization procedure since an analytical formula can be derived
for this quantity. Let us consider thek-th renormalization
procedure. The number of drops in the infinitesimal interval
dDR centered around the valueDR is

N πk
G(DR) dDR =

∑
I

NI pG,I (DR) dDR

+

∑
I

εk
I (DR) dDR (6)

where the sums are made over all renormalizations time in-
tervals. The first term of the right hand side of Eq. (6), not
depending on the parameterk, is the expected value from
the particular drop counts observed in the interval,NI is
the total drop count in the interval and the probability den-
sity pG,I (DR) is obtained frompG,I (D) using the second

relation in Eq. (3). The second term of Eq. (6), depend-
ing on the parameterk, expresses the statistical fluctuations
due to the quantization error of the disdrometers: a drop in
the j -th diameter class is assigned a random value of the
renormalized diameter in the range [(Dj − 1j/2− µI )/σI ,
(Dj +1j/2 +µI )/σI ]. Note that

∫
εk
I (DR)dDR = 0 so that

the integration with respect toDR of Eq. (6) simply returns
the total number of drops in the database considered. Sub-
stituting Eq. (6) into Eq. (5), and adopting the limitM → ∞

has the effect of removing the contributions of the statistical
fluctuations, second term of the right hand size of Eq. (6), so
that

pG(DR) =
1

N

∑
I

NI pG,I (DR). (7)

2.2 Calculation of renormalization parameters

Given a renormalization time interval, then-th instantaneous
momentMI,n of the probability densitypG,I (D) of drop di-
ameter at the ground is

MI,n =
def

+∞∫
0

Dn pG,I (D) dD. (8)

Since disdrometers classify drop diameters per class (quan-
tization error) the probability density is a step function,
Eq. (4), so that

MI,n =

∑
j

p
j
G,I

Dj,R∫
Dj,L

Dn dD =

∑
j

nI,j

NI 1j

×

(
Dj,R

)n+1
−

(
Dj,L

)n+1

n + 1
(9)

where the sum is taken over the diameter classes, indexj .
The symbolpj

G,I indicates the value ofpG,I (D) inside the
j -th diameter class, whilenI,j , 1j , Dj,L, andDj,R are re-
spectively the drop count, width, left limit, and right limit
of thej -th diameter class. FinallyNI is the total disdrome-
ter count inside the renormalization time interval considered.
The renormalization procedure adopted here requires the cal-
culation of two parameters: the meanµI and the standard de-
viationσI of drop diameters. In addition to the renormaliza-
tion parameters, the skewnessγI is evaluated and used as pa-
rameter to quantify the “equality” of instantaneous renormal-
ized spectra. All these parameters can be obtained from the
calculation of then-th instantaneous momentMI,n, Eq. (9),
as follows

µI = MI,1

σI =

√
MI,2 −

(
MI,1

)2

γI =
MI,3 + 2 (MI,1)

3
− 3 MI,1 MI,2[

MI,2 − (MI,1)
2
]3/2

. (10)
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2.3 Skewness as measure of invariance

To “measure” the invariance of two different instanta-
neous renormalized spectrapG,I (DR), one could consider
a statistical test of equality between sample distributions,
e.g.Kolmogorov-Smirnov. This approach is not feasible in
our case. (1) IfM is the total number of renormalization
intervals, one has to testM(M − 1)/2 couples of renormal-
ization time intervals, in our caseM = 6863⇒ 23 546 953
couples. (2) Statistical tests of equality have no transitive
property. If the couples of renormalization time intervals (I1,
I2) and (I2, I3) pass the test, nothing can be implied for the
couple (I1, I3). Thus one cannot simply use the number of
couples which have the same spectra as an indication of the
existence of an invariant distribution. (3) Inadequacy of tests
of equality between sample distributions. Let us suppose that
there is a universal distribution so that for each renormaliza-
tion time intervalpG,I (DR) =f (DR), then the instantaneous
spectrapG,I (D) are obtained fromf (DR) inverting the re-
lations in Eq. (3) with given valuesµth

I andσ th
I . The super-

script “th” indicates theoretical values. We cannot directly
observepG,I (DR) but only pG,I (D), and the use Eq. (10)
to have an estimate ofµth

I andσ th
I . Thus the possible sta-

tistical differences between the renormalized spectra of two
renormalization time intervals are due to (A) sampling fluctu-
ations, the number of drop counts being smaller than infinity;
(B) errors in estimating the theoretical valuesµth

I andσ th
I ,

which introduce consequently errors inpG,I (DR). How-
ever, tests of equality between sample distributions take in
account only (A) and not (B) as source of statistical differ-
ences. Therefore these tests are susceptible to failure even in
the case when an universal distribution exists.

Due to these limitations, we follow an alternative approach
and consider the skewnessγI as the parameter to characterize
the equality of instantaneous renormalized drop spectra. The
rationale for this choice are (1) the densitiespG,I (DR) have
all zero mean and unit variance in virtue of the renormal-
ization procedure. Thus, the skewness is the next standard-
ized moment which can be used to describe the distribution.
(2) The renormalization procedure, Eq. (3), preserves the
skewness: the instantaneous densitypG,I (D) andpG,I (DR)

have the same skewness. In fact

+∞∫
0

(
D − µI

σI

)k

pG,I (D) dD =

+∞∫
−

µI
σI

Dk
R σI

pG,I (σI DR + µI ) dDR =

+∞∫
−

µI
σI

Dk
R pG,I (DR) dDR (11)

wherek is any real number. Thus in general the renormal-
ization procedure of Eq. (3) preserves not only the skewness
(k = 3), but all the standardized moments (k integer).

3 Data processing

We use Joss Waldvogel disdrometer data at 1 min time res-
olution recorded in Darwin, Australia (12.45◦ S, 130.83◦ E,
2 m a.m.s.l.) for 97 consecutive days, from 4 November 2005
to 10 February 2006. This is the same database ofIgnac-
colo and De Michele(2010). Drop diameters are classified
in 20 different classes covering the range 0.3–5.6 mm. More-
over counts are corrected against the instrument dead time
(Sauvageot and Lacaux, 1995). The total number of min-
utes in this dataset is 139 680 of which only 26 595 ('19 %)
display at least one drop count. The total drop count is
2 943 435. Reflectivity maps are available for the time in-
tervals 9 November to 6 December 2005, and 6 January to
10 February 2006, allowing for stratiform versus convective
classification through the identification of the bright band. A
total of 19 stratiform and 33 convective time intervals were
identified with this method (see the online material inIgnac-
colo and De Michele, 2010). Parsing together all these inter-
vals we obtain the stratiform subset (4669 min of which 4264
with a non null drop count for a total of 407 277 drops) and
the convective subset (2931 min of which 2267 with a non
null drop count for a total of 1 077 488 drops).

We select the length of the renormalization time intervals
I to be 1 min, the same as the time resolution of our dataset.
One “artifact” affecting the renormalization procedure is the
statistical errors in calculating the mean and standard devia-
tion of the drop diameters for each renormalization time in-
terval. To mitigate this issue, we exclude minutes with counts
≤60, or with a number of occupied diameter classes<3 from
the renormalization procedure. The rationale behind these
threshold values is: (1) they identify a dynamical property
of the rainfall phenomenon as the quiescent time intervals,
intervals of sparse precipitation, with negligible contribution
to the overall precipitated volume (we refer the reader toIg-
naccolo et al., 2009for a detailed discussion). (2) They allow
a “reasonable” (law of large numbers) estimate of the mean
and standard deviation of drop diameters. Once these min-
utes are removed, we are left with 6863 non-quiescent min-
utes and 2 758 320 drops for the Darwin database (1844 non-
quiescent minutes and 355 545 drops for the stratiform sub-
set, and 1536 non-quiescent minutes and 1 066 299 drops for
the convective subset).

Another possible source of artifacts is the outliers drop
counts. With a choice of 1 min for the length of the renormal-
ization time interval and 20 diameter classes the drop counts
are mostly distributed in such a way to cover continuously
all the diameter classes in between an initial and a final class:
e.g. classes 4 to 16 have non zero counts and classes 1 to 3
and 17 to 20 are all empty. Occasionally there are class gaps,
that is two non adjacent classes with non zero count are sep-
arated by one or more classes with null counts. These gaps
are due to sampling fluctuations occurring for the classes
with small probability of occurrence (ifNI is the number
of drops inside the renormalization time interval, as rule of
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thumb probabilities of the order of 1/NI − 10/NI , NI � 10,
are going to be affected by sampling fluctuations). Thus one
can observe, e.g. a zero count for the classes 1 to 3, non zero
counts from class 4 to 7, a count of 1 on class 8 followed
by zeros from class 9 to 20. To identify no gap regions con-
taining the maximum count we proceed as follows. For each
1 min time interval with class gaps we seek the class with the
maximum count, and then we move both to the left and right
of this class until we either reach a zero count or the mini-
mum (1) or maximum (20) diameter class of the instrument.
We then calculate the fraction of the total number of drops
inside the renormalization time interval belonging to the no
gap region containing the maximum count. If the class gap
is due to sampling fluctuations we expect this fraction to be
large (e.g. 90 % or larger). For the Darwin database 1091 of
the 6863 ('16 %) renormalization time intervals have class
gaps. For 86 intervals, out of the 1091 with gaps, the no gap
region contains less than 90 % of the total drop count.

Even if the drop counts following a gap constitute a small
portion of total drop count inside a renormalization time in-
terval, their effects amount to (1) larger values for the pa-
rametersµI , σI , andγI (2) fatter left and right tail for the in-
stantaneous probability densities function at groundpG,I (D)

and pG,I (DR) and for the probabilitypG(DR) relative to
the entire data set. A full disclosure of these effects, and
the rationale for improving statistical accuracy by discard-
ing outliers drop counts is presented in the Appendix of the
companion paper (Ignaccolo and De Michele, 2012). Here,
we set to zero the outliers drop counts before applying the
renormalization procedure. The total number of drops of the
6863 non-quiescent renormalization time intervals consid-
ered is then reduced from 2 758 320 to 2 753 796,∼ −0.16 %
(from 355 545 to 354 743,∼ −0.22 %, for the stratiform sub-
set, and from 1 066 299 to 1 064 561,∼ −0.16 %, for the con-
vective subset).

4 Results

Figure1 shows the probability Pr(γI ) of having a renormal-
ized drop spectrumpG,I (DR) with skewnessγI for the en-
tire Darwin database and for the stratiform and convective
subsets. We see how the distribution for the entire dataset
is peaked around the skewness value 0.64. The probability
Pr(γI ) of the stratiform (convective) subset is more peaked
(flat) around a slightly larger (smaller) skewness value when
compared with the probability relative to the entire database
(solid line in Fig. 1). This figure also indicates the exis-
tence of a substantial degree of invariance which we quan-
tify using the concept of skewness class. A renormalization
time intervalI belongs to the skewness classr if the rel-
ative difference of the corresponding skewnessγI with re-
spect the most probable value 0.64 is within the percentage
range [(r − 1/2)× 100, (r + 1/2)× 100]: e.g. skewness class
zero (s0) impliesγI in the range [0.32, 0.96], skewness class

 0

 0.04

 0.08

 0.12

 0.16

 0.2

-1.6 -0.96 -0.32 0.32 0.96 1.6 2.24 2.88 3.52
γΙ

P
r(

γ Ι
)

s-3 s-2 s-1 s0 s+1 s+2 s+3 s+4

Fig. 1. The probability Pr(γI ) for the entire (full squares), stratiform
(dashed line), and convective (solid line) datasets at Darwin. The
shaded regions indicate different skewness classes.

plus-one (s + 1) impliesγI in the range [0.96, 1.60], while
skewness class minus-two (s− 2) implies γI in the range
[−0.96, −0.32]. Skewness classes are indicated in Fig.1
with shadowed regions separated by vertical lines.

Table 1 reports for each database (all, stratiform, and
convective) the percentagesI% of the database number of
renormalization time intervals belonging to a given skew-
ness class, and the percentaged% of the database total num-
ber of drops belonging to renormalization time intervals in a
given skewness class. We see how the percentageI% for the
skewness class s0 is∼64 % for the stratiform database but
∼51 % for the convective database. The other two skewness
classes which are appreciably populated are s + 1 and s− 1,
with s + 1 more predominant in the stratiform case and s− 1
more predominant in the convective case. However if we
consider the percentage ofd% of the total number of drops
in the databases, we see a more balanced repartition among
the skewness classes:d% is in the range 61–62 % for skew-
ness class s0, 14–18 % for s− 1, and 16–19 % for s + 1. The
origin of this balance is depicted in Fig.2 which illustrates
the occupancyO(NI , γI ), the number of couples(NI , γI )

inside a given box in theNIγI -plane. For the convective
database higher values of the occupancyO(NI , γI ) are ob-
served for skewness class s + 1, however the drop countNI

is not as high as for the skewness classes s0 and s− 1. More-
over, we notice how large (NI > 1000) drop counts occur al-
most exclusively for skewness classes s0, s + 1, and s− 1:
renormalized drop spectra with “extreme” skewness values
are rare and coupled with relatively small drop counts.

Next, we divide the entire, stratiform and convective Dar-
win databases in subsets according to the skewness class of
each renormalization time interval. We calculate the proba-
bility densitypG(DR) of the renormalized drop diameterDR

for each subsets using Eq. (7). Figure3 shows the results for
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Table 1. Classification of the databases (respectively all, stratiform, and convective) in classes of skewness using the number of time intervals
(I%), and number of drops (d%).

Database All Stratiform Convective

Class ofγ I% d% I% d% I% d%

s− 3 [−0.96,−1.60] 0.19 0.11 0 0 0.32 0.15
s− 2 [−0.96,−0.32] 1.74 1.14 0.21 0.08 2.40 1.99
s− 1 [−0.32, 0.32] 20.99 18.61 14.48 14.12 25.91 18.33
s0[0.32, 0.96] 57.57 61.44 64.31 62.06 51.23 61.13
s + 1[0.96, 1.60] 16.37 15.87 18.6 19.11 16.53 17.33
s + 2[1.60, 2.24] 2.66 2.48 1.95 3.67 2.93 1.99
s + 3[2.24, 2.88] 0.32 0.25 0.37 0.81 0.45 0.17
s + 4[2.88, 3.52] 0.11 0.07 0.05 0.12 0.19 0.06

 0  50  100  150  200  250  300  350  400
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Fig. 2. The occupancyO(NI , γI ) for the entire, stratiform, and
convective datasets at Darwin. Horizontal lines denote the skewness
classes.

each skewness class in comparison with the density of the
entire Darwin database. The classes s + 4 and s− 3 are not
shown because of poor statistics: s + 4 (s− 3) has 8 (13),
1 (0), and 3 (5) renormalization time intervals in the en-
tire, stratiform, and convective databases, respectively. For
each skewness class, the probability densitypG(DR) does
not depend on the particular dataset considered (entire, strat-
iform, or convective). The continuous line in all panels of
Fig. 3 is the probability densitypG(DR) of the whole Dar-
win dataset (including all skewness classes). Comparing this
density with the densities per skewness class, we see how
the class s0 essentially defines the central part of the whole
Darwin data set density, while the skewness classes of de-
greer ≷ 0 largely influence of the tails of the distribution.
The percentaged% of the database total number of drops be-
longing to renormalization time intervals in a given skewness
class determines the shape of the probability densitypG(DR)

of the entire dataset considered. From Table 1 we see that the
variability of the percentaged% with respect to the databases
considered is relatively small so that we expect a substantial
invariance in distribution which is precisely what is observed
in Ignaccolo and De Michele(2010).

The results depicted in Fig.1 indicate that the prob-
ability density pG(DR) relative to the skewness class s0
could be considered as a “standard” distributionS(DR): the
most probable distribution. Two main deviations from the
most common distribution are observed, one with smaller
(pG(DR) relative to the skewness class s− 1) and one with
larger skewness (pG(DR) relative to the skewness class
s + 1).

4.1 Sample variability of the skewness

The limited drop count observed inside each renormalization
time interval produces “errors” in the calculated value of the
parametersµI , σI , and γI . Even if there was an unique
renormalized spectrum one can expect the observed values
for the skewness inside a renormalization time interval to
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Fig. 3. The value of the probability densityPG(DR) for the skewness classes subsets obtained from the entire database (dashed line), the
stratiform database (solid squares), and the convective database (open squares). The label on the top right corner of each panel indicates the
skewness class: s0, s + 1, s + 2, s + 3, s− 1, s− 2. The solid line denotes the probability densityPG(DR) for the entire Darwin database.

show some variability. Is thus possible that part of the devia-
tion from the most probable valueγI = 0.64 shown in Fig.1
might be due to sampling errors. To test this possibility, we
use the standard distributionS(DR) to create an artificial se-
quence of drop counts which are supposed to have all the
same skewness. For each renormalization time interval we
extractNI renormalized diameters to obtain the simulated
(sim) instantaneous renormalized spectrumpsim

G,I (DR). Start-

ing from psim
G,I (DR), we use the meanµI and the standard

deviationσI of the renormalization time interval and invert
the relationships of Eq. (3) to obtain the drop counts taking
care of rejecting, if any occur, drops with a simulated diam-
eter D < 0.3 mm since this is the minimum drop diameter
detectable by a JW disdrometer.

We apply this procedure to the entire Darwin data set to
obtain an artificial sequence. We then calculate the skewness
values of the artificial sequence and compare its distribution
with that observed in reality. Figure4 shows the results. We
see how the distribution of skewness values of the artificial

sequence is much more peaked than the real one. For the
artificial sequence, almost 92 % of the renormalization time
intervals are inside the skewness class s0, with∼5 % and
∼3 % in the s− 1 and s + 1 skewness classes. Thus the ob-
served spread of skewness values depicted in Fig.1 can be
ascribed to sampling fluctuation only partially (compare 5 %
and 3 % with the values of %I in Table 1).

4.2 Relationship among mean, standard deviation, and
skewness

Our statistical description associates to each renormalization
time interval four parameters: the drop countNI , the mean
µI , the standard deviationσI and the skewnessγI of drop
diameters. Only the mean and the standard deviation are
used in the renormalization procedure of Eq. (3). More in
general these four parameters are related to each other albeit
in a statistical way. E.g.Ignaccolo and De Michele(2010)
show that there is an approximate linear relation between the
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the standard probability densityS(DR). The shaded regions indi-
cate different skewness classes.

average values of the parametersµI andσI associated with a
given rainfall rate class:< µI >∝< σI > where the symbol
< ··· > indicates the rainfall rate class average.

Hereby, we show that given a fixed range of values for the
mean diameterµI , the more negative (positive) is the skew-
ness class to which the renormalization time interval belongs
the smaller (larger) is the standard deviationσI of the drop
diameters. As for the result depicted in Fig.3, we divide the
entire Darwin dataset in subsets according to the skewness
class. Then we fix a range of values for the mean diameterµI

and for each subset we evaluate the median of the observed
values ofσI whenµI is in the given range. The results are
reported in Fig.5. The vertical lines depict the range ofµI

values considered. The median of theσI values is calculated
only when at least 10 time intervals are in the range consid-
ered. We see how the median value ofσI increases as the
skewness class goes from−2 to +2.

5 Conclusions

“Averaged” renormalized spectra relative to stratiform and
convective precipitation at Darwin (AU) possess a common
shape (Ignaccolo and De Michele, 2010). Is this result the
consequence of a more general invariance: the invariance of
single instantaneous renormalized spectra? Here, we have
investigated this possibility providing a positive answer ex-
tensively. Since instantaneous renormalized spectra have all
zero mean and unit variance, the skewness was taken as a
parameter to test invariance. The probability Pr(γI ) of skew-
ness values is peaked around the values 0.64. The dispersion
of skewness values around the most probable one is quanti-
fied in terms of skewness classes. The skewness class s0 cen-
tered around the most probable value contains∼57 % of the
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Fig. 5. The median value of the parameterσI for a given range
of µI . The results relative to five different skewness classes are
shown: s0 (solid line), s+1 (long-dashed line), s + 2 (short-dashed
line), s− 1 (dotted line), and s− 2 (dotted-dashed line). Vertical
lines indicate the different ranges of values ofµI used to calculate
the median.

renormalization time intervals corresponding to∼60 % of
the total drops in the database. The remaining renormaliza-
tion time intervals essentially belong to the skewness classes
s + 1 and s− 1 with only ∼2 % of intervals in the skewness
classes associated with the tails of the probabilityPr(γI ).
The results of this classification allow us (using Eq.7) to de-
fine the most common renormalized spectraS(DR) as the
density of renormalized drop diametersDR relative to the
subsets of renormalization time intervals inside the skewness
class s0. We use the most common distribution to produce an
artificial database and prove that part of the observed disper-
sion of the skewness around the most probable value is due to
sampling limitations since instantaneous spectra are derived
from 1 min drop counts (Fig.4). About 8 % of the renormal-
ization time intervals of the artificial database belong to the
skewness classes s + 1 and s− 1 compared to∼40 % for the
real data. In this sense one can estimate the sampling effects
to be responsible for approximatively one fifth (8/40) of the
observed dispersion of skewness values.

Another issue we have addressed here, is how the skew-
ness of renormalized instantaneous spectra depends on the
two renormalization parameters: mean and standard devia-
tion of drop diameters. For a given range of mean diameter
values, we have calculated the median of the observed values
of the standard deviation for each skewness class. We have
found that the median increases as the skewness class goes
from −2 to +2. That is given a value of the mean diameter,
larger (smaller) values of the skewness are associated with
large (small) values of the standard deviation.

The probability densitiespG(DR) for the databases of a
given skewness class are independent from the stratiform ver-
sus convective classification which is not a result expected
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a priori: stratiform and convective instantaneous spectra
with the “same” skewness value have the “same” renormal-
ized spectra. More in general the adoption of the skew-
ness as metric to measure the equality of renormalized spec-
tra can be useful in comparing instantaneous renormalized
spectra at different locations with different meteorological
regimes. E.g. in the companion paper (Ignaccolo and De
Michele, 2012) we will discuss the properties of instanta-
neous renormalized spectra in presence of orography. Strati-
form, convective and orographic are the three main kinds of
precipitation.
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