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Abstract. Understanding of dominant runoff generation pro-
cesses in the meso-scale Migina catchment (257.4 km2) in
southern Rwanda was improved using analysis of hydro-
metric data and tracer methods. The paper examines the
use of hydrochemical and isotope parameters for separat-
ing streamflow into different runoff components by inves-
tigating two flood events which occurred during the rainy
season “Itumba” (March–May) over a period of 2 yr at two
gauging stations. Dissolved silica (SiO2), electrical conduc-
tivity (EC), deuterium (2H), oxygen-18 (18O), major anions
(Cl− and SO2−

4 ) and major cations (Na+, K+, Mg2+ and
Ca2+) were analyzed during the events.2H, 18O, Cl− and
SiO2 were finally selected to assess the different contribut-
ing sources using mass balance equations and end mem-
ber mixing analysis for two- and three-component hydro-
graph separation models. The results obtained by applying
two-component hydrograph separations using dissolved sil-
ica and chloride as tracers are generally in line with the re-
sults of three-component separations using dissolved silica
and deuterium. Subsurface runoff is dominating the total dis-
charge during flood events. More than 80 % of the discharge
was generated by subsurface runoff for both events. This is
supported by observations of shallow groundwater responses
in the catchment (depth 0.2–2 m), which show fast infiltra-
tion of rainfall water during events. Consequently, shallow
groundwater contributes to subsurface stormflow and base-
flow generation. This dominance of subsurface contributions
is also in line with the observed low runoff coefficient values
(16.7 and 44.5 %) for both events. Groundwater recharge dur-
ing the wet seasons leads to a perennial river system. These

results are essential for better water resources planning and
management in the region, which is characterized by very
highly competing demands (domestic vs. agricultural vs. in-
dustrial uses).

1 Introduction

Understanding of runoff components separation processes is
essential for the proper assessment of water resources avail-
ability within catchments. The use of environmental isotopes
in combination with hydrochemical tracers and hydrometric
measurements can help to gain further insights into hydrolog-
ical processes because the methods separate and quantify dif-
ferent runoff components during rainfall events. Combined
methods can be used to quantify the contributions of runoff
components during different hydrological situations (floods
and low flows) in small and meso-scale catchments (Did-
szun and Uhlenbrook, 2008; Wenninger et al., 2008). Gener-
ally, hydrochemical and isotopic hydrograph separations of
stream discharge are commonly used to determine the frac-
tions of surface/subsurface or old/new water contributions to
streamflow (e.g. Richey et al., 1998).

Most hydrograph separations involve the standard two-
component mixing models of Sklash and Farvolden (1979),
in which the stream water is separated into old (pre-event)
and new (event) water components. This approach identifies
the age of streamflow components, but cannot be used to as-
sess the spatial origin (Ladouche et al., 2001). To obtain both
temporal and spatial origins, some investigations using stable
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isotopes associated with chemical tracers have been under-
taken in different basins world-wide (for example, Kennedy
et al., 1986; Wels et al., 1991; Ladouche et al., 2001; Uhlen-
brook and Hoeg, 2003; Hrachowitz et al., 2011). However,
hydrochemical tracers may only be used to separate stream-
flow into runoff components according to their flow paths
(Kennedy et al., 1986).

Only a few recent studies on the application of two and
three-component hydrograph separation models improved
our understanding of hydrological processes in semi-arid ar-
eas in Sub-Sahara Africa (Mul et al., 2008; Hrachowitz et
al., 2011), where Rwanda is also located. These studies con-
tribute to appropriately manage the available surface wa-
ter and groundwater resources, both in terms of quality and
quantity. This is essential in Rwanda where the population
is growing with an annual rate of about 3.5 % (MINIPLAN,
2002), and it is already the most densely populated country
on the African continent (NELSAP, 2007). The related in-
crease of water demand for domestic, agricultural, and indus-
trial uses is causing significant water scarcity in the country,
and ecosystems are under enormous pressure.

Burns (2002) put it nicely by stating: “As the science ma-
tured further in the 1990s, a point was reached at which
isotope-based hydrograph separations alone were insuffi-
cient to guarantee publication of study results in the leading
water resources journals. Many studies seemed only to re-
confirm that stormflow in small forested catchments is dom-
inated by “pre-event” or “old” water, and hydrologists did
not need to be told so over and over again. Thus, isotope-
based hydrograph separation had become simply another
tool – one that could not lead to a more profound under-
standing of catchment runoff processes unless combined with
many other tools.” Since then, the application of hydrograph
separation together with hydrometric observation became
state of the art in the global North, but much less in the global
South, in particular in remote area of Africa with its unique
hydro-climatic and other physiographic settings. However,
hydrograph separation methods were applied before to semi-
arid or better sub-humid catchments with the support of well
data (Cras et al., 2007; Marc et al., 2011; Hrachowitz et al.
2011), but these study sites are different than the study area
in Rwanda.

Detailed insights into the hydrology of a meso-scale catch-
ment like the Migina catchment contributes to an increased
understanding regarding the water resources of the catchment
– an important first step in protecting ecosystems and ex-
isting users and ensuring a sustainable level of development
in the future. This knowledge can help farmers to increase
their crop production and to sustain long-term food security
(e.g. Mul, 2009; Hrachowitz et al., 2011). In order to achieve
this, insights into the behavior of the water fluxes and the
interactions between groundwater and surface water is of ut-
most importance. Munyaneza et al. (2011) conducted their
study in the meso-scale Migina catchment, southern Rwanda,
to predict river flows. Van den Berg and Bolt (2010) also

conducted their research in the same catchment using hydro-
chemical and isotope analysis during the dry season. Based
on a baseflow recession curve analysis, they showed a de-
creasing trend in baseflow in the overall river discharge. It is
now becoming almost constant at a rate of 0.19 m3 s−1 at the
main outlet at the end of the dry season. Furthermore, they
concluded that a significant flow from (deep) groundwater
has to be the source of this water. Hence, the suggestion was
made to perform detailed hydrochemical and isotopic hy-
drograph investigations also during floods to obtain a better
understanding of groundwater–surface water interactions as
well as the different sources and flow pathways. Burns (2002)
found that the thrill of doing isotope-based hydrograph sepa-
rations in forested, humid catchments is gone. Therefore, he
recommended carrying out new studies in catchments with
different climatic and human disturbance regimes. Addition-
ally, these studies which combine water-isotope and solute
isotope measurements should provide hydrologists with new
thrills and even surprises in the coming years. Consequently,
the current study was carried out in a semi-arid catchment
and contributes to the advancement of hydrologic science of
this hydro-climatic zone by quantifying runoff components
and processes. Hardly any studies can be found in related
hydro-climatic zones in the literature; therefore, we feel this
study is a good addition to the existing knowledge base.

The objective of the paper is to quantify the runoff com-
ponents and to identify the dominant processes in a meso-
scale catchment for two flood events occurred during the
rainy season “Itumba” (March–May) over a period of 2 yr,
i.e. 1 to 2 May 2010 at Kansi sub-catchment and 29 April
to 6 May 2011 at Migina catchment in southern Rwanda
(Fig. 1). Specifically, the study emphasizes the use of two-
and three-component hydrograph separation mixing mod-
els for separating streamflow into surface and subsurface
runoff and quantifies different runoff components under trop-
ical conditions. In order to learn more about hydrologic flow
paths, hydrochemical tracers and hydrometric measurements
such as rainfall, stream discharge, springs and groundwater
levels were combined with tracer studies. The study explores
the importance of combining hydrometric data, isotope infor-
mation and hydrochemical tracers to identify runoff compo-
nents (e.g. Ladouche et al., 2001; Uhlenbrook et al., 2002).

2 Study area

The study was carried out in the meso-scale Migina
catchment (257.4 km2) and in the Kansi sub-catchment
(129.3 km2), which are located in southern Rwanda (Fig. 1).
Approximately 103 000 inhabitants with an annual growth
rate of about 3 % are living in the Migina catchment (Na-
hayo et al., 2010; Van den Berg and Bolt, 2010). The ge-
ology of the Migina catchment consists of very old gran-
ite rocks, overlain by substrates of grey quartzites and
schists. These geological differences result in differences in
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Figure 1 Location of the Migina catchment in Rwanda and East Africa, and instrumentation set-up within 

this research project showing the positions of Kansi and Migina gauging stations. 

  

Fig. 1. Location of the Migina catchment in Rwanda and East Africa, and instrumentation set-up within this research project showing the
positions of Kansi and Migina gauging stations.

topography. The site is mountainous with elevations rang-
ing from 1375 m a.s.l. at the outlet to 2278 m a.s.l. at Mount
Huye, which is located in the north-western part of the
catchment. The topographic conditions are very variable and
slopes of the valleys vary from 5 to 10 % in the upstream
and 1 to 15 % in the downstream part (average slope is be-
tween 2 and 3 %) (see Nahayo et al., 2010). The soils in
the valleys are often ferrallitic with a 50 cm thick humic A-
horizon, which are sometimes buried below dynamically col-
luviating deposits (Van den Berg and Bolt, 2010). The clay
content of the A-horizon varies between 12 % and 19 % with
hydraulic conductivities estimated between 1 and 10 m d−1

(Moeyersons, 1991). Land cover and hydrological soil group
analyses in the Migina catchment show that the catchment
is dominated by agriculture activities (92.5 %), while forest
occupy 5 %, grass/lawn 2 % and buildings cover 0.5 % (Mun-
yaneza et al., 2011). This indicates that most of the water in
the Migina catchment is used for agricultural purposes (irri-
gation) because all of these activities take place in the valleys
close to the rivers.

The investigated catchments in this paper are: Cyihene-
Kansi catchment, further called Kansi sub-catchment
(129.3 km2); and Migina catchment (257.4 km2) which cov-
ers the whole catchment, including Kansi sub-catchment (see
Fig. 1). The perennial Migina River drains into the Akan-
yaru River, which forms the border between Rwanda and
Burundi. The Akanyaru River drains into the Kagera River,

which flows into Lake Victoria and later generates the White
Nile.

The mean annual rainfall in the Migina catchment is ap-
proximately 1200 mm yr−1 and the mean annual tempera-
ture is about 20◦C (S. H. E. R., 2003). The annual average
evaporation in the area is estimated to 917 mm yr−1 (Nahayo,
2008). The potential evaporation is much higher and was es-
timated to 605 mm yr−1. The Migina catchment has a mod-
erate climate with relatively high rainfall and an annual cy-
cle of two rainy seasons (FAO, 2005): (1) A short rainy sea-
son, locally known as “Umuhindo”, lasts from September to
November, with November characterized by heavy rainfall;
this season is followed by a short dry season, locally known
as “Urugaryi”, lasts from December to February. (2) A long
rainy season, locally known as “Itumba”, lasts from March to
May. This accounts for about 61 % of the total annual rain-
fall. The investigated events occurred during the Itumba sea-
son (March to May) for the years 2010 and 2011.

3 Data and methods

3.1 Data collection

The catchment has been equipped with hydrological instru-
ments (Fig. 1), and after installation, hydrochemical and
isotope data were collected over two years (May 2009 to
June 2011). Two events were examined in further detail
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during the long rainy season “Itumba”. Intensive monitoring
(hourly samples) was carried out between 1 and 2 May 2010
and between 29 April 2011 and 6 May 2011 at Kansi and
Migina gauging stations, respectively. Samples were ana-
lyzed in the lab for isotopes and hydrochemical tracers.
The collected samples include groundwater from 11 shal-
low piezometers, 15 springs, river discharge measurements
from 5 river gauging stations (Rwabuye, Mukura, Kansi, Ak-
agera, and Migina); stream water sampled is from 8 sites in
the catchment (weekly or monthly intervals), and monthly
catchment rainfall is from 5 locations where tipping buck-
ets are installed (see Fig. 1). One rainfall event during the
Itumba’11 season (from 29 April 2011 to 6 May 2011) was
also sampled at Gisunzu rain gauge for isotopic composition
analysis.

3.2 Field and laboratory methods

In-situ measurements have been continuously conducted at
the outlet of each sub-catchment for pH value and water
temperature (T ) using a portable pH-meter (Hach 157), and
for electrical conductivity (EC) using a Hanna Gro’Chek
Portable EC-meter (HI9813-0). Stream, spring and rainwa-
ter samples were collected in 30 ml plastic bottles. Samples
were collected during low flows and flood events.

Samples were analyzed in the laboratory for dissolved sil-
ica (SiO2) using a spectrophotometer DR 2400 at the labora-
tory of Kadahokwa water treatment plant and at the labora-
tory of the National University of Rwanda (NUR), Butare,
Rwanda. The concentrations of major cations like Mg2+,
Ca2+ and K+ were determined by atomic absorption spec-
troscopy (AAS) at NUR, and sodium (Na+) was determined
by AAS at UNESCO-IHE, Delft, The Netherlands. The con-
centrations of major anions like SO2−

4 were determined using
a Hach-DR/890 colorimeter in the lab of WREM at NUR,
and Cl− was analyzed by using an ion chromatograph at
UNESCO-IHE and verified by using colorimetry in the lab of
NUR. The isotopes were analyzed at UNESCO-IHE with a
LGR liquid-water isotope analyzer, which provides measure-
ments ofδ18O andδ2H in liquid-water samples with accu-
racy better than 0.2 ‰ for18O/16O and better than 0.6 ‰ for
2H/1H.

During the investigated two flood events, the water lev-
els were measured continuously at two river gauging stations
(Kansi and Migina) using automatic recorders (Mini-Diver;
DI501) and transferred to discharges using rating curves
(r2 = 0.94, n = 24 at Kansi station andr2 = 0.97, n = 18 at
Migina station).

3.3 Hydrometric and tracer methods

Hydrograph separation to separate the runoff during floods
in two or more components (end-members), based on the
mass balances for tracer fluxes and water, was applied in
this study. Environmental isotopes (oxygen-18 (18O) and

deuterium(2H)), dissolved silica (SiO2) and chloride (Cl−)
were selected as tracers.

The fundamentals and assumptions of the hydrograph sep-
aration method are further discussed in, e.g. Sklash and Far-
volden (1979), Wels et al. (1991), Buttle (1994) and Uhlen-
brook and Hoeg (2003). The mass balance expression for a
two-component hydrograph separation model used in this pa-
per is described as follows:

Qt = Q1 + Q2 (1)

ct Qt = c1Q1 + c2Q2, (2)

whereQt is the total runoff (m3 s−1); Q1, Q2 are runoff con-
tributions (m3 s−1); ct is the concentration in the total (mg l−1

or ‰); andc1, c2 are the end-member concentrations of the
tracers in the respective runoff component (mg l−1) or (‰).

The exact definition of the two or three runoff components
depends on the properties of the tracer used (Wels et al.,
1991). Two commonly used groups of tracers are: (1) sta-
ble isotopes of water, oxygen-18 (18O) and deuterium (2H)
(e.g. Sklash and Farvolden, 1979; Sklash et al., 1986); and
(2) weathering products such as Mg2+, Ca2+, Cl− and SiO2
(e.g. Pinder and Jones, 1969; Wels et al., 1991).

With a known concentration of the end-members for
subsurface and surface runoff, the contribution from these
sources can be calculated (e.g. Mul et al., 2008). The concen-
tration for sub-surface (including groundwater) runoff was
assumed to be the concentration of the pre-event water at the
sampling point, and the concentration of the surface runoff
was assumed to be similar to concentrations observed in a
rainfall sample (Buttle, 1994; Mul et al., 2008). Therefore,
the total dischargeQt and concentrationsct, c1 and c2 are
known and it follows:

Q2 =
ct − c1

c2 − c1
Qt (3)

Q1 = QT − Q2. (4)

Hrachowitz et al. (2011) applied hydrochemical tracers in
combination with isotopic tracers for hydrograph separation
in a semi-arid catchment in Tanzania. They found that the
assumption of stable isotopic end-members was not met for
both the groundwater samples and the rainwater samples. At
the small scale the spatial variability could be negligible and
the technique becomes better applicable, although for each
event, end-member concentrations needed to be determined
separately to account for the temporal variability. Due to this
temporal variation, hydrograph separation was performed in
this paper using the cumulative incremental weighting ap-
proach, Eq. (5), based on sampled rainfall amount as recom-
mended by McDonnell et al. (1990):

δ18O =

n∑
i=1

Pi δi

n∑
i=1

Pi

, (5)
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where Pi and δi denote fractionally collected rainfall
amounts andδ values (isotope concentrations), respectively.
The weighted mean represents the average isotopic compo-
sition of the event water input to the catchment but does not
address the within-storm isotopic variability or the time re-
sponse of the catchment to event water (McDonnell et al.,
1990).

A three-component hydrograph separation was applied in
this study by using dissolved silica and deuterium for the
event of 1–2 May 2010 at Kansi station (Fig. 7) and us-
ing dissolved silica and oxygen-18 as tracers for the event
of 29 April 2011 to 6 May 2011 at Migina station (Fig. 9).
The same method was used by James and Roulet (2009) to
estimate the relative contributions of throughfall, a perched
groundwater or shallow subsurface flow component, and
groundwater for individual storm events in small forest
catchments of Mont Saint-Hilaire in Quebec, Canada. During
our research, three end-members (pre-event: deep and shal-
low groundwater, and event: rainfall) were used in the sep-
aration. End-member concentrations were collected for each
event separately in order to account as good as possible for
the temporal variability. The end-member for deep ground-
water was selected to be the one from springs and from
deep piezometers installed in hillslope. Shallow piezometers
close to stream were considered to represent the end member
of shallow groundwater. The end-member concentration for
rainfall was taken as average rainwater sampled at four auto-
matic (tipping buckets) rainfall stations installed in the study
area (see Fig. 1).

Event-based runoff coefficient estimations were deter-
mined from Thiessen polygon representation of rainfall and
continuous runoff records (Burch et al., 1987; Iroumé et al.,
2005; Blume et al., 2007). In the study presented here, the
runoff coefficient for each event was computed by divid-
ing the total flow by the total rainfall as recommended by
Spieksma (1999) and Irouḿe et al. (2005). Using total flow
allows us to combine the response of the single event with
the pre-event flow conditions (Blume et al., 2007). Rainfall
measurements have been carried out by using 13 manual rain
gauges installed in the Migina catchment. The endpoint of
each event has been estimated by waiting until the discharge
is back to baseflow conditions. This did not cause very long
tailings (recession limbs) for the event, due probably to the
short catchment response of 3 h 26 min observed by Mun-
yaneza et al. (2011) in the same catchment.

4 Results

4.1 Rainfall-runoff observations for Itumba’10
and 11 seasons (March–May)

The observed discharges in the center of the Migina catch-
ment at Kansi station, for data recorded from 1 May 2009
to 31 June 2011, were in the range of 0.24–9.16 m3 s−1
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Figure 2 Time series of rainfall and runoff events during March-May 2010 at Kansi station (a) and March-

May 2011 at Migina station (b). 
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(a) Time series of rainfall and runoff for Itumba'10  season (March-May) at 
Kansi station
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Fig. 2. Time series of rainfall and runoff events during March–
May 2010 at Kansi station(a) and March–May 2011 at Migina
station(b).

and average discharge was estimated to 1.71 m3 s−1. The
observed discharges at the outlet of Migina catchment (at
Migina station), for data recorded from 1 August 2009 to
31 June 2011, were in the range of 0.43–15.60 m3 s−1 with
an average discharge of 3.35 m3 s−1.

Rainfall measurements have been done at 13 manual rain
gauges installed in the Migina catchment, i.e. the Gisunzu
and Murama rain stations were not considered for the areal
rainfall of the Kansi sub-catchment (see Fig. 1). The amount
of rainfall in both Kansi and Migina catchments were es-
timated using the Thiessen polygons method, which seems
appropriate due to spatial distribution of the rainfall stations
and the low topographic gradients.

Figure 2 shows the rainfall and discharge patterns ob-
served at Kansi (Fig. 2a) and Migina (Fig. 2b) gaug-
ing stations during the investigated periods (Itumba’10 and
Itumba’11). The in-detail investigated two flood events are
event K6 for Kansi station and event M3 for Migina sta-
tion (Tables 1 and 2). Seasonal rainfall totals to 552 mm and
508 mm for Kansi sub-catchment and Migina catchment, re-
spectively. These seasonal rainfall totals generate, on aver-
age, a runoff of 2.42 m3 s−1 (148.7 mm) at Kansi station, and
5.75 m3 s−1 (177.7 mm) at Migina station.

The time series of rainfall and runoff for storm event K6
and M3 represent the intensive monitoring periods in
this research. Maximum daily rainfall of 32.9 mm d−1

(4.3× 106 m3) was observed on 2 May 2010 in Kansi
sub-catchment and the runoff generated by this rainfall at
Kansi station reaches its peak at the same day at 03:00 LT
(9.05 m3 s−1). The river discharge returns to pre-event val-
ues on 5 May 2010 when the surface runoff contribution
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Table 1. Rainfall-runoff events during Itumba’10 season in the Kansi sub-catchment (129.3 km2). The in-detail investigated event K6 is
given in bold.

Rainfall event Runoff event

Event No. Date Time Duration Maximum Rainfall Peak Peak storm Runoff Total Runoff
rainfall intensity amount runoff runoff volume Runoff coef.

(h) (mm h−1) (mm) (m3 s−1) (mm h−1) (104 m3) (mm) (%)

K1 2 Mar 07:05 8.0 2.0 41.98 3.91 0.109 119.5 9.24 22.0
K2 5 Mar 04:20 7.0 0.8 27.92 4.47 0.124 144.0 11.13 39.9
K3 28 Mar 10:35 7.0 5.6 70.09 5.23 0.146 229.9 17.78 25.4
K4 16 Apr 07:35 8.0 11.2 74.04 6.47 0.180 159.9 12.37 16.7
K5 19 Apr 10:50 11.3 9.2 79.51 6.63 0.185 293.5 22.70 28.5
K6 2 May 03:00 22.0 16.6 113.27 9.05 0.252 265.0 20.49 18.1
K7 11 May 23:50 5.5 10.6 47.12 4.69 0.131 120.6 9.32 19.9
K8 14 May 18:20 6.0 3.6 50.57 5.26 0.147 291.3 22.53 44.5

Table 2.Rainfall-runoff events during Itumba’11 season in the Migina catchment (257.4 km2). The in-detail investigated event M3 is given
in bold.

Rainfall event Runoff event

Event No. Date Time Duration Maximum Rainfall Peak Peak storm Runoff Total Runoff
rainfall intensity amount runoff runoff volume Runoff coef.

(h) (mm h−1) (mm) (m3 s−1) (mm h−1) (104 m3) (mm) (%)

M1 5 Mar 09:38 11.0 12.0 75.87 7.89 0.110 615.8 23.92 31.5
M2 28 Mar 00:08 6.2 14.8 49.87 10.46 0.146 570.5 22.16 44.4
M3 2 May 10:00 14.0 17.6 96.32 11.78 0.165 883.6 34.32 35.6
M4 11 May 03:51 2.5 7.6 42.47 7.57 0.106 421.4 16.37 38.5
M5 22 May 02:20 10.0 9.4 54.31 7.69 0.108 447.3 17.37 32.0

stopped. Similarly, a maximum daily rainfall of 23.7 mm d−1

(6.1× 106 m3) was observed on 2 May 2011 in the Migina
catchment and the runoff generated by this rainfall at Migina
station, reaches also at the same day its peak at 10:00 LT
(11.78 m3 s−1). The river discharge returns to pre-event val-
ues on 6 May 2011.

Tables 1 and 2 show the main hydrological characteristics
of 8 different events during Itumba’10 and 5 different events
monitored during Itumba’11 at Kansi and Migina gaug-
ing stations, respectively. Runoff coefficients were observed
ranging from 16.7 % to 44.5 %, with maximum rainfall in-
tensities up to 16.6 mm h−1 for Itumba’10 and 17.6 mm h−1

for Itumba’11.
Most rain events during both seasons Itumba’10 and

Itumba’11 are moderate (2.5 to 7.5 mm h−1) or heavy
(>7.5 mm h−1). Only light rain is observed on 2 March 2010
at 07:05 (2.0 mm h−1) and on 5 March 2010 at 04:20
(0.8 mm h−1) for the Itumba’10 season (Table 1). The ob-
served low runoff coefficients for Kansi sub-catchment
(16.7–44.5 %) and Migina catchment (31.5–44.4 %) indicate
that a high percentage of the rainfall becomes subsurface
runoff. This is later proven by the hydrograph separation
(see Sect. 4.3). Rainfall amount and runoff volume show a

strong correlation (r = 0.93,n = 18) for Kansi sub-catchment
and (r = 0.95,n = 19) for Migina catchment.

4.2 Results of hydrochemical tracer studies

The most important hydro-chemical parameters of the water
samples from springs, rivers, rainfall and shallow groundwa-
ter wells are presented in Table 3.

Table 3 shows that the concentrations of most of the chem-
ical components in surface water are related to the concentra-
tions of water sampled from springs and piezometers during
flood events. Only the opposite can be seen in dissolved silica
(SiO2) and electrical conductivity (EC) concentrations. This
indicates that surface discharge is dominated by subsurface
runoff components during flood events in the Migina catch-
ment. This agrees with the low runoff coefficients observed
in the catchments (Tables 1 and 2).

Figure 3 shows the concentrations of dissolved silica and
chloride during the two investigated events. The hydrograph
is rising from 2.6 m3 s−1 to 9.1 m3 s−1 at Kansi River and
from 6.5 m3 s−1 to 11.8 m3 s−1 at the outlet of Migina catch-
ment. Unfortunately, baseflow was not sampled for the sea-
son Itumba’10 (Fig. 3a) but sampled for season Itumba’11
(Fig. 3b).
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Figure 3 Hydrochemical parameter responses at Kansi station during 1-2 May 2010 storm event (a) and at 

Migina station during 29 April to 6 May 2011 storm event (b). 
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(a) Dissolved silica (SiO2), chloride (Cl-) and discharge event of 1-2 May 2010 at Kansi station (K6)

Runoff (m3/s) SiO2 (mg/l) Cl- (mg/l)

0

4

8

12

16

20

0

3

6

9

12

15

4/29/11 12:00 4/30/11 12:00 5/1/11 12:00 5/2/11 12:00 5/3/11 12:00 5/4/11 12:00 5/5/11 12:00 5/6/11 12:00

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/l
)

D
is

c
h

a
rg

e
 (

m
3
/s

)

Date [hh:mm]

(b) Dissolved silica (SiO2), chloride (Cl-) and discharge event of 29 April - 6 May 2011 at Migina 
station (M3)

Runoff (m3/s) SiO2 (mg/l) Cl- (mg/l)

Fig. 3. Hydrochemical parameter responses at Kansi station during
1–2 May 2010 storm event(a) and at Migina station during 29 April
to 6 May 2011 storm event(b).

Hourly SiO2 and Cl− concentrations observed in stream
water during the event of 1 to 2 May 2010 do not show
clear trends, but a small increase was observed during the
peak flow that was followed by constant concentrations for
Cl− and smooth recession towards background concentra-
tion for SiO2 (Fig. 3a). The observed concentrations during
low flows for season Itumba’11 do not present clear trends
as well but increase and decrease near the peak can be seen
during the flood event (Fig. 3b). This means that the hydro-
chemical parameters (SiO2 and Cl−) show a similar behav-
ior for this event; remain constant during low flows, between
10–12 mg l−1 for SiO2 and 5.8–7.6 mg l−1 for Cl−; and dis-
tinct variations were observed during flood events, between
4–18 mg l−1 for SiO2 and 4.6–7.7 mg l−1 for Cl− (Fig. 3b).

Figure 4 demonstrates that hydrograph separations using
dissolved silica (Fig. 4a) and chloride (Fig. 4b) as tracers
show that subsurface runoff during the event on 2 May 2010
is dominating the surface runoff and contributes from 54 to
89 % (about 75 % on average) and from 50 to 85 % (about
70 % on average), respectively. This confirms the observation
of low contribution of direct surface runoff, supported by low
runoff coefficients (Tables 1 and 2). Due to the fact that the
whole rising limb, peak and recession limb were not captured
completely for this event, the entire streamflow generated
by groundwater could not be quantified. However, the domi-
nance of subsurface runoff was observed during the starting
time of the event sampling and subsurface runoff contributed
77.2 %, which allows concluding that the overall contribution
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Figure 4 Results of two-component hydrograph separations based on dissolved silica (a) and chloride (b) 

for subsurface and surface runoff for event K6 (see Fig. 2a) investigated from 1 May 2010 at 12:00 to 2 

May 2010 at 11:00 at Kansi station. 
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(a) Hydrograph separation based on dissolved silica (SiO2) at Kansi station
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Fig. 4. Results of two-component hydrograph separations based
on dissolved silica(a) and chloride(b) for subsurface and surface
runoff for event K6 (see Fig. 2a) investigated from 1 May 2010 at
12:00 to 2 May 2010 at 11:00 at Kansi station.

of surface runoff is relative small. The fact that surface runoff
could be detected even before the main event is due to rain-
fall distribution during the rainy season that triggered some
localized surface runoff generation and (delayed) inflow to
the river throughout the season.

The observed maximum contributions of surface runoff
during the peak flows are not equal in terms of timing for the
separations using dissolved silica (SiO2) and chloride (Cl−).
Using SiO2 the maximum surface runoff contribution (45%)
was observed on 2 May 2010 at 15:00 LT, then one hour later
the peak runoff was reached at 16:00 LT while using Cl−;
about 50 % of this contribution was observed at the same
time as the peak runoff (on 2 May 2010 at 15:00 LT). This
timing difference can be attributed to various uncertainties
related to the method (cf. methods section) and should not be
over-interpreted. The observed subsurface runoff dominance
is also supported by the findings of Munyaneza et al. (2011)
who showed that groundwater in the Migina catchment is
very shallow (depth between 0.2–2 m in the valleys) and infil-
trated rainwater can reach the groundwater quickly and con-
tribute to subsurface stormflow and baseflow during and after
events, respectively. The depth can reach up to 4.1 m at the
hilltops, as found by Van den Berg and Bolt (2010).

Figure 5 shows the hydrograph separations using dis-
solved silica (Fig. 5a) and chloride (Fig. 5b) as tracers during
the event of 29 April 2011 to 6 May 2011 at Migina sta-
tion. The results are similar to the separations for event of
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Table 3.Hydrochemical concentrations observed in the Kansi sub-catchment and Migina catchment during the investigated research period
(from 1 May 2009 to 31 June 2011).n represents the number of samples. The entries in brackets represent the standard deviation values.

Rainfall Surface water Groundwater Springs
(n = 103) (n = 173) (n = 59) (n = 34)

Parameter Unit Kansi Migina Kansi Migina Kansi Migina Kansi Migina

pH – 6.0 6.1 6.9 6.8 6.0 6.0 5.0 5.1
(0.7) (1.3) (1.0) (0.8) (1.1) (1.1) (1.0) (0.9)

EC µS cm−1 67.7 52.3 99.1 135.5 217.3 217.3 131.7 127.6
(44.2) (47.4) (9.6) (63.2) (73.8) (73.8) (21.4) (24.4)

SiO2 mg l−1 2.8 1.8 8.8 11.3 16.2 16.2 21.7 22.9
(3.9) (3.3) (5.1) (5.2) (8.5) (8.5) (3.9) (5.8)

Anions SO2−

4 mg l−1 1.2 1.3 8.3 8.4 9.2 9.2 3.1 5.0
(2.3) (2.0) (2.1) (2.0) (2.8) (2.8) (1.6) (1.7)

Cl− mg l−1 0.52 1.0 4.16 6.4 1.2 1.2 5.6 5.6
(0.4) (1.5) (2.4) (2.1) (2.1) (2.1) (3.6) (3.4)

Cations K+ mg l−1 1.0 1.5 1.1 1.3 3.3 3.3 2.1 3.2
(0.9) (1.0) (0.2) (0.2) (0.7) (0.7) (0.5) (1.4)

Mg2+ mg l−1 0.3 0.5 1.9 2.5 2.9 2.9 3.2 3.4
(0.4) (0.5) (0.4) (0.4) (1.3) (1.3) (1.0) (1.1)

Ca2+ mg l−1 0.7 1.5 3.2 5.0 13.7 13.7 10.1 8.8
(1.1) (0.9) (0.6) (0.7) (7.8) (7.8) (2.5) (2.6)

Na+ mg l−1 – 24.4 – 36.4 55.7 55.7 6.7 6.1
(14.1) (9.4) (11.3) (11.3) (1.1) (0.9)
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Figure 5 Two-component hydrograph separations based on dissolved silica (a) and chloride (b) for 

subsurface and surface runoff for event M3 (see Fig. 2b) investigated from 29 April to 6 May 2011 at 

Migina station. 
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Fig. 5. Two-component hydrograph separations based on dissolved
silica (a) and chloride(b) for subsurface and surface runoff for
event M3 (see Fig. 2b) investigated from 29 April to 6 May 2011 at
Migina station.

1–2 May 2010 at Kansi station. Subsurface runoff is dom-
inating the surface runoff and contributes from 53 to 89 %
(about 75 % on average) and from 56 to 99 % (about 80 % on
average) using dissolved silica and chloride, respectively.

The results of the two-component hydrograph separations
show that the majority of the flood was generated by subsur-
face runoff (80 %), and the surface runoff contribution hardly
varies during the event except some increase during the peak
time. Similar to the event of May 2010 (Fig. 4), the maximum
contribution of surface runoff during the event of May 2011
was observed at slightly different times for both tracers. Us-
ing dissolved silica for hydrograph separation, maximum
surface runoff contribution was observed three hours before
the peak runoff was reached (on 2 May 2011 at 07:00 LT)
and contribute 47 %, while for chloride the maximum was
observed two hours before the peak runoff was reached (on
2 May 2011 at 08:00 LT) and contribute up to 44 %. The
falling limb is largely dominated by subsurface runoff.

4.3 Results of isotopes tracer studies

The assumptions of hydrograph separation (Sect. 3.3) have
been investigated by comparing the temporal and spatial vari-
ability of the different tracers in rainwater and groundwater
from springs and piezometers. In other words, the stability
of end members was tested for the application of the three-
component hydrograph separation technique.
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Table 4. Isotope concentrations observed at the Kansi sub-catchment and at the Migina catchment during the investigated research period
(from 1 May 2009 to 31 June 2011);n represents the number of samples; the entries in brackets represent the standard deviation values.

Rainfall Surface water Groundwater Springs
(n = 145) (n = 173) (n = 28) (n = 18)

Parameter Unit Kansi Migina Kansi Migina Kansi Migina Kansi Migina

Isotopes δ2H (‰) −16.9 (21.3) −7.8 (16.6) −11.4 (7.3) −3.5 (6.7) −15.2 (3.9) −15.2 (3.9) −9.4 (1.2) −8.8 (2.3)
δ18O (‰) −4.3 (3.6) −3.3 (2.5) −3.0 (1.0) −1.5 (1.0) −3.7 (0.6) −3.7 (0.6) −3.1 (0.3) −3.2 (0.3)

Table 4 shows that the mean values ofδ2H and δ18O
in surface water runoff are−11.4 ‰ and−3.5 ‰ for δ2H;
and−3.0 ‰ and−1.5 ‰ for δ18O. The values of these iso-
topes in rainfall water are−16.9 ‰ and−7.8 ‰ for δ2H;
and −4.3 ‰ and−3.3 ‰ for δ18O. The mean values of
δ2H andδ18O were also investigated in the same two catch-
ments (Kansi and Migina) during the entire period of re-
search (May 2009–June 2011) for groundwater during floods
and low flows. Their values in shallow groundwater obtained
from piezometers are−15.2 ‰ and−3.7 ‰, respectively.
The mean values ofδ2H and δ18O in water sampled from
springs are−9.4 ‰ and−8.8 ‰ for δ2H and−3.1 ‰ and
−3.2 ‰ forδ18O.

End-member concentrations for deep and shallow ground-
water were estimated based on data from piezometers located
in the upper part of a hillslope and in a near stream location
(Munyaneza et al., 2010). The end-member for rainfall sam-
ples was taken as an average of rainwater sampled at 4 auto-
matic rainfall stations (see Fig. 1).

Figure 6 shows stable isotopes (oxygen-18 (18O) and deu-
terium (2H)) in the water sampled in the Kansi sub-catchment
and Migina catchment during the 2-yr study period. The
slope of the constructed Local Meteoric Water Line for
Butare (LMWL Butare,δ2H = 7.72· δ18O + 16.12
,‰; n = 103) is close to the one of the Global Meteoric Water
Line (GMWL, δ2H = 8.13· δ18O + 10.8 ‰), but has a clearly
higher intercept. However, it is obvious in Fig. 6 that the
wet season rainfall is responsible for the light values of the
groundwater and the baseflow. The isotopic composition of
the rainfall is clearly different in the dry and wet season, and
the wet season rainfall signature dominates the other water
balance components (surface and subsurface water). Inter-
estingly, the isotope values of the observed springs are not
influenced by dry season rainfall values, as they all plot be-
low the LMWL, show lighter isotope values than the amount
weighted rainfall values of the wet season rainfall input.
Thus, it can be concluded that the perennial springs in the
area are recharged exclusively during the wet season.

The figure shows also that most of the stables isotopes of
groundwater and spring water in the catchments are lighter
than those of the stream waters and they plot even below
the LMWL. This means probably that infiltrated water is af-
fected by evaporation before reaching the groundwater sys-
tem (temporary storage in soil zone). Similar results were
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Figure 6 Stable isotope compositions of rainfall, surface water, springs, shallow groundwater, and amount 

weighted rainfall for dry and wet seasons. GMWL: δ
2
H = 8.13 δ

18
O + 10.8 (Source: Clark and Fritz, 1997). 

GMWL is the Global Meteoric Water Line; LMWL is the Local Meteoric Water Line for Butare; 

AVE_P_Weight means the average weight rainfall concentration for water sampled during wet and dry 

seasons; AVE_P_Weight_Dry means the average weight rainfall concentration for water sampled in 

summer season; and AVE_P_Weight_Wet represents the average weight rainfall concentration for water 

sampled during in rainy season. 
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Fig. 6. Stable isotope compositions of rainfall, surface water,
springs, shallow groundwater, and amount weighted rainfall for
dry and wet seasons. GMWL:δ2H = 8.13 δ18O + 10.8 (Source:
Clark and Fritz, 1997). GMWL is the Global Meteoric Wa-
ter Line; LMWL is the Local Meteoric Water Line for Butare;
AVE P Weight means the average weight rainfall concentration for
water sampled during wet and dry seasons; AVEP Weight Dry
means the average weight rainfall concentration for water sampled
in summer season; and AVEP Weight Wet represents the aver-
age weight rainfall concentration for water sampled during in rainy
season.

found, for instance, by Kabeya et al. (2007) in a forested wa-
tershed in Kampong Thom, Cambodia.

A three-component hydrograph separation was applied in
this study by using dissolved silica and deuterium for the
event of 1–2 May 2010 at Kansi station (Fig. 7) and using
dissolved silica and oxygen-18 as tracers for the event of
29 April 2011 to 6 May 2011 at Migina station (Fig. 9).

Figure 7 shows the results of the three-component separa-
tion method using dissolved silica and deuterium as tracers
for the investigated event of 2 May 2010 at Kansi station.
The results are comparable to the results obtained from the
two-component hydrograph separations (see Sect 4.2). Pre-
event water (deep and shallow groundwater,Qdgw + Qsgw)
is dominating the discharge generation in this event and is
contributing 38–98 % (about 80 % on average) to the total
discharge (Qt). Event water (direct runoff,Qdir) dominates
during few hours (on 1 May 2010 at 17:00 LT) during the
rising limb and contributes then about 60%. The peak flow is
also dominated by pre-event water (76.7 %) and occurred on
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Figure 7 Results of the three-component separation using dissolved silica and deuterium as tracers for 

event K6 (see Fig. 2a) investigated from 1 May 2010 at 12:00 to 2 May 2010 at 11:00 at Kansi station. Qdgw 

+ Qsgw is the sum of deep and shallow groundwater components. 
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Fig. 7. Results of the three-component separation using dissolved
silica and deuterium as tracers for event K6 (see Fig. 2a) investi-
gated from 1 May 2010 at 12:00 to 2 May 2010 at 11:00 at Kansi
station.Qdgw+Qsgw is the sum of deep and shallow groundwater
components.

2 May 2010 at 03:00 LT. Note that the shallow groundwater
has been sampled in the valley, and the deep groundwater has
been observed at perennial springs with constant discharge
and hydrochemical characteristics.

The rainfall was sampled intensively during the event of
29 April 2011 to 6 May 2011 with a high temporal reso-
lution of rainfall samples for isotope analysis (Fig. 8). The
δ18O value of the rainfall event ranges between−1.93 ‰ to
−1.24 ‰ and the mean bulk rainfallδ18O value for the whole
event is equal to−1.52 ‰ (see Fig. 8). The incremental
weighting approach based on rainfall amount was applied,
Eq. (5), as recommended by McDonnell et al. (1990), but
due to the observed very low temporal variations of isotopes
in rainfall, the effect of this method is limited.

Figure 8 shows theδ18O values of rainfall calculated using
the incremental weighting approach, Eq. (5), and the mean
values fluctuate between−1.71 ‰ to−1.48 ‰ (Fig. 8a). For
the three-component hydrograph separation of this event the
isotopic signature of rainwater (incremental means) was con-
sidered (Fig. 9). Therefore, the end-member value for rainfall
is not constant, but varied over time.

Figure 9 shows the results of the three-component separa-
tion using dissolved silica and oxygen-18 as tracers. During
this event, pre-event water (deep and shallow groundwater,
Qdgw +Qsgw) was chiefly responsible for stream generation
and contributed to the total discharge 10–98 % (about 60 %
on average). Maximum surface runoff generation occurred at
the hour of peak discharge (on 2 May 2011 at 10:00 LT) and
event water (direct runoff,Qdir) contributed for a short pe-
riod about 70 %. Thus, the peak is dominated by direct runoff
but the total discharge (Qt) is dominated by subsurface water
similar to the event of May 2010. However, the results found
for this separation are somewhat different from previous re-
sults, but the assumptions of the methods are not fully met
and cause some uncertainty of the method (Sect. 3.3). Unfor-
tunately, there is no independent experimental data that can
prove the stormflow composition during peak flow.
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Figure 8 Hourly rainfall and variations of δ

18
O in rainfall (a), discharge and variations of δ

18
O in the stream 

water (b) during the 29
th

 April 2011 to 6
th

 May 2011 storm event. 
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Fig. 8. Hourly rainfall and variations ofδ18O in rainfall (a), dis-
charge and variations ofδ18O in the stream water(b) during
29 April 2011 to 6 May 2011 storm event.
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Figure 9 Results of the three-component separation using dissolved silica and oxygen-18 as tracers for 

event M3 (see Fig. 2b) investigated from 29 April 2011 to 6 May 2011 at Migina station. Qdgw + Qsgw is the 

sum of deep and shallow groundwater components. 
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Fig. 9. Results of the three-component separation using dissolved
silica and oxygen-18 as tracers for event M3 (see Fig. 2b) in-
vestigated from 29 April 2011 to 6 May 2011 at Migina sta-
tion. Qdgw+Qsgw is the sum of deep and shallow groundwater
components.

5 Discussion

5.1 Rainfall influence on runoff generation

Rainfall and discharge data used in this research were col-
lected over two years (May 2009–June 2011) and the rainy
season “Itumba” was investigated in further detail. Low
runoff coefficients for different events were determined,
ranging between 16.7 and 44.5 % for Kansi sub-catchment
(Table 1) and between 31.5 and 44.4 % for Migina catch-
ment (Table 2). This indicates that the stormflow reaches
the stream largely through the soil by subsurface runoff
due to high infiltration rates. This type of runoff generation
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was supported by observed chemical concentrations in sur-
face water, which are closer to the concentrations of water
sampled from springs and piezometers during flood events
(Table 3).

The high infiltration in the Migina catchment can be ex-
plained by a very high hydraulic conductivity of the soil as
observed by Van den Berg and Bolt (2010) using double ring
infiltrometer tests in the same catchment; the infiltration rate
varied between 208 mm h−1 to 1250 mm h−1. The tests were
conducted at locations where the land is used for agriculture.
The rainfall intensities which are less than 17.6 mm h−1 are
much lower than the infiltration rates (see Tables 1 and 2).
Van den Berg and Bolt (2010) also analyzed maximum soil
water content in the soil laboratory and found that the soil can
hold up to 60–70 % of water. This forms an important shal-
low subsurface water storage, which makes agriculture pos-
sible even in dry periods. Hence, this can lead to a shallow
subsurface runoff component contributing to the total stream-
flow if the storage threshold is exceeded.

Munyaneza et al. (2011) found the long-term average
runoff coefficient of Migina catchment to be 25 %, which is
in the range of the results found in this study. In the same
study, they also found that the Migina catchment is domi-
nated by agricultural land use (92.5 %). The range of runoff
coefficients found in this current study (16.7–44.5 %) agrees
with the range for agricultural dominated catchments found,
e.g. by Larsen et al. (2007). This gives a hint towards the im-
portance of infiltration and subsurface flow generation during
events. Runoff generation obviously depends on other factors
such as the degree of slope, soil type, vegetation cover, an-
tecedent soil moisture, rainfall intensity and duration. The
runoff coefficient ranges usually between 1 % and 50 % in
cultivated catchments (FAO, 2006). Marchi et al. (2010) did
a study for extreme flash floods in Europe and found that
the runoff coefficients of the studied flash floods are usually
rather low with a mean value of 0.35. Moderate differences in
runoff coefficient are observed between the studied climatic
regions, with higher values in the Mediterranean region. Ley
et al. (2011) found that the annual mean runoff coefficients
in nested catchments of Rhineland-Palatinate, Germany, may
range from 2 % to 15 % in the summer period, while during
winter time they range from 5 % to 56 %. The high runoff
coefficients observed in Germany in winter are due to snow
influence and can be the same as the case in the Rwanda ar-
eas but due to heavy rainfall observed during the events (see
Fig. 2). However, the current research was done during the
rainy season “Itumba”. Therefore, it can be concluded from
the rainfall-runoff response analysis that runoff generation at
the Kansi and Migina catchments is dominated by subsurface
flows as highly supported by the hydrograph separation (see
Sect. 4.3).

5.2 Quantification of runoff components and processes
in a meso-scale catchment

Streamflow hydrograph separations were found to be pos-
sible using dissolved silica and chloride as tracers due to
their variations in concentrations observed during two inves-
tigated flood events. However, the remaining analyzed chem-
ical components (SO2−

4 , Na+, K+, Mg2+, and Ca2+) could
not be used for hydrograph separations, because they showed
constant concentrations in the streamflow during the events
(likely due to non-conservative transport behavior) and did
not provide additional insights. Their concentrations in sur-
face runoff and groundwater were too similar to do reli-
able hydrograph separations. Richey et al. (1998) used the
same method and found that chemical tracers like SiO2 and
Cl− may be non-conservative in subsurface water on longer
timescales, but they can be assumed to behave conservatively
on the time scale of a single runoff event. These findings in-
dicate that spatial variability in the components may be more
important when determining the precision of the pre-event
water fraction. In fact, direct runoff or event water data gen-
erated by the selected four tracers in this study offer insights
into how the catchments respond hydrologically and were
used to develop a perceptual model of how catchment gener-
ates runoff.

The two-component hydrograph separation model using
dissolved silica and chloride led to a high amount of subsur-
face contribution (up to 80 %) in both catchments. For both
investigated events at Kansi and Migina station, the direct
runoff component did not exceed 33.7 and 28.7 % of the total
event runoff, respectively. The observed dominance of sub-
surface runoff in these two storm events was probably facili-
tated by the wet conditions during the rainy season (Fig. 2).

The three-components runoff separation model using dis-
solved silica and deuterium, and using dissolved silica and
oxygen-18, shows somewhat different results, but both con-
firmed the high contribution of pre-event runoff compo-
nents (about 80 % using SiO2 and 2H; and about 60 % us-
ing SiO2 and 18O). The observed differences could be due
to the consideration of spatial and temporal variability of
oxygen-18 concentrations in rainfall during the event of
May 2011 where rainwater was sampled. For the two investi-
gated events (Figs. 7 and 9), the mean value of the new water
component is 31.9 and 38.8 % of the total runoff for event
of May 2010 and 2011, respectively. The dominance of sub-
surface water found using three-component separations con-
firms the findings of temporally highly variable but in total
relatively small contribution of surface runoff.

The observed dominance of old water (up to 80 %) in the
Migina catchment confirms the finding of van den Berg and
Bolt (2010) in their study during the dry season. They found
that the locations of shallow groundwater in the Migina
catchment are between 0.2 m and 2 m, which enables infil-
trated rain to reach the groundwater quickly and contribute
to subsurface stormflow and later to baseflow. This behavior
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was explained e.g. by McDonnell et al. (1990) by the fact
that the rapid flow of new rainwater during downward and
lateral flow in macropores interacts with the soil matrix. The
findings of this current paper were also supported by re-
sults from several other hydrochemical (and isotopic) stud-
ies that found old water and subsurface flow to be the ma-
jor (more than 50 %) component of stormflow in different
hydro-climatic rainfall (e.g. Sklash et al., 1976; Sklash and
Farvolden, 1979; Kennedy et al., 1986; Rice and Hornberger,
1998; Didszun and Uhlenbrook, 2008; Hrachowitz et al.,
2011). Our results are in line with Mul et al. (2008) who did
a similar study in a semi-arid area using hydrochemical trac-
ers for hydrograph separation and found that over 95 % of
the discharge could be attributed to sub-surface runoff dur-
ing smaller events, while the remainder was due to faster sur-
face runoff processes. Hrachowitz et al. (2011) carried out a
study in another semi-arid catchment using hydrometric ob-
servation and found that the use of multiple tracers allowed
estimating uncertainties in hydrograph separations occurring
from the use of different tracers. Applying hydrograph sepa-
ration methods to larger catchments>40 km2 often leads to
only qualitative results (Uhlenbrook and Hoeg, 2003; Did-
szun and Uhlenbrook, 2008). However, hydrograph separa-
tion in Migina meso-scale catchment helped to gain further
insights in runoff process understanding. The runoff compo-
nents and processes in a meso-scale catchment for two flood
events could be estimated and led to a perceptual understand-
ing of the catchment functioning.

6 Conclusions

The applicability of tracer methods in conjunction with
hydrometric measurements for identifying dominant runoff
generation processes in the meso-scale Migina catchment
was tested. The two- and three-components hydrograph sep-
aration models using hydrochemical (dissolved silica and
chloride) and isotope (deuterium and oxygen-18) tracers
show that intensive water sampling (hourly) during events
is essential. The whole rising limb, peak and recession limb
need to be captured completely for the event in order to gain
more understanding of runoff generation processes. In addi-
tion, different geographic sources of runoff need to be ob-
served before, during and after the events. The outcomes
of such an investigation are essential for understanding the
catchment functioning and the sustainable water resources
management and agricultural development to meet the high
water demands related to the rapid Rwandan population
increase.

The results of this study demonstrate the importance of
subsurface flows for streamflow generation in the study area.
It shows the value of detailed hydrological data collection
over two whole rainy seasons using different tracers and hy-
drometric observation to understand dominant hydrological
processes. Furthermore, it demonstrates the significance of

considering spatial and temporal variations of rainfall in the
hydrograph separations (Figs. 8 and 9); this is of greater im-
portance in meso-scale catchments than in small headwaters.
Oxygen-18 (18O) and deuterium (2H) were found to be suit-
able tracers to detect event vs. pre-event water sources. Ad-
ditionally, it was found that groundwater has two different
origins: one source originates from a near stream location
in the valleys (shallow groundwater) and the other source
is deep groundwater sampled at piezometers and springs lo-
cated in the upper part of the hillslopes (Sect. 4.3). The sig-
nificant groundwater recharge during the wet seasons led to
the perennial river system observed in the catchment. The
isotope analysis shows that all runoff components including
baseflow are dependent on wet season rainfall.
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