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Abstract. Continuous developments and investigations in
flow predictions are of interest in watershed hydrology es-
pecially where watercourses are poorly gauged and data are
scarce like in most parts of Africa. Thus, this paper reports
on two approaches to generate local monthly runoff of the
data-scarce Semliki watershed. The Semliki River is part
of the upper drainage of the Albert Nile. With an average
annual local runoff of 4.622 km3/annum, the Semliki wa-
tershed contributes up to 20 % of the flows of the White
Nile. The watershed was sub-divided in 21 sub-catchments
(S3 to S23). Using eight physiographic and meteorological
variables, generated from remotely sensed acquired datasets
and limited catchment data, monthly runoffs were estimated.
One ordination technique, the Principal Component Anal-
ysis (PCA), and the tree cluster analysis of the landform
attributes were performed to study the data structure and
spot physiographic similarities between sub-catchments. The
PCA revealed the existence of two major groups of sub-
catchments – flat (Group I) and hilly (Group II). Linear and
nonlinear regression models were used to predict the long-
term monthly mean discharges for the two groups of sub-
catchments, and their performance evaluated by the Nash-
Sutcliffe Efficiency (NSE), Percent bias (PBIAS) and root
mean square error to the standard deviation ratio (RSR). The
dimensionless indices used for model evaluation indicate that
the non-linear model provides better prediction of the flows
than the linear one.

1 Introduction

Numerous approaches exist for streamflow prediction in nat-
ural river reaches. Streamflow forecasting has significant in-
terest both from a research and an operational point of view.
The choice of methods depends on data availability and
the type of application. While continuous research efforts
strive at enhancing our predictive capability for streamflow,
we are often faced with the challenge of making such pre-
dictions in basins that are poorly gauged or not gauged at
all (Sivapalan et al., 2003). Reliable and accurate estimates
of hydrologic components are not only important for water
resources planning and management but are also increas-
ingly relevant to environmental studies (Schröder, 2006).
Several studies have reported on the use of catchment de-
scriptors and regionalization of parameters for flow predic-
tion in ungauged basins. Among the most recent studies
are those of Sefton and Howard (1998), Mwakalila (2003),
Xu (2003), Merz and Bl̈oschl (2004), McIntyre et al. (2005),
Sanborn and Bledsoe (2006), Yadav et al. (2007), Sharda
et al. (2008) Kwon et al. (2009) and Shao et al. (2009).
In their comparison of linear regression with artificial neu-
ral networks, Heuvelmans et al. (2006) indicated the need
for well-informed choice of physical catchment descriptors
as a first condition for successful parameter regionalization.
Cheng et al. (2006) reported on the importance and useful-
ness of parsimonious models for runoff prediction in data-
poor environment as these models are characterized by few
numbers of parameters. Many authors have also identified
the reduction of uncertainty associated with predictions in
ungauged basins as being very important (Uhlenbrook and
Siebert, 2005; Koutsoyiannis, 2005a, b; Zhang et al., 2008).
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Table 1.Statistics of physiographic variables.

Standard
Variables No. Mean Deviation

Stream Length (x1) 21 29.46 20.66
Drainage density (x2) 21 7.85× 10−2 3.52× 10−2

Average stream Slope (x3) 21 0.2 0.23
Maximum elevation (x4) 21 2577.9 1273.84
Minimum elevation (x5) 21 733.18 99.78
Weighted average elevation (x6) 21 1164.82 392.54

Lately, Koutsoyiannis et al. (2008) indicated the use of ana-
logue modeling techniques for flow prediction which give
impressive performance due to advances in nonlinear dy-
namical systems (chaotic systems). The major drawbacks of
these approaches are that they are data intensive and work
as black boxes, thus provide no insight into the hydrological
processes.

This paper reports on linear and nonlinear regression mod-
eling approaches for flow prediction in a medium size wa-
tershed of the equatorial Nile region (Semliki catchment),
where very little hydro-meteorological data are available.
These approaches attempt to provide monthly flow esti-
mates that relate similar catchment physiographic attributes
to generated flows.

2 Study area

These analyses are conducted within the Semliki watershed
of the equatorial Nile region (Fig. 1). The catchment studied
covers an estimated area of 7699 km2. The Semliki drains
the basins of lakes Edwards and George, and a contribut-
ing area downstream that includes the western slopes of the
Ruwenzori range. The watershed receives an average rain-
fall of 1245 mm per annum, with peaks occurring in May
(95 mm/month) and October (205 mm/month). An average
annual local runoff of 4.622 km3 has been estimated from
records at Bweramule (Sutcliffe and Parks, 1999). The ele-
vations comprise flat areas and ice-caped mountains, climb-
ing up to 4862 m above the sea level. The flora and the fauna
of the watershed constitute one of the unique and distinct
ecosystems of the Albertine Rift region. The vegetation pre-
dominantly comprises medium altitude moist evergreen to
semi deciduous forest. Five distinct vegetation zones have
been documented under the mount Ruwenzori and they occur
with changes in altitude. Detailed information on landscape
physiographic attributes are reported in Kileshye Onema and
Taigbenu (2009).

3 Data and methods

The landscape of any catchment is made up of several combi-
nations of physiographic attributes. These combinations are
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Fig. 1.Semliki watershed.

usually variable among catchments, giving rise to different
hydrological responses. The Semliki catchment was delin-
eated into 21 sub-catchments (S3–S23) that are presented in
Fig. 2. This delineation was achieved using the 90m Digital
Elevation Model (DEM) from the Shuttle Radar Topography
Mission (SRTM) along with traditional maps. From six phys-
iographic attributes, the 21 sub-catchments were grouped
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Fig. 2.Semliki Subcatchments (S3 to S23).

 
 
Figure 3: Periods of available causal climate-related data (rainfall and NDVI) 
and flow. 
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Figure 4  Results of the PCA of variables 
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Fig. 3. Periods of available causal climate-related data (rainfall and
NDVI) and flow.

into two categories using the principal component analy-
sis (PCA) and cluster analysis. Making use of the assump-
tion that the physiographic variables are stationary, a quasi-
temporal prediction of the flow was achieved with two ad-
ditional variables (NDVI and rainfall) that have both spa-
tial and temporal variation. These two latter variables were
generated for the catchment from remote-sensed data. The
physiographical characteristics of these sub-catchments were
identified by six variables, namely is the stream length (x1),
the drainage density (x2), the mean stream slope (x3), the
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Figure 5 Projection of cases from the PCA of variables 
 
 

 

 
Figure 6 Tree Diagram clustering of Semliki sub-catchments  
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Fig. 5.Projection of cases from the PCA of variables.

maximum elevation (x4), the minimum elevation (x5), and
the weighted average elevation (x6). The statistical properties
of these physiographic variables are presented in Table 1 and
used subsequently in the grouping of these sub-catchments.
In predicting monthly flows in these sub-catchments, it is
assumed that these variables are stationary, constant over
time but not over space. Two additional variables, generated
for these sub-catchments, are the monthly rainfall (x7) and
NDVI (x8) which have both spatial and temporal variation.
The remotely-sensed NDVI data covered the period from
1982 to 2008 and were extracted from decadal maximum
composite imagery provided by the National Oceanic and
Atmospheric Administration-Advance Very High Resolution
Radiometer (NOAA-AVHRR) and processed with the image
display and analysis software WinDisp 5.1. The satellite de-
rived rainfall data were provided by the National Oceanic and
Atmospheric Administration (NOAA) through the Famine
Early Warning System Network (FEWS-Net) for the period
2001–2007, and were refined by the only point daily rainfall
data in the catchment obtained from a station located at Beni
which covered the period from 1973 to 2008. Additional de-
tails on the processing of remotely sensed acquired datasets
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Table 2.Generated landscape attributes for subcatchments (S3–S23).

Description Source Observation

Landform SOTERCAF GIS processing (WINDISP, ARC View3.3,
Excel 07-10, Statistica 8.0)

Lithology SOTERCAF GIS processing (WINDISP, ARC View3.3,
Excel 07-10, Statistica 8.0)

Soils SOTERCAF GIS processing (WINDISP, ARC View 3.3,
Excel 07-10, Statistica 8.0)

Drainage Density (Dd) SRTM 90m-DEM,
SWAT pre-processor

Subcatchments areas generated from SWAT
preprocessor (WINDISP, ARC View3.3, Ex-
cel 07-10, Statistica 8.0, SWAT)

Stream Length SRTRM 90m-DEM,
topographical map
(1/50,000), SWAT
pre-processor

Generated from the SWAT preprocessor and
cross validation with traditional map
(WINDISP, ARC View3.3, Excel 07-10, Sta-
tistica 8.0, SWAT)

Stream slope SRTM 90m DEM Remotely sensed acquired (ARC View 3.3,
Excel 07-10, Statistica 8.0)

Rainfall FEWS NOAA / RFE
(2001–2007)
rain gauge at Beni
(1973 to 2008)

Remotely sensed acquired and Locally cor-
rected and calibrated (WINDISP, ARC
view3.3, Excel 07-10, Statistica 8.0)

Elevations:
Minimum
Maximum
Area-weighted average

SRTM 90m-DEM,
topographical map
(1/50 000)

Remotely sensed acquired and cross valida-
tion with traditional map. (Arc View 3.3, Ex-
cel 07-10, Statistica 8.0)

NDVI NOAA-AVHRR
(1982–2008)

Remotely sensed acquired and correlated
with rainfall. (WINDISP, ARC View3.3, ex-
cel 07-10, Statistica 8.0)
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Fig. 6.Tree cluster of the physiographic variables.

can be found in Kileshye Onema and Taigbenu (2009). At the
outlet of the Semliki watershed is a gauging station located at
Bweramule (Fig. 2) which provided historical monthly flows
from 1950 to 1978 that were used for the calibration of both

the linear and the non-linear flow prediction models that are
subsequently described in this paper. The periods of avail-
able data on climate-related variables, namely rainfall and
NDVI, that can be considered causal to the observed stream
flow are presented in Fig. 3. The figure reveals the challenge
posed in the flow modelling of this catchment which, apart
from the lack of data for flows in the tributaries of the Sem-
liki river and climatic variables for the 21 sub-catchments,
the only available point rainfall data from Beni, which is not
representative of the entire catchment, overlaps the record of
monthly flow measurements at Bweramule for only six years
from 1973 to 1978. Our problem statement, therefore, pre-
cludes the use of regionalization techniques that are based
on flow duration curves (FDCs) that can be constructed by
statistical or parametric or graphical approaches (Castellarin
et al., 2004; Quipo et al., 1983). For each subcatchment, a
historical 28-yr monthly mean volume was computed propor-
tionally to the subcathment area and was labeled as “control”.
This historical approach is similar to the one undertaken by
Asadullah et al. (2008) in data-scarce regions of central and
Eastern Africa. The runoff generation approach is supported
by the fact that in humid basins like the Semliki as opposed

Hydrol. Earth Syst. Sci., 16, 1435–1443, 2012 www.hydrol-earth-syst-sci.net/16/1435/2012/
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Table 3.Coefficients of correlations between variables.

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.344 −0.2 −0.05 −0.29 −0.29 −0.08 0.07
x2 1 −0.19 −0.46 -0.24 −0.45 0.07 0.16
x3 1 0.37 0.13 0.54 0.08 −0.15
x4 1 0.23 0.87 −0.5 −0.63
x5 1 0.46 −0.25 −0.23
x6 1 −0.45 −0.64
x7 1 0.78
x8 1

stream length =x1, drainage density =x2, mean stream slope =x3, maximum eleva-
tion = x4, minimum elevation =x5, weighted average elevation =x6, monthly rainfall
= x7 and NDVI =x8. Italicized correlation coefficients are significant at 95 % confi-
dence level.

to arid and semi-arid regions, “stream flows increase in the
downstream direction, and the spatial distribution of average
monthly or seasonal rainfall is more or less the same from
one part of the river basin to another, hence the runoff per
unit land area is assumed constant over space. In these situa-
tions, estimated flows are usually based on the watershed ar-
eas, as contributing flow to those sites, and the corresponding
streamflows and watershed areas above the nearest or most
representative gauge sites” (Loucks et al., 1981; Loucks and
Van Beek, 2005). Furthermore, rainfall for the equatorial re-
gion, one of the main driving force behind runoff generation
has not changed in a statistical significant way since 1950 de-
spite reported seasonal and interannual variations (Nicholson
and Entekhabi, 1987; Bigot et al., 1998; Lienou et al., 2008).
Table 2 provides landscape attributes, their sources and soft-
ware used and guides any further work that intends to follow
the approach undertaken in this paper.

The data generated from the physiographic variables of the
21 sub-catchments were examined to explore their groupings
and similarities in their data structure. To achieve these ob-
jectives, the principal component analysis (PCA) and clus-
ter analysis were used as exploratory techniques to study the
structure and similarities of the data. The PCA analysis per-
formed in this study used the scale invariant correlation ma-
trix of the variables as opposed to the covariance matrix. The
scaled variables are obtained by the expression:

Xi =
xi − µi

σi

(1)

whereXi is the scaled variable of the original variablexi , and
µi andσ i are the mean and standard deviation of the original
variable.

The Glaeson-Staelin redundancy statistic and the Bartlett’s
sphericity test were performed as pre-requisite to the PCA.
The Glaeson-Staelin redundancy statistic (φ) measures the
level of interrelation between a group of variables (Mag-
ingxaa et al., 2009) with a zero value indicating uncorrelated
variables and unity indicating perfect correlation between the
variables (Jolliffe, 2002). The Bartlett’s sphericity test is used
to test the null hypothesis that the variables of the correlation
matrix are not correlated (Sousa et al., 2007). When p-values

Table 4.Eigenvalues of components.

Individual Cumulative
No. Eigenvalue Percent Percent

1 3.49 43.59 43.59
2 1.56 19.46 63.04
3 1.02 12.71 75.75
4 0.78 9.80 85.55
5 0.64 7.97 93.51
6 0.30 3.74 97.25
7 0.17 2.13 99.38
8 0.05 0.62 100.00

Table 5.Eigenvectors of principal components.

Variables Factor1 Factor2 Factor3

x1 −0.16 −0.52 −0.42
x2 −0.28 −0.36 −0.10
x3 0.24 0.37 −0.60
x4 0.47 −0.08 −0.27
x5 0.27 0.17 0.56
x6 0.51 0.10 −0.14
x7 −0.34 0.52 −0.22
x8 −0.42 0.37 −0.05

of the Bartlett’s test are greater than 0.05 it is not prudent to
proceed with the PCA (Peres-Neto et al., 2005). The Kaiser
criterion was used to identify the number of principal com-
ponents for consideration as providing significant variance
in the data (Jolliffe, 2002). The general suggested rule as-
sociated with this criterion is to retain principal components
with eigenvalue greater than 1 (Chen and Chen, 2003), and
to consider those less than 1 as trivial.

The monthly local runoff of the catchment was predicted
by linear and nonlinear regression models that make use of
the physiographic and meteorological variables. They are
described by the relationships below. For the linear model

Q = a0 + AT
i xi (2)

whereQ represents the monthly flows, the superscriptT de-
notes the transpose,a0 andAT

i = {α1,α2, ...α8} are the re-
gression parameters, andxT

i = {x1,x2, ...x8}. The expression
for the flow by the nonlinear model is given by

Q = b0 + BT
ij zij (3)

where

BT
ij = {

β11,β21, ...β81
β12,β22, ...β82

} andzT
ij = {

x1,x2, ...x8

x2
1,x2

2, ...x2
8
} (4)

To evaluate the performance of these two models, the Nash-
Sutcliffe efficiency (NSE), the percent bias (PBIAS) and the

www.hydrol-earth-syst-sci.net/16/1435/2012/ Hydrol. Earth Syst. Sci., 16, 1435–1443, 2012



1440 J.-M. Kileshye Onema et al.: Data-scarce watershed of the equatorial Nile region

Table 6.Grouping of Semliki sub-catchments from the PCA.

Group I Group II

S3 S14
S4 S15
S5 S16
S6 S17
S7 S18
S8 S20
S9 S21
S10 S22
S11 S23
S12
S13
S19

RMSE to observation standard deviation ratio (RSR) are
used. NSE is a normalized index that defines the relative
magnitude of the residual variance compared to that of the
measured, and expressed as (Nash and Sutcliffe, 1970)

NSE= 1−

N∑
i=1

(Qobs
i − Qsim

i )2

N∑
i=1

(Qobs
i − Qmean

i )2

(5)

whereQobs
i andQmean

i are respectively theith observed flow
and its mean,Qsim

i is the ith simulated flow, andN is the
number of observations. NSE has a range between−∞ and
1, with its optimal value of 1. Negative values of NSE in-
dicate poor performance of the model, suggesting that the
observed mean is a better predictor of the flows than those of
the model (Moriasi et al., 2007). The PBIAS is expressed as

PBIAS=

N∑
i=1

(Qobs
i − Qsim

i )

N∑
i=1

Qobs
i

× 100 (6)

The optimal value of PBIAS is 0, with low-magnitude val-
ues indicating good predictive ability of the model. Posi-
tive values indicate underestimation of the observed flows
by the model, and conversely for negative values (Gupta
et al., 1999). The RMSE-observation standard deviation ra-
tio (RSR) is an error statistics that normalizes the RMSE
with the standard deviation of the observed flows. It is
expressed as

RSR=
RMSE

STDEVobs
=

√
N∑

i=1
(Qobs

i − Qsim
i )2

√
N∑

i=1
(Qobs

i − Qmean
i )2

(7)
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Fig. 7. Predicted flows for April in Group I sub-catchments.

The RSR is a normalized error index that utilizes the benefits
of the RMSE which is one of the frequently used error index
statistics. Excellent model performance will produce a zero
value of RSR or RMSE (Moriasi et al., 2007).

4 Results and discussions

4.1 Principal Components Analysis (PCA)

The scaled variables of the physiographic and meteorologi-
cal variables, expressed by Eq. (1), are incorporated into the
PCA. In this way the correlation matrix of the variables is
scale invariant. The correlations between the variables are
summarized in Table 3. Italicized correlation coefficients are
significant at 95 % confidence level. There are some high
correlations (greater than 0.5), implying that there is a cor-
relation structure that can potentially be modeled or further
explored using the PCA. The Glaeson-Staelin redundancy
test yields a value ofφ = 0.395, suggesting that there is con-
siderable complexity in the data of these variables which
warrants further examination using the PCA. The p-value
from Bartlett’s sphericity test is 0.00000 which indicates that
the null hypothesis can be rejected and there is significant
strength in the relationship among the variables to warrant
carrying a PCA.

The eigenvalues of the principal components are presented
in Table 4, and making use of the Kaiser criterion allows for
the retention of the first three principal components which
account for 76 % of the variation in the data. The factor load-
ings of these three principal components reflect the contri-
butions and roles of these variables in the correlation of the
data. The eigenvectors of the three loading factors are pre-
sented in Table 5. The factor loadings are the correlations
between the variables and the factors. Factor 1 showed best
correlation with the maximum elevation and the average el-
evation, whereas factor 3 showed best correlation with the
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Table 7.Dimensionless Performance statistics (NSE, PBIAS, RSR).

Linear model Nonlinear model

NSE PBIAS RSR NSE PBIAS RSR

Group I Jan 0.933 0.097 0.259 0.977−3.816 0.152
(Flat) Feb 0.932 0.032 0.260 0.982 0.608 0.132

Mar 0.930 −4.449 0.265 0.982 0.125 0.136
Apr 0.932 −0.030 0.260 0.982 0.156 0.135
May 0.932 0.023 0.261 0.981 0.623 0.137
Jun 0.934 0.023 0.257 0.982−0.178 0.134
Jul 0.934 0.020 0.256 0.982 0.468 0.133
Aug 0.933 −0.004 0.258 0.982 0.059 0.135
Sep 0.937 0.004 0.251 0.982−0.483 0.133
Oct 0.934 0.025 0.257 0.982 0.461 0.133
Nov 0.938 0.027 0.249 0.982 0.276 0.135
Dec 0.934 0.016 0.256 0.982 −0.199 0.135

Group II Jan 0.997 −1.060 0.057 0.996 −0.236 0.061
(Hilly) Feb 0.998 0.006 0.049 0.997 0.198 0.057

Mar 0.998 0.009 0.049 0.997 0.071 0.057
Apr 0.998 −0.015 0.050 0.997 0.054 0.057
May 0.997 −0.905 0.054 0.996 1.192 0.066
Jun 0.991 −3.094 0.097 0.997 0.173 0.057
Jul 0.998 0.008 0.050 0.997 −0.232 0.055
Aug 0.998 −0.042 0.049 0.997 0.232 0.058
Sep 0.998 −0.003 0.049 0.997 0.375 0.059
Oct 0.998 0.001 0.049 0.997 −0.119 0.058
Nov 0.996 1.638 0.063 0.997 −0.049 0.059
Dec 0.998 −0.006 0.049 0.997 −0.351 0.059 
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Fig. 8.Predicted flows for April in Group II sub-catchments.

average slope and the minimum elevation. Figure 4 provides
an illustration of the projection of the variables on a factor
plane using an alternative criteria for the PCA of the vari-
ables. Each quadrant represents a similar group of variables.
Further use of the PCA is made in order to identify groupings
of sub-catchments by assessing the projection of cases onto
the factor plane (Fig. 5). The figure establishes four groups of
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Fig. 9.RSR Performance statistics.

sub-catchments that are further reduced to two main groups
or categories (Table 6) so as to simplify the prediction equa-
tions of the runoff, which is the main goal of this paper. The
physiographic attributes, namely mean stream slope, mini-
mum elevation, maximum elevation, weighted average ele-
vation that provide this major categorization from the PCA
are located in the first quadrant of Fig. 4. All sub-catchments
in group I, except S19, are characterized by low elevations,
while those in group II are generally characterized with high
elevations with weighted values that are above 1122 m. The
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Fig. 10.NSE Performance statistics.

results of the tree cluster analysis provide a similar trend as
that of the PCA, except for the discrepancy in the grouping
of S21, S22 and S23 (Fig. 6).

4.2 Linear and non-linear model simulation results

As earlier indicated, the six physiographic variables are as-
sumed stationary while the two meteorological variables
have spatial and temporal (at monthly time step) variations.
The regression parameters of the models are evaluated using
Eqs. (2) and (3) from which estimates of the monthly local
runoff are obtained. The predicted flows from the two models
are of order of magnitude comparable to estimates provided
by Senay et al. (2009) in their attempt to document the over-
all basin dynamics of the Nile River. Typical mean monthly
flow hydrographs for the month of April (considered a wet
month) are presented in Fig. 7 for group I sub-catchments
from 2001–2007 and Fig. 8 for group II sub-catchments.
“Control” values for flows were computed as reported un-
der Sect. 3 of this paper. The values of the performance er-
ror statistics (NSE, PBIAS and RSR) presented in Table 7
for the predicted monthly flows in the sub-catchments indi-
cate very satisfactory performance by both models, though
the nonlinear model has a better performance than the linear
one especially in group I of subcatchments (Figs. 9 and 10).

5 Conclusions

This study reports on the use of two modelling approaches
for the prediction of the monthly flows in the data-scarce
Semliki watershed of the equatorial Nile. The principal com-
ponent analysis was carried to identify variables that ex-
plained most of the variance in the dataset which comprised
six physiographic and two climate-related variables. Sim-
ilar sub-catchments were grouped into two categories on
the basis in of their physiographic attributes, and monthly
runoff was then generated by the linear and nonlinear regres-
sion models. The dimensionless statistics (NSE, PBIAS and

RSR) for the two models indicate that the nonlinear model
outperforms the linear one especially in the first group of
subcatchments characterised by flatter elevations. Whereas
these two mesoscale and deterministic models do not in any
way directly address the hydrological processes in the catch-
ment, they provide a statistical relationship between land-
scape attributes and monthly flows. The order of magni-
tude of these estimates that relate similar physiographic at-
tributes to monthly flows can be useful for preliminary as-
sessment of the water resources of a very poorly gauged
catchment like the Semliki. The results from the current work
could subsequently be complemented by a physically-based
hydrological approach that explicitly accounts for the in-
teraction between landscape attributes and water resources
in the Semliki watershed, but that would still require good
hydro-meteorological data.
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