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Abstract. Drought events develop in both space and time
and they are therefore best described through summary
joint spatio-temporal characteristics, such as mean duration,
mean affected area and total magnitude. This paper ad-
dresses the issue of future projections of such characteris-
tics of drought events over France through three main re-
search questions: (1) Are downscaled climate projections
able to simulate spatio-temporal characteristics of meteoro-
logical and agricultural droughts in France over a present-
day period? (2) How such characteristics will evolve over the
21st century? (3) How to use standardized drought indices
to represent theoretical adaptation scenarios? These ques-
tions are addressed using the Isba land surface model, down-
scaled climate projections from the ARPEGE General Circu-
lation Model under three emissions scenarios, as well as re-
sults from a previously performed 50-yr multilevel and mul-
tiscale drought reanalysis over France. Spatio-temporal char-
acteristics of meteorological and agricultural drought events
are computed using the Standardized Precipitation Index and
the Standardized Soil Wetness Index, respectively, and for
time scales of 3 and 12 months. Results first show that the
distributions of joint spatio-temporal characteristics of ob-
served events are well simulated by the downscaled hydro-
climate projections over a present-day period. All spatio-
temporal characteristics of drought events are then found to
dramatically increase over the 21st century, with stronger
changes for agricultural droughts. Two theoretical adaptation
scenarios are eventually built based on hypotheses of adap-
tation to evolving climate and hydrological normals, either

retrospective or prospective. The perceived spatio-temporal
characteristics of drought events derived from these theoret-
ical adaptation scenarios show much reduced changes, but
they call for more realistic scenarios at both the catchment
and national scale in order to accurately assess the combined
effect of local-scale adaptation and global-scale mitigation.

1 Introduction

Global climate projections for Europe under the A1B green-
house gases emissions scenario (Nakićenovíc et al., 2000)
suggest a drying of the southern part of the continent, with
a large decrease in both precipitation and soil moisture be-
tween the end of the 20th century and the end of the 21st
century (Meehl et al., 2007b; Dai, 2011a). When looking
at the sub-continental scale and more specifically at France,
it appears that while the decrease in summer precipitation
is shared by the majority of general circulation models
(GCMs), there is a large uncertainty in the evolution of win-
ter precipitation over this country (Christensen et al., 2007b).
However,Wang(2005) found that a majority of GCMs pre-
dict a soil moisture decrease over the major part of France
under the A1B emissions scenario all year round, but more
pronounced in summer.Burke et al.(2006) found a decrease
in the Palmer Drought Severity Index (PDSI,Palmer, 1965)
for most of Europe, including France, from simulations with
the Hadley Centre GCM under the A2 emissions scenario.
Sheffield and Wood(2008) also found a significant increase
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in the frequency of long-term soil moisture deficits over this
area based on a multi-model and multi-scenario analysis. Us-
ing two multimodel ensembles,Burke and Brown(2008)
showed that Southern Europe (including France) should be
subject to an increase in moderate drought as a result of
a doubling in CO2 concentrations.

Regional climate projections performed over Europe con-
firmed this future drying trend over France. Based on re-
sults from the PRUDENCEproject (Christensen et al., 2007a),
Beniston et al.(2007) found an increase in the annual maxi-
mum length of dry spells for the French Mediterranean area
for the 2080s under the A2 emissions scenario, andBlenkin-
sop and Fowler(2007) found an increase in the frequency
of long droughts (defined as negative 6-month cumulative
precipitation anomalies) over most of Western Europe. Us-
ing multi-model regional projections under the A1B scenario
from the more recent ENSEMBLES project (van der Lin-
den and Mitchell, 2009), Heinrich and Gobiet(2012) found
a significant decrease, between 1961–1990 and 2021–2050,
in the 3-month Standardized Precipitation Index (SPI3,Mc-
Kee et al., 1993) in summer over a region covering most
of France. They also found a similarly significant decrease
for both self-calibrated versions of the Palmer Z-Index and
Palmer Drought Severity Index (Palmer, 1965; Wells and
Goddard, 2004) for all seasons except winter. The length,
magnitude and area of drought events identified with Palmer
indices are all projected to increase, together with the fre-
quency of SPI3 and SPI12 events, still according toHeinrich
and Gobiet(2012).

At the scale of France, results from the IMFREX project
(IMFREX, 2005; Planton et al., 2008) showed a 50 % in-
crease in the maximum number of consecutive dry days in
summer between the end of the 20th century and the end of
the 21st century, and for the most part of the country as simu-
lated by two regional climate models under the A2 emissions
scenario. All the above mentioned studies strongly suggest
a decrease in water resource availability over France, but they
lack some detailed information that would help define adap-
tation strategies for France, in terms of spatial and temporal
resolution.

The CLIM SEC1 project (Soubeyroux et al., 2011) looked
at the evolution of spatio-temporal characteristics of drought
events in France by (1) forcing a high-resolution land-surface
scheme and a hydrogeological model with various down-
scaled climate projections over France and (2) computing
standardized drought indices based on precipitation, soil
moisture and river flows (seeVidal et al., 2010b). Joint
spatio-temporal characteristics are particularly useful when
trying to understand the development of drought events and
such analyses are being performed more often, mainly for the
assessment of past events (Andreadis et al., 2005; Sheffield
et al., 2009; Vidal et al., 2010b; van Huijgevoort et al., 2011;
Corzo Perez et al., 2011). Moreover, standardized drought

1http://www.cnrm-game.fr/projet/climsec

indices like the SPI proved particularly adapted to joint spa-
tial and temporal analyses (Lloyd-Hughes, 2012).

This paper presents some results from the CLIM SEC

project and addresses three research questions:

1. Are downscaled climate projections able to simulate
spatio-temporal characteristics of meteorological and
agricultural droughts in France over a present-day
period?

2. How such characteristics will evolve over the 21st
century?

3. How to use standardized drought indices to represent
theoretical adaptation scenarios?

The first question is addressed by considering the spatio-
temporal characteristics of drought events from a previously
performed reanalysis over a 50-yr period as a reference for
past droughts in France (Vidal et al., 2010b). This drought
reanalysis has been performed at different levels of the hy-
drological cycle (precipitation and soil moisture, considered
here, but also river flows) and at different time scales (only
3 and 12 months are considered here) with standardized
indices similar to the SPI. It has been built thanks to the
Safran high-resolution atmospheric reanalysis (Vidal et al.,
2010a) which was used to force the Isba Land Surface Model
(LSM) (Noilhan and Mahfouf, 1996). The drought reanaly-
sis is compared here to a corresponding drought analysis de-
rived from a present-day control run of the ARPEGE GCM
(Gibelin and D́eqúe, 2003), downscaled with a weather-type
method (Boé et al., 2006), and used to force the Isba LSM.

The second question about the evolution of spatio-
temporal drought characteristics is studied through
downscaled 21st century transient runs of the same
ARPEGE GCM under 3 different emissions scenarios,
which were also used to force the Isba land surface scheme.
The evolution of standardized indices allowed us to derive
spatio-temporal characteristics of drought events during the
whole 21st century.

In order to address the third question, theoretical adap-
tation scenarios were constructed from GCM-derived time
series of standardized indices. The effect of these adapta-
tion scenarios on spatio-temporal drought characteristics can
thus be assessed and compared to the choice of the emissions
scenarios.

Section2 presents the Safran atmospheric reanalysis over
France, the downscaled climate projections and the Isba
LSM. Section3 describes the methods used for identifying
and characterizing spatio-temporal drought events, and in-
troduces the theoretical adaptation scenarios developed for
this study. GCM-based drought characteristics are validated
against characteristics from the reanalysis over the present-
day period in Sect.4, and their evolution throughout the 21st
century is described in Sect.5, as conditioned by both emis-
sions scenarios and theoretical adaptation scenarios. Results
are finally discussed in Sect.6.
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Table 1. Difference in mean annual temperature (in◦C) averaged
over France of two future time slices under three emissions scenar-
ios with respect to the 1961–1990 control run (adapted fromPaǵe
et al., 2008).

B1 A1B A2

2046–2065 +1.3 +2.1 +2.2
2081–2100 +1.8 +2.7 +3.6

2 Data

2.1 The Safran atmospheric reanalysis

Safran is an atmospheric analysis system that computes ver-
tical profiles of the atmosphere for climatically homoge-
neous zones, by combining large-scale fields and ground ob-
servations through Optimal Interpolation. The algorithm, its
validation and its application over France are detailed by
Quintana-Segúı et al.(2008). Safran hourly outputs of liquid
and solid precipitation, air temperature, specific humidity,
wind speed, visible and infrared radiations are interpolated
from 605 climatically homogenous zones over France onto
a 8-km regular grid (8602 cells) to provide atmospheric forc-
ings for land surface schemes.Vidal et al. (2010a) have ap-
plied and thoroughly validated Safran over the period 1958–
2008. In particular, reanalysed precipitation has been found
of high quality over the whole period compared to both
dependent and independent observations. This 50-yr high-
resolution atmospheric reanalysis over France is thus used in
the present study as a reference for present-day precipitation
data.

2.2 Downscaled climate projections

21st century simulations from the Ḿet́eo-France ARPEGE
GCM are used in the present study. This variable resolution
atmospheric model, fully described byGibelin and D́eqúe
(2003), has a stretched grid with a pole over the Western
Mediterranean with a 50 km resolution over France. This par-
ticular version (V4.6) has been recently used in the ENSEM-
BLES project (van der Linden and Mitchell, 2009). Four
simulations are considered in this study: (1) a control run
over the 1958–2000 period, and (2) three 21st-century sim-
ulations starting on the first of January 2000 and forced by
three different greenhouse gas emissions scenarios. Sea sur-
face temperature forcings are taken from the CNRM-CM3
coupled model (Salas-Ḿelia et al., 2005) used in the Cou-
pled Model Intercomparison Project phase 3 (CMIP3,Meehl
et al., 2007a). Radiative forcings (greenhouse gases and sul-
fate aerosol concentrations) are based on observations till
2000, then on one of the three emissions scenarios (B1, A1B
and A2) taken from the Special Report on Emissions Scenar-
ios (SRES,Nakićenovíc et al., 2000).

Table 2. The same as Table1, but for mean annual precipitation
(in mm). 1961–1990 values are close to 910 mm in the reanalysis
dataset.

B1 A1B A2

2046–2065 −70 −90 −130
2081–2100 −130 −210 −230

The ARPEGE simulations have been further statistically
downscaled with a weather type method initially developed
by Boé et al.(2006) for the Seine basin and later extended
to the whole of France (Boé, 2007; Boé et al., 2009). This
downscaling method has been compared to other statistical
and dynamical methods in terms of hydrological impacts
over the Seine basin (Boé et al., 2007) as well as over French
Mediterranean basins (Quintana-Segúı et al., 2010, 2011).
Outputs from the statistical downscaling method are grid-
ded data with the same spatial and temporal resolution as the
Safran reanalysis, and for the same variables.

Paǵe et al.(2008) give an overall assessment of climate
changes derived from the statistically downscaled projections
used here, and France-averaged annual changes in temper-
ature and precipitation for the middle and end of the 21st
century are recalled, respectively in Tables1 and2. Table1
shows a growing increase in temperature throughout the 21st
century, more pronounced for higher-range emissions sce-
narios. Seasonal variations also indicate a larger warming
in summer for the more distant time slice (seePaǵe et al.,
2008). Similarly, Table2 shows a drying trend through the
21st century, once again more pronounced for higher-range
emissions scenarios. These statistically downscaled climate
projections from ARPEGE V4.6 are currently being dissem-
inated to the French impact community through the DRIAS
project (Lémond et al., 2011).

Outputs considered here for drought assessment are
monthly gridded total precipitation for the control run and
each of the 3 climate projections.

2.3 The Isba land surface model

The land surface scheme Isba computes water and energy
budgets at the soil-vegetation-atmosphere interface (Noilhan
and Mahfouf, 1996). This scheme is used in Ḿet́eo-France
numerical weather prediction and climate models. The con-
figuration of this highly modular scheme is the same as the
one used byHabets et al.(2008) andVidal et al.(2010b) for
long-term simulations over France, with a 8-km resolution
of soil and vegetation parameters. Isba is based on a three-
layer force-restore model and explicit multilayer snow model
and it includes subgrid runoff and drainage schemes. Soil
and vegetation parameters are derived from the Ecoclimap
database (Masson et al., 2003). Safran, Isba and the Mod-
cou hydrogeological model constitute a hydrometeorologi-
cal suite that is used for drought and low-flow analysis, in
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reanalysis context or medium-range and seasonal forecast-
ing (Soubeyroux et al., 2010). The Isba output relevant for
the present study is the Soil Wetness Index (SWI) defined as

SWI =
wtot − wwilt

wfc − wwilt
(1)

wherewtot is the volumetric water content of the simulated
soil column, wfc the water content at field capacity and
wwilt the water content at wilting point. Soil moisture prod-
ucts from Isba have been extensively validated against in-
situ measurements (Habets et al., 1999; Paris Anguela et al.,
2008; Albergel et al., 2008) as well as various satellite prod-
ucts (Baghdadi et al., 2007; Rüdiger et al., 2009).

Isba had been previously run with forcings from the 1958–
2008 Safran reanalysis in order to derive a 50-yr SWI ref-
erence dataset over the Safran 8-km grid (seeVidal et al.,
2010b). In this study, Isba has also been run over France with
forcings from each downscaled climate projection. Snow-
pack, soil temperature and soil moisture values have been ini-
tialised using a 2-yr spin-up (first year repeated three times).

Outputs used here are monthly gridded SWI values for the
control run and each of the 3 climate projections.

3 Methods

3.1 Drought characterisation

3.1.1 Drought indices

A large number of drought indices have been developed over
the last decades (seeMishra and Singh, 2010, for a recent re-
view) in order to characterize one of the three main drought
types (meteorological, agricultural and hydrological) as de-
fined byWilhite and Glantz(1985). However, only some of
them have been used in a climate change context. The main
meteorological drought index used in climate change impact
studies is the Standardized Precipitation Index (SPI,McKee
et al., 1993), which transforms distributions of cumulative
precipitation overn months to a standard normal distribu-
tion. It has been recently promoted by the World Meteoro-
logical Organization as the reference index for meteorolog-
ical droughts (Hayes et al., 2011), and it has been applied
to various parts of the world, like India (Mishra and Singh,
2009), Greece (Loukas et al., 2008), Korea (Kwak et al.,
2011), the USA (Wang et al., 2011) or the UK (Vidal and
Wade, 2009). For assessing climate change impacts on agri-
cultural droughts, the most commonly used index is based on
modelled soil moisture percentiles, either directly from GCM
runs at the global scale (Sheffield and Wood, 2008) or from
off-line runs of land surface schemes at smaller scales (Wang
et al., 2009, 2011; Mishra et al., 2010).

As shown byVidal et al. (2010b), characterizing drought
events can lead to quite different results depending on both
the variable and the time scale considered for building

standardized indices. The time scale corresponds to the du-
ration over which the total precipitation (in the case of SPI)
is standardized. More and more climate change impact stud-
ies take advantage of the potential of SPI to work at different
time scales (see for exampleDubrovsky et al., 2008; Vidal
and Wade, 2009; Vasiliades et al., 2009; Mishra and Singh,
2009; Heinrich and Gobiet, 2012), and we chose here to look
at time scales of 3 and 12 months for characterizing short
and long droughts, respectively. Moreover, we considered not
only meteorological droughts through total precipitation and
the SPI, but also agricultural droughts through soil moisture
and the Standardized Soil Wetness Index (SSWI). This in-
dex is built through a standardisation method similar to the
one used for SPI, simply replacing total precipitation overn

months by SWI values – computed by the Isba land-surface
model – averaged overn months. It allows to assess changes
in droughts as a consequence not only of changes in pre-
cipitation like the SPI but also changes on other variables
– among them temperature – through the computation of
water and energy budgets at the soil-vegetation-atmosphere
interface.

For each climate projection, the standardisation is per-
formed with reference to the control run climate in order to
remove biases in GCM-derived control climate. The refer-
ence period for standardisation is 1961–1990 (actually 1 Au-
gust 1961 to 31 July 1991) in line withWMO (2007) recom-
mandations. For reanalysis data, the standardisation is per-
formed with reference to the same period, which is different
from Vidal et al. (2010b) who used the whole 1958–2008
reanalysis period. For both the SPI and the SSWI, the stan-
dardisation procedure makes use of kernel density estimates,
notably in order to overcome issues of bimodal and bounded
distributions of SWI (seeVidal et al., 2010b, for computa-
tion details). Standardized indices are computed locally for
all 8462 grid cells over continental France.

To summarize, all 4 combinations of index and time scale
(SPI3, SPI12, SSWI3, SSWI12) have been computed for
(1) the 1958–2008 Safran-Isba reanalysis fields and (2) each
of the 3 climate projections, taken each as the combination of
the common control run and a future run in order to preserve
the temporal continuity of events over the year 2000.

3.1.2 Spatio-temporal drought identification and
description

Many climate change impact studies focused on changes
in the probability of drought indices to be under a given
threshold at the local scale (Ghosh and Mujumdar, 2007;
Dubrovsky et al., 2008; Strzepek et al., 2010; Jung and
Chang, 2012). Others attempted to assess changes in statis-
tics of local-scale drought event characteristics, like the num-
ber of events (Hayhoe et al., 2007) or its combined effect
with the average total magnitude of these events (Vidal and
Wade, 2009). In parallel, some studies looked at the areal
extent of drought as a spatial characteristic, but did not
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identify independent drought events (Sheffield and Wood,
2008; Mishra et al., 2010).

Some recent work however attempted to examine the evo-
lution of spatio-temporal characteristics of drought events.
Burke and Brown(2010) for example made use of prede-
fined UK regions over which spatio-temporal characteristics
of events (area in drought, duration and total magnitude)
are computed from 12-month precipitation deficits.Mishra
and Singh(2009) built severity-area-frequency curves based
on SPI over a river basin in India. Still, in spite of exist-
ing spatio-temporal clustering algorithms applied to histor-
ical droughts (Andreadis et al., 2005; Lloyd-Hughes, 2012;
Corzo Perez et al., 2011), no study looked at the evolution
of such joint characteristics of individual drought events de-
rived from hydroclimate projections.

Here we apply the clustering algorithm described byVidal
et al.(2010b) and previously applied over France for charac-
terizing historical spatio-temporal meteorological and agri-
cultural drought events from SPI and SSWI fields. A drought
event is considered as a sequence of spatially contiguous
and temporally continuous areas where the index is under
a given threshold value. A threshold corresponding to a lo-
cal 20 % probability (' − 0.84) has been chosen for iden-
tifying spatio-temporal drought events followingAndreadis
et al.(2005), Sheffield et al.(2009) andVidal et al.(2010b).
Two algorithm parameters for removing small clusters (less
than 10 contiguous cells) and for merging consecutive clus-
ters (overlapping area larger than 100 cells) have been fixed
to values adopted byVidal et al. (2010b). This algorithm
has been applied to spatio-temporal fields of SPI3, SPI12,
SSWI3 and SSWI12 derived from (1) the 1958–2008 Safran-
Isba reanalysis and (2) each of the 3 climate projections de-
scribed above.

Following Vidal et al. (2010b), summary statistics for
a drought event include its mean duration, its mean area and
its total magnitude. Themean durationof a spatio-temporal
event is defined as the mean duration of all cells across the
country affected by the drought at some time(s) during the
event. The duration for each cell is taken here as the num-
ber of months when the index is lower than the threshold (in
possibly separate periods). Themean areais defined as the
mean drought-affected area during the event, and expressed
as a percentage of the total area of France. Thetotal mag-
nitude is computed here as the sum over space and time of
the index values in cells affected by the event, expressed in
month by percent of France’s area. In addition to these sum-
mary statistics, thecentroid of each spatio-temporal event
has been computed as the average centroid of clusters at each
time step, weighted by the total magnitude of each cluster.

All algorithms have been implemented in the R software
environment (R Development Core Team, 2011) and figures
for this paper have been produced thanks to the ggplot2 pack-
age developed byWickham(2009).

3.2 Theoretical adaptation scenarios and perceived
characteristics

The marked projected changes in climate summarized in Ta-
bles1 and2 will hopefully lead to apply strategies for adapt-
ing the structure and the management of the various exist-
ing anthropogenic hydrosystems. Examples of such systems
are headwater catchments with reservoirs for producing hy-
dropower and/or sustaining low flows, or lowland catchments
with irrigated crops. Without adaptation, such hydrosystems
might not be able to fulfill their purposes, in terms of crop
or hydropower production (seeVidal and Hendrickx, 2010,
for an example of changes in hydropower production under
business-as-usual management).

Three theoretical adaptation scenarios have been derived
here based on the projections of drought indices. These sce-
narios are local-scale scenarios, and their consequences will
here be studied at the national scale. The adaptation of an
anthropogenic hydrosystem may be performed in many dif-
ferent ways and affects different aspects of the perception
of a drought. The theoretical scenarios built here focus on
the adaptation to the evolution of the median value of the
variable of interest at the local scale (precipitation or soil
moisture), thus to the evolution of the median value of the
corresponding standardized drought index. In other words,
according to these scenarios, the hydrosystem will be able to
adapt to changes in the “normal” conditions, but not neces-
sarily to changes in variability, seasonality or temporal pat-
terns. Thus, such theoretical scenarios stay in line with the
definition of standardized indices which are based on a de-
parture from normals, but allow potential changes in such
normals.

3.2.1 Adaptation scenarios

The first scenario, calledno adaptationassumes that our per-
ception of drought will not change in the future, i.e. that
a given departure from the present-day normals will be per-
ceived in the same way in the late 21st century than in the
1980s for example. Thedrought index baseline, i.e. zero by
construction over the reference period, is therefore supposed
to remain valid during the whole 21st century.

The two other scenarios assume that the anthropogenic hy-
drosystem under study will be able to adapt to new condi-
tions. This assumption will be discussed in detail in Sect.6.
If the assumption holds, it should provide us with a percep-
tion of a given departure from normals that will be lowered
in the future thanks to the adaptation performed. In terms of
drought indices described in Sect.3.1.1, it comes down to an
evolution of the drought index baseline. The two scenarios
implemented here exemplify two different strategies: adapt
either (1) topast conditions, a strategy called hereretro-
spectiveadaptation or (2) tofuture conditions, called here
prospectiveadaptation.
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Fig. 1.Evolution of SSWI3 for a grid cell near Toulouse under the A1B scenario, and corresponding adaptation scenarios. Black filled areas
correspond to local-scale drought events reaching the 20 % threshold. The dashed lines show the drought index baseline evolutions calculated
for each adaptation scenario and described in Table3. Coloured lines show the corresponding drought state threshold (see text for details).
The reference period is framed by dashed vertical lines.

Theretrospective adaptationscenario assumes that the hy-
drosystem is able to constantly adapt to antecedent climatic
normals. These normals are thus reconsidered at each time
step and the hydrosystem is adapted accordingly. In terms
of drought indices, it is implemented as follows: the drought
index baseline is taken as the mean of the preceding 30 yr of
the index, starting right after the reference period. For a given
date of the 21st century, this scenario is therefore theoreti-
cally independent from projections for the future (and asso-
ciated uncertainties) as it relies only on antecedent and thus
experienced conditions. In the applications considered here,
this scenario however relies on the assumption that the hy-
droclimate projections will be valid and then considered as
“experienced” until any date considered in the 21st century.

Theprospective adaptationscenario assumes first that the
future evolution of the normals are perfectly known and per-
fectly represented by the hydroclimate projection considered.
In terms of drought indices, the evolution of the drought in-
dex baseline is represented by a smooth transient median
value of the index time series. An approach with smooth
splines was chosen here in order to get the intended smooth-
ness. The theoretical constraint of a zero value over the whole

1961–1990 reference period was approached by optimizing
the degree of freedom of the spline to get a minimum devia-
tion from zero of the resulting spline curve over this period.
This theoretical adaptation scenario assumes a quickest reac-
tion to changes in climate, which could be advantageous in
the case of rapid changes.

3.2.2 Implementation

In both actual adaptation scenarios, the drought index base-
line is simply added to the reference value of the drought
threshold, (' − 0.84, see Sect.3.1.2), in order to generate
a time-varying drought threshold. This way, the adaptation
scenarios only take account of changes in average condi-
tions and not in potential evolutions in variability. Table3
summarizes the different drought index baseline computa-
tions adopted for the different theoretical adaptation scenar-
ios. Figure1 shows an example application of the three sce-
narios for estimating short agricultural droughts over a given
grid cell.
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Table 3.Adaptation scenarios.

Scenario Drought index baseline

No adaptation zero

Retrospective adaptation running mean of previous 30 yr

Prospective adaptation smooth spline optimised for
minimal deviation from zero
over the reference period

3.2.3 Implications for the evolution of drought
characteristics

Figure2 shows the temporal evolution of the drought index
baseline averaged over France according to each emission
and adaptation scenarios and for all 4 combinations of index
and time scale. It shows a dramatic decrease of baseline val-
ues over the 21st century, more pronounced for more “pes-
simistic” emission scenarios, and more pronounced for the
prospective adaptationscenario. This decrease is stronger for
SSWI than for SPI, and also stronger for longer time scales.
This is simply the result of a relatively small decrease in pre-
cipitation mentioned in Table2 and a marked decrease in
soil moisture resulting from an overall warming (see Table1)
and thus an increase in evaporation demand. The extremely
low values reached at the end of 21st century correspond to
a large drop of median cumulative precipitation or averaged
soil moisture. These values correspond to probabilities as low
as 15 % (for SSWI12 under theretrospective adaptationsce-
nario and the A2 emissions scenario) in the distribution of

these variables over the 1961–1990 reference period. This
suggests that the theoretical scenarios constructed here may
be hardly accessible in practice and thus represent an up-
per limit of adaptation efforts. This is further discussed in
Sect.6. It can also be seen in Fig.2 that, by construction of
the prospective adaptationscenario, the optimisation of the
spline degree of freedom could not perfectly match the zero
value over the reference period.

The spatio-temporal clustering algorithm has been also
run on all 3 climate projections with the retrospective and
prospective adaptation scenarios in order to derive spatio-
temporal characteristics of drought events. Such character-
istics cannot be interpreted as actual drought event charac-
teristics as they are conditional on the adaptation scenario
considered and they do not imply modifications in physical
natural processes with respect to theno adaptationscenario.
Therefore, in the remainder of the paper, they are described
asperceivedcharacteristics: the drought event characteristics
would indeed be perceived as such by users of the anthro-
pogenic hydrosystem if this system could have been modified
according to the adaptation scenario considered.

4 Validation on present-day climate

This section aims at validating simulations against reanaly-
sis over the 1958–2008 period in terms of spatio-temporal
drought characteristics. Section4.1 first examines the num-
ber of drought events identified in the reanalysis and in the
simulations, and Sect.4.2 focuses on drought characteris-
tics defined in Sect.3.1.2. The whole period covered by the
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reanalysis data has been chosen in order to have the longest
possible common period with simulations. This is partic-
ularly important, as relatively few major spatio-temporal
events occurred in a 50-yr period. Consequently, in this sec-
tion, simulation B1 (resp. A1B and A2) will refer to outputs
derived from the ARPEGE control run for the 1958–2000
period together with outputs from the B1 (resp. A1B and
A2) ARPEGE run for the 2001–2008 period. The three sim-
ulations will therefore present limited differences over this
present-day period, and these differences could only be in-
terpreted as the consequences of internal variability, as very
little impact of the choice of the emissions scenario could
be possibly found during this short 8-yr period (seeHawkins
and Sutton, 2011, for a larger-scale analysis of the different
sources of uncertainty).

4.1 Number of drought events

Figure3 plots the number of drought events identified in the
reanalysis and in all 3 simulations over the 1958–2008 pe-
riod. Together with the number of all events (top panel), the
number ofmajor events (bottom panel) is plotted, defined
as events with a mean duration strictly higher than 1 month.
Events during exactly 1 month – i.e. the time step of the anal-
ysis – are indeed not developing in time and have to be con-
sidered separately. Figure3 shows that the total number of
short (resp. long) meteorological droughts are slightly over-
estimated (resp. slightly underestimated) in the modelled cli-
mate. Such discrepancies may originate from spatial and/or
temporal biases in either ARPEGE large-scale simulations
or the downscaling method used here (see Sect.2.2). A good
agreement is reached for the number of both short and long
agricultural droughts. When looking at the number of ma-
jor events, the overestimation of short meteorological events
is confirmed and this time it is accompanied with a similar
overestimation of short agricultural events. Some explana-
tions to such features will be proposed below when looking
at drought event centroids. No bias can be found for long
meteorological and agricultural droughts.

In the remainder of the paper, onlymajor drought events
will be considered.

4.2 Drought characteristics

This section aims at assessing how well the diversity of
spatio-temporal droughts identified in the reanalysis are sim-
ulated over the present-day period. Figure4 identifies each
observed or simulated drought event jointly through its mean
duration, mean area and total magnitude. It first reproduces
features of observed events presented byVidal et al.(2010b)
as white and coloured full circles. When compared to the
original figure (Vidal et al., 2010b, Fig. 10, p. 472) where
colours identify specific major events in a consistent way
with Fig. 4, some differences can be seen. For example,
the 1976 drought (in red) appears here to affect a larger
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Fig. 3.Number of drought events identified over the 1958–2008 pe-
riod, for reanalysis data and all 3 simulations. Top panel: all events;
bottom panel: only major events (duration> 1 month).

part of France for both indices and both time scales. The
2003 drought (in orange) also appears here to last longer, at
least when soil moisture deficits are concerned. These differ-
ences exemplify the impact of the selected reference period
on spatio-temporal drought characteristics: 1961–1990 here,
and the whole period covered by the reanalysis (1958–2008)
in Vidal et al.(2010b). Figure4 also plots as grey shapes the
events identified in present-day simulations. Squares identify
events with a maximum magnitude during the control run,
i.e. before 2000. Triangles and diamonds denote events oc-
curring between 2000 and 2008, depending on the choice of
emission scenario. The scatter plot of observed events is gen-
erally well replicated in simulations, with appropriate com-
binations of small and large events. In particular, events sim-
ilar to major observed ones like the 1976 SPI3 drought or the
2003 SSWI12 drought can be found in simulated climate.
One interesting feature is that the 3 longest (and with highest
magnitude) simulated events for SSWI3 are found to occur in
the last years of the simulation, suggesting a downward trend
in simulated soil moisture, possibly driven by an underlying
upward trend in temperature. This is consistent with results
from recent trend analyses in different versions of the PDSI
(Dai, 2011a,b).

Figure 5 shows the centroid of observed (reanalysis)
and simulated (control run + A2 emissions scenario) drought
events over the 1958–2008 period. Results are very similar
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Fig. 4. Relation between mean area (in percent area of France), mean duration (in months) and total magnitude (in months by percent area
of France) for all drought events identified during the 1958–2008 period with SPI (left column) and SSWI (right column), with time scales
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from downscaled ARPEGE simulations. Squares represent events from the downscaled ARPEGE 1958–2000 control run, and downward and
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scenarios. Coloured circles identify the six major drought events from the reanalysis highlighted byVidal et al.(2010b, Fig. 10, p. 472).

for the two other emissions scenarios (not shown). Cen-
troids of events with high total magnitude are by construc-
tion found close to the geometrical centre of France, but
many small events can be found in all different parts of the
country, with for example, relatively large meteorological
droughts restrained to the Mediterranean area or long agri-
cultural droughts around Brittany. The overall distribution of
locations is generally well replicated in the simulated sam-
ple of drought events, but specific differences can be seen.
First the overestimation of SPI3 events noted in Fig.3 can
be attributed to a higher number of events located preferen-
tially in the northern half of France, where much fewer events
have been actually identified in the reanalysis. As expected,
a similar feature is found for SSWI3 events. This could be
linked to a bias in the latitude of the simulated storm tracks
in the ARPEGE runs used here. Moreover, such a bias should
be confined to a specific season as no bias appears for 12-
month drought events. This hypothesis has however still to
be confirmed.

4.3 Comparison of present-day distributions

The 2-sample Kolmogorov-Smirnov test (Massey, 1951) is
used here to check the agreement between the observed
(from the reanalysis) and simulated empirical distributions
of each drought characteristics (duration, mean area, total
magnitudex- andy-location of the centroid) over the 1958–
2008 period. Results show that theH0 hypothesis (the two
samples come from the same distribution) cannot be rejected
in any case, i.e. for each drought type and for each drought
characteristic. Figure6 shows the p-values for each test per-
formed. It demonstrates that simulations correctly recreate
the statistics of spatio-temporal drought characteristics over
the present-day period, with p-values higher than 0.1 for
nearly all combinations. The only dubious case with small
p-values relates to the centroid latitude already discussed
above, mainly for SPI3.
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Fig. 5. Centroid of drought events identified over the 1958–2008
period, from the reanalysis (right panels) and from the (CTRL + A2)
downscaled ARPEGE run. Colours denote different classes of total
magnitude. The different rows show all four drought indices.

All above comments therefore give a relatively high con-
fidence in the ability of downscaled climate projections to
simulate spatio-temporal characteristics of drought events.

5 Projections in future climate

This section presents results of the evolution of simulated
drought event characteristics during the end of the 20th cen-
tury and the 21st century, conditional to the emissions sce-
nario and the adaptation scenario selected.

5.1 Evolution of drought characteristics

Figure7 jointly plots the mean area, mean duration and total
magnitude of simulated short meteorological droughts over
the 1958–2100 period, for all combinations of emissions and
adaptation scenarios, following the approach already used in
Fig. 4. Note, however, that here the y-scale is logarithmic
to represent a larger range of durations. The whole simula-
tion period has been cut into 20-yr time slices in order to get
an idea of the long-term evolution of spatio-temporal char-
acteristics. Colours in Fig.7 identify the time slice when
each event reaches its maximum magnitude. The first row
corresponds to theno adaptationscenario and thus repre-
sent events as they are projected to happen with reference
to present-day climate. The middle and bottom lines show
theperceivedcharacteristics of drought events conditional to
theretrospectiveandprospectiveadaptation scenario, respec-
tively. The three columns show the influence of the emissions
scenario on drought characteristics. Figures8–10plot similar
features for long meteorological droughts and short and long
agricultural droughts, respectively.

When looking at the first row in Fig.7, it appears that
drought characteristics under theno adaptationassumption
are projected to increase during the 21st century, with dura-
tion and magnitude values not encountered before 2000. The
most intense events tend to appear in the last part of the 21st
century, combining a mean duration of 20 months and a mean
area of nearly 70 % of the country in both the A2 and A1B
emissions scenario. The evolution appears to be more limited
for the B1 emissions scenario. Considering one of the two
adaptation scenarios leads to reduce the perceived character-
istics of the largest events. Only few events are, for example,
found to have a duration higher than 7 months, i.e. the dura-
tion of the longest event in the reanalysis (1976, see Fig.4).
Theprospective adaptationscenario tends to give events with
a reduced magnitude compared to theretrospective adapta-
tion scenario, with small similar influences on duration and
area.

Figure8 shows a quite different picture for long meteo-
rological droughts. Due to the longer time scale, events are
far scarcer, and a few very large, long and intense events
are found in the last decades of the 21st century under the
no adaptationscenario, in particular under the A2 and A1B
emissions scenarios. The order of magnitude encountered
here (12-yr event affecting nearly 70 % of France) is far
higher than in the panel of events from the reanalysis, where
the worst event (1989, see Fig.4) lasted for 20 months and
concerned less than 45 % of the country. When considering
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Smirnov test between the observed distribution from the reanalysis and the corresponding distribution from a present-day simulation
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Fig. 8.As for Fig.7, but for long meteorological droughts, as defined by SPI12.

adaptation scenarios, perceived drought characteristics are
significantly lowered, even if some events still show areas
larger than 50 % and/or durations longer than 20 months. The
prospective adaptationscenario leads to somewhat more lim-
ited changes in all drought characteristics.

Figure9 plots the evolution of short agricultural drought
characteristics. The overall picture is very similar to long me-
teorological droughts, with events of even larger total mag-
nitude. It can also be noted that these scatter plots show
a higher dispersion for medium events compared to Fig.8.
Under theno adaptationscenario, only one event is found
during the last 2 decades of the 21st century in both the A2
and A1B scenarios. This event covers the entire 20-yr pe-
riod and concerns nearly 80 % of the country, which means
that agricultural drought is projected to become the norm
in France at the end of the 21st century. Under adaptation
scenarios, the perceived mean duration of events is gener-
ally contained below 24 months and their perceived mean
area under 60 %, when the worst event from the reanalysis
(1989, see Fig.4) reached 16 months and 62 %. However,
one cannot exclude short events affecting more than 75 % of
the country, as the one identified under the B1 emissions sce-
nario in the mid-century.

Figure10 plots the evolution of long agricultural drought
characteristics. The picture depicted here under theno adap-
tation scenario is even more dramatic: the single events cul-
minating in the last two decades of the century actually start
much earlier, before the 2050s under the A2 and A1B sce-
narios, and before the 2070s under the B1 “optimistic” sce-
nario. Other events larger than the two major ones identi-
fied in the reanalysis (1989 and 2003, see Fig.4) can also
be spotted earlier under the A2 and B1 emissions scenar-
ios. Choosing theretrospective adaptationscenario enables
to keep the perceived mean duration of events under 4 yr –
which is already 1.5 times longer than the 2003 drought – and
the perceived mean area under 60 %, where the 1989 drought
affected “only” half of the country. Under theprospective
adaptation, perceived drought characteristics are generally
found to be within the range of events identified in the re-
analysis.

5.2 Statistical assessment of the effect of adaptation
comparison of present-day distributions scenarios

The non-parametric Mann-Kendall test for trends (Mann,
1945) is applied here in order to statistically assess the effect
of adaptation scenarios on perceived drought characteristics.
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Fig. 9.As for Fig.7, but for short agricultural droughts, as defined by SSWI3.

This widely used test in historical trend assessments (see
for exampleRenard et al., 2008) is applied in this study to
quantify the significance of trends in spatio-temporal drought
characteristics (mean duration, mean area, total magnitude,
centroidx- and y-location) for each combination of emis-
sions scenarios and adaptation scenarios, over the whole sim-
ulation period (1958–2100). Figure11shows the p-values for
the test for all variables and scenarios considered.

First, no trend can be found for the centroid location of
drought events. The exception is a trend significant only at
the 10 % level for the latitude in short agricultural droughts
under the A2 emissions scenario and theprospective adap-
tation scenario. This trend is a southward trend (not shown),
and as no corresponding trend appears in theno adaptation
scenario, it is hard to conclude on its origin.

Under theno adaptationscenario, significant (upward, as
shown in Figs.7–10) trends can be found for all other char-
acteristics of short drought events (both meteorological and
agricultural). This is true for all emissions scenarios, but
with much lower p-values for the A2 scenario. Some sig-
nificant trends are additionally found for long meteorologi-
cal droughts (mean duration and mean magnitude under the
A2 scenario) and for long agricultural droughts (mean dura-
tion under the B1 scenario). The fact that fewer cases where

significant trends are found for long droughts comes from the
reduced number of spatio-temporal events for standardized
indices with higher time scales.

When looking at adaptation scenarios, all these trends ei-
ther disappear statistically or have their p-value increased.
One exception is an increase in the magnitude of long
agricultural droughts under the B1 emissions scenario and
the prospective adaptationscenario with a p-value higher
than 0.05. The difference in reduction of trend significance
between the two adaptation scenarios appears only – for du-
ration of short meteorological events and magnitude of short
agricultural events – when looking at the A2 emissions sce-
nario, which leads to the most rapid climate evolution over
the 21st century.

6 Discussions

6.1 Uncertainties

This section aims at assessing the different sources of un-
certainties in the modelling suite that may impact the results
summarized above, for theno adaptationscenario.
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Fig. 10.As for Fig.7, but for long agricultural droughts, as defined by SSWI12.

6.1.1 GCM and downscaling method

First, this particular paper considered neither a multi-GCMs
nor a multi-downscaling method approach, as recommended
for providing some information about the uncertainty in fu-
ture climate projections (see, e.g.Vidal and Wade, 2009, for
a multi-GCMs approach). Indeed, this study focused on the
mitigation and adaptation effects on spatio-temporal charac-
teristics of drought events, and results should obviously been
taken as conditional on the choice of the GCM and down-
scaling method made here. Such multi-model approaches
have however been used elsewhere in the CLIM SEC project
and the impact of corresponding uncertainties on local-
scale droughts have been quantified (Kitova et al., 2011).
On top of the transient multi-SRES experiment used in the
present study, two other experiments have been considered:
(1) a time slice experiment (1961–2000 and 2046–2065) with
6 different GCMs under the A1B scenario and downscaled
with the weather types downscaling method used here, and
(2) a transient experiment with the ARPEGE GCM cou-
pled with a model of the Mediterranean Sea (Somot et al.,
2008) under the A2 emissions scenario, downscaled again
with the same weather type method but also with a quantile-
quantile approach (Déqúe, 2007). Analysing the respective

spread from all 3 experiments in the 2050s led to rank first
the uncertainty in GCMs. Moreover, outputs derived from the
ARPEGE GCM under the A1B scenario were found to be
close to the multi-GCM average under the same emissions
scenario.

6.1.2 Land surface model configuration, vegetation and
land use

If the uncertainties discussed above are equally valid for me-
teorological and agricultural droughts, additional uncertain-
ties can be mentioned for results associated with soil mois-
ture simulations.

A potentially significant source of uncertainty may be
found in the configuration of the land surface model (LSM).
Indeed, simulated soil moisture has been shown to be highly
model-dependent (Koster et al., 2009). However, in recon-
structing historical droughts over the United States with
6 different LSMs,Wang et al.(2009) found that standard-
izing results lead to similar spatio-temporal patterns of soil
moisture droughts. This result has been since confirmed by
Fan et al.(2011) with LSMs at different resolutions and run
in different conditions (interactively or offline), even if dif-
ferences can be spotted in local intensities. Results obtained
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temporal characteristics, for the 3 emissions scenarios (columns) and for the 3 adaptation scenarios (rows).

here should therefore not be highly sensitive to the choice
of a specific LSM for the present-day period. However, the
situation may be quite different in the 21st century climate,
as the LSM sensitivity to an increase in temperature could
encompass a large range. This has been clearly shown on
streamflow droughts byWilliamson et al.(2011) with out-
puts from the WATCH project (Harding et al., 2012). 21st
century trends in the Regional Deficiency Index (RDI, see
Hannaford et al., 2011) for “Western and Central France”
region are found to be quite different when driven by dif-
ferent GCMs, but also when considering different land sur-
face models/global hydrological models. It therefore strongly
suggests a potentially large uncertainty in LSM/GHM con-
figuration. All combinations nevertheless show a massive
drying trend similar to the one commented in the present pa-
per, with a pronounced evolution in the second part of the
21st century.

The land surface simulations were performed here with
static vegetation and land use parameters, as in most cur-
rent off-line studies, with the notable exception of some other
innovative work done within the WATCH project (Harding
et al., 2012). Initiatives are underway in France (1) to ac-
count for spontaneous responses of vegetation to climate

variability (Lafont et al., 2010) and CO2 changes (Queguiner
et al., 2011) using a vegetation-interactive version of the
Isba LSM and (2) to model both historical and future wa-
ter demand and water management at the catchment scale,
through the recently completed IMAGINE2030 project2 in
the Garonne basin (Sauquet et al., 2009, 2010; Vidal and
Hendrickx, 2010) and the R2D2-2050 project3 in progress
in the Durance basin (Southern Alps) (Sauquet, 2011).

6.2 Adaptation and mitigation scenarios

Results presented in Sect.5 are conditional on both the emis-
sions scenario and the adaptation scenario considered, and
this section discusses the implications of such a conditioning
as well as the possible interpretations of results.

6.2.1 Adaptation scenarios

The theoretical adaptation scenarios described in Sect.3.2
have been constructed from time series of standardized

2http://www.irstea.fr/la-recherche/unites-de-recherche/hhly/
hydrologie-des-bassins-versants/projet-imagine2030

3https://r2d2-2050.cemagref.fr/
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drought indices. Consequently, they do not reflect in any
case the actual capacity of anthropogenic hydrosystems at
the scale of France to actually follow these scenarios. The
two adaptation scenarios are indeed “perfect” in different
ways: theretrospective adaptationscenario suggests that one
can adapt continuously over the 21st century. Indeed, the
drought index baseline is updated each month, which is far
from being feasible, for example for irrigated crops (annual
or seasonal time step) or forestry (decadal time step). Regard-
ing theprospective adaptationscenario, it assumes that the
transient projection of the drought index mean value corre-
sponds exactly to how the median water availability will ac-
tually evolve, which is a very strong hypothesis. It has also to
be noted that no seasonality of changes are taken into account
in the theoretical adaptation scenarios, in spite of these spe-
cific changes being a key driver for managing anthropogenic
hydrosystems, from hydropower production system to crop
production. As mentioned above (see Sect.3.2.3), they nev-
ertheless provide information about the upper limit of adap-
tation efforts relative to present-day median values of wa-
ter availability. Additionally, both theoretical scenarios fail
to provide a satisfying adaptation to changes in interannual
variability, as shown in Figs.7–10 through the occurrence of
several events far longer than the longest observed ones. It
strongly suggests that adaptation efforts should not only con-
centrate on the evolution of median values of water availabil-
ity, but also on potential changes in its interannual variability.

Different ways forward exist to derive realistic adaptation
scenarios and many works have been dedicated to this task,
for example in the case of crop production systems (seeOle-
sen et al., 2011, for a recent review). Such adaptation efforts
would require an integrated approach (Falloon and Betts,
2010), which would follow harmonized policies at the Eu-
ropean level (Kampragou et al., 2011). Additionally, the re-
gional to catchment-scale specificities have to be taken into
account, with different priorities emerging from the local ex-
isting or projected resources, for example in the Alps (Benis-
ton et al., 2011) or in the Mediterranean area (Iglesias et al.,
2011). Different initiatives are underway in France to provide
relevant adaptation strategies and assess the future balance of
water demand and water availability: the R2D2-2050 project
for example applies an integrated multidisciplinary approach
to accurately represent the Durance anthropogenic hydrosys-
tem, taking into account main biophysical processes, water
management policy and decision-making aspects, and their
interactions in time and space (Sauquet, 2011). Scenarios
for future water demand and water management will be de-
veloped in close collaboration with local stakeholders (wa-
ter agency, hydropower companies, water industry compa-
nies, etc.). In parallel, the Explore2070 study is currently un-
derway to provide consistent and systematic national-scale
adaptation strategies (de Lacaze, 2011).

6.2.2 Mitigation scenarios

First, the three emissions scenarios taken from the Special
Report on Emissions Scenarios (SRES,Nakićenovíc et al.,
2000) may be seen as proxies for actual mitigation scenar-
ios. Even if no real mitigation scenario like the E1 scenario
(Johns et al., 2011) developed in the ENSEMBLES project
(van der Linden and Mitchell, 2009) was considered here,
the 3 SRES scenarios represent different storylines regard-
ing future global population growth, technological develop-
ment, globalisation, and societal values. The B1 scenario
describes a world steered towards globalised environmental
stainability, leading to a stabilisation of CO2 concentration of
550 ppm at the end of the century (seeMeehl et al., 2007b,
Fig. 10.26, p. 803). The A1B scenario corresponds to a glob-
alised world with rapid economic growth and a balanced
use of fossil and non-fossil energy sources leading to con-
stantly growing CO2 concentration up to more than 700 ppm
in 2100. The A2 scenario describes a more heterogeneous
world with a strong economic focus, and leads to exponen-
tially growing CO2 concentrations reaching 850 ppm at the
end of the century.

Unsurprisingly, results from Sect.5 show that emissions
scenarios with lower greenhouse gas concentrations lead to
the smaller changes, even if these changes are already dra-
matic. It would be useful to actually compare the respective
or combined effects of local adaptation scenarios and global
mitigation scenarios on future drought characteristics. The
effects of mitigation scenarios on droughts at the European
scale recently studied byWarren et al.(2012) could for ex-
ample be combined with effects of local- or catchment-scale
French adaptation scenarios.

7 Conclusions

This paper addresses the issue of spatio-temporal charac-
teristics of future drought events in France. More specifi-
cally, it focuses on three research questions: (1) Are down-
scaled climate projections able to simulate spatio-temporal
characteristics of meteorological and agricultural droughts in
France over a present-day period? (2) How such characteris-
tics will evolve over the 21st century? and (3) How to use
standardized drought indices to represent theoretical adapta-
tion scenarios?

The first question is addressed by studying droughts
derived from a downscaled control run from the
ARPEGE GCM. Results shown in Sect.4 suggest that
the diversity of spatio-temporal characteristics identified
in the reanalysis over France is fairly well simulated in
a GCM-derived climate, in terms of combinations of dura-
tion, affected area and total magnitude. These conclusions
are furthermore valid for both meteorological and agricul-
tural droughts with time scales of both 3 and 12 months,
computed using standardized indices. Section5 provides an
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answer to the second question, based on 21st century runs
of ARPEGE under three emissions scenarios. All spatio-
temporal characteristics of drought events are expected to
dramatically increase over the century, with stronger changes
for agricultural droughts. The third question is addressed
by building two theoretical adaptation scenarios based on
hypotheses of adaptation to evolving climate normals, either
retrospectiveor prospective. These theoretical scenarios
take advantage of the spatial consistency of the standardized
drought indices to translate the corresponding hypotheses
in terms of changes in spatio-temporal characteristics of
drought events.

The present study thus provides a proof of concept (1) for
assessing spatio-temporal characteristics of future drought
events and (2) for deriving spatial theoretical adaptation sce-
narios using spatial consistency of standardized drought in-
dices like the SPI. In order to have more robust information
about the expected changes by providing corresponding es-
timates of uncertainty, this study could easily be extended
to multimodel hydroclimate projections, derived from differ-
ent GCMs, different downscaling methods as well as differ-
ent land surface models. Moreover, realistic adaptation sce-
nario could be translated into corresponding evolutions of lo-
cal drought indices in order to derive projections of spatio-
temporal characteristics of drought events, for example at
the scale of a specific catchment or a water resource zone.
Additionally, drought indices standardized with respect to a
model control run as used here would also provide relevant
information in a seasonal forecasting context, for example to
have an insight on the spatio-temporal development of an on-
going drought. Such an application of standardized drought
indices will be tested in the near future based on on-going
works on seasonal hydrological forecasting (Céron et al.,
2010; Soubeyroux et al., 2010; Singla et al., 2011).
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de pŕecipitations (Impact of anthropogenic climate change on the
frequency of wind, temperature and precipitation extremes, in
French), Tech. rep., available at:http://imfrex.mediasfrance.org/
web/documents/index(last access: 2 February 2012), 2005.
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Déqúe, M., Franchist́eguy, L., Geindre, S., Kerdoncuff, M.,
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(High-resolution climate projections over France for the 21st
century: SCRATCH08 scenarios, in French), Technical note, Cli-
mate Modelling and Global Change TR/CMGC/08/64, CER-
FACS, Toulouse, France, 2008.

Palmer, W. C.: Meteorological Drought, Research paper 45, US De-
partment of Commerce, US Weather Bureau, Office of Climatol-
ogy, Washington, DC, 1965.

Paris Anguela, T., Zribi, M., Hasenauer, S., Habets, F., and Lou-
magne, C.: Analysis of surface and root-zone soil moisture
dynamics with ERS scatterometer and the hydrometeorolog-
ical model SAFRAN-ISBA-MODCOU at Grand Morin wa-
tershed (France), Hydrol. Earth Syst. Sci., 12, 1415–1424,
doi:10.5194/hess-12-1415-2008, 2008.

Planton, S., D́eqúe, M., Chauvin, F., and Terray, L.: Expected im-
pacts of climate change on extreme climate events, C. R. Geosci.,
340, 564–574,doi:10.1016/j.crte.2008.07.009, 2008.

Queguiner, S., Martin, E., Lafont, S., Calvet, J.-C., Faroux, S.,
and Quintana-Seguı́, P.: Impact of the use of a CO2 responsive
land surface model in simulating the effect of climate change
on the hydrology of French Mediterranean basins, Nat. Hazards
Earth Syst. Sci., 11, 2803–2816,doi:10.5194/nhess-11-2803-
2011, 2011.
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F., Marquet, P., Planton, S., Royer, J.-F., and Tyteca, S.: Descrip-
tion and validation fo the CNRM-CM3 global coupled model,
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