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Abstract. The prediction of climate effects on terrestrial
ecosystems and water resources is one of the major research
questions in hydrology. Conceptual water-energy balance
models can be used to gain a first order estimate of how
long-term average streamflow is changing with a change in
water and energy supply. A common framework for investi-
gation of this question is based on the Budyko hypothesis,
which links hydrological response to aridity. Recently,Ren-
ner et al.(2012) introduced the climate change impact hy-
pothesis (CCUW), which is based on the assumption that the
total efficiency of the catchment ecosystem to use the avail-
able water and energy for actual evapotranspiration remains
constant even under climate changes.

Here, we confront the climate sensitivity approaches (the
Budyko approach ofRoderick and Farquhar, 2011, and the
CCUW) with data of more than 400 basins distributed over
the continental United States. We first estimate the sensitiv-
ity of streamflow to changes in precipitation using long-term
average data of the period 1949 to 2003. This provides a
hydro-climatic status of the respective basins as well as their
expected proportional effect to changes in climate. Next, we
test the ability of both approaches to predict climate impacts
on streamflow by splitting the data into two periods. We (i)
analyse the long-term average changes in hydro-climatology
and (ii) derive a statistical classification of potential climate
and basin change impacts based on the significance of ob-
served changes in runoff, precipitation and potential evap-
otranspiration. Then we (iii) use the different climate sen-
sitivity methods to predict the change in streamflow given
the observed changes in water and energy supply and (iv)
evaluate the predictions by (v) using the statistical classi-
fication scheme and (vi) a conceptual approach to separate

the impacts of changes in climate from basin characteris-
tics change on streamflow. This allows us to evaluate the
observed changes in streamflow as well as to assess the im-
pact of basin changes on the validity of climate sensitivity
approaches.

The apparent increase of streamflow of the majority of
basins in the US is dominated by an increase in precipita-
tion. It is further evident that impacts of changes in basin
characteristics appear simultaneously with climate changes.
There are coherent spatial patterns with catchments where
basin changes compensate for climatic changes being domi-
nant in the western and central parts of the US. A hot spot of
basin changes leading to excessive runoff is found within the
US Midwest. The impact of basin changes on the prediction
is large and can be twice as much as the observed change
signal. Although the CCUW and the Budyko approach yield
similar predictions for most basins, the data of water-limited
basins support the Budyko framework rather than the CCUW
approach, which is known to be invalid under limiting cli-
matic conditions.

1 Introduction

1.1 Motivation

The ongoing debate of environmental change has stimulated
many research activities, with the central questions of how
hydrological response may change under (i) climate change
and (ii) under changes of the land surface. These questions
are also practically of high concern, because present manage-
ment plans are needed to cope with the anticipated changes
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in the future. Therefore, robust and reliable estimates of how
water supplies are changing under a given future scenario are
needed.

The link between climate change and hydrological re-
sponse, which we will refer to as climatic sensitivity, is one
of the central research questions in past and present hydrol-
ogy. There are different directions to settle this problem. One
direction of research tries to model all known processes oper-
ating at various temporal and spatial scales in complex Earth-
climate simulation models, hoping to represent all processes
with the correct physical description, initial conditions and
parameters. These exercises are compelling; however, it is
hard to quantify all uncertainties of such complex systems
(Blöschl and Montanari, 2010).

Another direction is to deduce a conceptual description
valid for the scale of the relevant processes of interest
(Klemes, 1983). For example, the Budyko hypothesis has
successfully been used as a conceptual model to derive ana-
lytical solutions to estimate climate sensitivity of streamflow
and evapotranspiration (Dooge, 1992; Arora, 2002; Roder-
ick and Farquhar, 2011; Yang and Yang, 2011). A different
conceptual approach has been taken byRenner et al.(2012),
who use the concept of coupled long-term water and energy
balances to derive analytic solutions for climate sensitivity.
This concept is a theoretical extension of the ecohydrologi-
cal framework ofTomer and Schilling(2009), who provide
a simple framework to separate climatic impacts on the hy-
drological response from other impacts such as land cover
change.

Before applying any method for the unknown future, it
needs to be evaluated by using historical data. Preferably for
the case of streamflow sensitivity, the data are at the spatial
scale of water resources management operations; the data
should be homogeneous, consistent, and cover a variety of
climatic and hydrographic conditions.

1.2 Hydro-climate of the continental US

We found that the situation in the continental US fulfils many
of these points, and the agenda to publish data with free and
open access clearly supported our research. Here, we em-
ploy data of the Model Parameter Estimation Experiment
(MOPEX) of the US (Schaake et al., 2006), covering the sec-
ond part of the 20th century in the US.

This period is particularly interesting, because signifi-
cant hydro-climatic changes have been reported (Lettenmaier
et al., 1994; Groisman et al., 2004; Walter et al., 2004). Most
prominent is the increase of precipitation for a large part of
the US in the 1970s (Groisman et al., 2004). Also streamflow
records show predominantly positive trends (Lins and Slack,
1999); however, there are still open research questions re-
garding the resulting magnitudes and the causes of different
responses to the increase in precipitation (Small et al., 2006).

Specifically, there is the need to quantify climatic impacts
such as changes in precipitation or evaporative demand on

streamflow. AsSankarasubramanian et al.(2001) note, there
are large discrepancies in climatic sensitivity estimates, not
only due to the model used, but also its parametrisation can
obscure estimated links between climate and hydrology.

Furthermore, there is evidence of human-induced changes
in the hydrographical features of many basins, especially
land-use changes, dam construction and operation, and ir-
rigation; but also changes in forest and agricultural man-
agement practices are believed to have considerable impacts
on the hydrological response of river basins (Tomer and
Schilling, 2009; Wang and Cai, 2010; Kochendorfer and
Hubbart, 2010; Wang and Hejazi, 2011). Yet, there is the dif-
ficulty to separate effects of changes in basin characteristics
and those of climate variations, which operate on different
temporal scales (Arnell, 2002).

1.3 Aims and research questions

This paper presents an evaluation of two conceptual hypothe-
ses, the newly developed water-energy balance framework of
Renner et al.(2012) and the Budyko framework presented
by Roderick and Farquhar(2011) to estimate climate sen-
sitivity of streamflow. We evaluate both frameworks by ap-
plying them to a large dataset describing the observed hydro-
climatic changes within the continental US in the second part
of the 20th century. We further aim to quantify the impact of
climatic changes on streamflow under the concurrence of cli-
matic variations and changes in basin characteristics in the
US.

Specifically we address the following research questions:

1. Can we predict and attribute the streamflow changes to
the respective changes in precipitation and evaporative
demand?

2. How strong is the effect of estimated basin charac-
teristic changes on (i) the change in streamflow and
(ii) the sensitivity methods, which only regard climatic
changes?

This paper is structured as follows. We first review the
ecohydrological framework aiming to separate climate from
other effects on streamflow and present the methods used to
predict the sensitivity of streamflow to climate. The results
are discussed in light of the rich literature already existing
for the hydro-climatic changes observed over the continental
US.

2 Methods

2.1 Ecohydrological concept to separate impacts of
climate and basin changes

The approaches considered here aim at the long-term water
and energy balance equations at the catchment scale. Thus,
we assume that interannual storage changes can be neglected.
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The framework established byTomer and Schilling(2009)
represents the hydro-climatic state space of a given water-
shed by using two non-dimensional variables, relative excess
waterW and relative excess energyU . Both variables can be
derived by normalising the water balance equation with pre-
cipitation (P ) and the energy balance equation with the water
equivalent of net radiation (Rn/L) (Renner et al., 2012):

W = 1−
ET

P
=

Q

P
,U = 1−

ET

Rn/L
= 1−

ET

Ep
. (1)

Relative excess waterW considers the amount of water
that is not used by actual evapotranspirationET and thus
equals the runoff ratio (areal streamflowQ overP of a river
catchment). Relative excess energyU describes the relative
amount of energy not used byET. Note that we use potential
evapotranspirationEp instead ofRn/L to describe the energy
supply term. This has practical relevance, becauseEp can be
estimated from widely available meteorological data.

Tomer and Schilling(2009) analysed temporal changes in
U andW at the catchment scale. With that, they introduced
a conceptual model, based on the hypothesis that the direc-
tion of a temporal change in the relationship ofU and W

can be used to distinguish effects of a change in land use or
climate on the water budget in a given basin. The concept
carries three interesting cases relevant for streamflow sensi-
tivity to climate and changes in basin characteristics. First,
a change inET without any changes in climate must evi-
dently be caused by changes in the basin properties. Thus,
bothU andW change simultaneously. Second, a change in
climate without any changes in the basin properties also leads
to changes inU andW , but in opposing directions. Taking
this further we assume that

1U/1W = −1 (2)

under the presence of climate changes, which we refer to
as the climate change impact hypothesis (abbreviated as
CCUW). If, however, both climate and basin characteristics
change, we assume that the direction of change as seen in the
UW space

ω = arctan
1U

1W
(3)

provides a first-order estimate on the relative importance of
past climatic and basin change impacts on the hydrological
response of river basins.

2.2 Streamflow change prediction based on a coupled
water-energy balance framework

The simplicity of the climate change impact hypothesis
(CCUW) allows to derive sensitivity estimates of streamflow
to changes in climate. However, there are strong underly-
ing assumptions which limit the potential use of this method
(Renner et al., 2012). Ideally, the CCUW hypothesis is only

valid for non-limited conditions, i.e.P ≈ Ep andET/P suf-
ficiently smaller than 1. This means that, for any application,
we have to assume that the CCUW is invariant to climate as
well as to the hydrological response (ET) of a certain basin.
These strong assumptions can theoretically lead to conflicts
with the physical laws of water and energy conservation. For
example, the CCUW may predict that Budyko’s water limit
is crossed when the aridity index is increasing (Renner et al.,
2012).

Taking these assumptions and limitations into account, the
following practical relations can be deduced. First, by using
the total derivative of the definitions ofW andU in Eq. (1)
and combining with the CCUW hypothesis (Eq.2), the sensi-
tivity coefficient of streamflow to precipitation can be derived
(Renner et al., 2012):

εQ,P =
P

Q
−

(P − Q)Ep

Q(Ep + P)
. (4)

The sensitivity coefficientεQ,P describes how a proportional
change inP translates into a proportional change of stream-
flow. The sensitivity is largely dependent on the inverse of
the runoff ratio and the aridity of the climate. An analogue
coefficient for the sensitivity toEp is easily derived by the
connection of both coefficients:εQ,P + εQ,Ep = 1 (Kuhnel
et al., 1991).

The CCUW hypothesis may also be used to predict ab-
solute changes. Therefore, consider two long-term average
hydro-climate state spaces ((P0,Ep,0,Q0); (P1,Ep,1,Q1)) of
a given basin. Again, by using the definitions ofW andU

and applying the CCUW hypothesis, an equation can be de-
rived to predict the new state of streamflowQ1 (Renner et al.,
2012):

Q1 =

Q0
P0

−
P0−Q0

Ep,0
+

P1
Ep,1

1
P1

+
1

Ep,1

(5)

Last, a direct consequence of the CCUW is that the sum of
the efficiency to evaporate the available water supply (ET/P )
and the efficiency to use the available energy for evapotran-
spiration (ET/Ep):

CE =
ET

P
+

ET

Ep
(6)

is constant for a given basin. Any changes inCE, which we
denote as catchment efficiency, would then be assigned to a
change in basin characteristics.

2.3 Streamflow change prediction based on the Budyko
hypothesis

The Budyko hypothesis states that actual evapotranspira-
tion is primarily determined by the ratio of energy supply
(Ep) over water supply (P ), which we refer to as aridity in-
dex (Ep/P ). There are various functional forms which de-
scribe this relation, e.g.Schreiber(1904); Ol’Dekop (1911);
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Budyko(1948). In this paper, we use a parametric form first
described byMezentsev(1955):

ET =
Ep · P

(P n + En
p)1/n

; (7)

see e.g.Roderick and Farquhar(2011) for the history of
this equation. The parametric form introduces a catchment
parameter (n), which is used to adjust for inherent catch-
ment properties. The knowledge of the functional formET =

f (P,Ep,n) allows to compute the sensitivity of streamflow
to climatic changes (P,Ep) and to changes in the basin prop-
erties represented byn (Roderick and Farquhar, 2011; Ren-
ner et al., 2012). Thereby, by applying the first total deriva-
tive of the respective Budyko function and assuming steady
state conditions of the water balance withP = ET+Q, abso-
lute changes in streamflow (dQ) can be predicted (Roderick
and Farquhar, 2011):

dQ =

(
1−

∂ET

∂P

)
dP −

∂ET

∂Ep
dEp −

∂ET

∂n
dn. (8)

To compute the change in streamflow given some change in
climate, one generally sets dn = 0. Note that using Budyko
approaches for predicting the effects of a change in climate
will also result in a change inCE. This change is determined
by the functional form and the catchment parameter as well
as the aridity index of the basin (Renner et al., 2012).

Last, by dividing by the long-term averageQ and term ex-
pansions, an expression can be obtained which contains the
sensitivity coefficients of streamflow toP,Ep andn, respec-
tively (Roderick and Farquhar, 2011):

dQ

Q
=

[
P

Q

(
1−

∂ET

∂P

)]
dP

P
+

[
Ep

Q

∂ET

∂Ep

]
dEp

Ep

+

[
n

Q

∂ET

∂n

]
dn

n
. (9)

The sensitivity coefficients, also referred to as elasticity coef-
ficients (Schaake and Liu, 1989), are given within the brack-
ets. For example, a sensitivity coefficient ofεQ,P = 2 means
that a relative change in precipitation of 10 % amounts to a
twofold change inQ, i.e. 20 %. The partial differentials for
theMezentsevfunction are listed in the AppendixA.

Mapping theMezentsevfunction into UW space reveals
that the CCUW approach can be regarded as a special case
of the Budyko approach, because both are identical when
P ≈ Ep. However, the theoretical climate change direction of
theMezentsevfunction (ωMez) largely depends on the aridity
index and on the catchment parametern, whereas the CCUW
assumes the climate change direction to be constant. A math-
ematical derivation ofωMez is given inRenner et al.(2012).

2.4 Statistical classification of potential climate and
basin change impacts

As we are aiming to test the streamflow sensitivity frame-
works with historical data, we also need to take other factors

of potential streamflow changes into account (Jones, 2011).
Most likely are human alterations such as land-use change,
change in agricultural management and other factors that
influence the hydrological response of river basins. In the
following, we will refer to these type of changes as basin
changes.

For the retrospective analysis of past changes on river
basin level, we need data of the water and energy balance
components. Usually, climatic data (P,Ep) and streamflow
data are available. For evaluation of potential impacts, the
conceptual model ofTomer and Schilling(2009) can be used
to separate climate from basin change impacts. Thereby, si-
multaneous changes in the water and energy balance re-
flected by1U and1W are investigated (Renner et al., 2012,
Fig. 1).

However, it is also possible to directly investigate the
changes in the hydro-climatic data by using statistical tests,
e.g. testing for changes in the mean of two periods. Then,
the significance results of climatic variables (P,Ep) and
hydrological variables (Q) can be combined to construct
a data-based classification of likely impacts on streamflow
change. Generally, four different hypotheses for changes in
these variables can be formulated: first, the null hypothesis
of “no change” in any of these variables. And three alter-
native hypotheses based on significant changes are possible:
“climate only”, “runoff only” and “climate & runoff”. So,
we expect that, if climatic changes directly lead to changes
in runoff, these are most likely to be found in the “climate
& runoff” group. Contrarily, the other alternative hypothe-
ses suggest that some type of basin changes occurred. Given
the background signal of increased humidity, the “climate
only” hypothesis suggests that there has been some compen-
sation of climatic changes by changes in the properties of
the basin. This could be vegetational responses to past distur-
bances such as succession, but also (natural or anthropogenic
forced) adaptations of vegetation to climate changes (Jones,
2011). In contrast, the “runoff only” hypothesis suggests that
factors other than the long-term average change in climate
lead to changes in streamflow. A similar grouping of basins
has been used byMilliman et al. (2008), who defined “nor-
mal rivers” which match with the “climate & runoff” group,
“deficit rivers” where the signal in climate is much larger
than the signal in runoff, which matches with the “climate
only” group. And “excess rivers” where the runoff change
cannot be explained by climatic changes, which is similar to
the “runoff only” hypothesis.

In this paper, we split a large dataset into two periods and
test these hypotheses for each basin by evaluating the combi-
nation of two-sample t-tests results forP,Ep andQ. This re-
sulted in 9 different groups, which are set as follows: if none
of the three t-tests is rejected at a certain significance levelα,
we define this as “no change”, denoted as “–” in the figures
and tables. If, for example,P andEp changed significantly,
while Q did not, we denote this group as “P,Ep”.
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3 Data

The aforementioned approaches are not very data demand-
ing. Still longer time series of annual basin precipitation to-
tals (P [mm yr−1]), river discharge data converted to areal
means (Q [mm yr−1]) and potential evapotranspiration data
(Ep [mm yr−1]) are needed. Further, the approach should be
tested against a variety of hydro-climatic conditions and dif-
ferent manifestations of climatic variations. Therefore, we
have chosen the dataset of the model parameter estimation
experiment (MOPEX) (Schaake et al., 2006), covering the
United States. The dataset (available at:ftp://hydrology.nws.
noaa.gov/pub/gcip/mopex/USData/) covers 431 basins dis-
tributed over different humid to arid climate types within the
continental US. The good coverage allows to describe the
hydro-climatic state at a regional and continental scale of the
US. A range of hydro-climatic and ecohydrological studies
already used this dataset, e.g.Oudin et al.(2008); Troch et al.
(2009); Wang and Hejazi(2011); Voepel et al.(2011). The
catchment area of the basins ranges from 67 to 10 329 km2

with a median size of 2152 km2.
The dataset contains daily data ofP , Q, daily minimum

Tmin and maximum temperatureTmax as well as a climato-
logic potential evapotranspiration estimate (Ep,clim), which
is based on pan evaporation data of the period 1956–1970
(Farnsworth and Thompson, 1982). Because a time series
of annualEp is needed, we considered two temperature-
basedEp formulations (Hargreaves and Hamon) and oneEp
product (CRU TS 3.1) being a modification of the Penman-
Monteith method.

The temperature-based formulations are attractive as these
allow a computation ofEp from the available data in the
MOPEX dataset. The Hargreaves equation (Hargreaves et al.,
1985) can be used to estimate dailyEp:

Ep,Hargreaves= a · sdpot((Tmax− Tmin)/2+ b) ·

√
Tmax− Tmin, (10)

where sdpot is the maximal possible sunshine duration of
a given day at given latitude and two empirical parameters
(a = 0.0023, b = 17.8). It has minimal data requirements
(Tmin andTmax), but yields a good agreement with physically
basedEp models (Hargreaves and Allen, 2003; Aguilar and
Polo, 2011). Potential evapotranspiration by Hamon equa-
tion (Hamon, 1963) depends on daily average temperature
(T ) and daytime length (Ld) only (Lu et al., 2005):

Ep,Hamon=

{
1.9812· Ld · ρsat(T ) · k if T > 0◦C
0 if T < 0◦C

(11)

Thereby, the saturated vapour density isρsat(T ) = 216.7 ·

esat/(T +273.3) [g m−3], with the saturated vapour pressure
beingesat= 6.108·exp(17.26939·T/(T +237.3)) [mb]. The
calibration parameterk was set to 1.2 in accordance withLu
et al.(2005). Both methods have been tested in previous stud-
ies, mostly comparingEp estimates with Penman estimates
for selected weather stations, e.g.Amatya et al.(1995). Lu

et al.(2005) found, by comparingEp formulations at the an-
nual time scale for watersheds in the south-east of the US,
that the Hargreaves method yields the most extreme esti-
mates, while the Hamon equation showed the most reason-
able results under the temperature-based methods.

Radiation-based formulations are more difficult to derive
for the domain and the period considered in this paper.
However, the Climatic Research Unit (CRU), University of
East Anglia, established a globally available gridded dataset
(0.5◦) of monthly Ep, which is based on the FAO (Food
and Agricultural Organization) grass reference evapotranspi-
ration method (Allen et al., 1994). Essentially, these esti-
mates are based on observed and spatially interpolated data
(Mitchell and Jones, 2005) of temperature (mean, minimum,
maximum), vapour pressure and cloud cover. Here, we used
monthly data fromhttp://www.cgiar-csi.org/component/k2/
item/104-cru-ts-31-climate-databaseand extracted basin av-
erage values (using the R function raster::extract,Hijmans
and van Etten, 2012).

Finally, all daily data, i.e. (P,Ep,Q), are aggregated
to annual sums for water years defined from 1 October–
30 September. The final dataset covers the period 1949 to
2003 with 430 basin series.

4 Results and discussion

4.1 Hydro-climate conditions in the US

The basins in the US MOPEX dataset cover a variety of
hydro-climatic conditions, which can be seen in the map-
ping of long-term average variables (P,Q,Ep,clim,Ep,CRU)
in Fig. 1. The basins with most precipitation are found in
the Northwest, the Southeast and along the east coast. The
central part of the US receives considerably less precipita-
tion, which is a continental climate effect intensified by the
mountain ranges in the west and east, blocking west to east
atmospheric moisture transport. Potential evapotranspiration
obeys a north to south increasing gradient, which is modu-
lated by the continental climate in the central US. The bot-
tom maps show the climatologicalEp estimates from the
evaporation atlas (Farnsworth and Thompson, 1982) and the
long-term averages of the CRU TS 3.1 potential evapotran-
spiration estimatesEp,CRU. The long-term basin averages
of Ep,CRU show the highest spatial correlation (r = 0.89) to
Ep,clim, while Hamon (r = 0.57) and Hargreaves (r = 0.46)
have lower correlation and somewhat different spatial pat-
terns. Therefore, we selectedEp, CRU for further analysis.

Streamflow is naturally governed by precipitation input
and follows the spatial patterns of precipitation. However,
the arid conditions in the central US result in lower stream-
flow amounts. This functional dependency can be seen in the
Budyko plot in the left panel of Fig.2, plotting the evapo-
ration ratioET/P as function of the aridity indexEp/P . In
general, the basins follow the Budyko hypothesis, whereby
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Fig. 1. Long-term annual average of hydroclimatic variables of the US MOPEX dataset (1949–2003). The contour lines are derived from
fitted polynomial surfaces using the R function stats::loess (R Development Core Team, 2011) of the variables using the river gauge locations.
The map of the US is taken from the maps package (Becker et al., 2011).
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Fig. 2. Budyko (left) andUW space (right) plots of the period
(1949–2003) of the MOPEX dataset.Ep is obtained from the CRU
TS 3.1Ep product. The 1: 1 line in theUW space diagram sepa-
rates areas with energy limitation (Ep/P < 1) and water limitation
(Ep/P > 1). Grey lines indicate the water and energy limits.

Budyko’s function explains 69 % of the variance. The aridity
indexEp/P of the basins ranges between 0.25 and 5.52, with
most basins clustering around 1. The right panel of Fig.2
displays the relationship of the non-dimensional measures
W andU , referred to as UW space. Note thatW = 1−

ET
P

,
wherebyET/P is used in the Budyko plot on the ordinate. A
thorough discussion of the relationship between both spaces
can be found inRenner et al.(2012). The hydro-climatic
data cover the UW space, meaning that there is a large va-
riety of hydro-climate conditions in the dataset.W is ranging
between 0 and 1, whileU also has one negative value (not
shown because of the scales used for the axes). This is prob-
ably due to an underestimation ofEp, CRU for this basin.

4.2 Climate sensitivity of streamflow

Next, we compare the climate sensitivity coefficients of the
CCUW with the Budyko framework using the long-term av-
erages of the MOPEX dataset. In particular, we concentrate
on the sensitivity of streamflow to precipitationεQ,P .

Using the CCUW approach,εQ,P ;CCUW is determined by
Eq. (4), which shows that the coefficient is dependent on the
aridity index and the inverse of the runoff ratio. In particu-
lar, the correlation of the sensitivity coefficient to the aridity
index (correlationr = 0.53) is much lower than the correla-
tion to P/Q (r = 0.99). This means that, using the CCUW
hypothesis, the inverse of the runoff ratio (P/Q) is the main
controlling factor in determining runoff sensitivity to climate.

To further illustrate this functional relationship, we plot
εQ,P in Fig. 3 as a function of the evaporation ratio, which is
directly related to the inverse of the runoff ratio, but bounded
between 0 and 1. From the left panel (black dots), we see that
the estimate of the CCUW method (εQ,P ;CCUW) is primarily
and nonlinearly determined byET/P . To estimate the uncer-
tainty in estimation ofεQ,P ;CCUW, we computedεQ,P ;CCUW
for each year in the 55-yr period and display the interquar-
tile range (25 %–75 % percentile range) of all those annual
sensitivity coefficients as vertical grey lines. The uncertainty
ranges increase withET/P . For values ofET/P > 0.6, the
ranges get more apparent with about 25 % ofεQ,P , which
can be up to the order ofεQ,P for ET/P > 0.8. This im-
plies, the smaller the runoff ratio of a given basin, the larger
is the sensitivity to climate variations and the uncertainty in
its estimation. Moreover, the variability in climatic forcing
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Fig. 3. Sensitivity coefficients of streamflow to precipitation as
function of ET/P . Left panel: εQ,P ;CCUW computed for the
CCUW method. Dots representεQ,P ;CCUW using long-term av-
erage data of the respective basin. Vertical grey lines depict the
interquartile range ofεQ,P ;CCUW estimated for each year in the
record, while light blue horizontal lines show the interquartile range
for ET/P . Right panel:εQ,P for different methods using long-term
averages of (P,Ep,Q) of the period 1949–2003. Note that a loga-
rithmic y-axis is used for both plots.

of individual years or periods can have large impacts on the
resulting streamflow.

The right panel of Fig.3 provides a comparison of the
sensitivity estimates of CCUW with the parametric Budyko
function approach ofRoderick and Farquhar(2011) using
theMezentsevfunction, withn estimated for each basin sep-
arately. The non-parametric Budyko sensitivity approaches
are determined by aridity only (Arora, 2002) and have
large differences to CCUW, already at medium values of
ET/P (not shown). The parametric Budyko function ap-
proach yields similar sensitivities as the CCUW approach
for ET/P < 0.9. This is due to the parametern, which inher-
ently includes some dependency toET/P (the correlation of
εQ,P ;Mez to P/Q is r = 0.63). However, it can be shown that
there is an upper limit for the sensitivity coefficient, which
is set byn + 1. Here, we estimated the largest value ofn

for the given dataset withn = 4 and the largest sensitivity
with εQ,P,Mez = 4.7. In contrast, the sensitivity of stream-
flow to precipitation estimated by the CCUW approach is not
bounded and proportional to the inverse of the runoff ratio.
However, the theoretical assessment of the CCUW hypothe-
sis byRenner et al.(2012) revealed that these large stream-
flow sensitivity estimates for strongly water-limited basins
are probably incorrect, because the CCUW does not obey
Budyko’s water limit.

4.3 Assessment of observed and predicted changes in
streamflow

Next, we evaluate the introduced analytical streamflow
change prediction methods under past hydro-climatic
changes in the contiguous US using data covering the wa-
ter years from 1949 to 2003. As the approaches assume
steady-state conditions, we evaluate the changes by subdi-
viding the data into two periods, 1949–1970 and 1971–2003.

Table 1.Statistics of the average change of the threeEp estimates.
The first three columns depict quantiles of1Ep; the forth and fifth
columns denote the relative frequency of basins with significant
change (α = 0.05, two sample t-test) forEp and the aridity index
(AR).

10 % 50 % 90 % 1Ep ≤ α 1AR ≤ α

[mm] [mm] [mm] [%] [%]

CRU −32 −8 13 13 19
Hargreaves −41 −23 −6 69 40
Hamon −16 −6 9 6 26

This choice is in accordance with the recent study ofWang
and Hejazi(2011). They justify their selection with a proba-
ble step increase in precipitation and in streamflow in large
parts of the US around the year 1970 (McCabe and Wolock,
2002).

4.3.1 Hydro-climatic changes in the US

We describe the climatic changes by comparing long-term
average data of the two periods 1949–1970 and 1971–2003.
Analysing the difference of the average annual rainfall, we
find an increase inP for most basins, whereby the increase
is significant for 32 % of the basins (α = 0.05, Welch two-
sample t-test with unknown variance, using the function
stats::t.test in R (R Development Core Team, 2011)). The
top left map in Fig.4 displays the spatial distribution of
changes inP , which are largest over the Mississippi River
basin (> 90 mm, excluding the Missouri River basin). Sig-
nificant changes in precipitation are scattered over parts of
the Mississippi basin and in the Northeast. However, there
are hardly any significant changes in the peninsula of Florida
and the west. The drastic increase in precipitation has already
been discussed in many publications, e.g.Lettenmaier et al.
(1994); Milly and Dunne(2001); Krakauer and Fung(2008).

The assessment of changes in potential evapotranspiration
necessarily depends on the method of choice and thus the in-
put data, which can influence magnitude and even the sign of
these trends (Donohue et al., 2010). A summary of changes
for eachEp method is given in Table1. In general, there is
a negative trend at more than 50 % of the basins. The Harg-
reaves method yields the strongest trends and shows a much
larger number of basins with a significant change inEp and,
to a lesser degree, also in the change of the aridity index.
The correlation matrix of average changes in several vari-
ables (given in Table2) shows that this trend in Hargreaves
Ep is directly related to a decrease in the diurnal temperature
range1TR, which has also been reported byLettenmaier
et al.(1994). TheEp changes by the Hamon and CRU prod-
uct are smaller and less significant. Changes in the Hamon
equation are directly and positively related to changes in av-
erage temperature1T (cf. Table2). Changes in theEp,CRU
product are positively related to changes, both in average
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Table 2. Pearson correlation coefficients for the average change between the two periods, assessed for all basins with data available. Sig-
nificance of correlation is denoted with letters (a 0.001,b 0.01,c 0.05), with significant correlations (α < 0.05) set in bold for visual aid.

1Q 1P 1EP,CRU 1EP,HAR 1EP,HAM 1T

1Q

1P 0.57a

1EP, CRU −0.18a −0.17b

1EP, HAR −0.13c −0.01 0.08
1EP, HAM −0.23a −0.23a 0.30a −0.04
1T −0.22a −0.19a 0.24a 0.01 0.96a

1TR −0.18a −0.01 0.13b 0.99a −0.02 0.02

temperature and diurnal temperature range (Table2). This
finding further supports the usage of the CRUEp dataset.
The top right map of Fig.4 shows that negative significant
changes in averageEp are common in the southern central
parts (about−30 mm) and a few patches throughout the US.

Both the increase in precipitation and the decrease in po-
tential evapotranspiration should ideally lead to an increase
in annual streamflow. This is supported by the strong positive
correlation with precipitation changes and the negative corre-
lation coefficients with theEp changes (Table2). Further, we
find that 32 % of the basins show a significant increase. The
map in the bottom left panel of Fig.4 shows that basins with
significant increases in streamflow are predominantly found

within the Upper Mississippi River basin and the northern
Appalachian Mountains and a few basins on the southern
coast. These basins show an increase of about 41 % com-
pared to the average of the first period. For most of the other
regions, we find non-significant streamflow increases, while
in the west there are mainly non-significant declines in an-
nual streamflow. Please note that we only use basins for fur-
ther analysis, which have more than 10 yr of data in any of
the two periods and that we removed 2 basins, because the
water balance was suspect (Q > P ). So in total 351 basins
are kept for further analysis.
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Fig. 5. Left: Scatterplot of observed vs. predicted annual average
changes in streamflow for MOPEX dataset without stations with
missing data. The vertical difference to the 1: 1 line depicts the
deviation of the prediction to the observed value. Right: predicted
change in streamflow due to climatic changes, comparing the es-
timates of the Budyko framework with the CCUW estimates. The
colour of the dots represents the evaporation ratioET/P .

4.3.2 Evaluation of streamflow change predictions

In the previous subsection, we described the changes ob-
served in precipitation, potential evapotranspiration and
streamflow by comparing the long-term averages of two pe-
riods. Now we aim to predict the change in streamflow, using
the climate sensitivity approaches of the CCUW method (i.e.
application of Eq.5) and the Budyko approach illustrated by
Roderick and Farquhar(2011). For the Budyko approach, we
use Eq. (8) and the functional form ofMezentsev(1955). In
particular, we use the hydro-climatic state of the first period,
described byP0,Ep,0,Q0, as well as the climatic states of
the second periodP1,Ep,1 to predict the streamflow of the
second periodQ1. Then, we evaluate the accuracy of stream-
flow prediction by using the observed1Qobs and predicted
change1Qclim signals.

A scatterplot of predicted versus observed changes is
shown in the left panel of Fig.5, where dots close to
the 1: 1 line indicate good predictions. While most dots
scatter around the 1: 1 line, there is a considerable num-
ber of basins where prediction and observation are com-
pletely different. There is also no indication if one method
is more realistic than the other. Based on all basins (N =

351), both methods yield similar differences compared with
the observed change in streamflow (RMSECCUW = 40.9 mm,
RMSEMez = 41.3 mm). A direct comparison is shown as
scatterplot in the right panel of Fig.5. The graph indicates
that there is a general agreement between both estimates
(r = 0.99). The largest differences between both methods are
found for basins with very high evaporation ratios. In this
case, CCUW predicts larger changes than the Budyko ap-
proach, which was already discussed above. These changes
are small in absolute values, but quite large when seen rela-
tive to the annual totals of streamflow.

4.3.3 Separating the influence of climate and land-use
impacts on streamflow

From the maps in Fig.4, it is apparent that basins with sig-
nificant changes in streamflow do not necessarily match with
those having significant changes in the climatic variables
(P,Ep). Such inconsistency between climatic and stream-
flow trends was also reported in previous literature such as
in Lettenmaier et al.(1994).

For further analysis, we combined the results of the
univariate t-tests (α = 0.05), which resulted in 9 different
classes. These are further aggregated to the four different
hypotheses on streamflow change elaborated in Sect.2.4. In
Table3, we provide summary statistics for each class. The
map in Fig.4d shows the location of the groups in the US,
with a bar plot in the lower left corner showing the counts
of each group. For most basins (46 %), we found no sig-
nificant change in any of the three observed variables. The
group of basins where only streamflow changed significantly
while climatic variables show insignificant changes is large
and consists of 17 % of all basins. These are mostly found
in the central north of the US, west of the Great Lakes. In
the other extreme, there are basins, where significant cli-
matic changes occurred, while streamflow did not change
significantly. Combining these classes to the “climate only”
group, 21 % of the basins are affected. For this group, red-
dish colours have been used in the map in Fig.4d. This
group is dominant in the west and shows some clusters in the
South- and Northeast. Coloured in shades of green, the small-
est groups are those where at leastQ andP changed signif-
icantly. Adding up these groups to the “climate & runoff”
change group comprises 16 % of the basins.

The differences between observed and predicted stream-
flow changes may be due to model deficiencies or input data
uncertainty only. In this case, we would expect that the differ-
ences are distributed randomly in the set of basins. However,
if we take basin changes as alternative hypotheses into ac-
count (“climate only”, “runoff only”), we would expect that
the differences are not random, but carry typical signals of
basin change impacts being different from zero.

To investigate this, we analysed the differences normalised
by annual average precipitation for the classes of basins de-
termined by the combined t-tests. Results are shown for the
four main classes in Table3 and in the boxplot in Fig.6. In
the “no change” group, we find a large scatter with the me-
dian close to 0 and the interquartile ranges below and above
0, indicating that there is no general trend in the model dif-
ferences. This behaviour is expected because there are no
large and significant changes in the hydro-climate of these
basins. The other basins are more interesting. The group of
basins where we found significant “climate only” changes
shows that most of the basins in this group are below 0.
For this group, the Budyko framework has an average dif-
ference of−2.1 % and CCUW−2.7 % of the annual water
balance. This means that basin changes compensate for the
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Table 3.Group average statistics of hydro-climatic changes for 4 groups of basins (“no change”, “climate only”, “runoff only” and “climate
& runoff”), classified by results of a combination of two-sample t-test results grouping basins with significant change atα = 0.05. For the
hydro-climatic changes, also the group standard deviation is given. For the normalised basin changes, the first and third quartiles are given.
In total 351 basins have been tested.

Unit No change Climate only Climate & runoff Runoff only

N – 160 75 55 61
Ep/P – 1.15 1.22 1.10 1.28
1P mm 50± 24 97± 43 113± 42 61± 21
1EP mm −8± 14 −13± 23 −8± 18 −7± 12
1Q mm 23± 41 44± 45 95± 31 67± 43
ωobs

◦ 300 286 337 2
1CE – 0.02 0.05 −0.04 −0.06
1n – 0.05 0.15 −0.12 −0.15
RMSECCUW mm 37.98 49.22 31.89 43.94
RMSEMez mm 37.70 48.18 34.57 46.22
1Qbasin,CCUW/P – −0.03–0.01 −0.04–0 −0.01–0.05 0.02–0.06
1Qbasin,Mez/P – −0.02–0.01 −0.03–0 0–0.05 0.02–0.06
1Qbasin,CCUW/Q – −0.08–0.03 −0.12–−0.01 −0.01–0.19 0.05–0.27
1Qbasin, Mez/Q – −0.07–0.05 −0.1–0 0–0.24 0.06–0.29

detected climatic changes (with a group average decrease in
aridity of −10.2 %). Further analysis shows thatET strongly
increased with 6.2 % of the annual water balance. Also the
catchment parametern and CE show significant increases
(cf. Table3). In contrast, the “runoff only” group shows sig-
nificant positive basin change impacts (Budyko 3.8 % and
CCUW 3.2 % of the annual water balance). In these basins,
we find predominant increases in streamflow, along with sig-
nificantly decreasing catchment parameters. This indicates
that changes in the basin properties took place, which led
to predominant runoff increases (7.7 % of the water balance)
on similar magnitude of the group average precipitation in-
crease (7.3 %). Thus, on average, the increase in precipitation
did not increaseET (−0.4 % of the water balance).

The “climate & runoff” change group reveals smaller er-
rors; however, most of these tend to be influenced by basin
changes with positive differences. The map in Fig.4d dis-
playing the location of the groups shows that many of these
basins are actually close to the “runoff only” group and so
we expect that basin changes are quite likely.

The ecohydrological framework ofTomer and Schilling
(2009) is based on analysing changes in the relative parti-
tioning of the surface water and energy fluxes. In Fig.7,
we plot the observed changes, i.e.1U vs. 1W , using data
of all MOPEX basins. From the figure, it becomes apparent
that most of the basins shifted towards the right of the pos-
itive diagonal, which is an effect of the general trend of in-
creasing humidity (increasingP and widely decreasingEp)
over the US. The differences of the predicted changes to the
observed changes in streamflow are depicted by the size of
the dots and the colour palette. Generally, the smallest devia-
tions are found in the lower right quadrant, which represents
the climate impact change direction of the ecohydrological

concept. Towards the upper right quadrant, we find that basin
impacts are increasing, leading to an excess of streamflow,
while towards the lower left quadrant basin impacts show
compensating effects leading to streamflow deficits.

In the right panel of Fig.7, we use the plotting characters
corresponding to the t-test classification groups. Most basins
in the “runoff only” group are in the upper right quadrant,
while the “climate only” group is concentrated in the lower
two quadrants and predominant1U increases. So, although
the concept ofTomer and Schillinghas certain limitations
such as the dependency to the aridity index and the hydro-
logical response (Renner et al., 2012), it is generally able to
separate the basin and climate impacts onET and streamflow.

In summary, the analysis shows that the differences
1Qobs−1Qclim are unlikely to be random and due to model
deficiencies, but rather reveal distinctive impacts of basin
changes under the general trend of increasing humidity. Fur-
ther, frequency and impacts of basin changes are large and
evidently much larger than the differences between both
frameworks.

4.3.4 Change direction in UW space

For further analysis, we concentrate on the direction of
change in the UW spaceω, introduced with Eq. (3), which
approximately yields a measure of the relative impact of both
climatic and basin changes. Graphically,ω represents the an-
gle between the positive x-axis and some point in a1U vs.
1W plot, such as Fig.7. As a reference, we computed the
theoretical change direction of climatic changes using the
Budyko framework with theMezentsevcurve being depen-
dent on the aridity index and the catchment parametern. In
the scatter plots of Fig.8, we plot the observed change di-
rectionωobs as a function of the theoretical climate change
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classification.

directionωMez. If we assume that there are only changes in
climate which impact streamflow, we would find all points
at the 1: 1 line. We also show the climate change direction
of the CCUW hypothesis, which is constant at 315◦. Any
deviations from these lines indicate the concurrence of basin
changes, assuming the models and input data are correct. The
size and colour of the dots correspond to the magnitude of
normalised difference to the observed change in runoff. We
find that there is a clear relation betweenωobs and the nor-
malised difference, which is positive above the 1: 1 line and
negative below. The largest differences and thus impacts oc-
cur at ωobs≈ 225◦ when bothn andCE increase strongly,
whereas atωobs≈ 45◦, n andCE decrease strongly. This is
confirmed by the scatterplot in the right panel, where the
plotting character corresponds to the statistical classification
of the basins. Most “climate only” basins are below the 1: 1
line, while “runoff only” basins are found mainly above. Also
note that the “climate & runoff” group has quite a few basins
far above the 1: 1 line.

The combination with the independent classification
shows that in general both frameworks seem to be valid for
predicting climate change impacts and separating them from
basin change impacts. Also the differences between both ap-
proaches are generally relatively small. However, very inter-
esting is the performance under limiting conditions, where
larger differences must become apparent. Unfortunately, the
MOPEX dataset has not too many arid or humid basins and
inferences are rather limited. In the left panel of Fig.8, we
also depict isolines of the aridity index of the respective
basins, where arid basins have a lowerωMez than more humid
ones. We see that arid basins with significant changes follow
the 1: 1 line, rather than theωCCUW = 315◦ line. This sup-
ports the validity of the Budyko framework and suggests that
the CCUW is not valid under arid conditions.

The theoretical climate change direction reflecting the
aridity index and the catchment parameter is mapped in
the left panel of Fig.9. This reveals how the actual
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Fig. 7. Observed changes in UW space between the two peri-
ods. The arrows represent the conceptual framework ofTomer and
Schilling (2009) to separate climate and basin change impacts.
Changes falling approximately below the positive diagonal are re-
lated to a decrease in aridity. Under a general trend of decreasing
aridity, basin changes leading to an increase of the runoff ratio are
approximately above the negative diagonal, while basin changes
compensating for climatic impacts are below. In the left panel, the
size and colour of the dots depict the normalised difference between
observed and climatic related streamflow change. The right panel is
restricted to basins with significant changes only, using the t-test
classification scheme. Note that for displaying reasons we do not
show the change for the Snoqualmie River near Carnation, Wash.
In this northwestern river, streamflow dropped strongly, while pre-
cipitation increased slightly, which resulted in large changes in
1W = −0.12 and1U = −0.38.
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Fig. 8. Observed change direction in UW spaceω =

arctan(1U/1W) as a function of the theoretical change di-
rection according to theMezentsevfunction for all 351 MOPEX
basins. In the left panel, the size and colour of the dots depict
the normalised difference between observed and climatic related
streamflow change. The right panel is restricted to basins with
significant changes only, using the t-test classification scheme.

hydro-climatic conditions in the US modify relative changes
in the partitioning of water and energy fluxes at the surface.
Most basins have no water or energy limitation (aridity close
to 1), and a climate change would equally alter the relative
partitioning of water and energy fluxes (i.e.1U = −1W →

ω ≈ 135,315◦), which is the assumption of the concept of
Tomer and Schilling(2009) and the CCUW hypothesis. The
more arid climate in the central US, however, results in much
larger relative changes of the partitioning of energy fluxes
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Theoretical climatic change direction in UW space, Mezentsev
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Fig. 9. Mapping of the change directionω in UW space. The colour of the polygons indicates the value ofω with the corresponding wheel
legend in the bottom right. The left panel shows the theoretical climatic change direction using theMezentsevfunction. The right panel
shows the observed change direction using Eq. (3). Polygons with a grey border indicate significant (t-test,α =0.05) changes in any of the
observed variables (P,Ep,CRU,Q).

than in the water fluxes (|1U | > |1W |). This means that an
increase in precipitation would decrease the normalised sen-
sible heat flux much more than the runoff ratio would in-
crease.

The mapping ofωobs in the right panel of Fig.9 provides
a quick overview on climatic and basin change impacts. If
we consider a segment of 45◦ centred atωMez, this would re-
flect roughly constantn and valid conditions for the Budyko
framework. About 29 % of the basins are actually within this
boundary. According to the map in Fig.9, these basins are
mainly found in the southern central part of the US, along a
band following the Appalachian Mountains, and a few sin-
gle basins in the west. Basins with distinct climate impacts
and compensating basin effects with increasingn and CE
(ωobs− ωMez < −22.5◦) are also quite frequent (32 %) and
found throughout the US. Almost all basins within the Great
Plains and the west show constant or decreasing runoff and
increasingET. This is in accordance with the findings of
Walter et al.(2004), who detected positive trends inET but
not in Q for western river basins (Columbia, Colorado and
Sacramento River basins). These trends may be linked to in-
traseasonal changes in hydrology, triggered by higher win-
ter temperatures and thus less snow, which is melting earlier
(Barnett et al., 2008). Moreover, groundwater pumping for
irrigation in the High Plains (McGuire, 2009) possibly con-
tributed to the observed signals (Kustu et al., 2010).

From the map in the right panel of Fig.9, we see a tran-
sition of changes inωobs over the Mississippi River basin.
While the western part showsωobs< ωMez, there is a strong
transition towards the Midwest, where we find a large cluster
of basins withωobs> ωMez. This transition may be primarily
linked to the precipitation changes, which also show a west
to east gradient (cf. map in Fig.4). But agricultural cultiva-
tion, especially in basins of the US Midwest, may have am-
plified these trends. Most likely, the additional rain could not

increase evapotranspiration as a lack of soil water storage due
to intensive tile drainage (up to 30 % of the total state areas
in the Midwest are drained;Pavelis, 1987). So, the intensive
agricultural land management did not only increase stream-
flow on average, but also led to immense nitrogen leaching of
Midwestern soils (Dinnes et al., 2002), showing biochemical
signals far downstream (Raymond et al., 2008; Turner and
Rabalais, 1994).

Towards the east, changes inωobs are spatially more het-
erogeneous. This is probably because topography and land
use are more diverse compared to the west. However, it is im-
portant to note that the density of river gauge records is much
larger. The types of impacts are almost equally frequent, but
as the maps of hydro-climatic changes already show, signifi-
cant changes are rather concentrated in the north and south.

4.4 Uncertainty discussion

4.4.1 Limitations due to observational data

Both climatic sensitivity approaches are based on long-term
average data. These input data are spatially aggregated to
river basin averages from point data; evaporative demand
and ET are only indirectly observed. For example,Milly
(1994) showed, by an uncertainty analysis of input data to
their Budyko-based water balance model, that uncertainties
in input data may explain the deviations from observed and
modelled discharge and evapotranspiration.

Another issue is that net energy supply, i.e. net radia-
tion data, is ideally required. However, direct observations
of net radiation are not available for the purpose to estimate
long-term catchment averages throughout the US. There-
fore, a practical choice is to use potential evapotranspira-
tion models, which provide an estimate based on available
meteorological data. Here, we used two temperature-based
Ep models: the Hargreaves equation being based on diurnal
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temperature ranges; and the Hamon equation, which is based
on daily average temperatures. The results show that there
are large differences on the long-term average as well as for
the detected trends over time. So for example, we found that
the changes inEp derived with the Hargreaves equations are
uncorrelated to the changes estimated by the Hamon equa-
tion or theEp time series product of CRU (see Table2). This
is in accordance with previous studies on potential evapo-
transpiration models for hydrological applications. As, e.g.,
Donohue et al.(2010) note, the reliability ofEp estimates can
be improved by adding more relevant input variables. There-
fore, we used theEp time series product of CRU, which in-
cludes humidity and cloudiness information. We find that this
dataset is more consistent with respect to the long-term aver-
age and its spatial distribution as well as the temporal trends.

Still, there are certainly other reasons for the change in
evaporative demand which are not reflected in the CRUEp
dataset – for example, changes in net long wave radiation
as reported byQian et al.(2007) or changes in the surface
albedo due to land cover changes. While the latter can be at-
tributed to basin characteristic changes, the former requires
better high resolution radiation and energy balance estimates
(Milly , 1994). These estimates may be available by using re-
mote sensing products or reanalysis products for past peri-
ods. This is, however, out of the scope of this study.

Still, we believe that the main conclusions regarding the
retrospective assessment of hydro-climatic changes and their
regional patters will not be altered significantly by using im-
proved data for evaporative demand. This is because the ob-
served changes in the partitioning of water and surface fluxes
can be attributed to a much larger part to the change in pre-
cipitation.

4.4.2 Uncertainties due to inherent assumptions

While introducing the theoretical framework byRenner et al.
(2012) and the Budyko framework, considerable assump-
tions have been made that lead to uncertainties. First, we
have to regard the assumption that the storages of water and
energy are zero, which may be violated but hard to discern.
For example,Tomer and Schilling(2009) used very dry pe-
riods to identify periods for computing long-term averages.
However, this relatively subjective method may also intro-
duce other problems. Secondly, we assume steady state con-
ditions of the water and energy balances. Several processes
may violate this assumption, resulting in a trend ofET over
time (Donohue et al., 2007). Our results clearly show that
any process related to a change in basin characteristics may
result in dynamic state transitions with impacts on evapo-
transpiration and thus streamflow, which can be larger than
impacts of climatic variations. So we found that both catch-
ment parameters (n,CE) expressing the ability for evapora-
tion have been widely increasing in the western US. This
represents a non-stationary transition in the water and en-
ergy balances towards increasing actual evapotranspiration

on the cost of streamflow. Thereby, the effects of climate
and basin characteristic changes on streamflow seem to be
of equal magnitude and compensate each other. In the com-
panion paper,Renner et al.(2012), we discussed the different
assumptions on catchment efficiency and climate changes.
While the Budyko functions inherently assume thatCE is
changing with the aridity index, the CCUW method assumes
CE to be constant. Here, we are unable to verify which as-
sumption is correct because of the multitude of possible other
effects, especially the large impacts of basin characteristic
change. But we found that both frameworks yield compara-
ble results under non-limited conditions, and both are gener-
ally able to discern climatic and different basin change im-
pacts on streamflow. However, data of the few basins in arid
conditions suggest that the CCUW sensitivity framework is
unreliable under these generally water- limited conditions.

5 Conclusions

This paper presents an application and examination of two
water-energy balance frameworks for the problem of esti-
mating the sensitivity of streamflow to changes in long-term
average precipitation and evaporative demand. In particular,
we test and compare the CCUW framework with the Budyko
framework by employing a large hydro-climatic dataset of
the continental US, covering a variety of different climatic
conditions (humid to arid) and basin characteristics, ranging
from flat to mountainous basins with land cover types rang-
ing from desert over agriculture to forested basins.

Based on long-term average hydro-climatological data
(P,Ep,Q), we estimated the sensitivity of streamflow to
changes in annual precipitation. The main distinction be-
tween the Budyko and the CCUW hypotheses is the func-
tional dependency of the sensitivity coefficients. The sensi-
tivity coefficients estimated by the Budyko framework de-
pend on the aridity index and the type of the Budyko function
only. In contrast, the CCUW hypothesis implies that climatic
sensitivity of streamflow depends to a large degree on the in-
verse of the runoff ratio. This fundamental difference results
in sizeable differences, which are most prominent for basins
where runoff is very small compared to annual precipitation.
However, for most of the other basins, both approaches agree
fairly well. Further, we evaluated the capability of the climate
sensitivity approaches to predict a change in streamflow, on
the basis of observed variations in the climate of the second
part of the 20th century. The combination with the concep-
tual framework ofTomer and Schilling(2009) and the sta-
tistical classification to discern climate from basin character-
istic changes yields comprehensive insights into the hydro-
climatic changes in the US. We can reinstate that increased
annual precipitation leads to increases of streamflow and
evapotranspiration in general. However, our results provide
evidence that changes in basin characteristics influenced how
the additional amount of water is partitioned at the surface.
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Particularly the mapping ofω, describing changes in parti-
tioning of water and energy fluxes at the land surface, yields
a quick overview of dominant impacts on streamflow. The re-
sultant patterns are spatially coherent and in agreement with
previous studies. The quantitative separation of impacts of
basin changes on streamflow supports the hypothesis that
humans directly and indirectly alter water resources at the
regional and large basin scale. Most prominent are changes
in the seasonality of climate due to increased global green-
house gas emissions (Thomson, 1995; Barnett et al., 2008)
and intensified agricultural land use, especially by artificial
drainage and irrigation. The results suggest that the direc-
tion and magnitude of human impacts distinctly vary with
climate, soil, land-use and hydrographic conditions.

Still, changes in basin characteristics and uncertain-
ties, which are essentially attributed to basin characteristic
changes, might have had trends in the past but cannot be ex-
trapolated to the future. However, these impacts play a role
and one needs to consider such changes when applying any
kind of climate sensitivity framework.

Appendix A

Mathematical derivations for the Mezentsev(1955)
function

The first-order perturbation of theMezentsevfunction in
Eq. (8) provides analytical solutions for the problem of
streamflow sensitivity. Here, the respective partial differen-
tials are given (Roderick and Farquhar, 2011):
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To compute the sensitivity of streamflow to precipitation,
we insert Eq. (A1) into the first bracketed term of Eq. (9).
Then, by applying the water balanceQ = P − ET and sub-
stitutingET by Eq. (A1), an analytical solution is obtained:
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