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Abstract. We investigate the variability of the shape of the as functional form for fitting the instantaneous DSDs. Al-
renormalized drop diameter instantaneous distribution usinghough other functional forms have been propogesir(gold

of the third order central moment: tils&ewnessDisdrome-  and Levin 1987, the gamma distribution is the one adopted
ter data, collected at Darwin Australia, are considered eithein the overwhelming majority of cases.

as whole or as divided in convective and stratiform precip- Aside from the search of a proper functional form to best
itation intervals. We show that in all cases the distribution describe the DSD, investigations have been made to link the
of the skewness is strongly peaked around 0.64. This allowigh variability of DSDs to few parameters following the in-
to identify a most common distribution of renormalized drop troduction of “renormalized” DSDs b$ekhon and Srivas-
diameters and two main variations, one with larger and ondava(1971). The goal of this type of analysis is to describe
with smaller skewness. The distributions shapes are indeperBSDs in terms of rainfall bulk variables (e.g. rainfall rate,
dent from the stratiform vs. convective classification. liquid water content, mean volume diameter) and/or identify
a possible “universal”, invariant in space and time, shape for
the renormalized DSD. So far many different renormaliza-
. tion procedures have been propos@dlifs, 1984 Sempere

1 Introduction Torres et al. 1994 Maki et al, 2001, Testud et al.200%,

. o Uijlenhoet et al. 2003 Campos et al.2006 Hazenberg et
The term drop size distribution (DSD) acknowledges theaI., 2017). The results are not conclusive in the sense that

stochastic nature of the occurrence of drop diameters. Inpar- . . " ; o i
. . ) .. "7an “universal” shape as not been identified, yet the existin
ticular the DSD is the concentratiagvi(D) of drops per unit b y 9

e evidences indicate that indeed the great variability observed
volume and unit diameter, namely in the distributions of drop sizes could be described with few
parameters.

A novel renormalization procedure has been introduced
recently bylgnaccolo et al(2009. The renormalized spec-
tra have shownlgnaccolo and De Miche]e2010 to posses
the following properties. (1) Synoptic origin invariance

N(D) = Ny p(D) (1)

whereNy is the number of drops per cubic meter gnd)
is the density per diameter millimetevlarshall and Palmer

(1948 used an exponential functional form for the density ' . . . ) .
(D). However it was soon clear that the exponential form for a fixed observation site (Darwin, AUS): convective and

was a result of the long (as long as 30 min) time interValsstratlform precipitation databases have same distribution.

. ) . (2) Rainfall rate invariance for a fixed observation site (Dar-
used for sampling drop diameters. The shape of DSDs IS\(/vin, AUS): databases built according to different rainfall rate

highly variable even inside a single shower, a property WhlchcIasses Tokay and Short1996 share a common distribu-

has ledJoss and Got{1978 to introduce the concept of in- | : ) ] o .
stantaneous DSDs (distributions sampled over 1-2 min timetlon' (3) Cross invariance: the distributions in (1) and (2) are

intervals).Ulbrich (1983 introduced the gamma distribution essentiallydentical

Published by Copernicus Publications on behalf of the European Geosciences Union.



320 M. Ignaccolo and C. De Michele: Skewness of instantaneous renormalized spectra

Do these results indicate the possible existence of a “uni{D*, Nf(D)). The bottom equality of Eq.2j is the rela-
versal” drop diameters distribution? In this paper we inves-tionship between the instantaneous DSD and the instanta-
tigate this matter. More in particular we want to discuss theneous probability density of diameter observed at the ground
possible invariance of instantaneous, 1 min sampling, renorpc.;(D). The parameted is the base area, in4nof the
malized drop spectra. In fact, the properties (1), (2), and (3)unit volume whereV; (D) is the concentration (for disdrom-
above mentioned, refer to “averaged” renormalized spectrater dataA is the catchment area of the instrumefit)is the
(see Sect2 for details). Are these results just due to “aver- length of the renormalization time interval in seconds, while
aging” or they reflect an intrinsic dynamical property of rain- N; is the total drop count during the time intenzal Finally,
fall? If the instantaneous renormalized spectra are all equab(D) is the falling speed, in nTg, of a drop of diameteD.
(strong equality> existence of a universal distribution) the  The renormalization procedure proposediggaccolo et
invariance of “averaged” renormalized specignéccolo et al. (2009 andlgnaccolo and De Michel@010 operates as
al,, 2009 and (gnaccolo and De Miche]e2010 is a triv- follows. For each renormalization time intenval
ial consequence of the existence of a “universal” distribu- D—
tion. If the instantaneous renormalized spectra manifest a{ D = Dg == 3)
high degree of variability not reducible to a definite criterion | 2G.1(P) = pG,1(Dr) = o1 pG,1 (01 D + 11)

(weak/no equality) the invariant properties reportetgimac- whereu; ando; are the mean, and standard deviation of the

colo et al.(2009 andlgnaccolo and De Michel{2019 are drop diameter observed at the ground. This renormalization

merely an accident. A third possibility is the occurrence of aprocedure operates a change of variable from the diameter
case in between these two extremes: moderate invariance. D to the renormalized diametddy having zero mean and

To answer these questions, we investigate the skewnesg,it variance. The instantaneous renormalized spectrum is
y of instantaneous drop size distributions in addition to thej, this case the instantaneous probability density; (Dx)
two renormalization parameters adoptedgnaccolo et al.  f the renormalized drop diameter. This density is obtained
(2009, the meany., and the standard deviation, of the  fom that of drop diameter observed at the groyng; (D)
drop diameter. In the case of strong equality the skewnesgging the second identity of E)( The rationale behind this
of renormalized instantaneous spectra is a fixed value, whilg,y5ice of Eq. 8) is that the time serie&Dy}, k=1, 2, 3, ...

in the case of weak/no equality one expects a flat distribu-¢ 4y diameters is derived from a stochastic process which
tion of skewness value. The work is organized as follows.,yoy|d e stationary if it were not for a variable mean and a

Section2 illustrates the methodology adopted for our analy- \,4riaple standard deviation (e.g. the works<okstinski and

sis, while Sect3 illustrates how data are processed prior to Jameson1997 and Smith, 1993 support this ansatz). If so

analysis. We present our results in Séaand then draw our e renormalization procedure removes the non-stationarity,

conclusion, Sect. 5. so that sequences of renormalized diameters relative to two
different datasets should have the same probability density
pc(Dg). This is precisely what is observed lignaccolo et

2 Methodology al. (2009 andlgnaccolo and De Michelg010).
o Disdrometers categorize drops in diameter classes. A drop
2.1 Renormalization in the j-th class has to be considered as the occurrence

. T ) of a drop with a random diameter valu2 uniformly dis-
Given a renormalization time intervadl of length typically  tiputed in the rangel); — A, /2, D;+A;/2], where D;

in the range 1-5 min, the renormalization procedures usuallyénd A; are the central value and the width of the class.
adopted in theraturey(/|ll|s, 1984 Sem.|oe_r_e Torres et al. e refer to this inaccuracy as the quantization error. Us-
1994 Maki et al, 2001 Testud et a].2001, Uijlenhoetetal.  jnq the first relationship of Eq.3}, the renormalized drop
2003 Campos et al2006 Hazenberg et al201]) operate @ gigmeterpy associated to a drop in the-th disdrometer
rescaling of both the diametér and the instantaneous drop ¢jas5 can be any number, with equal probability, in the inter-
size distribution\7 (D), the DSD relative to the drops inside 5 [(D; — A;/2— i) jor, (D +Aj/2+up)/or). Another
the renormalization time interval: consequence of the quantization error is that the probabil-
. . e ity density pg.; (D) of drop diameter, as estimated from dis-
v NI(D),)V _,:G ,(5)) = D/X1, Nj (D) = Ni(D) /Y1) .(2)  drometer drop counts, has to be considered as a step function,
Ni(D) = 3t =5
D) namely

The variablesX; and Y; are instantaneous bulk variables _ J i _ nrj :

(e.g. volume mean diameter and liquid water content respec?G’I(D) - Z]: PG, xj(D) = Z - xj(D) 4)
tively) or power functions of those bulk variables used to

obtain the renormalized diamet&r* and renormalized in- Wwhere the value of the indicator functign (D) is 1 if D
stantaneous spectr®;(D*). The existence of an invari- is inside the boundary Qf thgth diameter class, otherwise
ant spectrum would result in a “single” shape for the graphy;(D)=0. The symbo[vé,, indicates the value gbg (D)
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M. Ignaccolo and C. De Michele: Skewness of instantaneous renormalized spectra 321

inside the j-th diameter class, which is the ratio between relation in Eq. 8). The second term of Eq6), depend-
ny,j, the drop count in thg-th diameter class, and the prod- ing on the parametet, expresses the statistical fluctuations
uct betweem ;, the width of thej-th diameter class, and;, due to the quantization error of the disdrometers: a drop in
the total disdrometer count inside the renormalization timethe j-th diameter class is assigned a random value of the
interval considered. The instantaneous renormalized spectn@normalized diameter in the rang®[(— A;/2— ) /oy,
pc,1(Dg) is also a step function as it is obtained applying (D; +A;/2+u;)/o;]. Note thatfe’;(DR)dDR =0 so that
both relations of Eq.3) to Eq. @). the integration with respect tby of Eqg. (6) simply returns

An advantage of the renormalization procedure of BYj. ( the total number of drops in the database considered. Sub-
with respect classical renormalizations, EB), (s that one  stituting Eq. ) into Eq. 6), and adopting the limit/ — oo
can associate to a data set of disdrometer counts a sdwas the effect of removing the contributions of the statistical
quence of renormalized drop diameters, and thus defindluctuations, second term of the right hand size of B}.go
the corresponding renormalized spectra of the entire datéhat
set: mg(Dg). This association is done as follows. In- 1
side each renormalization time interval a random number?G (Dr) = v Z N pG.1(DR). (7)
uniformly distributed in the interval ; — A;/2—pu;)/oy, !
(Dj+Aj/2+up)/oq] is selected for each drop in theth 2.2 Calculation of renormalization parameters
diameter class. One problem with this procedure is that it
is not unique, so that each repetition creates a new Sequen(gven arenormalization time interval, theth instantaneous
of renormalized drop diameters and therefore a new probmomentM; , of the probability densityg,; (D) of drop di-
ability densityz(Dg). A possibility is that of repeating ameter at the ground is

the renormalization proceduid times and define the prob- +00
ab|I|t3_/ den5|typG(D1_g) o_fa particular dataset as the average My, = / D" pg.1(D) dD. @)
density of theM realizations: de

0

1 & x Since disdrometers classify drop diameters per class (quan-
pc(Dg) = M Z 7 (DR) (5) tization error) the probability density is a step function,
k=1 Eq. @), so that
where the symboiré(DR) is the renormalized spectra rel- Djr

De Michele (2010 show that already foM =100 one ob- Ni A;
tains a fairly stable average value and the fluctuations around
the average are negligible down to a frequency-@DO/N, ntl ntd
with N being the total number of drops in the dataset. Al- « (Dj,R) - (Dj,L) ©)
ternatively, the probability density of renormalized drop di- n+1

ameter obtained with a single run of the renormalization,ynere the sum is taken over the diameter classes, ifidex
procgdure significantly d?"i?tes from the averagg(Dr) The symbolpé ; indicates the value ofg (D) inside the
cibtalned from many regllzatlons only for frequency vaIuesj_,[h diameter class, while; ;, A, Dj.1, andD; ¢ are re-
<100/N. Hereby we will denote bys(Dg) the average

Jensity f nfini ber of realizati fth | spectively the drop count, width, left limit, and right limit
ensity foran infinite number of realizations of the renormal- ¢ the j-th diameter class. Finalli¥; is the total disdrome-

Ization proced_ure since an anglytlcal formula can pe qlerlveqer count inside the renormalization time interval considered.
for this quantity. Let us con3|der. tHeth r(.en.orrrllahze.ltlon The renormalization procedure adopted here requires the cal-
procedure. The number of drops_ in the infinitesimal mtervalCulation of two parameters: the meapand the standard de-
dDr centered around the valuey is viation o; of drop diameters. In addition to the renormaliza-
tion parameters, the skewnegsis evaluated and used as pa-
rameter to quantify the “equality” of instantaneous renormal-
ized spectra. All these parameters can be obtained from the
+ Z € (Dg) dDg (6) calculation of ther-th instantaneous moment; ,,, Eq. ©),

1 as follows

ative to thek-th renormalization procedurdgnaccolo and j nij
S Miw= Y b, [ prao= Y
J

Dj 1 /

N 7§ (Dg) dDg = Y Ni pG.1(Dg) dDg
1

where the sums are made over all renormalizations time in-[ 41 = M1

tervals. The first term of the right hand side of E6), (hot 2
depending on the parametey is the expected value from or = M2 — (M1.1)

the particular drop counts observed in the intervd}, is My +2 (My2)> — 3 My My

the total drop count in the interval and the probability den- | Y1 = 372
sity pg.;(Dg) is obtained frompg ; (D) using the second [M’~2 - (M12) ]

(10)
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322 M. Ignaccolo and C. De Michele: Skewness of instantaneous renormalized spectra

2.3 Skewness as measure of invariance 3 Data processing

To “measure” the invariance of two different instanta- We use Joss Waldvogel disdrometer data at 1 min time res-
neous renormalized spectyg ;(Dr), one could consider olution recorded in Darwin, Australia (12.45, 130.83E,
a statistical test of equality between sample distributions,2 ma.m.s.l.) for 97 consecutive days, from 4 November 2005
e.g. Kolmogorov-Smirnav This approach is not feasible in to 10 February 2006. This is the same databaskgmdic-
our case. (1) IfM is the total number of renormalization colo and De Micheld2010. Drop diameters are classified
intervals, one has to test (M — 1)/2 couples of renormal- in 20 different classes covering the range 0.3-5.6 mm. More-
ization time intervals, in our cas#f =6863= 23546953 over counts are corrected against the instrument dead time
couples. (2) Statistical tests of equality have no transitive(Sauvageot and Lacaut995. The total number of min-
property. If the couples of renormalization time intervdls ( utes in this dataset is 139 680 of which only 26 583.9 %)
D) and (2, I3) pass the test, nothing can be implied for the display at least one drop count. The total drop count is
couple (1, 13). Thus one cannot simply use the number of 2943 435. Reflectivity maps are available for the time in-
couples which have the same spectra as an indication of theervals 9 November to 6 December 2005, and 6 January to
existence of an invariant distribution. (3) Inadequacy of tests10 February 2006, allowing for stratiform versus convective
of equality between sample distributions. Let us suppose thatlassification through the identification of the bright band. A
there is a universal distribution so that for each renormaliza-total of 19 stratiform and 33 convective time intervals were
tion time intervalpg ;1 (Dg) = f (Dr), then the instantaneous  identified with this method (see the online materialgnac-
spectrapg, /(D) are obtained fromy (D) inverting the re-  colo and De Michelg2010. Parsing together all these inter-
lations in Eq. 8) with given valuesu! ando!". The super-  vals we obtain the stratiform subset (4669 min of which 4264
script “th” indicates theoretical values. We cannot directly with a non null drop count for a total of 407 277 drops) and
observepg, ;(Dg) but only pg ;(D), and the use Eq10)  the convective subset (2931 min of which 2267 with a non
to have an estimate ¢f!" ando". Thus the possible sta- null drop count for a total of 1077 488 drops).
tistical differences between the renormalized spectra of two \We select the length of the renormalization time intervals
renormalization time intervals are due to (A) sampling fluctu- 7 to be 1 min, the same as the time resolution of our dataset.
ations, the number of drop counts being smaller than infinity;One “artifact” affecting the renormalization procedure is the
(B) errors in estimating the theoretical value¥ andof",  statistical errors in calculating the mean and standard devia-
which introduce consequently errors p; ;(Dg). How-  tion of the drop diameters for each renormalization time in-
ever, tests of equality between sample distributions take inerval. To mitigate this issue, we exclude minutes with counts
account only (A) and not (B) as source of statistical differ- <60, or with a number of occupied diameter class&8from
ences. Therefore these tests are susceptible to failure even {fe renormalization procedure. The rationale behind these
the case when an universal distribution exists. threshold values is: (1) they identify a dynamical property
Due to these limitations, we follow an alternative approachof the rainfall phenomenon as the quiescent time intervals,
and consider the skewnegsas the parameter to characterize intervals of sparse precipitation, with negligible contribution
the equality of instantaneous renormalized drop spectra. Thep the overall precipitated volume (we refer the readdgto
rationale for this choice are (1) the densitjas ; (Dg) have  naccolo et a].2009for a detailed discussion). (2) They allow
all zero mean and unit variance in virtue of the renormal- a “reasonable” (law of large numbers) estimate of the mean
ization procedure. Thus, the skewness is the next standardind standard deviation of drop diameters. Once these min-
ized moment which can be used to describe the distributionytes are removed, we are left with 6863 non-quiescent min-
(2) The renormalization procedure, E®),(preserves the utes and 2 758 320 drops for the Darwin database (1844 non-
skewness: the instantaneous dengigy; (D) and pg,; (Dg) quiescent minutes and 355 545 drops for the stratiform sub-
have the same skewness. In fact set, and 1536 non-quiescent minutes and 1 066 299 drops for
+oo ) +oo the convective sgbset). _ _ _
D — uy k Another possible source of artifacts is the outliers drop
/ ( ) p6.1(D)dD = / D o1 counts. With a choice of 1 min for the length of the renormal-
—or ization time interval and 20 diameter classes the drop counts
are mostly distributed in such a way to cover continuously
oo all the diameter classes in between an initial and a final class:
k e.g. classes 4 to 16 have non zero counts and classes 1 to 3
pG.1 (01 Dk + pp) dDr = f Dk po.1(Dr) dDr (1) 0417 16 20 are all empty. Occasionally there are class gaps,
ok that is two non adjacent classes with non zero count are sep-
arated by one or more classes with null counts. These gaps
wherek is any real number. Thus in general the renormal-are due to sampling fluctuations occurring for the classes
ization procedure of Eq3]f preserves not only the skewness with small probability of occurrence (iV; is the number
(k=3), but all the standardized momentsitfteger). of drops inside the renormalization time interval, as rule of

O]
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thumb probabilities of the order of Ay — 10/N;, N; > 10, 0.2
are going to be affected by sampling fluctuations). Thus one
can observe, e.g. a zero count for the classes 1 to 3, non zero
counts from class 4 to 7, a count of 1 on class 8 followed
by zeros from class 9 to 20. To identify no gap regions con-
taining the maximum count we proceed as follows. Foreach _ 0.12
1 min time interval with class gaps we seek the class with the £
maximum count, and then we move both to the left and right * 0.08
of this class until we either reach a zero count or the mini-

mum (1) or maximum (20) diameter class of the instrument.

We then calculate the fraction of the total number of drops ~ 0.04
inside the renormalization time interval belonging to the no
gap region containing the maximum count. If the class gap 0 = R

0.16

is due to sampling fluctuations we expect this fraction to be -16 -0.96 -0.32 0.32 096 1.6 224 288 3.52
large (e.g. 90 % or larger). For the Darwin database 1091 of N

the 6863 {16 %) renormalization time intervals have class
gaps. For 86 intervals, out of the 1091 with gaps, the no gag 9. 1. The probability Prf;) for the entire (full squares), stratiform
region contains less than 90 % of the total drop count. (dashed Iing), a_nd _convec_:tive (solid line) datasets at Darwin. The
Even if the drop counts following a gap constitute a small shaded regions indicate different skewness classes.
portion of total drop count inside a renormalization time in-
terval, their effects amount to (1) larger values for the pa-
rametergy;, o7, andy; (2) fatter left and right tail for the in- ~ Plus-one (s +1) implieg; in the range [0.96, 1.60], while
stantaneous probability densities function at groppg (D)~ Skewness class minus-two{<2) implies y; in the range
and pg.;(Dg) and for the probabilityps (Dg) relative to [-0.96, —0.32]. Skewness classes are indicated in Eig.
the entire data set. A full disclosure of these effects, andWith shadowed regions separated by vertical lines.
the rationale for improving statistical accuracy by discard- Table 1 reports for each database (all, stratiform, and
ing outliers drop counts is presented in the Appendix of theconvective) the percentagé$o of the database number of
companion papergnaccolo and De Miche)012. Here, renormalization time intervals belonging to a given skew-
we set to zero the outliers drop counts before applying thehess class, and the percenta@e of the database total num-
renormalization procedure. The total number of drops of theber of drops belonging to renormalization time intervals in a
6863 non-quiescent renormalization time intervals consid-given skewness class. We see how the percertégor the
ered is then reduced from 2 758 320 to 2 753 796,0.16 % skewness class s0 1864 % for the stratiform database but
(from 355 545 to 354 743y —0.22 %, for the stratiform sub- ~51 % for the convective database. The other two skewness
set, and from 1 066 299 to 1 064 561-0.16 %, for the con- ~ classes which are appreciably populated are s +1 antl,s
vective subset). with s +1 more predominant in the stratiform case andls
more predominant in the convective case. However if we
consider the percentage @% of the total number of drops
4 Results in the databases, we see a more balanced repartition among
the skewness classa$% is in the range 61-62 % for skew-
Figure1 shows the probability Py¢) of having a renormal-  ness class s0, 14-18 % for-<l, and 16-19% for s+ 1. The
ized drop spectrunpg ; (Dg) with skewness/; for the en-  origin of this balance is depicted in Fig.which illustrates
tire Darwin database and for the stratiform and convectivethe occupancyO (N;, yr), the number of couplegV,, y;)
subsets. We see how the distribution for the entire datasenside a given box in theV;y;-plane. For the convective
is peaked around the skewness value 0.64. The probabilitglatabase higher values of the occupatay,, y;) are ob-
Pr(y;) of the stratiform (convective) subset is more peakedserved for skewness class s+ 1, however the drop cunt
(flat) around a slightly larger (smaller) skewness value whenis not as high as for the skewness classes s0 antl sviore-
compared with the probability relative to the entire databaseover, we notice how largeM; > 1000) drop counts occur al-
(solid line in Fig.1). This figure also indicates the exis- most exclusively for skewness classes s0O, s+1, and:s
tence of a substantial degree of invariance which we quanfenormalized drop spectra with “extreme” skewness values
tify using the concept of skewness class. A renormalizationare rare and coupled with relatively small drop counts.
time interval I belongs to the skewness classf the rel- Next, we divide the entire, stratiform and convective Dar-
ative difference of the corresponding skewnggswith re-  win databases in subsets according to the skewness class of
spect the most probable value 0.64 is within the percentageach renormalization time interval. We calculate the proba-
range [¢ — 1/2) x 100, ¢ +1/2) x 100]: e.g. skewness class bility density pg(Dg) of the renormalized drop diametBi
zero (s0) implieg; in the range [0.32, 0.96], skewness class for each subsets using E@)( Figure3 shows the results for
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324 M. Ignaccolo and C. De Michele: Skewness of instantaneous renormalized spectra

Table 1. Classification of the databases (respectively all, stratiform, and convective) in classes of skewness using the number of time intervals
(1%), and number of dropgi/#o).

Database All Stratiform Convective
Class ofy 1% d% 1% d% 1% d%
s—3[-0.96,-1.6Q 0.19 0.11 0 0 0.32 0.15
s—2[-0.96,-0.32 1.74 1.14 0.21 0.08 2.40 1.99
s—1[-0.32,0.32 20.99 18.61 14.48 14.12 2591 18.33
s0[0.32, 0.96 5757 61.44 64.31 62.06 51.23 61.13
s+1[0.96, 1.60 16.37 15.87 18.6 19.11 16.53 17.33
s+2[1.60, 2.24 2.66 2.48 1.95 3.67 2.93 1.99
s+3[2.24,2.88 0.32 0.25 0.37 0.81 0.45 0.17
s+4[2.88, 3.52 0.11 0.07 0.05 0.12 0.19 0.06

each skewness class in comparison with the density of the

0 50 100 150 200 250 300 350 400 entire Darwin database. The classes s+4 an@sare not

N shownbecauseofpoors'gatisftics:_s+4~(3)has_8(13),

588 all database s+4 1 (0), an_d 3 (5 renormahz_atlon time intervals m_the en-

294 s+3 tire, stratiform, and convective databases, respectively. For

: s+2 each skewness class, the probability dengigy( D) does
1.6 . . .
Vi 0.96 s+l _not depend on thg particular dataset coq5|d¢red (entire, strat-

0.32 s0 |f9rm, or convect|ve.): The cpntmuous line in all panels of
_0'32 s-1 F|_g. 3is the probal_)lllty density (Dr) of the whole D_ar- _
-0.96 s-2 win d_ataS(_et (mcludlng_a_ll skewness classes). Comparing this

1 6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ s-3 density with the densities per skewness class, we see how

e the class s0 essentially defines the central part of the whole

3.52 P e e e Darwin data set density, while the skewness classes of de-

288 stratiform database s+ greer =0 largely influence of the tails of the distribution.

2.24 s*3 The percentagé% of the database total number of drops be-

1.6 s*2 longing to renormalization time intervals in a given skewness
Y, 0.96 st class determines the shape of the probability densjtyD )

0.32 t s0 of the entire dataset considered. From Table 1 we see that the
-0.32 st variability of the percentag@% with respect to the databases
-0.96 52 considered is relatively small so that we expect a substantial

16000 %3 invariance in distribution which is precisely what is observed

in Ignaccolo and De Michel@010.

8.52 e e T T ey The results depicted in Figl indicate that the prob-

2.88 o3 ability density pg(Dg) relative to the skewness class sO

2.24 s2 could be considered as a “standard” distributitiz): the

16 o1 most probable distribution. Two main deviations from the
Yi 0.96 <0 most common distribution are observed, one with smaller

0.32 o1 (pc(Dg) relative to the skewness class-4) and one with
-0.32 o2 larger skewnesspi(Dg) relative to the skewness class
-0.96 s s+1).

1
0 1000 2000 3000 4000

N 4.1 Sample variability of the skewness
[

Fig. 2. The occupancyO(N;. y;) for the entire, stratiform, and The I_|m|ted (ljropdcount 9bserv:ad |nhS|de ?a(:lh rednorznahz]:att!on

convective datasets at Darwin. Horizontal lines denote the skewnesdMe INtérval produces “errors” in t. e calculated va ue_o the

classes. parametersu;, o7, andy;. Even if there was an unique
renormalized spectrum one can expect the observed values
for the skewness inside a renormalization time interval to
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6 -4 -2

Fig. 3. The value of the probability densit§; (Dg) for the skewness classes subsets obtained from the entire database (dashed line), the
stratiform database (solid squares), and the convective database (open squares). The label on the top right corner of each panel indicates tl
skewness class: sO, s+ 1, s+2,s+3,55 s— 2. The solid line denotes the probability densfyy (D) for the entire Darwin database.

show some variability. Is thus possible that part of the devia-sequence is much more peaked than the real one. For the
tion from the most probable valyg =0.64 shown in Figl artificial sequence, almost 92 % of the renormalization time
might be due to sampling errors. To test this possibility, weintervals are inside the skewness class s0, wif? and
use the standard distributidii D) to create an artificial se- ~3% in the s—1 and s+ 1 skewness classes. Thus the ob-
quence of drop counts which are supposed to have all theerved spread of skewness values depicted in Faan be
same skewness. For each renormalization time interval weascribed to sampling fluctuation only partially (compare 5%
extract N; renormalized diameters to obtain the simulated and 3 % with the values of %in Table 1).
(sim) instantaneous renormalized spectfl; (Dg). Start-
ing from png}(DR), we use the meap; and the standard 4.2 Relationship among mean, standard deviation, and
deviationo; of the renormalization time interval and invert skewness
the relationships of Eq.3jJ to obtain the drop counts taking
care of rejecting, if any occur, drops with a simulated diam- Our statistical description associates to each renormalization
eter D <0.3mm since this is the minimum drop diameter time interval four parameters: the drop cowit, the mean
detectable by a JW disdrometer. ur, the standard deviatios; and the skewnesg; of drop

We apply this procedure to the entire Darwin data set todiameters. Only the mean and the standard deviation are
obtain an artificial sequence. We then calculate the skewnesssed in the renormalization procedure of E8). (More in
values of the artificial sequence and compare its distributiorgeneral these four parameters are related to each other albeit
with that observed in reality. Figuseshows the results. We in a statistical way. E.glgnaccolo and De Michelé010
see how the distribution of skewness values of the artificialshow that there is an approximate linear relation between the
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Fig. 4. The probability Prg;) for the entire dataset at Darwin (solid  Fig. 5. The median value of the parameter for a given range
squares) and for an artificial realization (dashed line) created usingf ;. The results relative to five different skewness classes are
the standard probability densif{Dg). The shaded regions indi- shown: sO (solid line), 1 (long-dashed line), s +2 (short-dashed

cate different skewness classes. line), s—1 (dotted line), and s 2 (dotted-dashed line). Vertical
lines indicate the different ranges of valuesugf used to calculate
the median.

average values of the parametgisando; associated with a
given rainfall rate classx u; >o< o7 > where the symbol
< --- > indicates the rainfall rate class average. renormalization time intervals corresponding +&0 % of
Hereby, we show that given a fixed range of values for thethe total drops in the database. The remaining renormaliza-
mean diametep;, the more negative (positive) is the skew- tion time intervals essentially belong to the skewness classes
ness class to which the renormalization time interval belongss + 1 and s- 1 with only ~2 % of intervals in the skewness
the smaller (larger) is the standard deviatignof the drop  classes associated with the tails of the probabilty(y;).
diameters. As for the result depicted in Fiywe divide the  The results of this classification allow us (using Ejto de-
entire Darwin dataset in subsets according to the skewnesiine the most common renormalized specf@z) as the
class. Then we fix a range of values for the mean diamgter density of renormalized drop diameteby; relative to the
and for each subset we evaluate the median of the observeglibsets of renormalization time intervals inside the skewness
values ofo; whenu; is in the given range. The results are class sO. We use the most common distribution to produce an
reported in Fig5. The vertical lines depict the range pf artificial database and prove that part of the observed disper-
values considered. The median of thevalues is calculated sion of the skewness around the most probable value is due to
only when at least 10 time intervals are in the range considsampling limitations since instantaneous spectra are derived
ered. We see how the median valueogfincreases as the from 1 min drop counts (Figd). About 8 % of the renormal-
skewness class goes froa? to +2. ization time intervals of the artificial database belong to the
skewness classes s+ 1 and $ compared to~40 % for the
real data. In this sense one can estimate the sampling effects
5 Conclusions to be responsible for approximatively one fifth (8/40) of the
observed dispersion of skewness values.
“Averaged” renormalized spectra relative to stratiform and Another issue we have addressed here, is how the skew-
convective precipitation at Darwin (AU) possess a commonness of renormalized instantaneous spectra depends on the
shape Ignaccolo and De Miche]e2010. Is this result the two renormalization parameters: mean and standard devia-
conseguence of a more general invariance: the invariance dfon of drop diameters. For a given range of mean diameter
single instantaneous renormalized spectra? Here, we hawealues, we have calculated the median of the observed values
investigated this possibility providing a positive answer ex- of the standard deviation for each skewness class. We have
tensively. Since instantaneous renormalized spectra have albund that the median increases as the skewness class goes
zero mean and unit variance, the skewness was taken asfeom —2 to +2. That is given a value of the mean diameter,
parameter to test invariance. The probabilityyPy(of skew-  larger (smaller) values of the skewness are associated with
ness values is peaked around the values 0.64. The dispersidarge (small) values of the standard deviation.
of skewness values around the most probable one is quanti- The probability densitiep;(Dr) for the databases of a
fied in terms of skewness classes. The skewness class sO cagiven skewness class are independent from the stratiform ver-
tered around the most probable value contai3 % of the  sus convective classification which is not a result expected
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a priori: stratiform and convective instantaneous spectragnaccolo, M., De Michele, C., and Bianco, S.: The drop-like nature
with the “same” skewness value have the “same” renormal- of rain and its invariant statistical properties, J. Hydrometeorol.,
ized spectra. More in general the adoption of the skew- 10, 79-95, 2009. _ S
ness as metric to measure the equa"ty of renormalized speC].OSS, J. and Gori, E. G.: Shapes of ralndrop size distributions, J.
tra can be useful in comparing instantaneous renormalize?( Appl. '\lf_etiog"" 12' 31054_1061,& 127.8]:' _ os of
spectra at different locations with different meteorological KO"StNsKi, A. B. and Jameson, A. R.. Fluctuation properties o

. . . precipitation, Part I: On Deviations of Single-Size Drop Counts
regimes. E.g. in the companion papégn@accolo and De

; S . . from the Poisson Distribution, J. Atmos. Sci., 54, 2174-2186,
Michele, 20129 we will discuss the properties of instanta- ;997

neous renormalized spectra in presence of orography. Stratimaki’ M., Keenan, T. D., Sasaki, Y., and Nakamura, K.: Charac-

form, convective and orographic are the three main kinds of  teristics of the raindrop size distribution in tropical continental

precipitation. squall lines observed in Darwin, Australia, J. Appl. Meteorol.,
40, 1393-1412, 2001.
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