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Abstract. Groundwater flow models are important tools in
assessing baseline conditions and investigating management
alternatives in groundwater systems. The usefulness of these
models, however, is often hindered by insufficient knowl-
edge regarding the magnitude and spatial distribution of the
spatially-distributed parameters, such as hydraulic conduc-
tivity (K), that govern the response of these models. Pro-
posed parameter estimation methods frequently are demon-
strated using simplified aquifer representations, when in real-
ity the groundwater regime in a given watershed is influenced
by strongly-coupled surface-subsurface processes. Further-
more, parameter estimation methodologies that rely on a geo-
statistical structure ofK often assume the parameter values
of the geostatistical model as known or estimate these values
from limited data.

In this study, we investigate the use of a data assimila-
tion algorithm, the Ensemble Smoother, to provide enhanced
estimates ofK within a catchment system using the fully-
coupled, surface-subsurface flow model CATHY. Both water
table elevation and streamflow data are assimilated to con-
dition the spatial distribution ofK. An iterative procedure
using the ES update routine, in which geostatistical param-
eter values defining the true spatial structure ofK are iden-
tified, is also presented. In this procedure, parameter values
are inferred from the updated ensemble ofK fields and used
in the subsequent iteration to generate theK ensemble, with
the process proceeding until parameter values are converged
upon. The parameter estimation scheme is demonstrated via

a synthetic three-dimensional tilted v-shaped catchment sys-
tem incorporating stream flow and variably-saturated subsur-
face flow, with spatio-temporal variability in forcing terms.
Results indicate that the method is successful in providing
improved estimates of theK field, and that the iterative
scheme can be used to identify the geostatistical parameter
values of the aquifer system. In general, water table data
have a much greater ability than streamflow data to condi-
tion K. Future research includes applying the methodology
to an actual regional study site.

1 Introduction

1.1 Inverse modeling in groundwater applications

Hydrologic models are important tools in assessing baseline
conditions and investigating best-management practices in
groundwater and catchment-scale systems. Before reliable
hydrologic assessments can be made, however, parameter
values that drive the response of the model must be appro-
priately chosen for a specific aquifer or catchment. Direct
measurements of hydrologic parameters, however, are scarce
and fraught with uncertainty, and typically only apply locally
due to the spatial variability of parameter values.

To address this problem of parameter uncertainty, hy-
drologic models can be used in applications “opposite” or
“inverse” to their original use, i.e., parameter values are
treated as system unknowns and are determined by extracting
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information from observations of system-response variables
(Kitanidis and Vomvoris, 1983). The general approach con-
sists of determining the set of parameter values that yields
adequate matches between model results and observations
from the true hydrologic system. The treatment of param-
eter values as unknowns that need to be identified constitutes
the inverse problem of groundwater modeling (Kitanidis and
Vomvoris, 1983), and in most cases must be incorporated in
the modeling process (Carrera et al., 2005).

In recent decades numerous methodologies have been
proposed and applied to the inverse modeling problem in
groundwater modeling, with the general aim to estimate the
spatial distribution of hydraulic conductivity (K) or trans-
missivity (T ) in an aquifer system. An excellent review
of early inverse methods is provided by Carrera and Neu-
man (1986). A review of more recently-proposed methods is
given by Carrera et al. (2005). Broadly, parameter estimation
is accomplished either through (i) optimization procedures,
in which an objective function is defined (typically mini-
mizing the error between model results and measurements)
and minimized in a least-squares approach, and (ii) statistical
conditioning, in which covariance between the parameters
and system-response variables is utilized to condition the pa-
rameter values using measurement information. It should be
noted that conditioning methods also incorporate a sense of
optimization, although the optimization occurs in the deriva-
tion of the conditioning algorithm, e.g., through minimizing
the trace of the a posteriori error estimate covariance matrix
(e.g., Kalman, 1960).

For the optimization classification, methods include zona-
tion, the pilot point method (e.g., RamaRao et al., 1995),
the represent method (RM) (Bennett, 1992; Valstar et al.,
2004), and the self-calibrated method (SCM) (Hendricks
Franssen et al., 1999; Gómez-Herńandez et al., 2003). For
the statistical conditioning classification, methods include
Cokriging (e.g., Ahmed and De Marsily, 1993; Li and Yeh,
1999) and data assimilation techniques, such as the family
of Kalman Filter (Kalman, 1960) methods, including the Ex-
tended Kalman Filter (EKF) (Evensen, 1992), the Ensemble
Kalman Filter (EnKF) (Evensen, 1994, 2003), the Ensem-
ble Kalman Smoother (EnKS) (Evensen and van Leeuwen,
2000), and the Ensemble Smoother (ES) (van Leeuwen and
Evensen, 1996). The EnKF has particularly been used in
recent years to estimate state parameters. Comparisons be-
tween the RM and EnKF methods are given by Reichle et
al. (2002) and Ngodock et al. (2006). A comparison be-
tween the SCM and EnKF methods is provided by Hendricks
Franssen and Kinzelbach (2009).

Proposed methodologies are demonstrated typically using
simplified hydrologic systems. For applications to ground-
water systems, the majority of methodologies are demon-
strated using two-dimensional (2-D) confined groundwater
flow models (e.g., Gailey et al., 1991; Hantush and Mariño,
1997; Hendricks Franssen et al., 1999; Gómez-Herńandez
et al., 2003; Dŕecourt et al., 2006; Hendricks Franssen and

Kinzelbach, 2008; Fu and Ǵomez-Herńandez, 2009; Bai-
ley and Bàu, 2010). Several studies have employed three-
dimensional steady-state flow models (Chen and Zhang,
2006; Liu et al., 2008), and several have estimated hydraulic
parameters in variably-saturated flow conditions (Yeh and
Zhang, 1996; Zhang and Yeh, 1997; Li and Yeh, 1999), al-
though for the latter applications were limited to small 2-D
vertical-plane systems. In general, however, critical compo-
nents of hydrology in watershed systems, e.g., infiltration
and percolation in variably-saturated porous media, pond-
ing and overland flow, and stream channel flow have been
neglected. Catchment models such as CATHY (CATch-
ment HYdrology), based on the 3-D Richards equation for
variably-saturated porous media and a diffusion wave ap-
proximation for overland and channel flow, have been used
in data assimilation studies (Camporese et al., 2009, 2010),
but not yet in parameter estimation. Estimation of parame-
ters in land-surface models has been performed (e.g., Boulet
et al., 2002; Xie and Zhang, 2010), although the models treat
groundwater flow using simplified approaches.

In recognition that improved parameter estimation occurs
when system-response data from more than one governing
equation is used (Gailey et al., 1991), with the implication
that each data type contains unique information regarding the
parameter, numerous studies have employed two or more sets
of dissimilar data to condition the parameter values. Such
data sets typically include hydraulic head data as well as an-
other data type such as solute concentration data (Gailey et
al., 1991; Li and Yeh, 1999; Hendricks Franssen et al., 2003;
Gómez-Herńandez et al., 2003; Liu et al., 2008), groundwa-
ter temperature (Woodbury and Smith, 1988), groundwater
travel time (Fu and Ǵomez-Herńandez, 2009), groundwa-
ter discharge to surface water (Bailey and Baù, 2010), and
tracer breakthrough data at observation wells (Wen et al.,
2002). Streamflow data, which carries information regarding
the spatial structure of aquiferK due to groundwater-surface
water interactions, has been used in data assimilation to im-
prove model performance (Schreider et al., 2001; Aubert et
al., 2003; Clark et al., 2008; Camporese et al., 2009, 2010),
although as yet has not been used to conditionK.

1.2 Kalman Filter methods

In Kalman Filtering methods, a priori information, i.e.,
model parameters and associated model results, are merged
with observation data from the true system to produce an a
posteriori system estimate honoring the true system data at
observation points, while still incorporating physically-based
information from the numerical model. The resulting algo-
rithm is used to merge model and measurement data when-
ever measurement data become available during the course
of the model simulation.

In contrast to a filter, which assimilates data sequentially
as they become available, a smoother incorporates all past
model and measurement information in a single assimilation
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step. The EnKF, EnKS, and ES all use an ensemble of re-
alizations to represent numerically the measurement error
statistics (Evensen, 2003), and are designed for large, non-
linear systems. The EKF, EnKF, EnKS, and ES have all been
used in hydrologic modeling applications in both system-
response updating (e.g., Schreider et al., 2001; Aubert et al.,
2003; Dunne and Entakhabi, 2005; Clark et al., 2008; Du-
rand et al., 2008; Camporese et al., 2009, 2010) and system
parameter conditioning (Hantush and Mariño, 1997; Boulet
et al., 2002; Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008; Liu et al., 2008; Bailey and Baù, 2010;
Xie and Zhang, 2010). Application of the EnKF and ES to
highly nonlinear hydrologic systems such as a land surface
model (Dunne and Entakhabi, 2005) and a coupled surface
and variably-saturated subsurface flow model (Camporese et
al., 2009) has proven successful.

1.3 Geostatistics in parameter estimation

Many parameter estimation studies employ geostatistical
models (GMs) to define the a priori estimate of the spatial
distribution of log-K or log-T (e.g., Kitanidis and Vomvoris,
1983; Hantush and Mariño, 1997; Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008), under the as-
sumption that aquiferK in regional systems can generally
be described using such models (Kitanidis and Vomvoris,
1983; Hoeksema and Kitanidis, 1985; Carrera et al., 2005).
The values of the parameter (e.g., log-K mean, log-K vari-
ance, correlation length) that characterize these GMs often
have a strong influence on the response of a groundwater
model and parameter estimation results (Jafarpour and Tar-
rahi, 2011), and yet in practice are estimated from limited
geologic information and hence are not known with a high
degree of certainty (Gautier and Nœtinger, 2004; Jafarpour
and Tarrahi, 2011).

As a consequence, several methodologies have aimed at
estimating the values of GM parameters, with the general
approach of (i) performing “structural analysis”, in which
the form of the GM is selected, followed by (ii) an esti-
mation of the values of the parameters defining the GM us-
ing observation data from the aquifer system. For example,
Kitanidis and Vomvoris (1983) and Hoeksema and Kitani-
dis (1984) used maximum likelihood estimation to estimate
values for a two-parameter GM using measurements of log-
T and hydraulic head in 1-D and 2-D steady-state flow sys-
tems, respectively, in their approach to estimating the spa-
tial distribution of log-T . A more recent review of the tech-
nique is given in Kitanidis (1996). More recent studies in the
field of petroleum-reservoir engineering (e.g., Yortsos and
Al-Afaleg, 1997; Gautier and Noetinger, 2004) have used
well test data to estimate parameter values of the permeabil-
ity variogram. For example, Gautier and Noetinger (2004)
expanded on the work of Kitanidis and Vomvoris (1983) to
develop a methodology for transient flow.

1.4 Objectives of this study

The objectives of this study are three-fold. The first objective
is to apply the Kalman Filter parameter estimation method-
ology within a fully-coupled surface and variably-saturated
subsurface flow model to provide more realistic simulation
of water table elevation, as well as allow for streamflow to be
simulated. To accomplish this, the CATHY model is used
in a tilted v-catchment setting, similar in design to the v-
catchment used by Camporese et al. (2009), with uncertain
initial conditions (i.e., water table elevation) and uncertain
patterns of applied water at the ground surface in space and
time in a 365-day simulation. An ES is used to assimilate wa-
ter table elevation data from a reference system to provide an
updated estimate of the spatial distribution of log-K. Using
uncertain initial conditions and forcing terms provides a stiff
test for estimatingK (Hendricks Franssen and Kinzelbach,
2008) since values of water table elevation and streamflow
are not influenced solely byK. The second objective is to
exploit the functionality of CATHY to explore the possibility
of using streamflow measurements, solely and jointly with
water table elevation data, to conditionK.

The third objective is to use the ES in an iterative scheme
to identify the parameters of a geostatistical model through
assimilation of water table elevation data, and hence provide
a new methodology for estimating the value of these param-
eters. In this study, the ability of the scheme to assess the
log-mean and log-variance of a geostatistical model is inves-
tigated. Uncertainty in correlation scales is not addressed in
this study, but is left to future work. Assessment of the true
correlation scale for a given aquifer will likely require the di-
rect assimilation ofK measurements, whereas in this study
only the model response variables are assimilated.

For the first and second objectives, the influence of
the number of measurements and the uncertainty assigned
the measurement data on the ability of the ES to pro-
vide accurate updates is investigated. Overall, with uncer-
tainty in initial conditions, forcing terms, and geostatisti-
cal model parameters, the complexity of real-world systems
is approached, providing a key liaison between theory and
real-world application.

2 Methodology

In this section, the theoretical development of the ES update
algorithm is presented within the context of estimating the
spatial distribution ofK using observed water table elevation
(WT ) and streamflow (Q) data from a reference catchment
system. The general forecast and update steps of the Kalman
Filter are first discussed, followed by a modification of these
steps for the ES scheme.
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2.1 Forecast of system state

Using an ensemble ofnMC system realizations to establish
the uncertainty in the system, the state of the system is
estimated using themodel forecaststep:

X
f
t =8t (P ;X0;q;b) (1)

wheref indicatesforecast, X
f
t contains the ensemble of re-

alizations of the forecasted estimate of the system at timet ,
8t represents the solution to the numerical model, andP,
X0, q, andb represent the system parameters, initial condi-
tions, forcing terms, and boundary conditions, respectively.
The numerical model employed in this study is the CATHY
model, and is used to generate values ofWT andQ as well
as establish relationships between the system parameter (i.e.,
K) and the system response variables (i.e.,WT andQ).

CATHY simulates subsurface, overland, and channel flow
by coupling the 3-D Richards equation for variably satu-
rated porous media with a 1-D diffusion wave approxima-
tion of the de Saint Venant equation for surface flow (Bixio
et al., 2000; Camporese et al., 2010). The groundwater flow
equation is given by Camporese et al. (2010):

SwSs
∂ψ

∂t
+ϕ

∂Sw

∂t
= ∇ · [KsKr(∇ψ+ηz)] +qss (2a)

whereSw = θ /θs, with θ andθs as volumetric water content
[-] and saturated water content (porosity) [-], respectively,SS
is the specific storage coefficient [L−1], ψ is pressure head
[L], t is time [T], ∇ is the spatial gradient operator [L−1],
Ks is the saturated hydraulic conductivity tensor [LT−1] with
Ks treated as a scalar field when conditions of isotropy are
hypothesized,Kr(ψ) is the relative hydraulic conductivity
function [-], ηz = (0, 0, 1),z is the vertical coordinate di-
rected upward [L], andqss represents distributed source or
sink terms [L3L−3T−1].

Using a 1-D coordinate systems [L] to describe the chan-
nel network, the surface water flow equation is given by
(Camporese et al., 2010):

∂Q

∂t
+ck

∂Q

∂s
=Dh

∂2Q

∂s2
+ckqs (2b)

whereQ is the discharge along the stream channel [L3T−1],
ck is the kinematic celerity [LT−1], Dh is the hydraulic diffu-
sivity [L2T−1], andqs is the inflow or outflow rate from the
subsurface to the surface [L3L−1T−1].

In CATHY, Eq. (2a) is solved using Galerkin finite el-
ements (FE), whereas Eq. (2b) is solved using an explicit
time discretization based on the Muskingum-Cunge rout-
ing scheme (Orlandini and Rosso, 1996). In this study, the
Kr(ψ) andSw(ψ) relationships are specified using the for-
mulation of van Genuchten and Nielsen (1985), although
other capillary curves are available in CATHY (see Cam-
porese et al., 2010). The channel network is identified us-
ing the terrain topography from a digital elevation model

Fig. 1. Flow chart for the iterative approach using an Ensemble
Smoother to estimate geostatistical values.

(DEM) and the hydraulic geometry concept used by Orlan-
dini and Rosso (1996). The DEM cells are then triangulated
to generate a 2-D triangular FE mesh, which is replicated
vertically to construct a 3-D tetrahedral FE mesh for the
subsurface system. Interaction between surface water and
groundwater modeled in CATHY is described by Putti and
Paniconi (2004).

As will be discussed further in Sect. 2.2, the resulting sys-
tem stateX (Eq. 1) is comprised of: (1) aWT value for each
node of the triangular FE mesh, calculated using the verti-
cal profile ofψ for each of these nodes; (2) aK value for
each DEM cell in the horizontal direction; (3) aQ value for
each DEM grid cell along a stream channel. Ife andn de-
note the number of DEM cells and FE nodes in the horizontal
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Fig. 2. Conceptual model of tilted v basin through the catchment outlet. The monthly depth of -shaped catchment, with groundwater feeding
the river flowing out of the net infiltration from precipitation is also shown.

direction, respectively, andg the number of DEM cells along
the stream channel, then the dimensiond of X is equal to
[n+ e+g]. The forcing termsq in Eq. (1) are represented
by qss in Eq. (2a), and in this study correspond to rates of
applied water at the ground surface, with uncertainty estab-
lished by sampling values from a prescribed frequency dis-
tribution. Uncertainty inX0 is also included, as discussed
in Sect. 3.1.

The spatially-variable values ofYK = logK are generated
using SKSIM (Bàu and Mayer, 2008), a sequential Gaussian
simulation algorithm, where the spatial distribution and cor-
relation is established by a normal distribution wherein the
geostatistical model is a 2-D exponential covariance model
in the logarithmic domain:

logK =YK =N
(
µYK ;σYK

)
covYK ,YK (d)= σ

2
YK
.exp


√√√√ 2∑

i=1

d2
i

λ2
i

 (3)

whereµYK and σYK , andσ 2
YK

are the mean, standard de-
viation, and variance of the logarithmic distribution of the
parameters, respectively,dis are the components of the dis-
tance vectord, andλis are the spatial correlation scales in
the coordinate directions.

2.2 Update of system state

Correction to the a priori estimateXf
t is accomplished by as-

similating observed system-response data from the true sys-
tem, thereby merging the model-calculated and observed val-
ues. This correction depends on the uncertainty attached to
both the a priori estimate (i.e., the model results) and the true
values (i.e., the observations from the true system), with un-
certainty in the model forecast provided by the spread in the
ensemble values and uncertainty in the observed values spec-
ified according to data-sampling methods. The correction
made to the model-calculated values by the observed values
is dictated by the ratio of these uncertainties. If there is less
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292 R. T. Bailey and D. Bàu: Estimating geostatistical parameters

Fig. 3. Contour representation of(A) ground surface elevation and
(B) aquifer thickness. Both datasets are used to create the three-
dimensional subsurface finite-element mesh.

uncertainty attached to the observed data, which is typically
the case, then the model-calculated value at the observation
location will be corrected to approach the observed value.
Furthermore, model results can also receive correction from
observed data if the model value is correlated with the model
value at the observation location. In this way information
from the true state at observation points can be “spread” to
regions between observation locations, and hence throughout
the model domain.

This correction procedure is carried out through the fol-
lowing Kalman Filter update equation, with the forecasted
ensembleXft corrected, or updated, at a timet usingm

Table 1. Frequency distribution of the ensemble of perturbed values
for the observedWT value of 18.5 m collected on day 91 at location
(X = 2500 m, Y = 3500 m) of the “true aquifer”, for CV values of
0.10 and 0.30.

DEM Attributes

Cells in x direction 81
Cells in y direction 81
Grid spacingm 50
Number of cells 6561

Mesh Attributes

Aquifer Thickness 7.5 to 15.5
Number of Layers 10
Number of Surface Nodes 6724
Number of 3-D Mesh Nodes 73 964
Number of Tetrahedral Elements 393 660

System Parameters

Saturated hydraulic conductivityKs GM: Eq. (3)
Meanµ of K fields log 1.30 (m d−1)

Varianceσ2 of K fields log 0.25 (m d−1)2

Correlation Lengthλ of K fields 1000 m
Specific storageSs 0.01 m−1

Porosityn 0.35
Residual moisture contentθ r 0.061
van Genuchten parameters α = 0.43 m−1, n= 1.70

Simulation details

Monte Carlo Ensemble Size 100
Simulation perioddays 730.0

observed data stored in a vectorM t [m]:

Xu
t = X

f
t +κ t

(
Dt −HXf

t

)
(4)

whereXut [dxnMC] is the updated ensemble withu denoting
update;Dt [mxnMC] holds the ensemble of perturbed val-
ues of the measurement data, with the ensemble of values
for each measurement value calculated by adding a Guas-
sian perturbation (stored in the matrixE [mxnMC]) to each
of them observations stored inM t ; H [mxd] contains binary
constants (0 or 1) resulting in the matrix productHXf

t that
holds model results at measurement locations, andκ t [dxm]
is the so-called “Kalman Gain” matrix. In this study, ob-
servation data are sampled from a known reference state to
enable assessment of the ES scheme.

In Eq. (4), the difference, or residual, between the model

values and observed values is represented by
(
Dt −HXf

t

)
,

with the weighting of the correction and the spatial spread
of the information dictated byκ t , which holds the ratio of
uncertainties as well as the covariance between model values
at each model node (Bailey and Baù, 2011). The form of
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R. T. Bailey and D. Bàu: Estimating geostatistical parameters 293

Fig. 4. (A) Cultivated (blue) and non-cultivated fields (white),
with cultivated fields receiving additional applied water during the
months of April through October, and(B) Net infiltration in the
month of July (of the second year) for the true system, with values
ranging from 0.000355 m day−1 to 0.006 m day−1 (represented by
white and black, respectively).

κ t is:

κ = CfH T
(
HCfH T

+R
)−1

(5)

whereCf [dxd] and R [mxm] are the forecast error and
observation error covariance matrices, respectively, and are

Fig. 5. (A) Reference field of trueYK and(B) correspondingWT
field at time = 365 days as calculated by CATHY. In(B), red crosses
indicate the location of 24 observation wells. The streamflow at the
outlet cell during the 365-day simulation is shown in the subpanel.

defined as:

Cf =

(
X
f
t+1t −X

)(
X
f
t+1t −X

)T
nmc−1

(6a)
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R =
EET

nmc−1
(6b)

where each column ofX[n x nMC] holds the average value
of the ensemble at each location in the domain.

In a straightforward application of data assimilation to a
catchment system, Eq. (4) would correspond to merging ob-
served values ofWT (orQ) with the model-calculatedWT
field (orQ along a stream channel) in order to provide aWT

field that honors the observedWT data. However, doing so
only corrects the system response of the model – the struc-
tural difference between the a priori model state and the true
state that yields differences in the system response will per-
sist indefinitely. To temper these structural differences, it
is essential to correct the parameters that drive the system
response. This can be accomplished by utilizing the rela-
tionships betweenK and the resulting values ofWT and
Q as established through CATHY. For example, the cross-
covariance submatrix betweenWT andYK is defined as:

Cft
(
X(WT ),X(YK )

)
=

[(
X
f
t −X

)
WT

][(
X
f
t −X

)
YK

]T
nMC −1

(7)

By including the expression for Eq. (7) into Eq. (5), the val-
ues ofYK in Xft can be corrected by observation data inDt
through the spatial correlation betweenYK ,WT , andQ.

2.3 Forecast-Update scheme for the ensemble smoother

Whereas Eqs. (1) and (4) are run in a sequential manner in
the KF and EnKF schemes, with correction via Eq. (4) oc-
curring whenever observation data are sampled from the true
system, the ES algorithm includes all previous model state
and observation data up to the final data sampling timetnF ,
at which time the ES update routine is run to provide updated
system states at all previous collection times. At timetnF ,

the forecast matrix̃X
f

tF
and the observation matrix̃DtF hold

the model state ensembles and the perturbed observation data
from all data sampling times (t1,t2,. . . , tnF ):

X̃
f

tF
=

[
Xt1,Xt2,...,XtnF

]T
[(d)(nF )]xnMC (8a)

D̃tf =
[
Dt1,Dt2,...,DtnF

]T
[(m)(nF )]xnMC (8b)

wherenF is the number of times at which measurements are
collected. Within the ES scheme, the forecast covariance ma-
trix C̃

f

tnF
contains both spatial covariance terms and temporal

covariance terms between cell values from different collec-
tion times (Evensen, 2007). The measurement error covari-
ance matrix̃RtnF also is established using the perturbations
for each of the measurement values for each of thenF collec-
tion times. By inserting̃X

f

tnF
andD̃tnF into Eq. (4) and̃C

f

tnF

Fig. 6. Spatial distribution of the updatedYK ensemble using data
from 24 observation wells sampled 4 times during the 365-day pe-
riod, with the CV of observation data set to(A) 0.0 and(B) 0.3.
Compare to the true state shown in Figure 5A.

andR̃tnF into Eq. (5), the updated system state matrixX̃
u

tnF
contains the updated model state for each assimilation time.

The Keppenne (2000) algorithm, which provides an effi-
cient numerical strategy for updating the system state for the
EnKF scheme and designed for high-resolution real-world
climate numerical models, was modified to include model
states and observation data from each assimilation time (Bai-
ley and Bàu, 2010) and used to compute Eq. (4) within the ES
framework. The techniques employed by Keppenne (2000)
and hence inherent in the update algorithm used in this study
do not require the direct assemblage ofCf , hence saving on
computer memory and preventing numerical issues.
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Table 2. The increase of AE (i.e., the decrease in conditioning to the true YK field) with increasing values of CV of theWT observation
data, for the cases when one, two, and four assimilation times are used.

Num Num
Scenario GageQ AT Q CV Q AE K % Reduct AEPK % Reduct

FORECAST – – – 0.619 – 0.388 –

UPDATE

1 4 4 0.00 0.512 17.3 % 0.305 21.3 %
2 4 4 0.10 0.574 7.3 % 0.368 5.0 %
3 4 4 0.30 0.607 2.0 % 0.384 1.0 %
4 4 4 0.50 0.614 0.9 % 0.386 0.4 %
5 4 4 0.70 0.616 0.5 % 0.387 0.2 %
6 4 4 1.00 0.617 0.3 % 0.387 0.1 %

Table 3. Spatial distribution of the mean of the updated YK ensemble using YQ data from four gaging stations along the stream channel
sampled four times during the 365-day period, with the CV of observation data set to 0.0. Compare to the true state shown in Fig. 5a.

Num Num Num Num
Assim Meas Gage AT AT CV CV AE % AEP %

Scenario Var WT Q WT Q WT Q YK Reduct YK Reduct

FORECAST 0.619 – 0.388 –

UPDATE

1

WT

24 0 4 – 0.00 – 0.380 38.6 % 0.203 47.7 %
2 8 0 4 – 0.00 – 0.447 27.8 % 0.261 32.6 %
3 4 0 4 – 0.00 – 0.455 26.4 % 0.297 23.3 %
4 2 0 4 – 0.00 – 0.545 11.9 % 0.334 13.9 %
5

WT ,Q

24 4 4 4 0.00 0.00 0.380 38.6 % 0.203 47.7 %
6 8 4 4 4 0.00 0.00 0.440 29.0 % 0.252 35.0 %
7 4 4 4 4 0.00 0.00 0.434 29.9 % 0.284 26.9 %
8 2 4 4 4 0.00 0.00 0.482 22.1 % 0.301 22.3 %

2.4 Evaluating the updated system state

The ability of the ES algorithm to bring the forecasted en-
semble into conformity with the true system state is quanti-
fied through two location-specific parametersEE (ensemble
error) andEP (ensemble precision) and two global parame-
tersAE (absolute error ) andAEP (average ensemble preci-
sion) (Hendricks Franssen and Kinzelbach, 2008; Bailey and
Baù, 2011):

EEi =
∣∣Xi−Xi,true∣∣(i= 1,...,n) (9a)

EPi =
1

nmc

nmc∑
j=1

∣∣Xi,j −Xi
∣∣(i= 1,...,n) (9b)

AE(X)=
1

(nmc)(n)

nmc∑
j=1

n∑
i=1

∣∣Xi,j −Xi,true
∣∣ (9c)

AEP(X)=
1

(nmc)(n)

nmc∑
j=1

n∑
i=1

∣∣Xi,j −Xi
∣∣ (9d)

whereXi is the ensemble mean of theith location (node in
a FE discretization of the domain or cell of the surface DEM
grid),Xi,true is the reference “true” value of theith location,
andXi,j is the variable value of thei location of thej th
ensemble realization. Equation (9a) and (c) provide a mea-
sure of the deviation between the model state and the ref-
erence state, and Eq. (9b) and (d) provide a measure of the
spread of the values around the ensemble mean of the model
state. The performance of the update routine is measured by
calculating the difference between performance parameters
of the forecasted and updated ensembles. As a second type
of performance measure, the ensemble of CATHY simula-
tions can be rerun using the updated ensemble ofYK fields
to determine if the updatedYK ensemble produces simulated
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Fig. 7. Spatial distribution of EP for the updatedYK ensemble using
data from 24 observation wells sampled 4 times during the 365-day
period, with the CV of observation data set to 0.0.

1 
Figure 7. Spatial distribution of EP for the updated 2 
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 7 

 8 

 
. Spatial distribution of EP for the updated YK ensemble using data from 24 observation wells sampled 4 

day period, with the CV of observation data set to 0.0. 

Frequency distribution of the ensemble of perturbed values for the observed WT value of 18.5 m 

collected on day 91 at location (X=2500 m, Y = 3500 m) of the “true aquifer”, for CV values of 0.10 and 0.30.

36 

ensemble using data from 24 observation wells sampled 4 

 
value of 18.5 m 

collected on day 91 at location (X=2500 m, Y = 3500 m) of the “true aquifer”, for CV values of 0.10 and 0.30. 
Fig. 8. Frequency distribution of the ensemble of perturbed values
for the observedWT value of 18.5 m collected on day 91 at location
(X = 2500 m, Y = 3500 m) of the “true aquifer”, for CV values of
0.10 and 0.30.

results that match the observed data, i.e., to see if the model
has been “calibrated” adequately. This latter method will be
demonstrated in Sect. 3.3.2.

2.5 Iterative method to estimate geostatistical
parameters

In the forecast step of Sect. 2.1, it is assumed that the param-
eters defining the GM of Eq. (3) are known, i.e., that the pa-
rameter values used to generate the ensemble ofYK fields for
the forecast simulations are the same as the reference system
from which the observation data is sampled. In recognition

1 
Figure 9. The increase of AE (i.e., the decrease in conditioning to the true 2 

of the WT observation data, for the cases when one, two, and four assimilation times are used.3 
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Figure 10. Spatial distribution of the mean of the updated 6 
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0.0. Compare to the true state shown in Figure 5A. 
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day period, with the CV of observation data set to 

Fig. 9. The increase of AE (i.e., the decrease in conditioning to the
trueYK field) with increasing values of CV of theWT observation
data, for the cases when one, two, and four assimilation times are
used.

Fig. 10. Spatial distribution of the mean of the updated YK en-
semble using YQ data from four gaging stations along the stream
channel sampled four times during the 365-day period, with the CV
of observation data set to 0.0. Compare to the true state shown in
Fig. 5a.

that this is generally not the case, the ES scheme decribed in
Sect. 2.1 through Sect. 2.3 is employed in an iterative scheme
to discover the geostatistical parameter values of the true sys-
tem, as shown in Fig. 1. Beginning with a set of estimated
GM parameter values, an ensemble ofYK fields is generated
using SKSIM and the corresponding ensemble of CATHY
flow simulations is run. Upon assimilating observation data
from the reference system and conditioning theYK ensem-
ble, the GM parameter values of the updatedYK ensemble
are inferred from the updated ensemble and used to produce
the forecastYK ensemble for the subsequent iteration. This
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process proceeds until GM parameter values are converged
upon. At each iteration the model-calculated values ofWT

can also be compared to the observedWT data from the true
aquifer system, to verify that the estimated GM parameter
values from the previous iteration yield a spatial structure
of YK that furnishes the system response of the true system.
It should be noted that estimation of the correlation scaleλ

was not pursued extensively in this study, as it became evi-
dent during initial uses of the iterative approach thatλ could
not be estimated using only a model-response variable such
as water table elevation. As discussed in Sect. 4, the di-
rect assimilation ofYK values are likely required to provide
information regardingλ, and will be pursued in future work.

3 Parameter Estimation of Spatially-VariableK

3.1 Forecast ensemble ofK, WT , and Q

The catchment system used for the numerical experiment in
this study is a 4.05 km by 4.05 km tilted v-shaped catchment,
as shown in Fig. 2, with a stream flowing north to south along
the central depression of the catchment. The DEM of the
surface terrain, discretized using 50 m by 50 m grid cells for
a total ofe = 81× 81 = 6561 grid cells, is shown in Fig. 3a
with a contour plot of the ground surface elevation. Aquifer
thickness varies between 7.5 m and 15.5 m, with the thickest
portion under the central depression, as shown in Figs. 2 and
3b. The subsurface is discretized bynL = 10 layers of vary-
ing thickness, with thicknesses ranging from 0.375 m near
the ground surface to 3.0 m near the aquifer base.

The characteristics of the DEM, the 3-D mesh, and
the parameters of the model are summarized in Table 1.
The number of nodes in the 2-D surface FE mesh is
n= 82× 82 = 6724. The 3-D mesh is obtained from replicat-
ing the 2-D FE mesh through the vertical extent of the sub-
surface and contains 3× nL× 2e = 393 660 tetrahedral ele-
ments andn× (nL + 1) = 73 964 nodes. Lateral spatial dis-
tribution of YK for the forecast ensemble is generated us-
ing meanµYK = 1.301 log m day−1 (K = 20 m day−1), stan-
dard deviationσ 2

YK
= (0.250 log m day−1)2, and correlation

length (λx=λy)= 1000 m, resulting inK values ranging from
approximately 0.2 m day−1 to 1500 m day−1. In this study,
nMC = 100 realizations are used for the ensemble. Values of
YK are calculated for each DEM cell, resulting in a value of
YK assigned to each 3-D FE under the cell. In other words,
the spatial distribution ofYK is the same for each of the 10
layers in the 3-D mesh. Vertical hydraulic conductivity,Kv,
is set equal to one-third the value of horizontalK.

The simulation period is one year, from January to De-
cember. No-flow boundaries are assigned for every edge
of the aquifer (see Fig. 2). Forcing termsqss consist of
uniformly-distributed net infiltration from precipitation dur-
ing the months of January through March and November
through December, and spatially-varying rates of net infiltra-

tion from applied water (e.g., irrigation water) in addition to
net infiltration from precipitation during the months of April
through October. For the latter, rates are applied according to
the cultivation pattern depicted in Fig. 4a, with cells shown in
blue receiving monthly values randomly sampled from an ex-
ponential distribution (rate parameterγ = 0.75). The pattern
of cultivation shown in Fig. 4a is the same for each realiza-
tion, but monthly rates vary across the realizations. The re-
sulting rates are not intended to represent particular irrigation
practices, but rather to provide a spatio-temporal variation
in the forcing terms of the catchment system. As an exam-
ple, the rates of net infiltration from combined precipitation
and applied water for the month of July for one realization
are shown in Fig. 4b, with values ranging from 0.000355 m
day−1 to 0.006 m day−1 (represented by white and black, re-
spectively). The depth of monthly net infiltration is presented
in Fig. 2.

Initial conditions for each simulation are achieved as fol-
lows. First, a 10 000-day spin-up simulation with a uni-
form net infiltration rate of 0.0012 m day−1 and isotropic,
homogeneous aquifer withK = 30 m day−1 is run in order
to achieve steady-state conditions in the catchment as deter-
mined by water table elevation and streamflow rate. Second,
each realization of the ensemble is run for 365 days using a
different anisotropicYK field and infiltration pattern to elim-
inate the bias due to the initial conditions. The results of
this 365-day simulation are then used as initial conditions
for the final 365-day simulation period for each realization,
with time steps ranging between approximately 0.10 to 1.0
day. Stream inflow (Fig. 2) is set to 0.

An additional CATHY simulation representing the true
catchment system is run, with the trueYK field and result-
ing trueWT field (at 365 days) depicted in Fig. 5. The
streamflow rate at the outlet cell of the catchment is shown in
Fig. 5b, indicating the increased discharge during the months
of April through October due to increased rates of net infil-
tration from precipitation as well as applied water. In com-
paring theYK forecast ensemble to the trueYK field using
Eq. (9c) and (d), the AE and AEP values are 0.619 and 0.388,
respectively.

The GM parameter values used to generate theYK field are
the same as used for the forecast ensemble. This assumption
will be relaxed in Sect. 3.3.2, when the iterative approach
presented in Sect. 2.5 is used to estimate the true GM pa-
rameter values. The ability of the ES scheme to recover the
spatial distribution of the trueYK field by assimilatingWT
andQ measurements into the forecast ensemble results is
explored in Sect. 3.2.
WT data andQ data are collected from observation wells

(Fig. 5b) and stream gaging points (Fig. 2), respectively.
CPU (Central Processing Unit) time to run a single real-
ization on an Intel® Core™2 Duo CPU @ 3.00 GHz desk-
top computer range from approximately 20 min to 180 min,
depending on the spatial distribution ofYK .
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Fig. 11. (A)TrueYK field using µyK = 1.801 log m day−1 (K = 63.2 m day-1),(B) TrueYK field using µyK = 0.801 log m day−1 (K = 6.3 m
day-1),(C) mean distribution of the updatedYK ensemble for the first scenario (µyK = 1.801), and(D) mean distribution of the updatedYK
ensemble for the second scenario (µyK = 0.801). For both scenarios scenario, 24WT data from four assimilation times are used.

3.2 Update ofK ensemble

Observation data from the true catchment system are col-
lected tri-monthly, resulting in four assimilation times during
the year. As such, forecast ensemble model results are also
saved every three months for use in the ES algorithm. The
first set of update scenarios consists of conditioning the fore-
castYK ensemble usingWT data from the 24 observation
wells shown in Fig. 5b, with variations on (i) the number of
assimilation times and (ii) the error, defined using coefficient
of variation (CV) ofWT data, assigned to the observedWT
data. For these scenarios, the CPU run-time of the ES update
routine is approximately 30 s.

For the scenario where four assimilation times are used
and the observation data are assumed to be error-free, the
ensemble mean at each computational point for the updated
YK ensemble is shown in Fig. 6a. The AE value of the up-
datedYK ensemble, measuring the absolute error from the
trueYK field, is 0.380, a reduction of 38.6 % from the fore-
cast value of 0.619. In comparison with the trueYK field

shown in Fig. 5a, the mean of the updatedYK ensemble in
Fig. 6a captures the overall spatial pattern of the true field,
with high values ofYK in the northwest and southeast sec-
tions of the aquifer and low values in the north-central and
southwest portions. The updated AEP value, measuring the
spread of the updatedYK ensemble, is 0.203, a reduction of
47.7 % from the forecast value of 0.388. The spatial distri-
bution of EP for the updatedYK ensemble, as calculated by
Eq. (9b), is shown in Fig. 7. Notice that the spread of the
ensemble values is lowest at and around the locations of the
24 observation wells.

When a CV value of 0.10 is assigned to theWT observa-
tion data, the AE and AEP values of the updatedYK ensem-
ble are 0.405 and 0.246, respectively, reductions of 34.5 %
and 36.6 % from the forecast values. When a CV value of
0.30 is assigned, the AE and AEP values are 0.441 and 0.284,
reductions of 28.8 % and 26.8 % from the forecast values.
The ensemble of perturbed values for a data value collected
from the observation well located at location (X = 2500 m,
Y = 3500 m) for these two cases is shown in Fig. 8. For the
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Fig. 12. Comparison of reference and updated values ofYK along
the Y = 2000 m transect where the true is higher (1.801 log m
day−1) and lower (0.801 log m day−1) than the of the forecast en-
semble (1.301 log m day−1). The values from the reference state
are shown in red, and the updated values are shown in blue. For
both scenarios, 24WT measurements are assimilated.

Fig. 13. ReferenceYK field with = 0.301 log m day−1 (2.0 m
day−1) and = 0.500 (log m day−1)2.

latter case, the ensemble mean of the updatedYK ensemble
is shown in Fig. 6b. In comparison to the case of CV = 0.00
(Fig. 6a), the spatial distribution ofYK does not resemble as
well the trueYK field shown in Fig. 5a.

When observation data from only one assimilation time
(time = 365 days) is assimilated, the AE value of the updated
YK ensemble is 0.408; when observation data from two as-
similation times are used (time = 181 days and 365 days), the
AE value is 0.385. In comparison to the AE value of 0.380,
when four assimilation times are used, the improvement of
the updatedYK ensemble with respect to the trueYK field is
not considerable. The usefulness of additional assimilation

Fig. 14. Progression of the estimated GM parameters and , demon-
strating the convergence of the parameter values to∼0.300 log m
day−1 and 0.580 (log m day−1)2, respectively.

times, however, is seen in the context of observation data er-
ror. Figure 9 shows the increase of AE (i.e., the increase
in deviation from the trueYK field) with increasing values of
CV of theWT observation data, for the cases when one, two,
and four assimilation times are used. Notice that the increase
of AE is lessened when observation data from multiple times
are assimilated, with the best results occurring when 4 as-
similation times are used. The use of additional assimilation
times yielded no improvement. For the case of CV = 0.50,
the AE value using one, two, and four assimilation times is
0.594, 0.563, and 0.471, respectively.

The second set of update scenarios consists of assimilating
observed values ofQ from the reference system. The ensem-
ble of values ofQ for a given surface grid cell are found to be
close to lognormally-distributed (Clark et al., 2008), with the
coefficient of determinationr2 = 0.702 and the Kolmogorov-
Smirnov statisticsKS= 0.270 for a lognormal fit. This re-
quires both theQ observation data andQ forecast ensemble
to be log-transformed before use in the ES update routine.

WhenYQ = logQ data from 4 gaging stations along stream
channel from the four measurement times are assimilated
into the forecast ensembles ofYQ andYK , the resulting AE
and AEP values of the updatedYK ensemble are 0.512 and
0.305, providing reductions of 17.3 % and 21.3 % from the
forecast values. The ensemble mean for the updatedYK en-
semble for this scenario is shown in Fig. 10. When compared
with the updatedYK ensemble in Fig. 6a, it is clear that ob-
servation data from the 24 wells provide an updatedYK en-
semble that fits more closely with the trueYK field than us-
ing YQ data. Still, theYK ensemble mean in Fig. 10 captures
the principal features of the spatial pattern of the true field.
However, when error is assigned to the observedYQ data,
the ability of theYQ data to condition theYK ensemble is
reduced dramatically. Table 2 shows the values of AE and
AEP of the updatedYK ensemble for scenarios in which the
CV of theYQ data ranges from 0.00 to 1.00. When CV = 0.1,
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300 R. T. Bailey and D. Bàu: Estimating geostatistical parameters

Fig. 15. Ensemble mean of updatedYK ensemble for the(A) 1st iteration,(B) 2nd iteration,(C) 3rd iteration, and(D) 4th iteration, for the
case where the true values of and are 0.301 log m day−1 and 0.500(log m day−1)2, respectively. Compare to the true state in Fig. 13. The
forecast AE values was 1.106.
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Fig. 16. Value of YK along theY = 2000 m transect for the ref-
erence state (red), the foreacast ensemble mean (dotted black line)
and the update ensemble mean for the 1st (solid black line) and 2nd
(solid blue line) iteration, for the case where the true values of and
are 0.301 log m day−1 and 0.500 (log m day−1)2, respectively.

the reduction in the AE value from the forecast ensemble is
7.3 %; for CV = 0.30, the reduction is only 2.0 %.

Table 3 presents results of scenarios whereinWT andYQ
data are jointly assimilated, with the number of observation
wells ranging from 2 to 24. In each case, the observation
wells are positioned in a grid network. In order to assess the
influence of assimilatingYQ data, four scenarios (1–4) are
run with onlyWT observation data, with the same four sce-
narios rerun (scenarios 5–8) with the inclusion of assimilat-
ing YQ data from 4 gaging stations. Results indicate that the
inclusion ofYQ data only provides enhanced conditioning
of the YK ensemble when the number of observation wells
used is less than 8. For example, when 4 observation wells
are used, the AE value for the scenarios with and without
YQ data is 0.455 and 0.434, respectively; when two wells are
used, the AE value with and withoutYQ data is 0.545 and
0.482, respectively. Hence, when sparseWT data are avail-
able, the additionalYQ data are able to provide information
regarding the spatial distribution ofYK and hence partially
maintain the value of AE.
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Fig. 17.Comparison between model-calculatedWT values and ob-
servedWT data from the true system for the forecastWT ensemble,
theWT ensemble generated using the updated GM parameter val-
ues from the 1st iteration, and theWT ensemble using the updated
GM parameters from the 2nd iteration. Comparison are made for
(A) time = 273 days and(B) time = 365 days.

3.3 Case of uncertain geostatistical parameter values

3.3.1 Log-Mean of trueYK field is uncertain

In this section, the ability of the ES update routine to con-
dition the ensemble ofYK usingWT observation data sam-
pled from a catchment system whereµYK is different from
the one used in generating the forecast ensemble is explored.
In the first scenario,µYK of the trueYK field is 1.801 log
m day−1 (K = 63.2 m day−1, one-half order of magnitude
higher than the forecast value of 20 m day−1); for the sec-
ond scenario,µYK of the trueYK field is 0.801 log m day−1

(K = 6.3 m day−1, one-half order of magnitude lower than
the forecast value of 20 m day−1). The value ofσ 2

YK
in the

true systems and the forecast ensemble is the same [(0.250
log m day−1)2]. In Sect. 3.3.2, a more severe test is used to
demonstrate the iterative approach described in Sect. 2.5.

The trueYK field for the first and second scenarios are
shown in Fig. 11a and b, respectively. For the two scenar-
ios, the AE of the forecastYK ensemble is 0.690 and 0.692,
respectively. By assimilatingWT data from 24 observation
wells for four assimilation times, the AE of the updatedYK

ensemble for the two scenario is 0.365 and 0.395, respec-
tively, resulting in reductions of 47.1 % and 43.0 % from
the forecast AE values. The spatial distribution of the up-
datedYK ensemble mean for the two scenarios is shown in
Fig. 11c and d. For both scenarios, the updated ensembles
capture the general magnitude and spatial distribution of the
trueYK field.

For the first scenario, the initially too-low (compared to
the true system) values ofYK are conditioned to the higher
values present in the true system; for the second scenario, the
initially too-high values are conditioned to the lower values.
The same effect is observed through a comparison between
the reference, forecast, and updated values ofYK across a
west-east transect located at Y = 2000 m, as shown in Fig. 12.
In both scenarios, the forecastYK values along the transect
are approximately equal to the forecastµYK value of 1.301,
whereas the updatedYK values have been conditioned to
resemble the true profiles.

3.3.2 Iterative approach to discover geostatistical
parameter values

To demonstrate the iterative approach, the true aquifer sys-
tem hasµYK andσ 2

YK
values of 0.301 log m day−1 (K = 2.0 m

day−1) and 0.500 (log m day−1)2. The resulting trueYK
field is shown in Fig. 13. For each iteration, observation data
from 24 observation wells and four assimilations are used
to condition theYK ensemble. Beginning with a forecast
YK ensemble generated usingµYK = 1.301 log m day−1 and
σ 2
YK

= 0.250 (log m day−1)2, eight iterations are performed,

with theµYK andσ 2
YK

values of the updatedYK ensemble
after each iteration shown in Fig. 14. As seen in Fig. 14, the
value ofµYK reaches the parameter value from the true sys-
tem within three iterations, but eight iterations are required
to determine if convergence has been achieved. Forσ 2

YK
, the

value from the updatedYK decreases during the first sev-
eral iterations, but eventually converges upon a value (0.580)
slightly higher than the true value of 0.500 (log m day−1)2. If
the GM parameter values of the true system were unknown,
then it would be assumed thatµYK is just under 0.300 log m
day−1 andσ 2

YK
is equal to 0.580 (log m day−1)2.

Besides the convergence to the true GM parameter values,
the approach of the updatedYK ensemble to the spatial dis-
tribution of the trueYK field is demonstrated in Figs. 15 and
16. The ensemble mean of the updatedYK ensemble for iter-
ations 1 through 4 is shown in Fig. 15a–d, with the AE value
generally decreasing from the forecast value of 1.106 (0.755,
0.565, 0.507, and 0.518, respectively), although a slight in-
crease occurs between iterations 3 and 4. The structure of the
YK spatial distribution, however, progressively approaches
the pattern of the trueYK field shown in Fig. 13 with each
successive iteration.

Figure 16 shows the trueYK values, forecastYK values,
and the updated values ofYK for the 1st and 3rd iterations
at the Y = 2000 west-east transect. Dramatic improvement
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in the updatedYK values in relation to the trueYK values
occurs from the forecast to the first iteration, and from the
first iteration to the third iteration.

Finally, comparisons are made between observedWT data
from the true system and model-calculatedWT values gen-
erated by CATHY using the updated values ofµYK andσ 2

YK
from the previous iteration. This is especially important since
such a comparison, i.e., re-running the numerical model us-
ing the estimated parameter values and comparing model re-
sults with observed data at observation locations, is generally
the only means by which the parameter estimation method
can be verified. Figure 17 shows the comparison between
observedWT data and model-calculatedWT values from
the forecast ensemble, theWT ensemble generated using the
updated GM parameter values from the first iteration, and
theWT ensemble using the updated GM parameters from
the second iteration. Comparisons for times = 273 days and
365 days are shown in Fig. 17a and b, respectively.

The match between the forecast values and the true value is
much improved upon using the results from the first iteration,
and an excellent match occurs using the results from the sec-
ond iteration. Quantitatively, the sum of squared differences
between the model results and true system values is 95.32,
4.29, and 0.59, respectively for time = 273 days, and 99.16,
4.98, and 1.83, respectively for time = 365 days. Notice that
the forecastedWT values are lower than the observedWT
values from the true aquifer system, since the forecastYK
values are generated using a higher value ofµYK . However,
using the lower updated value ofµYK from the first and sec-
ond iterations, theWT values become higher and more in
accordance with the observedWT values.

4 Conclusions

The ES update routine, a derivative of the Kalman Fil-
ter approach, has been evaluated for the estimation of
spatially-variableK in a catchment system using the fully-
coupled, surface-subsurface flow model CATHY. A 4.05 km
by 4.05 km tilted v-catchment was used in demonstration,
with spatio-temporal variability in forcing terms to provide
increased uncertainty in the system and to strive to mimic
real-world conditions.

Both WT data andQ data were collected from a refer-
ence catchment system and assimilated into the ensemble of
model results to condition the spatial distribution ofK to ap-
proach the referenceK field. AssimilatingWT from a net-
work of observation wells provided a distinct improvement
in theK ensemble in relation to the trueK field, with sets of
data from multiple collection times tempering the decrease
in improvement when error was assigned to the observed
WT data. AssimilatingQ data only slightly improved the
K ensemble in relation to the trueK field. Jointly assimilat-
ingQ andWT data only improved the estimate ofK when
data from a small number (2,4) of observation wells were

assimilated. This is due to the region of influence ofQ, i.e.,
the regions of the aquifer where theK values directly influ-
enceQ and hence can be conditioned by observed values of
Q, being small compared to the collective region of influence
of WT values at the observation wells.

For cases in which the parameter values defining the geo-
statistical structure of the aquifer system are uncertain to a
small degree (i.e., mean of trueK field is one-half order of
magnitude different than the assumed mean), the methodol-
ogy is still able to condition adequately the forecastK en-
semble to approach the magnitude and spatial structure of
the true aquifer system. For more severe cases, i.e., the true
and assumed means are different by an order of magnitude
and the true and assumed variance of theK field is different,
an iterative process using the ES is used to converge upon the
true geostatistical parameter values. Results indicate that the
process is successful in approximating the true values.

For the present study uncertainty in the correlation length
of theK field is not investigated, and an amendment to the it-
erative scheme to converge upon unknown correlation length
is left to future research, with assimilation of measurements
of K likely necessary. Future studies also include an appli-
cation of the methodology to an actual catchment system in
order to estimate the geostatistical parameter values as well
as the spatial distribution ofK.
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