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Abstract. Changes to streamflows caused by climate change
may have major impacts on the management of water
for hydro-electricity generation and agriculture in Tasma-
nia, Australia. We describe changes to Tasmanian sur-
face water availability from 1961–1990 to 2070–2099 us-
ing high-resolution simulations. Six fine-scale (∼10 km2)

simulations of daily rainfall and potential evapotranspira-
tion are generated with the CSIRO Conformal Cubic Atmo-
spheric Model (CCAM), a variable-resolution regional cli-
mate model (RCM). These variables are bias-corrected with
quantile mapping and used as direct inputs to the hydrolog-
ical models AWBM, IHACRES, Sacramento, SIMHYD and
SMAR-G to project streamflows.

The performance of the hydrological models is as-
sessed against 86 streamflow gauges across Tasmania. The
SIMHYD model is the least biased (median bias =−3 %)
while IHACRES has the largest bias (median bias =−22 %).
We find the hydrological models that best simulate observed
streamflows produce similar streamflow projections.

There is much greater variation in projections be-
tween RCM simulations than between hydrological mod-
els. Marked decreases of up to 30 % are projected for an-
nual runoff in central Tasmania, while runoff is generally

projected to increase in the east. Daily streamflow variabil-
ity is projected to increase for most of Tasmania, consistent
with increases in rainfall intensity. Inter-annual variability of
streamflows is projected to increase across most of Tasmania.

This is the first major Australian study to use high-
resolution bias-corrected rainfall and potential evapotranspi-
ration projections as direct inputs to hydrological models.
Our study shows that these simulations are capable of pro-
ducing realistic streamflows, allowing for increased confi-
dence in assessing future changes to surface water variability.

1 Introduction

Human-induced climate change has been shown to contribute
to changes in the spatial distribution of precipitation in the
20th century (Zhang et al., 2007). In a warmer future world,
understanding the local and regional implications of changes
in the hydrological cycle is critical to planning for water se-
curity (Oki and Kanae, 2006). Dynamical regional climate
models (RCMs) have been used to assess climate change im-
pacts on spatial distributions of rainfall (Kilsby, 2007), sea-
sonal changes to rainfall (Kendon et al., 2010), and changes
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to rainfall intensity (Berg et al., 2009) and frequency (Mail-
hot et al., 2007) at spatial scales relevant to water managers.

To assess how complex rainfall changes affect surface wa-
ter availability, RCM outputs are often coupled to hydrolog-
ical models. RCMs and hydrological models can be coupled
indirectly by adjusting historical observations to resemble
the future climate (Chiew et al., 2009), or directly by us-
ing timeseries generated by RCMs in hydrological models
(Wood et al., 2004; Kilsby et al., 2007; Akhtar et al., 2009).
Fowler and Kilsby (2007) point out that indirect coupling
methods often do not explicitly account for changes to rain-
fall variability or to changes in the sequences of wet and dry
days, even though these are likely to have significant impacts
on streamflow.

Coupling RCMs directly to hydrological models has the
advantage that the complex rainfall changes projected by
RCMs, including changes to seasonal rainfall, maximum
daily precipitation, and number of rain days, will be reflected
in projections of streamflow. This allows more meaningful
assessment of climate change impacts on streamflow vol-
umes and variability.

The challenge in coupling RCMs directly to hydrologi-
cal models is that RCM outputs are usually too biased to
allow hydrological models to produce realistic streamflows
(Graham et al., 2007). Quantile mapping is a bias-correction
technique shown to be highly effective at removing biases
across the entire cumulative frequency distribution of a given
variable (Ines and Hansen, 2006; Piani et al., 2010a). Quan-
tile mapping has been successfully used to couple RCMs
to hydrological models in several northern hemisphere stud-
ies (Wood et al., 2004; Fowler and Kilsby, 2007; Boé et al.,
2007; Akhtar et al., 2009), but has not been used for major
regional hydroclimatological studies in Australia, where in-
direct coupling methods based on pattern scaling and simple
perturbation of historical observations have been more popu-
lar (Chiew et al., 2009; Petheram et al., 2009; Charles et al.,
2010; Post et al., 2012).

The spatial distribution of Tasmanian rainfall is very
poorly replicated by global climate models (GCMs), making
Tasmania an ideal candidate for fine-scale modelling. Tasma-
nia has been the subject of a major hydroclimatological study
by Post et al. (2012) that reviewed future availability of sur-
face water in Tasmania to 2030. Post et al. (2012) used pat-
tern scaling (Mitchell, 2003) of GCMs and a series of hydro-
logical models to better replicate spatial variation in Tasma-
nian runoff. Post et al.’s (2012) median future scenario pro-
jected decreased mean annual runoff in Tasmania’s central
highlands and north-eastern highlands of up to 30 % by 2030,
with little change elsewhere. No region was projected to ex-
perience increased runoff under the median scenario by 2030.
Post et al. (2012) note that there are plans to develop new ir-
rigation infrastructure in Tasmania in light of declining agri-
cultural yields in the Murray Darling Basin and south-west
Western Australia. Longer-term high-resolution projections

of surface water availability are needed for informed water
management and planning in Tasmania for the 21st century.

This paper’s primary aim is to quantify seasonal and spa-
tial changes in Tasmanian streamflows by 2100 using high-
resolution RCM simulations. To better understand future
changes in streamflow variability, we project streamflows us-
ing bias-corrected RCM projections as direct inputs to hydro-
logical models. Ours is the first Australian study to use this
method to produce basin-scale surface water projections, and
accordingly we aim to demonstrate that our method credibly
replicates historical streamflows.

Finally, this paper aims to understand whether uncertainty
in the streamflow projections comes more from the RCM
simulations than from the hydrological modelling. The prac-
tice of using ensembles of climate models to describe un-
certainty in projections is well established. Using ensembles
of hydrological models to quantify uncertainty in projections
is less common, even though uncertainties in hydrological
modelling may contribute significantly to uncertainties in cli-
mate change impact studies (Bastola et al., 2011). To find if
the RCM simulations are a greater source of uncertainty than
the hydrological models, we couple an ensemble of RCM
simulations to an ensemble of hydrological models.

2 Study area: Tasmania

Tasmania is Australia’s smallest (∼70 000 km2) and most
southerly state, in addition to being Australia’s only island
state. Tasmania is mountainous, with mountain ranges in the
north-east (Ben Lomond Plateau), centre (central highlands),
west and south all exceeding 1000 m in elevation. Tasmania
lies in the path of the “Roaring Forties” winds (Fig. 1), and
the prevailing westerly weather combines with the mountains
to make western Tasmania one of the wettest places in Aus-
tralia. Mean annual rainfalls exceed 2000 mm for much of the
west and rise to more than 4000 mm on some mountain peaks
(Fig. 2a). Rainfall in the west is highest in the austral winter
(June-July-August, JJA) and lowest in summer (December-
January-February, DJF). Snowfalls are common on Tasma-
nian mountains, however snow typically melts within a few
weeks and seasonal snowmelt is not an important component
of Tasmanian streamflows. The central, western and south-
western mountains are of high conservation value and much
of this unpopulated region is listed as a UNESCO world her-
itage area.

Tasmanian mean annual rainfall follows a sharp gradient
from west to east, with the central midlands and eastern low-
lands averaging less than 600 mm (Fig. 2a). In contrast to
the winter-dominant rainfall in the west and north-west, rain-
fall in the east does not show a strong seasonal cycle. Low
pressure systems off the east coast cause occasional high-
intensity rain storms over eastern Tasmania. Despite the low
and less reliable rainfall, agriculture is an important industry
in the lowlands of the east.
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Fig. 1. Tasmania’s location (shaded) in relation to the Australian
continent.

Mean annual areal potential evapotranspiration (APET) is
highest (>1100 mm) in the central north of Tasmania and de-
clines to<850 mm in the south and west (Fig. 2b). These
patterns of APET and rainfall combine to give Tasmania a
very steep west-to-east gradient in mean annual runoff, from
>3000 mm on the western mountains to<100 mm in some
eastern areas (Fig. 2c). An exception to this west-to-east
gradient is the small, mountainous Ben Lomond plateau in
the north-east of Tasmania, where high mean annual runoff
(>1200 mm) occurs.

3 Data and methods

3.1 Regional climate modelling

Regional climate simulations are produced for 1961–2100 by
downscaling GCMs with the CSIRO Conformal Cubic At-
mospheric Model (CCAM) (Corney et al., 2010), a variable-
resolution global atmospheric model (McGregor and Dix,
2008). Variable-resolution global atmospheric models have
been shown to simulate rainfall and related processes realis-
tically at a range of scales and locations (Berbery and Fox-
Rabinovitz, 2003; Bóe and Terray, 2007; Zou et al., 2010).
Although a global model, CCAM is designed to increase res-
olution over small regions, and we refer to the CCAM sim-
ulations in this study as RCM simulations. CCAM has no
lateral boundaries and accordingly does not suffer from the
problems associated with lateral boundaries in limited area
RCMs (Fox-Rabinovitz et al., 2008). CCAM has been used
for regional climate studies in Australia (Charles et al., 2007;
Chiew et al., 2010; Post et al., 2012) and internationally (En-
gelbrecht et al., 2009; Lal et al., 2008).

For climate change studies, CCAM can be configured to
be forced only with sea surface temperatures (SSTs) and sea
ice, together with radiative forcings, from which CCAM sim-
ulates the atmosphere (Engelbrecht et al., 2009). For this
study, we force CCAM with SSTs and sea ice from six
GCMs from phase 3 of the coupled model intercompari-
son project (CMIP3) (Meehl et al., 2007) run under the A2
emissions scenario (Nakićenovíc and Swart, 2000): CSIRO-
Mk3.5, ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1,
MIROC3.2(medres) and UKMO-HadCM3. Radiative forc-
ings for the CCAM simulations, including atmospheric con-
centrations of greenhouse gases, are taken from the A2 sce-
nario to correspond to the GCM forcings. For convenience,
each RCM simulation will be referred to by the GCM used
to force it.

Before downscaling, monthly biases in the GCM SSTs are
removed using a simple additive bias-correction (Katzfey et
al., 2009) to Reynolds (1988) SSTs. Correcting GCM SST
biases improved the simulation of seasonal precipitation pat-
terns (Ashfaq et al., 2010) and precipitable water (Held and
Soden, 2006) in GCM experiments, and improved rainfall
simulations by CCAM in experiments over tropical regions
(Nguyen et al., 2011). GCM SST biases can exceed±3◦C
for the GCMs used in this study (Randall et al., 2007), with
the largest biases occurring at high latitudes and near the
west coasts of South America and Africa. We found the
bias-correction removed SST biases very effectively in split-
sample cross-validation tests (not shown). In almost all re-
gions cross-validated biases were less than±0.5◦C for all
GCMs. No cross-validated SST biases were greater than
±1◦C. This suggests that the SST bias-correction is likely
to be reliable for the period 2010–2100.

Each GCM is downscaled in two stages: stage two is
nested inside stage one. The two stages are necessary to
allow CCAM to resolve synoptic processes everywhere on
earth for the 10 km2 regional simulations (Thatcher and Mc-
Gregor, 2011). Stage one uses only the bias-corrected SSTs
and sea ice from GCMs, together with radiative forcings, to
produce atmospheric simulations with a horizontal resolution
of ∼50 km2 (0.5◦) over Australia. Stage two uses the same
GCM SSTs and sea ice forcings (and radiative forcings) as
stage one, and is also forced by spectral nudging (Thatcher
and McGregor, 2009) of atmospheric variables from the stage
one simulations. Stage two produces an approximate hori-
zontal resolution of∼10 km2 (0.1◦) over Tasmania. Because
stage two is nested inside stage one, CCAM is forced only
by SSTs and sea ice from GCMs to produce high resolution
simulations over Tasmania.

3.2 Quantile mapping

Two inputs are required for the hydrological models: daily
rainfall and daily APET. We use quantile mapping to align
daily rainfalls and APET to 10 km2 gridded observations ag-
gregated from the∼5 km2 (0.05◦) SILO dataset (Jeffrey et
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Fig. 2. Tasmanian historical climate (1961–2007) derived from the SILO climate dataset (Jeffrey et al., 2001).(a) Mean annual rainfall.(b)
Mean annual Morton’s (1983) wet APET calculated from SILO temperature, solar radiation and vapour pressure.(c) Mean annual runoff
generated with the SIMHYD model using SILO variables.

al., 2001). Rainfall is a direct output from the SILO dataset,
while APET is calculated from base variables (vapour pres-
sure, temperature and solar radiation) according to Mor-
ton’s (1983) method for wet environments.

We calculate “quantile mapping factors” independently at
each grid cell for each RCM simulation:

Fi =


Pi (Obs)
Pi (RCM)

: Pi (RCM)>0
and i = {0.5, 1.5, ..., 98.5, 99.5}

1 : Pi (RCM) = 0
(1)

whereFi is the quantile mapping factor at theith percentile,
andPi (Obs) andPi (RCM) are theith percentiles of ob-
servation and RCM outputs, respectively. This is similar to
the method of Li et al. (2010) in that we independently
correct moments of the cumulative frequency distribution,
however, we calculate corrections from empirical cumula-
tive frequency distributions. When RCM outputs are zero for
Eq. (1), the quantile mapping factor is set to 1 (Fi = 1). Quan-
tile mapping factors are calculated for each percentile from
0.5 to 99.5 (0.5th, 1.5th, . . . , 98.5th, 99.5th). Percentiles are
calculated from all data, including days of zero rain. Quan-
tile mapping factors are calculated independently at each grid
cell for the seasons DJF, March-April-May (MAM), JJA, and
September-October-November (SON) for the training period
1961–2007.

We force any rain day with rainfall of less than 0.2 mm
to zero in both observed and modelled rain time series. The
threshold of 0.2 mm is chosen because it is the lower resolu-
tion limit of the Bureau of Meteorology rain gauges that are
the basis of the SILO dataset.

Before the quantile mapping is implemented, we detrend
each season in the uncorrected simulation (1961–2100) by
subtracting a 30-yr moving average to remove any long-term
changes in rainfall regimes. Each day from this detrended

series is consigned to a percentile “bin” between integer per-
centiles (i.e. percentile bins of 0–1, 1–2, . . . , 98–99, 99–100),
and assigned a rank that accords to the bin. These ranks
are then transferred to the original (undetrended) simulation.
Bias-corrected RCM outputs are calculated for each day for
the entire simulation by

RCM′

b = Fi · RCMb : i = {0.5, 1.5, ..., 98.5, 99.5}

and

{
{i − 0.5 ≤ b > i + 0.5} : b < 99.5
{i − 0.5 ≤ b ≥ i + 0.5} : b = 99.5

(2)

where RCMb and RCM′

b are the uncorrected and corrected
simulations, respectively, falling in percentile binb. The
other terms are as described for Eq. (1). Equation (2) applies
the quantile mapping factors calculated at the 0.5th percentile
to the 0–1 percentile bin, the factor for the 1.5th percentile is
matched to the 1–2 percentile bin, and so on up to the fac-
tor for the 99.5th percentile, which is applied to the 99–100
percentile bin.

Finally, bias-corrected RCM outputs are regridded from
the 10 km2 CCAM grid to the 5 km2 grid compatible with
the hydrological models.

3.2.1 Split-sample cross-validation of quantile mapping

When bias-corrections are applied to future projections, they
are often implicitly assumed to be consistent through time
(Ines and Hansen, 2006; Wood et al., 2004). However, there
is some evidence that bias-corrections can vary with the
choice of training period (Piani et al., 2010b; Li et al., 2010).
We test this assumption using split-sample cross-validation
for quantile mapping of rainfall. We carry out two sets of
cross-validation:

1. We train the quantile mapping for the period 1962–1984
and validate against the period 1985–2007.
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2. To minimise the effects of longer-term (decadal or
greater) oscillations or trends in either the observed or
simulated rainfalls, we train the quantile mapping on
odd years for 1962–2007 (1963, 1965, . . . , 2005, 2007)
and validate against even years for 1962–2007 (1962,
1964, . . . , 2004, 2006).

3.3 Hydrological modelling

We use the five hydrological models calibrated by Viney
et al. (2009b): AWBM (Boughton, 2004), IHACRES (Post
and Jakeman, 1999), Sacramento (Burnash et al., 1973),
SIMHYD (Chiew et al., 2002) with Muskingum routing (Tan
et al., 2005), and SMAR-G (Goswami et al., 2002). The hy-
drological models are simple conceptual models that use a
variety of algorithms to partition available water into base-
flows and quickflows, which are then combined to repre-
sent observed hydrographs. IHACRES is distinguished from
the other models by (i) employing a rainfall scaling pa-
rameter and (ii) by characterising streamflow using a unit-
hydrograph. Viney et al. (2009b) used a log-bias objective
function (Viney et al., 2009a) to automate the calibration
of the five hydrological models to 90 streamflow records
for 1975–2007 for catchments around Tasmania. The stream
records Viney et al. (2009b) chose were from catchments
that had negligible human influence on streamflows. For four
catchments, streamflow records were augmented with esti-
mates of irrigation extractions to simulate natural stream-
flows. The hydrological models produce runoff timeseries at
a daily time step distributed on a∼5 km2 (0.05◦) grid cov-
ering all of Tasmania. To achieve Tasmania-wide coverage
with the five hydrological models, Viney et al. (2009b) as-
signed model parameters to ungauged catchments from their
nearest gauged neighbour.

We aggregate runoff to eight river catchments (Fig. 3).
Operation of storages, diversions and water extractions in
these catchments are based on practices current at 31 Decem-
ber 2007 (Bennett et al., 2010). The eight rivers are chosen
as they represent different climatic regions of Tasmania, and
all have>20-yr, high-quality streamflow records.

Descriptions of streamflow changes in a further 70 Tas-
manian rivers, 12 large irrigation storages and the Tasmanian
hydro-electric system are given by Bennett et al. (2010).

Changes are described between a baseline period, 1961–
1990, and a future period, 2070–2099.

4 Results

4.1 Cross-validation of quantile mapping

Figure 4 shows cross-validation biases for mean annual rain-
fall for the GFDL-CM2.0 simulation. Rainfall biases of the
GDFL-CM2.0 simulation shown in Fig. 4 are very simi-
lar for the other RCM simulations (not shown). When the
quantile mapping is trained on odd years (1963, . . . , 2007),

Fig. 3.Catchments reported by this study.

cross-validation biases are less than±10 % almost every-
where (Fig. 4a). Cross-validation biases are much smaller
than biases of uncorrected RCM rainfalls (Fig. 4c). Biases of
uncorrected RCM rainfalls are larger than±30 % for much
of Tasmania, and exceed 150 % in some cells. The relatively
small cross-validation biases suggest that the quantile map-
ping is effective outside the training period. Accordingly,
the quantile mapping is likely to be reliable for the period
2010–2100. A longer training period (e.g. 30+ yr) may have
produced even smaller cross-validation biases. We had 47 yr
of synchronous simulations and observations, which allowed
23 yr to train the quantile mapping for the cross-validation
tests (assuming an equally long validation period). 23 yr may
be an insufficiently long period to sample the natural variance
in rainfall.

When the quantile mapping is trained on 1962–1984
(Fig. 4b), cross-validation biases are larger (±10 % to
±25 %), and occur over larger areas than when the quantile
mapping is trained on odd years (1963, . . . , 2007) (Fig. 4a).
This discrepancy in performance is caused by changes in Tas-
manian rainfall between 1962–1984 and 1985–2007. The pe-
riod 1962–1984 experienced higher rainfalls over much of
Tasmania than 1985–2007, particularly in eastern Tasmania.
RCM simulations are not synchronised with observations,
and the change in observed rainfall from 1962–1984 to 1985–
2007 is not present in the RCM simulations. When the quan-
tile mapping is trained to match the higher rainfalls of 1962–
1984, it consequently overestimates rainfall during the drier
period 1985–2007 (the exception to this pattern is over the
south-western mountains, which experienced very wet years
in 1994 and 1996; here the bias-correction underestimates
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Fig. 4. Effects of changing the training period on quantile mapping performance. Plots show biases in mean annual rainfall for the 10 km2

GFDL-CM2.0 simulation.(a) Biases of bias-corrected RCM rainfall where quantile mapping is trained with the period 1962–1984; biases
shown are calculated for 1985–2007.(b) Biases of bias-corrected RCM rainfall where quantile mapping is trained with odd years occurring
in the period 1962–2007 (1963, 1965, . . . , 2005, 2007); biases shown are calculated for even years occurring during the period 1962–2007
(1962, 1964, . . . , 2004, 2006).(c) Biases of uncorrected RCM rainfalls for 1961–1990. Rainfall biases for the other five RCM simulations
are very similar to the GFDL-CM2.0 simulation illustrated in this figure.

rainfalls in the validation period). These long-term changes
in Tasmanian rainfall do not have the same effect on the
quantile mapping when it is trained on odd years over a pe-
riod that includes both wet and dry periods, resulting in lower
cross-validation biases (Fig. 4a). This illustrates the impor-
tance of sampling long periods to generate temporally stable
cumulative frequency distributions for quantile mapping.

4.2 Performance of hydrological modelling

4.2.1 Hydrological model performance under a
changing climate

Performance of a hydrological model may not remain con-
sistent under a changing climate (Merz et al., 2011). Vaze et
al. (2010) found that performance of IHACRES, Sacramento,
SIMHYD and SMAR-G declined sharply in periods where
mean annual rainfall was more than 15 % lower or more than
20 % greater than mean annual rainfall in the calibration pe-
riod. Simulated mean annual rainfalls for both 1961–1990
and 2070–2099 differed from SILO mean annual rainfall for
1975–2007 (the hydrological model calibration period) by
between−15 % and +20 % for most of Tasmania for all six
RCM simulations (Bennett et al., 2010). This suggests that
the hydrological models should perform adequately during
the baseline (1961–1990) and future (2070–2099) periods.

4.2.2 Comparisons of biases of hydrological models

Performance of hydrological models forced with RCM in-
puts (RCM-runoff) is assessed at 86 streamflow gauges for
all data available for 1961–2007. The 86 catchments range

in size from 8 km2 to >2000 km2, and give good coverage
of Tasmania (Fig. 5). Performance is assessed by calculating
biases of RCM-runoff against observed streamflows. To iso-
late the effects of the RCM inputs on hydrological model per-
formance, biases are also calculated for RCM-runoff against
streamflows modelled with hydrological models forced by
SILO (SILO-runoff). Biases are calculated as:

bias=

∑T
t=1Qm −

∑T
t=1Qo∑T

t=1Qo
× % (3)

whereQm is streamflow modelled with RCM-runoff andQo
is either observed streamflow or streamflow modelled with
SILO-runoff.

Figure 6 shows biases of mean annual streamflows, biases
of low streamflows (exceedance probability of 95 %,Q95)

and biases of high streamflows (exceedance probability of
5 %, Q5) at 86 sites. Biases vary much more between hy-
drological models than between RCM simulations (Fig. 6).
Low variation between RCM simulations is caused in part by
the bias-correction of GCM SSTs before downscaling. Low
variation between RCM simulations is also consistent with
the use of a single RCM for all the simulations. Because the
performance of hydrological models tends not to vary greatly
between RCM simulations, we focus on describing hydrolog-
ical model biases for the mean of the six RCM simulations
from here on.

Flows modelled with AWBM, SIMHYD and SMAR-G
show similar characteristics to observed mean annual and
Q5 streamflows for 1961–2007 (Fig. 6, Table 1). AWBM,
SIMHYD and SMAR-G replicate observed streamflows
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Fig. 5. Catchments and streamflow gauges used to validate hydro-
logical model performance.

well, with biases smaller than±10 % for more than 40 %
of catchments and biases smaller than±25 % for more than
85 % of catchments. SIMHYD has the smallest median bi-
ases (median bias for mean annual streamflows =−3.2 %)
and smallest interquartile ranges of biases of any hydrolog-
ical model for annual and seasonal streamflows (Table 1).
AWBM, SIMHYD and SMAR-G show a tendency to un-
derpredict observed annual streamflows (underpredicted in
>60 % of catchments) and a stronger tendency to under-
predict observedQ5 streamflows (underpredicted in>80 %
of catchments). IHACRES is least like observed stream-
flows (median bias for mean annual streamflows =−22.3 %),
and Sacramento biases are second largest after IHACRES.
IHACRES shows a very strong tendency to underpredict ob-
served mean andQ5 streamflows (Fig. 6), and has the largest
median biases and largest interquartile ranges of biases
against observed annual and seasonal streamflows (Table 1).

RCM-runoff biases are generally smaller against SILO-
runoff than against observations for mean streamflows and
Q5 streamflows (Fig. 6). This is expected as biases cal-
culated against observations add errors in the RCM inputs
to errors inherent in the hydrological models, while bi-
ases calculated against SILO-runoff reflect differences only
between the RCM inputs and SILO variables. In general,
RCM-runoff tends to underpredict SILO-runoff. The bias-
correction aligns frequency distributions of modelled and ob-
served rainfalls, however it does not account for spatial cor-
relations of rainstorms (how daily rainfalls in all grid cells in
a catchment behave together) nor for temporal correlations of
rainfall (how rainfalls behave in a multi-day rainstorm). The
bias-corrected RCM rainfalls tend to overestimate large daily
rainstorms over large areas (Bennett et al., 2011). Underesti-
mation of streamflows is therefore most probably caused by

Fig. 6.Non-exceedance probabilities of streamflow biases from the
hydrological models forced with the RCM at 86 streamflow gauges
for 1961–2007. Left column shows biases calculated against ob-
served streamflows, right column shows biases calculated against
streamflows simulated with the hydrological models forced by
SILO variables. Biases are shown for mean streamflows (top row),
high (Q5) streamflows (middle row) and low (Q95) streamflows
(bottom row). Lines show mean biases from the six RCM simula-
tions, shaded confidence intervals show the range of biases from
the six simulations. For left panels positive biases mean that RCM-
forced runoff overestimates observations, and for right panels pos-
itive biases mean that RCM-forced runoff overestimates SILO-
forced runoff.

inadequate replication of the temporal characteristics of rain-
storms by the bias-corrected RCM inputs.

All RCM-runoff simulations tend not to replicateQ95
streamflows as well as higher streamflows (Table 1, Fig. 6).
Figure 6 shows that low streamflows generated from SILO-
runoff do not replicate observations well. That is, many of
the deficiencies in low streamflows emanate from the hy-
drological models as calibrated for our study, rather than
from the bias-corrected RCM inputs. Nonetheless, the bias-
corrected RCM inputs also contribute to poor performance
of low flows. Low flow performance could have been im-
proved by changing the objective function used to calibrate
the hydrological models or using different hydrological mod-
els (Staudinger et al., 2011), however, this may have reduced
performance at mean and high flows.
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Table 1.Summary of biases of hydrological models forced by CCAM calculated at 86 streamflow gauges from the average of the six RCM
simulations.

AWBM IHACRES Sacramento SIMHYD SMAR-G

Mean annual
Median catchment bias (%) −5.2 −22.6 −9.1 −3.2 −5.8

streamflow
Interquartile range of biases 14.9 20.5 16.1 11.6 14.1
at all catchments (%)

Mean Median catchment bias (%) −7.8 −15.6 −25.5 −6.7 −12.9
Nov–Apr Interquartile range of biases 22.1 25.1 35.1 25.4 23.2
streamflow at all catchments (%)

Mean Median catchment bias (%) −3.9 −25.6 −3.9 −2.0 −3.8
May–Oct Interquartile range of biases (%) 13.9 24.9 15.1 14.5 15.1
streamflow at all catchments

Q95
Median catchment bias (%) 5.5 −1.6 −11.2 −35.3 −3.9

streamflows
Interquartile range of biases 173.3 184.9 448.8 79.7 160.9
at all catchments (%)

Q5
Median bias (%) −9.8 −23.4 −11.4 −11.5 −8.8

streamflows
Interquartile range of biases 26.3 26.8 17.8 20.6 23.2
for all catchments (%)

Fig. 7. Comparison of coefficients of variation (CV) of daily streamflows generated by SIMHYD at 86 streamflow gauges for 1961–2007.
(a)CV of daily streamflows generated by SIMHYD forced with the RCM (RCM-runoff) and observations (OBS).(b) CV of daily streamflows
generated by RCM-runoff and SIMHYD forced with SILO (SILO-runoff). Points show the mean of the six RCM simulations, bars show the
range from the six simulations.

4.2.3 SIMHYD model performance

SIMHYD exhibited the lowest biases of the hydrological
models, and accordingly we focus on SIMHYD projections
to report changes to future streamflows. We describe several
additional performance tests of the SIMHYD model here.

SIMHYD RCM-runoff tends to underestimate the daily
variance (measured as the coefficient of variation, CV) of
observed streamflows at the 86 gauge sites (Fig. 7a). How-
ever, when daily CV of SIMHYD RCM-runoff is com-
pared to daily CV of SIMHYD SILO-runoff at the same
sites, there is strong agreement (Fig. 7b). This implies that
the tendency of SIMHYD RCM-runoff to underestimate
daily CV of observed runoff is not caused by the RCM or

the bias-correction, but rather by the SILO dataset or the
SIMHYD hydrological models, as calibrated for our study.
The bias-corrected RCM inputs reproduce a similar level of
variability to that present in SILO rainfalls for the purposes
of hydrological modelling.

SIMHYD RCM-runoff matches observed seasonal stream-
flows reasonably well (Fig. 8). Seasonal streamflows are
particularly closely matched in northern and western catch-
ments, illustrated by the Black River and Rubicon River. In
the central, western and southern catchments (Nive, Franklin
and Huon Rivers) SIMHYD RCM-runoff tends to under-
predict gauged streamflows from September to December.
This difference is also present in the SIMHYD SILO-
runoff (black line in Fig. 8), indicating that it is caused by
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Fig. 8.Comparison of mean monthly modelled and gauged stream-
flows for 1961–2007. Blue line shows streamflows modelled with
SIMHYD forced by the RCM, faint blue lines give range of the six
RCM simulations, black line shows SIMHYD forced by SILO and
red line shows gauged streamflows.

hydrological model calibration or the SILO rainfalls rather
than the bias-corrected RCM inputs. SIMHYD RCM-runoff
varied much more between RCM simulations in the drier
eastern catchments (South Esk, Little Swanport and Clyde
rivers) than in the wetter western and southern catchments
(Black River, Franklin River and Huon River). This is con-
sistent with the higher variability of rainfall in eastern Tasma-
nia. The summer (DJF) yields of the Clyde River are difficult
to replicate as the upper reaches of this catchment are im-
pounded (Lake Crescent/Sorell) and regulated for irrigation.

The effects of the bias-corrected RCM inputs on hydro-
logical performance are more easily seen in streamflow du-
ration curves (Fig. 9). In general, SIMHYD RCM-runoff
underestimates larger streamflows modelled with SIMHYD
SILO-runoff. This is most probably caused by the inad-
equate replication of the temporal characteristics of rain-
storms by the bias-corrected RCM outputs, already de-
scribed. In catchments with high rainfalls, SIMHYD SILO-
runoff tends to underestimate larger (exceedance probabili-
ties<10 %) observed streamflows (Black River, Nive River,

Fig. 9. Comparison of streamflow durations for observed and mod-
elled daily streamflows 1961–2007. Blue line shows streamflows
modelled with SIMHYD forced by the RCM, faint blue lines give
range of the six RCM simulations, black line shows SIMHYD
forced by SILO and red line shows gauged streamflows.

Franklin River, Huon River), and this tendency is exacer-
bated in SIMHYD RCM-runoff. Despite this, larger stream-
flows generated by SIMHYD SILO-runoff are reasonably
well replicated by SIMHYD RCM-runoff in several of the
wetter catchments (Black River, Nive River, Huon River).
In catchments where SIMHYD SILO-runoff overestimates
larger observed streamflows (South Esk River, Clyde River),
the SIMHYD RCM-runoff offers a closer match to ob-
served streamflows than SIMHYD SILO-runoff. As with low
flows, alternative hydrological models or calibration methods
could have improved replication of large daily streamflows
in catchments where the hydrological models did not per-
form well. In all catchments, SIMHYD SILO-runoff medium
streamflows (exceedance probabilities of 10 %–80 %) are
reasonably well replicated by SIMHYD RCM-runoff. Over-
all, SIMHYD RCM-runoff replicates the range of observed
streamflows and SIMHYD SILO-runoff reasonably well.
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Fig. 10.Change in rainfall and APET from 1961–1990 to 2070–2099.(a) Change in mean annual rainfall.(b) Change in mean daily rainfall
intensity for rain days>1 mm. (c) Change in mean annual APET. All plots are calculated from the average of the six RCM simulations.
Stippling shows regions where at least five of the six RCM simulations agree on the sign of change.

4.3 Projected changes in rainfall and APET

Projected changes in rainfall and APET from 1961–1990 to
2070–2099 calculated from the mean of the six RCM simu-
lations are shown in Fig. 10. Changes in mean annual rain-
fall vary spatially. Reductions in mean annual rainfall are
projected for the mountainous centre (down to−15 %), but
marked increases (up to 30 %) are projected in the east. The
increases in the east tend to occur at lower elevations. An
increase in mean annual rainfall is also projected along the
south-west coast. The simulations agree strongly on the sign
of change in the lower-lying parts of the east coast, and at
high elevations in the mountainous centre (Fig. 10a).

Mean annual APET is projected to increase across Tas-
mania, with the highest increases in the western moun-
tains (Fig. 10c). Increases in APET are small compared to
changes in mean annual rainfall, with mean annual APET in-
creases always less than 7 %. All RCM simulations project
Tasmania-wide increases in APET by 2070–2099.

Mean daily rainfall intensity is projected to increase over
most of Tasmania (Fig. 10b). The largest proportional in-
creases occur in the east (>15 %). RCM simulations show
strong agreement on the sign of change in mean daily rain-
fall intensity for much of Tasmania (Fig. 10b). The general
tendency of rain to fall in fewer, more intense events as the
climate warms is a robust feature of theory, simulations and
observations (Allen and Ingram, 2002; Pall et al., 2007; Al-
lan and Soden, 2008; Min et al., 2011) and is at least partly
consistent with an increase in atmospheric moisture (Hegerl
et al., 2004; Stephens and Hu, 2010).

4.4 Projected changes in runoff and streamflows

In describing projections we distinguish between “runoff”,
defined as gridded outputs from the hydrological models,

and “streamflows”, calculated by aggregating runoff to river
catchments.

4.4.1 Variation between hydrological models and RCMs

Projected changes to future runoff vary much more between
RCM simulations than between hydrological models. For
a given RCM simulation, future changes to mean annual
runoff projected with AWBM, Sacramento, SIMHYD and
SMAR-G are very similar (Fig. 11). Using the downscaled
GFDL-CM2.1 simulation as an example, AWBM, Sacra-
mento, SIMHYD and SMAR-G agree strongly on the spa-
tial features of runoff change (Fig. 11). The four hydrolog-
ical models show drying in central and north-west Tasma-
nia, little change in the south-west, and wetting in the east.
AWBM, Sacramento, SIMHYD and SMAR-G are also con-
sistent in seasonal projections and in projections of low and
high streamflows (not shown). IHACRES projects more in-
tense and more widespread wetting than other hydrological
models for all RCM simulations. In the downscaled GFDL-
CM2.1 example, IHACRES projects more intense wetting
in the east and stronger wetting in the west and south-
west than the other hydrological models. The high sensitiv-
ity of IHACRES to changes in inputs renders suspect the
projections of Tasmanian runoff from IHACRES with bias-
corrected RCM inputs.

4.4.2 Projections from the SIMHYD hydrological
model

In many areas, the projected changes to rainfall are ampli-
fied in changes to runoff. Where mean annual rainfall in cen-
tral Tasmania decreases by up to 15 % (Fig. 10a), runoff de-
creases by more than 30 % (Fig. 12a). In eastern Tasmania,
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Fig. 11.Change in mean annual runoff from 1961–1990 to 2070–2099 for all RCM simulations and hydrological models. RCM simulations
are designated by the GCMs used for downscaling, and are ordered from driest projection (CSIRO-Mk3.5, top) to wettest projection (UKMO-
HadCM3, bottom). Hydrological models are ordered from most biased (IHACRES, left) to least biased (SIMHYD, right).
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Fig. 12.Change in runoff simulated by SIMHYD from 1961–1990 to 2070–2099.(a) Change in mean annual runoff.(b) Change in mean
DJF runoff.(c) Change in mean JJA runoff.(d) Change inQ75 runoff. (e) Change inQ1 runoff. Changes are calculated from the mean of
the six RCM simulations. Stippling shows regions where at least five of the six RCM simulations agree on the sign of change.

rainfall increases of<20 % (Fig. 10a) are projected to in-
crease runoff by>60 % (Fig. 12a).

Low runoff events generally decrease more than mean
runoff, while high runoff events increase similarly to mean
runoff. The RCM simulations agree strongly on a decrease
in low runoff (represented by runoff with 75 % exceedance
probability, Q75) over most of Tasmania (Fig. 12d).Q75
runoff decreases more and over a wider area than decreases to
mean runoff (Fig. 12d). Increases in high runoff (represented
by runoff with 1 % exceedance probability,Q1) are more
widespread and show similar proportional increases to mean
runoff (Fig. 12e). The RCM simulations agree strongly on an
increase inQ1 runoff over the west coast, north and east. Be-
causeQ1 runoff events are larger than mean runoff events, a
proportional change inQ1 runoff equates to a much greater
increase in streamflow than the same proportional change to
mean runoff.

Changes in seasonal streamflow projected with SIMHYD
at the eight study catchments are shown in Fig. 13. Projected
changes to streamflows vary considerably by season. DJF
runoff decreases markedly in the west (Fig. 12b), however
these seasonal decreases have little effect on annual stream-
flows in the Black and Franklin rivers as DJF runoff makes
a small contribution to streamflow in these rivers. Similar
seasonal changes are also projected in the Huon River in
the south-west. The Rubicon River in the central north of

Tasmania is projected to experience increases in streamflows
in all seasons, particularly JJA (Fig. 13).

Projections for rivers in the drier regions, including the
north-east (South Esk River), east (Little Swanport River)
and centre (Clyde River), are characterised by a high de-
gree of variation between RCM simulations. The South Esk
River and Little Swanport River are projected to experience
increases in streamflow (Fig. 13), largely during February
to April.

A major feature of these projections is reduced runoff over
Tasmania’s central mountains in all seasons (Fig. 12a–c).
This contrasts with projected increases in mean annual runoff
in many low-elevation areas in the east and in coastal ar-
eas (Fig. 12a). The high-elevation Nive River catchment is
projected to experience decreases in streamflow year round,
particularly in May and June (Fig. 13). Catchments in cen-
tral Tasmania that span both high and low elevations (e.g.
Clyde River) show complex responses. The Clyde River is
projected to experience year-round streamflow decreases in
high elevation areas (not shown), but these decreases are off-
set by projected increases at lower elevations, particularly
during MAM, resulting in increased mean annual stream-
flow at the catchment outlet. A similar elevation-sensitive
streamflow response is observed for the South Esk River in
the north-east.
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Fig. 13. Mean monthly streamflows simulated by SIMHYD for
1961–1990 and 2070–2099. Shaded confidence intervals show
range of the six RCM simulations. Numbers in plots give percent
change in mean annual streamflow from the average of the six RCM
simulations. Numbers in brackets give the range of percent change
from the six simulations.

Variance in daily and annual runoff is projected to in-
crease in many areas of Tasmania. Increases in the variance
of daily runoff occur in the northern two-thirds of Tasma-
nia (Fig. 14a), and the RCM simulations agree strongly on
projected increases in CV of daily runoff over much of Tas-
mania. The most marked increases in daily variance occur in
the lowlands of the central east, which is consistent with an
increase in mean daily rainfall intensity (Fig. 10b). Variance
in annual runoff increases over most areas, with the most no-
table increases projected for the north-west and central high-
lands (Fig. 14b).

Overall, the projections suggest that there will be a greater
variability of streamflows, with rivers rising to higher peaks
and experiencing longer periods of low streamflow.

5 Discussion and conclusions

Our study demonstrates that quantile mapping can directly
couple RCM outputs to hydrological models to produce re-
alistic streamflows in a majority of catchments. Our method

Fig. 14.Changes to coefficient of variation (CV) of runoff simulated
by SIMHYD from 1961–1990 to 2070–2099.(a) Changes to CV
of daily runoff. (b) Changes to CV of annual runoff. Changes are
calculated from the average of the six RCM simulations. Stippling
shows regions where at least five of the six RCM simulations agree
on the sign of change.

did not perform as well in eastern Tasmanian catchments,
which are subject to higher rainfall variability. In these catch-
ments, the poorer performance is explained largely by the
bias-corrected RCM rainfalls not being sufficiently similar
to observations.

We note that our method of quantile mapping may be more
sensitive to changes in training period than comparable meth-
ods that fit probability distributions to observations and mod-
els before quantile mapping (e.g. Li et al., 2010). Fitting
probability distributions has the advantage of smoothing fre-
quency distributions, which may reduce variation in quantile
mapping factors with changes in training period. However,
Li et al. (2010) found quantile mapping varied noticeably
with changes in training period, despite having fitted prob-
ability distributions before calculating their bias-corrections.
Further, fitting probability distributions adds parameter un-
certainties, and using empirical cumulative frequency distri-
butions has the virtue of simplicity. Nonetheless, we reiter-
ate that long training periods are required to generate tempo-
rally stable cumulative frequency distributions. We recom-
mend the use of cross-validation testing as a routine measure
to demonstrate the stability of quantile mapping.

The IHACRES hydrological model does not replicate ob-
served runoff as realistically as the other hydrological models
with bias-corrected RCM inputs. Further, IHACRES gives
different projections of change. Viney et al. (2009a) found
that IHACRES was the best performing model when cal-
ibrated, but performed worst under spatial cross-validation
tests. They attributed this drop in performance to the
IHACRES parameter that scales rainfall. In contrast, Vaze
et al. (2010) found that IHACRES was not particularly sen-
sitive to changes in inputs when calibrated to a range of wet
and dry conditions for catchments on continental Australia.
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We conclude that for studies using bias-corrected RCM vari-
ables as direct inputs to hydrological models for impact stud-
ies, it is important to test a hydrological model for sensitivity
to changes in inputs as a precursor to generating stable, plau-
sible runoff projections, even if the model has been shown to
be effective for climate studies elsewhere.

Projected changes in Tasmanian runoff vary far more be-
tween RCM simulations than between hydrological models.
This finding is accentuated if we exclude the poorly perform-
ing IHACRES model from the projections. For our study,
therefore, it is more important to consider the range of RCM
simulations than the range of hydrological models to ade-
quately describe uncertainty in projections of surface water
availability. This finding supports several other studies that
have shown climate models to be a more significant source of
uncertainty than hydrological models for surface water pro-
jections (Wilby and Harris, 2006; Prudhomme and Davies,
2009; Teng et al., 2011).

Our fine-scale simulations project changes to Tasma-
nian runoff to vary considerably by region, in contrast to
near-uniform spatial changes projected by GCMs (Chris-
tensen et al., 2007). Of note are the year-round decreases in
runoff projected for the central mountains, as Tasmania relies
on streamflows from this region to generate hydro-electric
power and to supply irrigators. The projected decrease in
runoff over the central mountains of Tasmania reported here
has seasonal dependence. For winter in the future, the air is
warmer and moister as it approaches the west coast of Tasma-
nia. This causes an increase in rainfall along the west coast,
which leads to increased upward motion along the western
slopes of the mountains. After reaching the highest eleva-
tions, the air descends, and at a greater rate in the future as a
response to the increased upward motion further west. This
tendency for subsidence causes a slight decrease in rainfall in
the central plateau region. In the other seasons, the decreased
westerly airflow projected in the future results in weaker up-
ward motion, and rainfall, along the western slopes. This de-
crease in rainfall extends to the central mountains. In addi-
tion, with decreased clouds and warmer temperatures, the
surface dries out relative to the current climate (see APET
changes). As a result, less moisture is available locally for
evaporation. Thus for all seasons, runoff is projected to de-
crease in the central mountains relative to the lower-lying
areas. Reduced streamflows from Tasmania’s central moun-
tains will reduce Tasmania’s hydro-electric power generation
capacity (Bennett et al., 2010).

The projected increases in runoff in eastern Tasmania re-
ported here contrast with Post et al. (2012), whose median fu-
ture scenario showed either no change or decreases in runoff
in eastern Tasmania by 2030. This difference in sign may be
attributed to the increased resolution of land-ocean bound-
aries in CCAM in comparison to the GCM projections used
by Post et al. (2012). The increases in eastern rainfall pro-
jected by CCAM result from a tendency for increased atmo-
spheric blocking, southward extension of the East Australian

Current, and the formation of a small but significant mean sea
level pressure anomaly in the Tasman Sea that enhances the
onshore winds in this region (Grose et al., 2010). The pattern
in the GCMs is similar but displaced further offshore to the
south and east due to the coarser grid size of GCMs (Grose et
al., 2011). Notwithstanding increased variability of stream-
flows (discussed below), increased surface water availability
in Tasmania’s east may present opportunities for future agri-
cultural production.

Changes in seasonal runoff are an important feature of
these projections. The projected decreases in DJF runoff over
western Tasmania are caused by a reduction in the mean
westerly circulation (Grose et al., 2010), associated with an
expansion of the Hadley cell and a poleward movement of the
mid-latitude storm tracks (Yin, 2005), including a poleward
movement and strengthening of the subtropical ridge of high
pressure and an increase in the high phase of the southern an-
nular mode (Kushner et al., 2001). Even though reduced DJF
streamflows in the west have little impact on annual stream-
flow volumes, these changes are likely to have deleterious ef-
fects on endemic freshwater fish (Morrongiello et al., 2011).

Increased runoff variability could have as great an impact
on Tasmanian water management practices as changes to sea-
sonal runoff. Projected increases to inter-annual variability in
streams fed by the central highlands and western mountains
could mean that the large hydropower and irrigation storages
situated in these areas may not be able to buffer periods of
low inflows as effectively in future as they have in the past.
Projected increases in runoff occur largely in the east in low-
land areas, where water is presently stored mostly in small
farm dams. Small dams may be less able to buffer the pro-
jected increases in annual variability, even if there is more
water available on average. In short, the projected increases
in runoff may not easily be captured by current infrastructure.

The implications for Tasmanian surface water availabil-
ity and storage illustrate the virtue of using an ensemble of
high-resolution RCM projections as direct inputs to hydro-
logical models to understand the nature of future surface wa-
ter changes in a warmer world. These implications cannot
easily be addressed through the more common approach of
perturbing historical climate data that assumes that rainfall
variability is unchanged in the future. A large amount of ef-
fort has been expended in Australia in recent years build-
ing complex series of hydrological models to assess climate
change impacts from pattern scaling of GCMs (Petheram et
al., 2009; Chiew et al., 2009; Charles et al., 2010). Our study
has shown that there is the potential to update these studies
using high-resolution RCM simulations when these become
available for other regions of Australia.
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