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Abstract. Groundwater flow models are important tools in a synthetic three-dimensional tilted v-shaped catchment sys-
assessing baseline conditions and investigating managemetgm incorporating stream flow and variably-saturated subsur-
alternatives in groundwater systems. The usefulness of thesface flow, with spatio-temporal variability in forcing terms.
models, however, is often hindered by insufficient knowl- Results indicate that the method is successful in providing
edge regarding the magnitude and spatial distribution of themproved estimates of th& field, and that the iterative
spatially-distributed parameters, such as hydraulic conducscheme can be used to identify the geostatistical parameter
tivity (K), that govern the response of these models. Provalues of the aquifer system. In general, water table data
posed parameter estimation methods frequently are demorirave a much greater ability than streamflow data to condi-
strated using simplified aquifer representations, when in realtion K. Future research includes applying the methodology
ity the groundwater regime in a given watershed is influencedo an actual regional study site.

by strongly-coupled surface-subsurface processes. Further-
more, parameter estimation methodologies that rely on a geo-

statistical structure oK often assume the parameter values 1 |ntroduction

of the geostatistical model as known or estimate these values

from limited data. 1.1 Inverse modeling in groundwater applications

In this study, we investigate the use of a data assimila-Hydrologic models are important tools in assessing baseline
tion algorithm, the Ensemble Smoother, to provide enhanceaonditions and investigating best-management practices in
estimates ofK within a catchment system using the fully- groundwater and catchment-scale systems. Before reliable
coupled, surface-subsurface flow model CATHY. Both waterhydrologic assessments can be made, however, parameter
table elevation and streamflow data are assimilated to convalues that drive the response of the model must be appro-
dition the spatial distribution oK. An iterative procedure priately chosen for a specific aquifer or catchment. Direct
using the ES update routine, in which geostatistical parammeasurements of hydrologic parameters, however, are scarce
eter values defining the true spatial structurekoéire iden-  and fraught with uncertainty, and typically only apply locally
tified, is also presented. In this procedure, parameter valuedue to the spatial variability of parameter values.
are inferred from the updated ensemblekofields and used To address this problem of parameter uncertainty, hy-
in the subsequent iteration to generate khensemble, with  drologic models can be used in applications “opposite” or
the process proceeding until parameter values are convergéthverse” to their original use, i.e., parameter values are
upon. The parameter estimation scheme is demonstrated viaeated as system unknowns and are determined by extracting
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288 R. T. Bailey and D. Bai: Estimating geostatistical parameters

information from observations of system-response variableKinzelbach, 2008; Fu and &@nez-Herandez, 2009; Bai-
(Kitanidis and Vomvoris, 1983). The general approach con-ley and Bai, 2010). Several studies have employed three-
sists of determining the set of parameter values that yieldslimensional steady-state flow models (Chen and Zhang,
adequate matches between model results and observatio2606; Liu et al., 2008), and several have estimated hydraulic
from the true hydrologic system. The treatment of param-parameters in variably-saturated flow conditions (Yeh and
eter values as unknowns that need to be identified constituteghang, 1996; Zhang and Yeh, 1997; Li and Yeh, 1999), al-
the inverse problem of groundwater modeling (Kitanidis andthough for the latter applications were limited to small 2-D
Vomvoris, 1983), and in most cases must be incorporated irvertical-plane systems. In general, however, critical compo-
the modeling process (Carrera et al., 2005). nents of hydrology in watershed systems, e.g., infiltration
In recent decades numerous methodologies have beesnd percolation in variably-saturated porous media, pond-
proposed and applied to the inverse modeling problem inng and overland flow, and stream channel flow have been
groundwater modeling, with the general aim to estimate theneglected. Catchment models such as CATHY (CATch-
spatial distribution of hydraulic conductivityk() or trans-  ment HYdrology), based on the 3-D Richards equation for
missivity (T) in an aquifer system. An excellent review variably-saturated porous media and a diffusion wave ap-
of early inverse methods is provided by Carrera and Neu-proximation for overland and channel flow, have been used
man (1986). A review of more recently-proposed methods isin data assimilation studies (Camporese et al., 2009, 2010),
given by Carrera et al. (2005). Broadly, parameter estimatiorbut not yet in parameter estimation. Estimation of parame-
is accomplished either through (i) optimization procedures,ters in land-surface models has been performed (e.g., Boulet
in which an objective function is defined (typically mini- etal., 2002; Xie and Zhang, 2010), although the models treat
mizing the error between model results and measurementgroundwater flow using simplified approaches.
and minimized in a least-squares approach, and (i) statistical In recognition that improved parameter estimation occurs
conditioning, in which covariance between the parametersvhen system-response data from more than one governing
and system-response variables is utilized to condition the pagquation is used (Gailey et al., 1991), with the implication
rameter values using measurement information. It should behat each data type contains unique information regarding the
noted that conditioning methods also incorporate a sense gbarameter, numerous studies have employed two or more sets
optimization, although the optimization occurs in the deriva- of dissimilar data to condition the parameter values. Such
tion of the conditioning algorithm, e.g., through minimizing data sets typically include hydraulic head data as well as an-
the trace of the a posteriori error estimate covariance matriother data type such as solute concentration data (Gailey et
(e.g., Kalman, 1960). al., 1991; Li and Yeh, 1999; Hendricks Franssen et al., 2003;
For the optimization classification, methods include zona-Goémez-Herandez et al., 2003; Liu et al., 2008), groundwa-
tion, the pilot point method (e.g., RamaRao et al., 1995),ter temperature (Woodbury and Smith, 1988), groundwater
the represent method (RM) (Bennett, 1992; Valstar et al.travel time (Fu and @mez-Herandez, 2009), groundwa-
2004), and the self-calibrated method (SCM) (Hendrickster discharge to surface water (Bailey andiB2010), and
Franssen et al., 1999;d@&ez-Herandez et al., 2003). For tracer breakthrough data at observation wells (Wen et al.,
the statistical conditioning classification, methods include2002). Streamflow data, which carries information regarding
Cokriging (e.g., Ahmed and De Marsily, 1993; Li and Yeh, the spatial structure of aquifé due to groundwater-surface
1999) and data assimilation techniques, such as the familwater interactions, has been used in data assimilation to im-
of Kalman Filter (Kalman, 1960) methods, including the Ex- prove model performance (Schreider et al., 2001; Aubert et
tended Kalman Filter (EKF) (Evensen, 1992), the Ensembleal., 2003; Clark et al., 2008; Camporese et al., 2009, 2010),
Kalman Filter (EnKF) (Evensen, 1994, 2003), the Ensem-although as yet has not been used to condi&ion
ble Kalman Smoother (EnKS) (Evensen and van Leeuwen,
2000), and the Ensemble Smoother (ES) (van Leeuwen andl.2 Kalman Filter methods
Evensen, 1996). The EnKF has particularly been used in
recent years to estimate state parameters. Comparisons bk Kalman Filtering methods, a priori information, i.e.,
tween the RM and EnKF methods are given by Reichle etmodel parameters and associated model results, are merged
al. (2002) and Ngodock et al. (2006). A comparison be-with observation data from the true system to produce an a
tween the SCM and EnKF methods is provided by Hendricksposteriori system estimate honoring the true system data at
Franssen and Kinzelbach (2009). observation points, while still incorporating physically-based
Proposed methodologies are demonstrated typically usingnformation from the numerical model. The resulting algo-
simplified hydrologic systems. For applications to ground- rithm is used to merge model and measurement data when-
water systems, the majority of methodologies are demonever measurement data become available during the course
strated using two-dimensional (2-D) confined groundwaterof the model simulation.
flow models (e.g., Gailey et al., 1991; Hantush and RKiayi In contrast to a filter, which assimilates data sequentially
1997; Hendricks Franssen et al., 199%n@z-Herdndez  as they become available, a smoother incorporates all past
et al., 2003; Decourt et al., 2006; Hendricks Franssen andmodel and measurement information in a single assimilation
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step. The EnKF, EnKS, and ES all use an ensemble of re1.4 Objectives of this study

alizations to represent numerically the measurement error

statistics (Evensen, 2003), and are designed for large, nonthe objectives of this study are three-fold. The first objective
linear systems. The EKF, EnKF, EnKS, and ES have all beeris to apply the Kalman Filter parameter estimation method-
used in hydrologic modeling applications in both system-o0logy within a fully-coupled surface and variably-saturated
response updating (e.g., Schreider et al., 2001; Aubert et alSubsurface flow model to provide more realistic simulation
2003; Dunne and Entakhabi, 2005; Clark et al., 2008; Du-Of water table elevation, as well as allow for streamflow to be
rand et al., 2008; Camporese et al., 2009, 2010) and systegimulated. To accomplish this, the CATHY model is used
parameter conditioning (Hantush and Marj 1997; Boulet in a tilted v-catchment setting, similar in design to the v-
et al., 2002; Chen and Zhang, 2006; Hendricks Franssen anétchment used by Camporese et al. (2009), with uncertain
Kinzelbach, 2008; Liu et al., 2008; Bailey and Ba&2010; initial conditions (i.e., water table elevation) and uncertain
Xie and Zhang, 2010). Application of the EnKF and ES to patterns of applied water at the ground surface in space and
highly nonlinear hydrologic systems such as a land surfacdime in a 365-day simulation. An ES is used to assimilate wa-
model (Dunne and Entakhabi, 2005) and a coupled surfacéer table elevation data from a reference system to provide an
and variably-saturated subsurface flow model (Camporese étpdated estimate of the spatial distribution of lkig-Using

al., 2009) has proven successful. uncertain initial conditions and forcing terms provides a stiff
test for estimatingk (Hendricks Franssen and Kinzelbach,
1.3 Geostatistics in parameter estimation 2008) since values of water table elevation and streamflow

are not influenced solely bi. The second objective is to

Many parameter estimation studies employ geostatisticakxploit the functionality of CATHY to explore the possibility
models (GMs) to define the a priori estimate of the spatialof using streamflow measurements, solely and jointly with
distribution of logX or log-T (e.g., Kitanidis and Vomvoris,  water table elevation data, to conditi&h
1983; Hantush and Mdto, 1997; Chen and Zhang, 2006;  The third objective is to use the ES in an iterative scheme
Hendricks Franssen and Kinzelbach, 2008), under the asp identify the parameters of a geostatistical model through
sumption that aquifek” in regional systems can generally assimilation of water table elevation data, and hence provide
be described using such models (Kitanidis and Vomvoris,a new methodology for estimating the value of these param-
1983; Hoeksema and Kitanidis, 1985; Carrera et al., 2005)eters. In this study, the ability of the scheme to assess the
The values of the parameter (e.g., Iigmean, logk vari-  |og-mean and log-variance of a geostatistical model is inves-
ance, correlation length) that characterize these GMs oftefligated. Uncertainty in correlation scales is not addressed in
have a strong influence on the response of a groundwatesis study, but is left to future work. Assessment of the true
model and parameter estimation results (Jafarpour and Takorrelation scale for a given aquifer will likely require the di-
rahi, 2011), and yet in practice are estimated from limitedrect assimilation ok measurements, whereas in this study
geologic information and hence are not known with a high only the model response variables are assimilated.
degree of certainty (Gautier and Neetinger, 2004; Jafarpour For the first and second objectives, the influence of
and Tarrahi, 2011). the number of measurements and the uncertainty assigned

As a consequence, several methodologies have aimed #e measurement data on the ability of the ES to pro-
estimating the values of GM parameters, with the generaljide accurate updates is investigated. Overall, with uncer-
approach of (i) performing “structural analysis”, in which tainty in initial conditions, forcing terms, and geostatisti-
the form of the GM is selected, followed by (ii) an esti- cal model parameters, the complexity of real-world systems

mation of the values of the parameters defining the GM uss approached, providing a key liaison between theory and
ing observation data from the aquifer system. For examplereal-world application.

Kitanidis and Vomvoris (1983) and Hoeksema and Kitani-
dis (1984) used maximum likelihood estimation to estimate
values for a two-parameter GM using measurements of log2 Methodology

T and hydraulic head in 1-D and 2-D steady-state flow sys- ) . .
tems, respectively, in their approach to estimating the spaln this section, the theoretical development of the ES update

tial distribution of logZ. A more recent review of the tech- l9orithm is presented within the context of estimating the
nique is given in Kitanidis (1996). More recent studies in the spatial distribution ok using observed water table elevation
field of petroleum-reservoir engineering (e.g., Yortsos and(¥ 1) and streamflow @) data from a reference catchment
Al-Afaleg, 1997; Gautier and Noetinger, 2004) have usegsSystem. The general forecast and update steps of the Kalman

well test data to estimate parameter values of the permeabil'-:”ter are first discussed, followed by a modification of these
ity variogram. For example, Gautier and Noetinger (2004)Steps for the ES scheme.

expanded on the work of Kitanidis and Vomvoris (1983) to

develop a methodology for transient flow.
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290 R. T. Bailey and D. Bai: Estimating geostatistical parameters

2.1 Forecast of system state

Using an ensemble ofyc system realizations to establish
the uncertainty in the system, the state of the system is
estimated using thenodel forecasstep:

le — th(P;XO;q;b) (1) Initial GUESS. H 02 }.4

where f indicatesforecast X,fcontains the ensemble of re- +
alizations of the forecasted estimate of the system at time
@, represents the solution to the numerical model, Bnd (SKSIM) Generate Parameter | <

).(0’ a, and_b represent the system param_gters, initial cc_)ndi- Field Ensemble
tions, forcing terms, and boundary conditions, respectively. &

The numerical model employed in this study is the CATHY
model, and is used to generate value3gf and Q as well
as establish relationships between the system parameter (i'e(CATHY)
K) and the system response variables (T, and Q).

CATHY simulates subsurface, overland, and channel flow
by coupling the 3-D Richards equation for variably satu- Run Ensemble ¢
rated porous media with a 1-D diffusion wave approxima-
tion of the de Saint Venant equation for surface flow (Bixio ;
et al., 2000; Camporese et al., 2010). The groundwater flow ES Update Routine
equation is given by Camporese et al. (2010): #
SWSS% +¢%=V'[K5Kr(vw+ﬁz)]+%s (2a) 5

Infer Updated L O% A

wheresS,, = 6/0s, with § andfg as volumetric water content
[-] and saturated water content (porosity) [-], respectivédy, I
is the specific storage coefficient L], v is pressure head
[L], ¢ is time [T], V is the spatial gradient operator L], Convergence?
Ksis the saturated hydraulic conductivity tensor fiT with NO
Ks treated as a scalar field when conditions of isotropy are YES
hypothesized K () is the relative hydraulic conductivity
function [-], n, = (0, 0, 1),z is the vertical coordinate di-
rected upward [L], an@ss represents distributed source or
sink terms [IBL—3T—1].

Using a 1-D coordinate systesr]L] to describe the chan-
nel network, the surface water flow equation is given by Fig. 1. Flow chart for the iterative approach using an Ensemble
(Camporese et al., 2010): Smoother to estimate geostatistical values.

2

%—i—ck% :Dh% + ckgs (2b)

(DEM) and the hydraulic geometry concept used by Orlan-
whereQ is the discharge along the stream channél[t1], dini and Rosso (1996). The DEM cells are then triangulated
c is the kinematic celerity [LT1], Dy is the hydraulic diffu-  to generate a 2-D triangular FE mesh, which is replicated
sivity [L2T—1], andgs is the inflow or outflow rate from the vertically to construct a 3-D tetrahedral FE mesh for the
subsurface to the surfaceJL=1T—1]. subsurface system. Interaction between surface water and

In CATHY, Eqg. (2a) is solved using Galerkin finite el- groundwater modeled in CATHY is described by Putti and
ements (FE), whereas Eq. (2b) is solved using an explicitPaniconi (2004).
time discretization based on the Muskingum-Cunge rout- As will be discussed further in Sect. 2.2, the resulting sys-
ing scheme (Orlandini and Rosso, 1996). In this study, theem stateX (Eq. 1) is comprised of: (1) & T value for each
K:(y) andSy(vy) relationships are specified using the for- node of the triangular FE mesh, calculated using the verti-
mulation of van Genuchten and Nielsen (1985), althoughcal profile of s for each of these nodes; (2)& value for
other capillary curves are available in CATHY (see Cam-each DEM cell in the horizontal direction; (3)@ value for
porese et al., 2010). The channel network is identified us-each DEM grid cell along a stream channel.e l&ndn de-
ing the terrain topography from a digital elevation model note the number of DEM cells and FE nodes in the horizontal

Numerical Model
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Fig. 2. Conceptual model of tilted v basin through the catchment outlet. The monthly depth of -shaped catchment, with groundwater feeding
the river flowing out of the net infiltration from precipitation is also shown.

direction, respectively, anglthe number of DEM cells along where uy, andoy,, and 031( are the mean, standard de-
the stream channel, then the dimensibof X is equal to  viation, and variance of the logarithmic distribution of the
[n+e+¢g]. The forcing termgy in Eq. (1) are represented parameters, respectively;s are the components of the dis-
by gss in EqQ. (2a), and in this study correspond to rates oftance vectod, and ;s are the spatial correlation scales in
applied water at the ground surface, with uncertainty estabthe coordinate directions.

lished by sampling values from a prescribed frequency dis-

tribution. Uncertainty inXg is also included, as discussed
in Sect. 3.1.

The spatially-variable values &f =log K are generated ) o ‘. .
using SKSIM (Ba and Mayer, 2008), a sequential Gaussian Correction to the a priori estimafe; is accomplished by as-
simulation algorithm, where the spatial distribution and cor- Similating observed system-response data from the true sys-
relation is established by a normal distribution wherein thetem, thereby merging the model-calculated and observed val-

geostatistical model is a 2-D exponential covariance modeH€S. This correction depends on the uncertainty attached to
in the logarithmic domain: both the a priori estimate (i.e., the model results) and the true

values (i.e., the observations from the true system), with un-
certainty in the model forecast provided by the spread in the
ensemble values and uncertainty in the observed values spec-
ified according to data-sampling methods. The correction
(3) made to the model-calculated values by the observed values
is dictated by the ratio of these uncertainties. If there is less

2.2 Update of system state

logK =Yk =N (v :ovg)

2
COVyg g (d) =0y, .exp
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40001 Table 1. Frequency distribution of the ensemble of perturbed values
A Surface .
Elevation for the observedV T value of 18.5 m collected on day 91 at location
35001 m (X=2500 m, Y=3500m) of the “true aquifer”, for CV values of
0.10 and 0.30.
3000 24.5
23.0 -
- 2500, s DEM Attributes
- 200 Cells in x direction 81
§ 2000- ' Cells in y direction 81
2 185 Grid spacingn 50
1500+ 17.0 Number of cells 6561
15.5 ;
10004 Mesh Attributes
14.0 - X
Aquifer Thickness 7.5t015.5
500- 129 Number of Layers 10
] Number of Surface Nodes 6724
0 500 1000 1500 2000 2500 3000 3500 4000 Number of 3-D Mesh Nodes 73964
Di Number of Tetrahedral Elements 393660
istance (m)
System Parameters
Tﬁi(::llj(i;ee;s Saturated hydraulic conductivitys GM: Eq. (3)
=a00 T m Meanp of K fields log 1.30 (m d1)
. Variances? of K fields log 0.25 (m &1)2
30001 | Correlation Length. of X fields 1000 m
2500 b Specific storagés 0.01nrl
E 135 Porosityn 0.35
§ — 12.5 Residual moisture conteé 0.061
5 115 van Genuchten parameters =043, 1=1.70
z
1500- - &410.5 Simulation details
10004 | %S Monte Carlo Ensemble Size 100
8.5 Simulation perioddays 730.0
500 | 75
0 500 1000 1500 2000 2500 3000 3500 4000 ]
Distance (m) observed data stored in a vecMy [m]:
Fig. 3. Contour representation ¢h) ground surface elevation and X! = X,f + Ky (D, — Hth) 4)

(B) aquifer thickness. Both datasets are used to create the three-

dimensional subsurface finite-element mesh. whereX![dxnyc] is the updated ensemble withdenoting
update;D; [mxnmc] holds the ensemble of perturbed val-
ues of the measurement data, with the ensemble of values
for each measurement value calculated by adding a Guas-

i L , sian perturbation (stored in the matix[mxnpmc]) to each
uncertainty attached to the observed data, which is typicallyyf the,, observations stored M, H [mxd] contains binary
the case, then the model-calculated value at the observati0(13\0nst<,m,[s (0 or 1) resulting in the matrix prod&b(f that
location will be corrected to approach the observed value.noIds model results at measurement locations kar{tdxm]
Furthermore, model results can also receive correction fro ’

bserved data if the model value i rrelated with the mod s the so-called “Kalman Gain” matrix. In this study, ob-
observed data I the modef value 1S corretated with th€ modey o o gata are sampled from a known reference state to
value at the observation location. In this way information

. . o . . enable assessment of the ES scheme.
from the true state at observation points can be “spread” to . .

. : . In Eqg. (4), the difference, or residual, between the model
regions between observation locations, and hence throughout _ ¥
the model domain. values and observed values is represente@[m,y— HX7 ),

_ _ _ _ with the weighting of the correction and the spatial spread
This correction procedure is carried out through the fol- of the information dictated by;, which holds the ratio of
lowing Kalman Filter update equation, with the forecasted uncertainties as well as the covariance between model values

ensemblextf corrected, or updated, at a timeusing m at each model node (Bailey and B8a2011). The form of
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Fig. 4. (A) Cultivated (blue) and non-cultivated fields (white),
with cultivated fields receiving additional applied water during the
months of April through October, an@) Net infiltration in the
month of July (of the second year) for the true system, with values o
ranging from 0.000355 m day to 0.006 m day? (represented by o
white and black, respectively). g

5,000

Stream Discharge (m° day™')

Fig. 5. (A) Reference field of tru&x and(B) correspondingV T
field at time = 365 days as calculated by CATHY(B), red crosses
K, is: indicate the location of 24 observation wells. The streamflow at the
outlet cell during the 365-day simulation is shown in the subpanel.

-1
k=C/HT (HcfHT +R) (5)
defined as:

— _\T
where C/ [dxd] and R [mxm] are the forecast error and s (Xf+A,—X) (X,’;A, —X>
observation error covariance matrices, respectively, and are’ =

(6a)

nmc—1
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4000

) "AE = 0.380

— 3000
where each column oX[n x nyc] holds the average value

of the ensemble at each location in the domain. 2500
In a straightforward application of data assimilation to a

catchment system, Eq. (4) would correspond to merging ob-

served values oW T (or Q) with the model-calculate® T

field (or Q along a stream channel) in order to provid& & 1500+

field that honors the observédT data. However, doing so

only corrects the system response of the model — the struc- 10001

tural difference between the a priori model state and the true

state that yields differences in the system response will per- %%

sist indefinitely. To temper these structural differences, it A

is essential to correct the parameters that drive the systen %0 500 1000 1500 2000 2500 3000 3500 40

response. This can be accomplished by utilizing the rela- Distance (m)

tionships betweerk and the resulting values d¥ T and 4000 . . ‘ ‘ .

Q as established through CATHY. For example, the cross- AE = 0.441

covariance submatrix betwednT andYx is defined as: 3500

/-9, (), ]

(7) 25004

Distance (m)
[~}
o
o
o

Cl (X, X ) = e — 1

By including the expression for Eq. (7) into Eq. (5), the val-
ues ofYx in X,f can be corrected by observation datdin
through the spatial correlation betwegBgp, WT, andQ. 1500+

Distance (m)
N
o
o
o

2.3 Forecast-Update scheme for the ensemble smoother 1000+

Whereas Eqgs. (1) and (4) are run in a sequential manner ir 5001

the KF and EnKF schemes, with correction via Eq. (4) oc- B
curring whenever observation data are sampled from the true N5 BOn ‘toom "BG0i BO30 2560 BBIO) MEHD HD6O
system, the ES algorithm includes all previous model state Distance (m)

and observation data up to the final data sampling tjjpe
at which time the ES update routine is run to provide updatedrig. 6. Spatial distribution of the updateiy ensemble using data
system states at all previous collection times. At time, from 24 observation wells sampled 4 times during the 365-day pe-

the forecast matriX .th and the observation matri®,, hold ~ 1od. with thehCV of observ:tion _da't:"f‘ set (‘AA)\ 0.0 and(B) 0.3.
the model state ensembles and the perturbed observation dat?™Pare to the true state shown in Figure 5A.

from all data sampling timesy(t2,..., t,r):

and INi',“ ~ into Eq. (5), the updated system state maf(ﬁgp
contains the updated model state for each assimilation time.
The Keppenne (2000) algorithm, which provides an effi-
N - cient numerical strategy for updating the system state for the
D;, =[Dy.Dy,.....D;, | [(m)(nF)]xnmc (8b)  EnKF scheme and designed for high-resolution real-world
climate numerical models, was modified to include model

wherenF is the number of times at which measurements ACtates and observation data from each assimilation time (Bai-

collected. Within the ES scheme, the forecast covariance ma- N s
tix & tains both tial ) ) dt Ejﬁey and Bal, 2010) and l_Jsed to compute Eq. (4) within the ES
rix C;, . contains both spatial covariance terms and temporakamework. The techniques employed by Keppenne (2000)
covariance terms between cell values from different collec-gng hence inherent in the update algorithm used in this study
tion times Evensen2007). The measurement error covari- g not require the direct assemblageddf, hence saving on
ance matrixR,, . also is established using the perturbations computer memory and preventing numerical issues.

for each of the measurement values for each ohtheollec-

tion times. By inserting?(',iF andD, , into Eq. (4) an(f',an

)?tj;:[Xfletz’---vthp]T[(d)(nF)]XnMC (8a)
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Table 2. The increase of AE (i.e., the decrease in conditioning to the tru€i¥ld) with increasing values of CV of th# T observation
data, for the cases when one, two, and four assimilation times are used.

Num Num
Scenario Gag® AT Q CVQ AEK 9%Reduct AEPK % Reduct
FORECAST - - - 0619 - 0.388 -
UPDATE
1 4 4 0.00 0,512 17.3% 0.305 21.3%
2 4 4 0.10 0.574 7.3% 0.368 5.0%
3 4 4 0.30 0.607 2.0% 0.384 1.0%
4 4 4 0.50 0.614 0.9% 0.386 0.4%
5 4 4 0.70 0.616 0.5% 0.387 0.2%
6 4 4 1.00 0.617 0.3% 0.387 0.1%

Table 3. Spatial distribution of the mean of the updateg ¥¢nsemble using ¥ data from four gaging stations along the stream channel
sampled four times during the 365-day period, with the CV of observation data set to 0.0. Compare to the true state shown in Fig. 5a.

Num Num Num Num
Assim Meas Gage AT AT CV CV AE % AEP %
Scenario Var wT 0o WT o WT 0 Yx  Reduct Yx  Reduct
FORECAST 0.619 — 0.388 -
UPDATE
1 24 0 4 - 0.00 — 0380 386% 0.203 47.7%
2 8 0 4 - 0.00 — 0447 278% 0.261 32.6%
3 wT 4 0 4  — 000 — 0455 264% 0297 23.3%
4 2 0 4 - 0.00 — 0545 119% 0.334 13.9%
5 24 4 4 4 0.00 0.00 0.380 38.6% 0.203 47.7%
6 8 4 4 4 000 0.00 0.440 29.0% 0.252 35.0%
7 WT, Q 4 4 4 4 000 000 0434 299% 0.284 26.9%
8 2 4 4 4 0.00 0.00 0482 221% 0.301 22.3%
2.4 Evaluating the updated system state
nmc n

The ability of the ES algorithm to bring the forecasted en- Ag p(Xx) =
semble into conformity with the true system state is quanti-

fied through two location-specific parameté&is (ensemble
error) andEP (ensemble precision) and two global parame- WhereX; is the ensemble mean of thih location (node in
tersAE (absolute error ) andEP (average ensemble preci- @ FE discretization of the domain or cell of the surface DEM
sion) (Hendricks Franssen and Kinzelbach, 2008; Bailey and1d).Xi iue IS the reference “true” value of théh location,

Bail, 2011):

EE; = ‘Yl —Xi,true| (i=1...,n)

nmc

EP nmcg|Xi,j_Yi|(i=1,...,n)
nmc n
AR = (nmc) (n) ]Z;IX: |Xl j—Xi true|

www.hydrol-earth-syst-sci.net/16/287/2012/

(92)

(9b)

(90)

(9d)

and X; ; is the variable value of the location of thejth
ensemble realization. Equation (9a) and (c) provide a mea-
sure of the deviation between the model state and the ref-
erence state, and Eq. (9b) and (d) provide a measure of the
spread of the values around the ensemble mean of the model
state. The performance of the update routine is measured by
calculating the difference between performance parameters
of the forecasted and updated ensembles. As a second type
of performance measure, the ensemble of CATHY simula-
tions can be rerun using the updated ensemblggofields

to determine if the updateldk ensemble produces simulated

Hydrol. Earth Syst. Sci., 16, 28384, 2012
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Fig. 9. The increase of AE (i.e., the decrease in conditioning to the
true Y field) with increasing values of CV of th&@ T' observation
data, for the cases when one, two, and four assimilation times are

used.

Fig. 7. Spatial distribution of EP for the updat&g ensemble using

data from 24 observation wells sampled 4 times during the 365-day

period, with the CV of observation data set to 0.0.
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results that match the observed data, i.e., to see if the model o _ .
has been “calibrated” adequately. This latter method will bethat this is generally not the case, the ES scheme decribed in
Sect. 2.1 through Sect. 2.3 is employed in an iterative scheme

to discover the geostatistical parameter values of the true sys-
tem, as shown in Fig. 1. Beginning with a set of estimated
GM parameter values, an ensemble&’gffields is generated
using SKSIM and the corresponding ensemble of CATHY
In the forecast step of Sect. 2.1, it is assumed that the paranflow simulations is run. Upon assimilating observation data
eters defining the GM of Eq. (3) are known, i.e., that the pa-from the reference system and conditioning #e ensem-

demonstrated in Sect. 3.3.2.

2.5 lIterative method to estimate geostatistical

parameters

rameter values used to generate the ensemliilg éields for

T T
500 1000

T
1500

T
2000
Distance (m)

T T T
2500 3000 3500 4000

Fig. 10. Spatial distribution of the mean of the updateg ¥n-
semble using Y data from four gaging stations along the stream
channel sampled four times during the 365-day period, with the CV
of observation data set to 0.0. Compare to the true state shown in
Fig. 5a.

ble, the GM parameter values of the updaigd ensemble

the forecast simulations are the same as the reference systeame inferred from the updated ensemble and used to produce
from which the observation data is sampled. In recognitionthe forecast’xy ensemble for the subsequent iteration. This

Hydrol. Earth Syst. Sci., 16, 287304, 2012
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process proceeds until GM parameter values are convergetibn from applied water (e.qg., irrigation water) in addition to
upon. At each iteration the model-calculated value$vaf net infiltration from precipitation during the months of April
can also be compared to the obserVéd@ data from the true  through October. For the latter, rates are applied according to
aquifer system, to verify that the estimated GM parameterthe cultivation pattern depicted in Fig. 4a, with cells shown in
values from the previous iteration yield a spatial structureblue receiving monthly values randomly sampled from an ex-
of Yk that furnishes the system response of the true systenponential distribution (rate parameter=0.75). The pattern
It should be noted that estimation of the correlation sg¢ale of cultivation shown in Fig. 4a is the same for each realiza-
was not pursued extensively in this study, as it became evition, but monthly rates vary across the realizations. The re-
dent during initial uses of the iterative approach thabuld sulting rates are not intended to represent particular irrigation
not be estimated using only a model-response variable sucpractices, but rather to provide a spatio-temporal variation
as water table elevation. As discussed in Sect. 4, the diin the forcing terms of the catchment system. As an exam-
rect assimilation ol’x values are likely required to provide ple, the rates of net infiltration from combined precipitation
information regarding., and will be pursued in future work. and applied water for the month of July for one realization
are shown in Fig. 4b, with values ranging from 0.000355 m
day ! to 0.006 m day! (represented by white and black, re-

3 Parameter Estimation of Spatially-Variable K spectively). The depth of monthly net infiltration is presented
in Fig. 2.
3.1 Forecast ensemble ok, WT, and Q Initial conditions for each simulation are achieved as fol-

lows. First, a 10000-day spin-up simulation with a uni-
The catchment system used for the numerical experiment iform net infiltration rate of 0.0012m day and isotropic,
this study is a 4.05 km by 4.05 km tilted v-shaped catchmenthomogeneous aquifer witk =30m day’l is run in order
as shown in Fig. 2, with a stream flowing north to south alongto achieve steady-state conditions in the catchment as deter-
the central depression of the catchment. The DEM of themined by water table elevation and streamflow rate. Second,
surface terrain, discretized using 50 m by 50 m grid cells foreach realization of the ensemble is run for 365 days using a
a total ofe=81x 81=6561 grid cells, is shown in Fig. 3a different anisotropid’x field and infiltration pattern to elim-
with a contour plot of the ground surface elevation. Aquifer inate the bias due to the initial conditions. The results of
thickness varies between 7.5m and 15.5 m, with the thickesthis 365-day simulation are then used as initial conditions
portion under the central depression, as shown in Figs. 2 anbr the final 365-day simulation period for each realization,
3b. The subsurface is discretized by = 10 layers of vary-  with time steps ranging between approximately 0.10 to 1.0
ing thickness, with thicknesses ranging from 0.375m nearday. Stream inflow (Fig. 2) is set to 0.
the ground surface to 3.0 m near the aquifer base. An additional CATHY simulation representing the true
The characteristics of the DEM, the 3-D mesh, andcatchment system is run, with the trirg field and result-
the parameters of the model are summarized in Table ling true WT field (at 365 days) depicted in Fig. 5. The
The number of nodes in the 2-D surface FE mesh isstreamflow rate at the outlet cell of the catchment is shown in
n=82x 82=6724. The 3-D mesh is obtained from replicat- Fig. 5b, indicating the increased discharge during the months
ing the 2-D FE mesh through the vertical extent of the sub-of April through October due to increased rates of net infil-
surface and contains»3n; x 2¢ =393 660 tetrahedral ele- tration from precipitation as well as applied water. In com-
ments and: x (nz +1)=73964 nodes. Lateral spatial dis- paring theYx forecast ensemble to the trig field using
tribution of Yx for the forecast ensemble is generated us-Eg. (9c) and (d), the AE and AEP values are 0.619 and 0.388,
ing meanuy, =1.301 log m day! (K =20 m dayl), stan-  respectively.
dard deviatiorrrlgl< =(0.250 log m dayt)?, and correlation The GM parameter values used to generat&’théeld are
length @.,=A,) =1000 m, resulting irk’ values ranging from  the same as used for the forecast ensemble. This assumption
approximately 0.2m day* to 1500 m day?. In this study,  will be relaxed in Sect. 3.3.2, when the iterative approach
nmc = 100 realizations are used for the ensemble. Values opresented in Sect. 2.5 is used to estimate the true GM pa-
Yk are calculated for each DEM cell, resulting in a value of rameter values. The ability of the ES scheme to recover the
Yk assigned to each 3-D FE under the cell. In other words spatial distribution of the tru&y field by assimilatingW T
the spatial distribution of’x is the same for each of the 10 and 9 measurements into the forecast ensemble results is
layers in the 3-D mesh. Vertical hydraulic conductivikg, explored in Sect. 3.2.
is set equal to one-third the value of horizonkal WT data andQ data are collected from observation wells
The simulation period is one year, from January to De-(Fig. 5b) and stream gaging points (Fig. 2), respectively.
cember. No-flow boundaries are assigned for every edg€€CPU (Central Processing Unit) time to run a single real-
of the aquifer (see Fig. 2). Forcing termss consist of  ization on an Intel® Core™2 Duo CPU @ 3.00 GHz desk-
uniformly-distributed net infiltration from precipitation dur- top computer range from approximately 20 min to 180 min,
ing the months of January through March and Novemberdepending on the spatial distribution 9§ .
through December, and spatially-varying rates of net infiltra-
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Fig. 11. (A) TrueY field using |4, =1.801 log m day1 (K =63.2 m day-1),B) TrueYk field using 4, =0.801 log m day1 (K=6.3m
day-1),(C) mean distribution of the updatet ensemble for the first scenarioy(u=1.801), andD) mean distribution of the updatetk
ensemble for the second scenarig, (g 0.801). For both scenarios scenario )24 data from four assimilation times are used.

3.2 Update ofK ensemble shown in Fig. 5a, the mean of the updatéd ensemble in
Fig. 6a captures the overall spatial pattern of the true field,

Observation data from the true catchment system are col?ith h|?hhvalue§ fOfYK g]lthe nolrthwgst ;nd SoﬁtheaSt lsec—d
lected tri-monthly, resulting in four assimilation times during tlonsho the aqurter anh ow(;/a u(cjes In t elnort —centra_\ anh
the year. As such, forecast ensemble model results are alputhwest portions. The updated AEP value, measuring the

saved every three months for use in the ES algorithm. ThePread of the updated ensemble, is 0.203, a reduction of

first set of update scenarios consists of conditioning the fore#-1 % from the forecast value of 0.388. The spatial distri-

castYy ensemble usingVT data from the 24 observation Pution of EP for the updatellx ensemble, as calculated by
wells shown in Fig. 5b, with variations on (i) the number of Eq. (9b), is showp in Fig. 7. Notice that the spregd of the
assimilation times and (ii) the error, defined using coefﬁcientensemble v:_;\Iues is lowest at and around the locations of the
of variation (CV) of WT data, assigned to the observéd” 24 observation wells.

data. For these scenarios, the CPU run-time of the ES update \yhen a CV value of 0.10 is assigned to e observa-

routine is approximately 30s. tion data, the AE and AEP values of the updatadensem-

For the scenario where four assimilation times are usedle are 0.405 and 0.246, respectively, reductions of 34.5%
and the observation data are assumed to be error-free, thend 36.6 % from the forecast values. When a CV value of
ensemble mean at each computational point for the update@.30 is assigned, the AE and AEP values are 0.441 and 0.284,
Yx ensemble is shown in Fig. 6a. The AE value of the up-reductions of 28.8% and 26.8 % from the forecast values.
datedYg ensemble, measuring the absolute error from theThe ensemble of perturbed values for a data value collected
true Yk field, is 0.380, a reduction of 38.6 % from the fore- from the observation well located at location (X=2500m,
cast value of 0.619. In comparison with the trig field Y =3500 m) for these two cases is shown in Fig. 8. For the
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Fig. 12. Comparison of reference and updated valuegpfalong

the Y = 2000 m transect where the true is higher (1.801 log m
day~1) and lower (0.801 log m day) than the of the forecast en-
semble (1.301 log m day). The values from the reference state
are shown in red, and the updated values are shown in blue. For
both scenarios, 2W T measurements are assimilated.

Fig. 14. Progression of the estimated GM parameters and , demon-
strating the convergence of the parameter values@®00 log m
day~1 and 0.580 (log m day})?, respectively.

times, however, is seen in the context of observation data er-
ror. Figure 9 shows the increase of AE (i.e., the increase

Ly in deviation from the tru& field) with increasing values of
4500 , I YK CV of the wT o_bs_ervaftion data, for the cases when one, two,
and four assimilation times are used. Notice that the increase
2000 I I2V5 of AE is lessened when observation data from multiple times
- 20 are assimilated, with the best results occurring when 4 as-
—l 1 m similation times are used. The use of additional assimilation
E . 4:d times yielded no improvement. For the case of CV=0.50,
8 2000 - L Wos the AE value using one, two, and four assimilation times is
;E . 0.594, 0.563, and 0.471, respectively.
15001 i1 ™ The second set of update scenarios consists of assimilating
observed values ap from the reference system. The ensem-
-0.8 . ;
1000 i W ble of values o0 for a given surface grid cell are fou_nd to be
close to lognormally-distributed (Clark et 22008), with the
500 - e coefficient of determination® = 0.702 and the Kolmogorov-
Smirnov statisticKS=0.270 for a lognormal fit. This re-

e R . s T ST quires both the? observation data an@ forecast ensemble
Distance (m) to be log-transformed before use in the ES update routine.
WhenY =log Q data from 4 gaging stations along stream
Fig. 13. Referencer field with=0.301 log m day! (2.0 m  channel from the four measurement times are assimilated
day~1) and =0.500 (log m day')?. into the forecast ensembles b and Y, the resulting AE
and AEP values of the updatég ensemble are 0.512 and
0.305, providing reductions of 17.3% and 21.3 % from the
latter case, the ensemble mean of the updéje@nsemble  forecast values. The ensemble mean for the updegeen-
is shown in Fig. 6b. In comparison to the case of CV =0.00semble for this scenario is shown in Fig. 10. When compared
(Fig. 6a), the spatial distribution dfx does not resemble as with the updated’x ensemble in Fig. 6a, it is clear that ob-
well the trueY field shown in Fig. 5a. servation data from the 24 wells provide an updatgden-
When observation data from only one assimilation time semble that fits more closely with the triig field than us-
(time =365 days) is assimilated, the AE value of the updatedng Y data. Still, the¥x ensemble mean in Fig. 10 captures
Yx ensemble is 0.408; when observation data from two asthe principal features of the spatial pattern of the true field.
similation times are used (time =181 days and 365 days), thélowever, when error is assigned to the obser¥gddata,
AE value is 0.385. In comparison to the AE value of 0.380, the ability of theY, data to condition th&x ensemble is
when four assimilation times are used, the improvement ofreduced dramatically. Table 2 shows the values of AE and
the updated’x ensemble with respect to the triig field is AEP of the updated’x ensemble for scenarios in which the
not considerable. The usefulness of additional assimilationCV of theY data ranges from 0.00 to 1.00. When CV =0.1,
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case where the true values of and are 0.301 log m‘Hamd 0.500(log m daj/l)z, respectively. Compare to the true state in Fig. 13. The

forecast AE values was 1.106.
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Fig. 16. Value of Yx along theY = 2000 m transect for the ref-
erence state (red), the foreacast ensemble mean (dotted black lin
and the update ensemble mean for the 1st (solid black line) and 2n

the reduction in the AE value from the forecast ensemble is
7.3 %; for CV =0.30, the reduction is only 2.0 %.

Table 3 presents results of scenarios whelglfi andY o
data are jointly assimilated, with the number of observation
wells ranging from 2 to 24. In each case, the observation
wells are positioned in a grid network. In order to assess the
influence of assimilating’y data, four scenarios (1-4) are
run with only WT observation data, with the same four sce-
narios rerun (scenarios 5-8) with the inclusion of assimilat-
ing Yo data from 4 gaging stations. Results indicate that the
inclusion of Yy data only provides enhanced conditioning
of the Yx ensemble when the number of observation wells
used is less than 8. For example, when 4 observation wells
are used, the AE value for the scenarios with and without
4 data is 0.455 and 0.434, respectively; when two wells are
Jged, the AE value with and withoily data is 0.545 and

(solid blue line) iteration, for the case where the true values of and0-482, respectively. Hence, when spa¥g€ data are avail-

are 0.301 log m day! and 0.500 (log m day!)?, respectively.

Hydrol. Earth Syst. Sci., 16, 287304, 2012

able, the additionaly data are able to provide information
regarding the spatial distribution dfx and hence partially
maintain the value of AE.
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25 Simalation fme = 273 dals gnsemble fqr thg two scgnario is 0.365 and 0.395, respec-
o Forecast ot tively, resulting in reductions of 47.1% and 43.0% from

- lteration 1 . the forecast AE values. The spatial distribution of the up-

o Iteration 2 o o ° o datedYx ensemble mean for the two scenarios is shown in

" & ° Fig. 11c and d. For both scenarios, the updated ensembles
‘ o0 capture the general magnitude and spatial distribution of the
SN true Y field.

g0 go € ! For the first scenario, the initially too-low (compared to

° the true system) values 6fx are conditioned to the higher
values present in the true system; for the second scenario, the
initially too-high values are conditioned to the lower values.
The same effect is observed through a comparison between
the reference, forecast, and updated value¥gofacross a
west-east transect located at Y =2000 m, as shown in Fig. 12.
In both scenarios, the forecagt values along the transect
are approximately equal to the forecast, value of 1.301,

o ° whereas the updatedy values have been conditioned to
resemble the true profiles.
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3.3.2 lIterative approach to discover geostatistical
parameter values

WT Elevation (CATHY)

To demonstrate the iterative approach, the true aquifer sys-
B 15 17 19 21 23 25 tem haguy, ando%K values of 0.301 log m day (K =2.0m

WT Elevation (Observations) day 1) and 0.500 (log m day')2. The resulting true/x
Fig. 17. Comparison between model-calculatéd” values and ob- field is shown in Fjg. 13. For each iteratio_n,'obtservation data
servedW T data from the true system for the forecBsT ensemble, from 24_ pbservatlon wells and four_ as_SImllqtlons are used
the WT ensemble generated using the updated GM parameter valto condition theYx ensemble. Beginning with a forecast
ues from the 1st iteration, and T ensemble using the updated Yx ensemble generated usipg, =1.301 log m day* and
GM parameters from the 2nd iteration. Comparison are made fonfk =0.250 (log m day')?, eight iterations are performed,
(A) time =273 days an(B) time = 365 days. with the uy, andof values of the updatetix ensemble
after each iteration shown in Fig. 14. As seen in Fig. 14, the
value ofuy, reaches the parameter value from the true sys-
3.3 Case of uncertain geostatistical parameter values  tem within three iterations, but eight iterations are required
to determine if convergence has been achievedaEIQrthe
3.3.1 Log-Mean of trueY field is uncertain value from the updated’x decreases during the first sev-
eral iterations, but eventually converges upon a value (0.580)
In this section, the ability of the ES update routine to con- slightly higher than the true value of 0.500 (log m d&)f. If
dition the ensemble ofx usingWT observation data sam- the GM parameter values of the true system were unknown,
pled from a catchment system wherg, is different from  then it would be assumed tha, is just under 0.300 log m
the one used in generating the forecast ensemble is exploreday 1 andaYzK is equal to 0.580 (log m day)?.
In the first scenariouy, of the trueYy field is 1.801 log Besides the convergence to the true GM parameter values,
m day ! (K =63.2m day?, one-half order of magnitude the approach of the updatég ensemble to the spatial dis-
higher than the forecast value of 20m day, for the sec- tribution of the trueYx field is demonstrated in Figs. 15 and
ond scenariopy, of the trueYx field is 0.801 log m day* 16. The ensemble mean of the updatgdensemble for iter-
(K =6.3m day?, one-half order of magnitude lower than ations 1 through 4 is shown in Fig. 15a—d, with the AE value
the forecast value of 20m daj). The value ofs?_inthe  generally decreasing from the forecast value of 1.106 (0.755,
true systems and the forecast ensemble is the same [(0.250565, 0.507, and 0.518, respectively), although a slight in-
log m day1)2]. In Sect. 3.3.2, a more severe test is used tocrease occurs between iterations 3 and 4. The structure of the
demonstrate the iterative approach described in Sect. 2.5. y spatial distribution, however, progressively approaches
The trueYx field for the first and second scenarios are the pattern of the tru&x field shown in Fig. 13 with each
shown in Fig. 11a and b, respectively. For the two scenarsuccessive iteration.
ios, the AE of the forecasty ensemble is 0.690 and 0.692, Figure 16 shows the trugx values, forecastx values,
respectively. By assimilatingy 7 data from 24 observation and the updated values & for the 1st and 3rd iterations
wells for four assimilation times, the AE of the updatégd at the Y =2000 west-east transect. Dramatic improvement
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in the updatedry values in relation to the tru&gx values  assimilated. This is due to the region of influenceXfi.e.,
occurs from the forecast to the first iteration, and from thethe regions of the aquifer where tlie values directly influ-
first iteration to the third iteration. enceQ and hence can be conditioned by observed values of
Finally, comparisons are made between obseWé@ddata  Q, being small compared to the collective region of influence
from the true system and model-calculat&d” values gen-  of WT values at the observation wells.
erated by CATHY using the updated values.gf, andagK For cases in which the parameter values defining the geo-
from the previous iteration. This is especially important sincestatistical structure of the aquifer system are uncertain to a
such a comparison, i.e., re-running the numerical model ussmall degree (i.e., mean of trué field is one-half order of
ing the estimated parameter values and comparing model renagnitude different than the assumed mean), the methodol-
sults with observed data at observation locations, is generallpgy is still able to condition adequately the forec&sen-
the only means by which the parameter estimation methogsemble to approach the magnitude and spatial structure of
can be verified. Figure 17 shows the comparison betweeithe true aquifer system. For more severe cases, i.e., the true
observedWT data and model-calculated T values from  and assumed means are different by an order of magnitude
the forecast ensemble, thieT ensemble generated using the and the true and assumed variance ofkhgeld is different,
updated GM parameter values from the first iteration, andan iterative process using the ES is used to converge upon the
the WT ensemble using the updated GM parameters fromtrue geostatistical parameter values. Results indicate that the
the second iteration. Comparisons for times =273 days angbrocess is successful in approximating the true values.
365 days are shown in Fig. 17a and b, respectively. For the present study uncertainty in the correlation length
The match between the forecast values and the true value i@f the K field is not investigated, and an amendment to the it-
much improved upon using the results from the first iteration,erative scheme to converge upon unknown correlation length
and an excellent match occurs using the results from the seds left to future research, with assimilation of measurements
ond iteration. Quantitatively, the sum of squared differencesof K likely necessary. Future studies also include an appli-
between the model results and true system values is 95.3Zation of the methodology to an actual catchment system in
4.29, and 0.59, respectively for time =273 days, and 99.160rder to estimate the geostatistical parameter values as well
4.98, and 1.83, respectively for time =365 days. Notice thatas the spatial distribution df .
the forecastedV T values are lower than the observedr
values from the true aquifer system, since the foreggst
values are generated using a higher valug gf. However,
using the lower updated value pf, from the first and sec-
ond iterations, théV T values become higher and more in
accordance with the observ@dT values.
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