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Abstract. This paper investigates issues involved in cali- when using conceptual hydrological models to assess future
brating hydrological models against observed data when thelimate change impacts, a differential split-sample test and
aim of the modelling is to predict future runoff under differ- Monte Carlo simulation should be used to quantify uncer-
ent climatic conditions. To achieve this objective, we testedtainties due to parameter instability and non-uniqueness.
two hydrological models, DWBM and SIMHYD, using data
from 30 unimpaired catchments in Australia which had at
least 60yr of daily precipitation, potential evapotranspira- ]
tion (PET), and streamflow data. Nash-Sutcliffe efficiency 1 ntroduction

(NSE), modified index of agreement;j and water balance

error (WBE) were used as performance criteria. We used &limaté change caused by increasing atmospheric concen-
differential split-sample test to split up the data into 120 sub-tration of greenhouse gases may have significant effects on
periods and 4 different climatic sub-periods in order to assesf€ hydrological cycle and water availability, hence affecting
how well the calibrated model could be transferred different2griculture, forestry, and other industries (Rind et al., 1992;
periods. For each catchment, the models were calibrated fdf°CC: 2007). Changes in the hydrological cycle may mean
one sub-period and validated on the other three. Monte Carl"Ore floods and droughts, and increased pressure on water
simulation was used to explore parameter stability comparedUPPly and irrigation systems. It is important for us to be
to historic climatic variability. The chi-square test was used @b!€ t0 estimate the potential impact of climate change on
to measure the relationship between the distribution of the/Vater resources and develop sustainable management strate-
parameters and hydroclimatic variability. The results showeddi€S- One of the challenges in predicting hydrological re-
that the performance of the two hydrological models dif- SPONSe to climate change is the issue of hydrological nonsta-
fered and depended on the model calibration. We found thationarity (Milly etal., 2008). There are numerous factors that

if a hydrological model is set up to simulate runoff for a €an affect hydrological stationarity and_these include vegeta—
wet climate scenario then it should be calibrated on a wetiOn responses to elevated g@hanges in land use and rain-

segment of the historic record, and similarly a dry Segmemfall characteristics. Itis crucial to improve our understanding
should be used for a dry climate scenario. The Monte carl®f the effect of nonstationarity on hydrological assessments
simulation provides an effective and pragmatic approach tdf climate change.

explore uncertainty and equifinality in hydrological model ~ Hydrological models are important tools for predicting the
parameters. Some parameters of the hydrological modelinpact of climate change on future water resources and as-
are shown to be significantly more sensitive to the choiceSociated socioeconomic impacts. A number of models have

of calibration periods. Our findings support the idea thatP€en used to evaluate hydrological effects of climate change
(Rind et al., 1992). Predicting the hydrological impacts

Published by Copernicus Publications on behalf of the European Geosciences Union.



1240 C. Z. Li et al.: The transferability of hydrological models under nonstationary climatic conditions

of climate change involves two key steps: downscaling the This paper investigates the transferability of hydrological
outputs from global climate models (GCMs) and then run-models under nonstationary climatic conditions. We com-
ning hydrological models. At present, outputs from different pare results obtained with different hydrological models cal-
GCMs have been used to drive hydrological models for pre-ibrated under different climatic conditions. The paper first
dicting streamflow under a changed climate (Chiew et al.,presents two hydrological models chosen for this study — the
2009). There are many factors that can affect the accuracpynamic Water Balance Model (DWBM) and the SIMHYD
of a rainfall-runoff model in predicting the hydrological re- model — and then describes the data used to calibrate them.
sponses to climate change, including the particular hydro\We describe different methods of applying the data, includ-
logical model chosen, the GCM used, the optimisation tech-ing a differential split-sample test, a Monte Carlo simulation,
nigue employed, and the calibration period of the model.and a performance criterion. Finally, we analyse the perfor-
Most researchers usually use an ensemble of these techniquesance of the models under different calibration conditions
to minimise the uncertainty in predicting climate change im- and discuss the optimal parameters for each.

pacts. For instance, Chiew et al. (1995) used results from

5 separate GCM experiments and reported that, in certain

parts of Australia, the GCMs did not even agree on the direc2 Description of hydrological models and data

tion of change in rainfall (i.e. increasing or decreasing rain-.l_WO lumped hvdrological models with dailv inouts were

fall). Boorman and Sefton (1997) evaluated effects of climate h fp hi y d9 he D ic W é Ip Model

change on mean runoff, flood magnitude, and low flow for ShOSeN or this study: the Dynamic Water Balance Mode
' ! (DWBM) (L. Zhang et al., 2008) and the SIMHYD model

3 catchmepts in UK using 2 c'onceptual ramfall-runoff_ mOd'éChiew etal., 2002), and detailed description of the two mod-
els. In their study, they considered 2 climate scenarios and _ .
els is presented below.

8 climate sensitivity tests. Minville et al. (2008) produced an
uncertainty envelope of future hydrological variables by con-5 1 The Dynamic Water Balance Model (DWBM)
sidering 10 equally weighted climate projections from a com-
bination of 5 GCMs and 2 greenhouse gas emission scenalfhe DWBM model used in this study was developed by
ios. Monomoy and O’Connor (2007) used 6 automatic opti-L. Zhang et al. (2008). It is a lumped conceptual water bal-
misation techniques to calibrate a conceptual rainfall-runoffance model with two stores: a near surface root-zone store
model, and there have been a number of more recent studieghd a deeper zone store (Fig. 1). The model is based on
for estimating the impact of climate change on hydrological Budyko’s concept of water availability and atmospheric de-
processes (Chiew et al., 2009; Vaze et al., 2010; Boyer et almand (Budyko, 1958) or the concept diflits and controld
2010). An implicit assumption in all these studies is that (Calder, 1998). Fundamental to this model is a functional
rainfall-runoff models calibrated over the historical period form that represents a smooth transition between supply and
are valid for predicting the future hydrological regime under demand limits (Fu, 1981):
a changed climate and this relates directly to the assumption 1w
of hydrological stationarity. However, little has been carried £ _ ,  Eo _ [1 N (@)w] )
out to test the validity of this assumption. P P P

Calibration of hydrological models generally involves op-
timizing model parameters to match measured streamflo o :
using observed rainfall as input. Performance of the model id or the purpose of model calibration, we define 1 — 1w

usually tested using a simple spilt-sample test, i.e. the modet© thata varies between 0 and 1. This definition also conve-

is calibrated for one period of the record and tested for an_nlently associates an increaseiwith an increase in evap-

other period. The simple split-sample test may be Sufﬁcientotr.’:mspiratio_n e_fficiency.P is rainfall _andEo is potential _
for applications where hydroclimatic conditions between theevap_otransplratlon at mean annual tlmescale._ Mor_e details
calibration period and validation period are similar. How- of this mean annual water balance model are given in Zhang
ever, when the model needs to be applied to simulate streanft al.' (2004) and L. Zhang etal. (2,003)' i

flow from periods with different conditions from those in the It_|_s aSSL_'mEd _that rainfalP(7) in time stepz will _be
calibration periods, a more powerful test is required (Klemes,part't'(_)neOI into direct runofigy(x) and catchment rainfall
1986; Xu, 1999; Seibert, 2003). In a recent paper, Andreastétention:

sian et ql. (2009) used_cra;h test to advocate for more CoMp () — ou(r) + X (1) )
prehensive model testing in hydrology. For predicting the

impact of climate change on streamflow, the input rainfall where X (¢)is called catchment rainfall retention and is
series are varied according to an assumed future climate scéhe amount of rainfall retained by the catchment for
nario and this often means different climatic conditions. But evapotranspiration ET), change in soil moisture storage
is it appropriate to use these models for future climatic con-S(r) — S(r — 1) and recharg®(z).

ditions when rainfall-runoff relations could be very different  The demand limit forX (¢) is the sum of available storage
to those experienced historically? capacity Smax— S(t — 1)) and potential evapotranspiration

v\yvherew is a model parameter ranging between 1 and
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d baseflow linear regression

Fig. 1. Structure of the lumped dynamic water balance model

(DWBM).

(Eo()) and is denoted aX(¢), while the supply limit can
be considered as rainfall(z). Following a similar argument
to Budyko (1958), we can postulate that:

X(@)/P(t) — lasXo(t)/P(t) — oo (very dry conditions (3)

X(t) — Xo(r)asXo(t)/P(t) — 0 (very wet conditions (4)
The catchment rainfall retentiaoXi(z) can be calculated as:

B Xo(t)
X(@) = P@) F(m, al) %)

where F( ) is Fu’'s curve — Eq. (1)1 is rainfall retention
efficiency, i.e. a largew; value will result in more rainfall
retention and less direct runoff.

From Egs. (2) and (5), direct runoff is calculated as:

Qd(1) = P(t) — X(1). (6)

At sub-annual time scales, water availabili#(z) can be de-
fined as:

W) = X(t) + S — 1). (7
Combining the definition ok (¢) with Eq. (7), one obtains:
W) = ET(t) + S@t) + R(1). (8)

While Eqg. (7) defines the source of the water availability,

1241
Table 1. Ranges of parameter values in DWBM.

Parameter Units  Description Lower Upper

bound bound
a / retention efficiency 1 5
a / evapotranspiration efficiency 1 5
Smax mm soil water storage capacity 5 500
d / baseflow linear regression 0.01 1

/indicates dimensionless

The demand limit forY (+) can be considered as the sum of
potential evapotranspiratiorE§(z)) and soil water storage
capacity Smax) and is denoted a¥p(r), while the supply
limit is the available wateW (z). Similar to Budyko (1958),
we can postulate that:

Y(@)/ W) — 1asYo(t)/W() — oo (very dry conditions (10)

Y(t) — Yo(t) asYo(t)/W(t) — 0 (very wet conditions (11)

The evapotranspiration opportunif(z) can be estimated
from the following relationship:

Eo(t) + Smax )

W (12)

Y#) = W@) F(
Thus groundwater recharg®(z)can be calculated from
Eqg. (9). The next step is to calculate evapotranspiration
ET(t). The demand limit for ET#) can be considered as po-
tential evapotranspiratiofg(r) and the supply limit is the
available wateW (). Similar to Budyko (1958), evapotran-
spiration ET() can be calculated as:

_ Eo(7)
ET(t) = W() F(—W(t), az)

(13)
whereay is a model parameter, representing evapotranspira-
tion efficiency.

Soil water storage can now be calculated as:

S = Y@ — ET@®). (14)

Finally, groundwater storage is treated as linear reservoir, so
that baseflow and groundwater balance can be modelled as:

Ob(t) =dG@t — 1) (15)

Git) = 1 —-d) Gt — 1) + R®) (16)

where Qy is baseflowG is groundwater storage, adis a
recession constant.

The DWBM model has been applied to 265 catchments in
Australia and showed encouraging results (L. Zhang et al.,

Eq. (8) determines the partitioning. Next define evapotran-,nng) “The model has four parameters: retention efficiency

spiration opportunity (Sankarasubramanian and Vogel, 20032

asY(r) =ET() + S(¢), we obtain:
W(t) = Y(t) + R(@). (9)

www.hydrol-earth-syst-sci.net/16/1239/2012/

«1); evapotranspiration efficiency{); soil water storage
capacity Smax), and baseflow linear recession constaht (
The range of the parameter values is shown in Table 1.

Hydrol. Earth Syst. Sci., 16, 1233254 2012



1242 C. Z. Li et al.: The transferability of hydrological models under nonstationary climatic conditions
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PET = areal potential evapotranspiration (input data)
EXC=RAIN - INSC, EXC>0

INF = lesser of { COEFF exp (-SQxSMS/SMSC) , EXC }
SRUN = EXC - INF

INT = SUB x SMS/SMSC x INF

REC = CRAK x SMS/SMSC x (INF - INT)

SMF = INF - INT - REC

ET =lesser of { 10 x SMS/SMS3C, PET }

BAS =K x GW

Model parameters and description

INSC interception store capacity (mm)

COEFF maximum infiltration loss (mm)

N infiltration loss exponent

SMSC  soil moisture store capacity (mm)

SUB  constant of proportionality in interflow equation

CRAK  constant of proportionality in groundwater recharge equation
K baseflow linear recession parameter

Fig. 2. Structure of the lumped daily rainfall-runoff model (SIMHYD).

2.2 The SIMHYD model of the SIMHYD model and the algorithms controlling how
water enters the system from precipitation, flows into sev-
The SIMHYD model is a lumped conceptual daily rainfall- eral stores, and then flows out through evapotranspiration and
runoff model (Chiew et al., 2002), driven by daily rainfalland runoff. The SIMHYD model has 7 parameters, and the useful
PET, which simulates daily streamflow. It has been testedanges of them are shown in Table 2.
and used extensively across Australia (Chiew et al., 2002; In the SIMHYD model, daily rainfall is first intercepted
Siriwardena et al., 2006; Viney et al., 2008; Y. Q. Zhang etby an interception store, which is emptied each day by evap-
al., 2008; Zhang et al., 2009). Figure 2 shows the structureoration. Incident rainfall, which occurs if rainfall exceeds
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Table 2. Ranges of parameter values in the SIMHYD model.

Parameter Units  Description Lower Upper
bound  bound
INSC mm interception store capacity 0.5 5.0
COEFF mm maximum infiltration loss 50 400
SQ / infiltration loss exponent 0 6.0
SMSC mm soil moisture store capacity 50 500
SUB / constant of proportionality in interflow equation 0 1
CRAK / constant of proportionality in groundwater recharge equation 0 1
K / baseflow linear regression parameter 0.003 0.3

/indicates dimensionless
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Fig. 3. Location map of the 30 catchments used for this study.

the maximum daily interception, is then subjected to an infil- potential rate (PET minus intercepted water). The soil mois-

tration function. The incident rainfall that exceeds the infil- ture store has a finite capacity and overflows into the ground-
tration capacity becomes infiltration excess runoff. A soil water store, baseflow from which is simulated as a linear re-

moisture function diverts the infiltrated water to the river cession from the groundwater store. The model has therefore
(as saturation excess runoff/interflow), groundwater store (ashree runoff components: infiltration excess runoff, satura-

recharge) and soil moisture store. The saturation excesson excess runoff/interflow, and baseflow.

runoff/interflow is first estimated as a linear function of the

soil_wetness (soil m_oisture level d_ivided by soil moisture ca- 5 3 Study catchments and data

pacity). The equation used to simulate interflow therefore
attempts to mimic both the interflow and saturation exces . .
runoff processes (with soil wetness used to reflect those part this study 30 catchments from Australia were selected

of the catchment that are saturated and from which saturawIth at least 60yr of unimpaired daily streamflow data

tion excess runoff can occur). Groundwater recharge is thel.gF'g' 3). U.n|mpa|red strgamﬂovy IS dgfmed as streamflow that
estimated, also as a linear function of the soil wetness. Thé> not subject to regulat|0|n¥ or.dlverS|on. The catchment area
remaining moisture flows into the soil moisture store. Evap—ranges from 82 to 1891 ith mean annual streamflow

otranspiration from the soil moisture store is estimated asvaned between 53 to 1363 mm. The mean annual precipi-

a linear function of the soil wetness, but cannot exceed thgdton ) ranges frpm 628 to 2095mm and annual poten-
tial evapotranspiration (PET) ranges from 817 to 2098 mm,

www.hydrol-earth-syst-sci.net/16/1239/2012/ Hydrol. Earth Syst. Sci., 16, 123254 2012
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representing diverse hydrological and climatic conditions.the model might perform for an independent period having
The runoff coefficient varies from 0.08 to 0.65. similar conditions. Unfortunately, this test is unable to guar-
Catchment averaged annual rainfall was estimated fronaintee the applicability of hydrological models under nonsta-
gridded SILO daily rainfall fittp://www.longpaddock.qld. tionary conditions (Xu, 1999; Henriksen et al., 2003).
gov.au/silg Jeffrey et al., 2001). The SILO Data Dirill pro- In order to try to answer the question of whether the trans-
vides surfaces of daily rainfall and other climate data inter-fer of parameter values from the present-day climate to a fu-
polated from point measurements made by the Australiarture climate is justified, the “differential split-sample test”
Bureau of Meteorology. The spatial resolution of the grid- proposed by Klemes (1986) was considered, in which the
ded daily rainfall data is 0.0%ased on interpolation of over hydrological model is tested on calibration and validation pe-
6000 rainfall stations across Australia. The interpolation usegiods under contrasting climatic conditions. In this case, dif-
monthly rainfall data, ordinary kriging with zero nugget, and ferent sub-periods are chosen with different historical rainfall
a variable range. Monthly rainfall for each< km grid cell  conditions.
was converted to daily rainfall using daily rainfall distribu-  In this study, different periods with various climatic con-
tion from the station closest to the grid cell (Jeffrey et al., ditions were identified. First of all, we calculated annual and
2001). The daily time series of maximum and minimum tem- mean annual precipitation over the whole period of record
peratures, incoming solar radiation, actual vapour pressurgpr each catchment. Then sub-periods with consecutive an-
and precipitation at 0.0% 0.05 (~5kmx 5km) grid cells  nual precipitation greater than the mean were selected as
from the SILO Data Drill fittp://www.longpaddock.gld.gov. the “wet” periods and sub-periods with consecutive annual
au/silg were used. precipitation less than the mean were selected as the “dry”
Potential evaporation was calculated using the Priestleyperiods. The precipitation in the “wet” periods is 10.2%
Taylor equation (Priestley and Taylor, 1972) for each catch-to 47.1 % above the long-term average annual precipitation,
ment with the Priestley-Taylor coefficient set to 1.26 follow- while the precipitation in the “dry” periods is 10.4% to
ing Raupach (2000). In the calculation, the available energy28.3 % below the long-term average annual precipitation. In
was taken as equal to the net radiation by neglecting groundhe selection, the minimum length of the sub-period was set
heat flux. The net radiation was calculated from the incom-to 5yr to ensure stable model calibration. If this process re-
ing global shortwave and longwave radiation, surface albedosults in more than two “wet” or “dry” periods, then the two
surface emissivity, and surface temperature as described hyettest periods or two driest periods were selected for model
Raupach et al. (2001). calibration and validation (Fig. 4). The hydrological model
Daily streamflow data were obtained from the Australian was calibrated for each of the 4 sub-periods and validated on
Land and Water Resources Audit project (Peel et al., 2000gach of the remaining 3 sub-periods in turn, resulting in a
and have been quality checked. Firstly, data quality codegotal of 12 calibration and validation tests.
were checked for any missing and poor-quality data as most To examine model performance under different calibration
gauging stations provide numerical codes indicating qualityand validation conditions, results from the above tests are
of streamflow data. Missing streamflow data were infilled grouped asdry/dry”, “ dry/wet”, “wetwet”, and ‘wetdry” to
by interpolating streamflow values at previous and following represent climatic conditions in the calibration and validation
days. Secondly, time series of daily rainfall and streamflowperiods respectively.
were plotted to identify any inconsistency and recording er-
rors in the data (e.g. spikes, same streamflow value for alon@.2 Monte Carlo simulation

period of time). The quality checks are to ensure good qual-
ity streamflow data are used in the study. It has been widely recognized that hydrological models can

perform equally well against measured runoff estimates even
with different parameter sets and this so-called parame-

3 Methods ter equifinality may result in large prediction uncertainty
(Beven, 1993; Boorman and Sefton, 1997; Niel et al., 2003;
3.1 Differential split-sample test Wilby, 2005; Minville et al., 2008). The parameter equifinal-

ity is related to overparamterzation of hydrological models
In general, hydrological models rely on stationary condi- and poor parameter identifiability. For some practical appli-
tions (Xu, 1999). Usually, model calibration requires a split- cations, the parameter equifinality problem may not be an is-
sample test, where the model is calibrated during one cli-sue and any of the parameter sets may be appropriate. How-
matic period and validated on another independent periodever, these equally good parameter sets may give different
The split-sample test is the classical test, being applicable t@redictions when the model is used to estimate the effects
cases where there is sufficiently long time series of the cli-of climate change and land use change on streamflow (Uh-
matic data for both calibration and validation and where thelenbrook et al., 1999). The need for improved model cal-
catchment conditions remain unchanged, i.e. stationary (Refibration and testing has been emphasized in recent years.
sgaard and Storm, 1996). This test gives an indication howMonte Carlo simulation is an effective way of calculating
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represent different calibration conditions.

confidence limits of predicted time series and exploring pa-models: the modified index of agreemeudit)(and the water

rameter stability and identifiability in the context of historic balance error (WBE):

climate variability (Uhlenbrook et al., 1999; Wilby, 2005;

Widen-Nilsson et al., 2009). S | Oobsi — Osim|
For each catchment and each calibration period, a Monte, _ 1 _ i=1

Carlo simulation was undertaken with 1000000 runs, each

with randomly generated parameter values within the given

ranges listed in Tables 1 and 2 for the two models respec- .

tively. We then selected assemblies of the 100 best parameter 3 |Qsimi _ Qobsi|

sets for each catchment and each calibration period according/BE _ =l

to a goodness-of-fit measure which is defined in Sect. 3.3. Fi-

nally, the models were run during the validation periods with

all the 100 best parameter sets. Calibration with the 100 best

parameter sets gave very similar results and the means wesgith the symbols defined above.

used in subsequent analysis.

~ — — (18)
Z (‘OSim,i - 00bsi| + |00bsi - OobsiD
i=1

x 100 % (19)

Qobs;‘

it

1

3.4 Analysis of parameter probability distributions
3.3 Model performance criteria under different calibration periods

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, For each of the models, we ended up with 100 best parameter
1970) was used as the statistic criterion of the model perforsets for each catchment and for each calibration period. From
mance. The objective function used in the model calibrationthese parameters sets we calculated a probability distribution
is the Nash and Sutcliffe efficiency of daily runoff, which is of each parameter. For a given significance leyghe chi-
defined as: square testy? test) was used to test the null hypothesis that
the parameter distributions obtained for a dry period and a

N . . . .
2
) (Qobsi _ Qsim,i) wet penoq were S|gn|f|c;antlly different. A value grleater.
-1 than 0.01 indicates a rejection of the null hypothesis, which
NSE =1 - N ) 17) means that the parameter probability distributions for the two
(Qobsi — Qobsi) different calibration periods are similar.

Il
N

whereQsim; and Qops; are the simulated and observed daily 4 Results
runoff, respectivelyQops; is the mean observed runoffjs
the i-th day, andN is the number of days sampled and it 4.1 Comparisons of model calibration under different
varies with individual catchment. climatic conditions

Following recommendations by Legates and Mc-
Cabe (1999) and Hogue et al. (2006), two statistics areResults of model calibration under different climatic condi-
used to indicate the accuracy of the SIMHYD and DWBM tions are shown in Fig. 5 and Table 3. Figure 5a shows the
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1.0 balance error is 22 % and 17 % for the dry and wet calibra-
~ @ &réQSlMHYD . . dS.
\ ___.dry‘;S‘\%”é’JD tion perio _
08 | wel_DWBM The plots show that both models were better calibrated un-
_ N der wet periods than under dry ones, with higher values of
g 06 - T NSE andd; and lower values of WBE in the wet calibration
gﬁ periods. For example, under the dry conditions, average NSE
=04 [ A was 0.70 and 0.57 for the SIMHYD and the DWBM model.
z TN Under the wet conditions, average NSE was 0.76 and 0.65 re-
02 | spectively for the two models. In Fig. 5a, a larger NSE value
means a better performance, whereas in Fig. 5¢, a smaller
0.0 percentage WBE value is better. It can be noted that all the
0 20 40 60 80 100 results became worse when the calibration periods became
Percentage of tests where NSE exceeded . . . . . . .
10 drier, indicating a higher sensitivity of the models to dry cli-
matic conditions. The results also indicated that the errors
08 [oo—— in the simulated runoff were increased under drier climatic
conditions.
E o6 | It can be seen from Table 3 that under dry and wet calibra-
2 tion periods, the median NSE values are, for the SIMHYD
Soaf y, SIMHYD model, 0.70 and 0.77, respectively, and for the DWBM
A wet_SIMHYD model, 0.58 and 0.66. The medidn values showed sim-
02 | “-'ireyt-g‘\x%ﬁ ilar patterns under dry and wet calibration conditions. The
- median percentile of the WBE values are 13% and 8 % for
0.0 \ \ \ \ the SIMHYD model under dry and wet calibration periods
0 2 reentage 2 tests wheerd, excecdo’ 100 respectively, and 15 % and 12 % for the DWBM model. All
100 these results indicate that the two models can be calibrated
© dry_SIMHYD satisfactorily for most of the tests, although the calibration
ol ____:;3;%;}13 results of the DWBM model are slightly poorer compared
- wet_DWBM with those of the SIMHYD model. The average NSE val-
'§60 7\\ ues calibrated under the wet periods are higher — i.e. better
3 B — by 0.06 (SIMHYD model) and 0.08 (DWBM model) than
it those calibrated under dry periods. The average WBE values
'é calibrated under wet periods are lower — again better — by
= 3% (SIMHYD model) and 5% (DWBM model) than those
calibrated under the dry period.

. N 40 0 % 0 4.2 Comparisons of model validation using different
Percentage of tests where WBE exceeded calibration periOdS

Fig. 5. (a) Percentage of model calibration tests with a NSE value Validation runs were conducted for 60, 120, 60, and 120 tests
greater than or equal to a given NSE value. Similarly, pa(tets  for the dry/dry, dry/wet, wetdry, andwetwet groups, re-
c) are corresponding plots of the modified index of agreemént ( gpectively. The model validation results are summarized in
the water balance error (WBE), respectively. Fig. 6 and Table 4. As expected, the validation results are
slightly poorer than the calibration results, with the averaged
NSE values in the model validation generally being 0.1t0 0.2
percentage of model calibration tests that have a NSE valuéwer than those in the model calibration and percentage wa-
exceeding a given NSE value. Similarly, Fig. 5b—c are corre-ter balance error being 2 to 7 % higher.
sponding plots of the modified index of agreemef) (the Comparing the validation results of tluey/dry, dry/wet,
water balance error (WBE), respectively. It can be seen thawetdry, andwetwet groups in Fig. 6, it can be noted both
the SIMHYD model was well calibrated under both dry and the SIMHYD and DWBM models gave similar patterns. The
wet conditions. The average value is greater than 0.70 foresults for thevetwet are better than those of tdey/wet —
NSE, 0.73 ford;. The average water balance error is 14 % this means that the models performed better during a wet pe-
and 11 % for the dry and wet calibration periods. Comparedriod when they are calibrated against a wet period, compared
with the SIMHYD model, the DWBM model showed slightly to when they are calibrated against a dry period. These re-
poorer results. The average value for the DWBM model issults suggest, not unexpectedly, that if a hydrological model
greater than 0.57 for NSE, 0.65 fd{. The average water is intended to simulate streamflow for a wet climate period
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Fig. 6. Panels(a) and(d): percentage of model validation tests with a NSE value greater than or equal to a given NSE value. Similarly,
panelgb) and(e), (c) and(f) are corresponding plots of the modified index of agreemént the water balance error (WBE), respectively.

then it should be calibrated on a wet segment of the historid.3 Parameter uncertainty under climatic

record. They also show that hydrological models will, in nonstationarity

general, perform better when calibrated in a wet period than

when calibrated in the dry period. As described in Sect. 3.2, assemblies of the 100 best param-

Table 4 summarizes the 25th percentile, median, 75th pereter sets were selected from Monte Carlo simulation under

centile, and average values of NSk,and WBE in the vali-  gifferent calibration conditions. Table 5 shows the percent-

dation periods. The results from ttey/dry test are slightly  age of the catchments in which the model parameter distri-

better than the results from theetdry test in terms of NSE,  pytions for a dry and wet period were significantly different

d1 and WBE. The results indicate, again reasonably, that thqp <0.01). For each model, the parameters are ranked from

hydrological models perform better in a dry period when cal- the most sensitive to calibration conditions to least sensitive.

ibrated in a dry period rather than in a wet period. For the SIMHYD model, the most sensitive parameters were
SUB, SMSC, SQ, and CRAK, each of which significantly
affected 50% or more of the catchments. The other three
parametersk, COEFF, and INSC had smaller effects, with
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Fig. 7. Probability density functions for 7 parameters of the SIMHYD model under dry and wet calibration periods in catchments 110003

and 401210.

INSC (having an effectin only 10 % of catchments) being theet al. (2001, 2004), which was shown to be mostly correlated
most insensitive to choice of dry and wet calibration periods.with vegetation cover. The parametéwas more sensitive

In order to further examine the effects of climatic condi- to the choice of the calibration period for the water-limited
tions on the results, we grouped the 30 study catchments intéatchments than for the energy-limited catchments. It is in-
two climatic types: 16 water-limited catchments with an in- teresting to note that all the parameters behaved differently
dex of drynessk ,/P) greater than 1, and 14 energy-limited under the water-limited and energy-limited conditions, ex-

catchments with an index of dryness less than 1.
be noted that all parameters performed differently in water-

It carcept perhaps for parameie;s.
The above results indicate that some of the model param-

limited and energy-limited catchments, in particular SUB, eters are sensitive to calibration conditions and the others
are relative robust. An important question is how the sen-

SMSC, and CRAK.

For the DWBM model, the parameters and Smax exhib-

sitive parameters vary between the different calibration peri-

ited different effects on runoff under the dry and wet cali- ods. Figures 7 and 8 show the distributions of the optimized
bration periods as 67 % and 63 % of the catchments showegarameters of the two models under the dry and wet condi-
statistically different results at the 0.01 level. At the other tions in two selected catchments. The catchment 110003 has
extreme, the parametep displayed an apparent insensitiv- summer-dominant rainfall and catchment 401210 is winter-
ity to the calibration periods (just 23 % of catchments weredominant. For the SIMHYD model, some parameters ex-
affected). The parametep represents evapotranspiration ef- hibited different distributions in the dry and wet calibration

ficiency and it behaves similarly to the parametesf Zhang

Hydrol. Earth Syst. Sci., 16, 12394254 2012

periods. For example, the parameter SUB tends to be more
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Table 3. Summary results of the model calibration under different climatic conditions (i.e. dry and wet periods).

Indicator SIMHYD SIMHYD DWBM DWBM
calibrated on calibrated on calibrated on calibrated on
dry period wet period dry period wet period
25th NSE 0.84 0.85 0.71 0.77
Median NSE 0.70 0.77 0.58 0.66
75th NSE 0.61 0.68 0.43 0.54
Average NSE 0.70 0.76 0.57 0.65
25thdy 0.77 0.79 0.71 0.75
Mediandy 0.72 0.76 0.67 0.71
75thdy 0.70 0.74 0.61 0.68
Averaged; 0.73 0.76 0.65 0.71
25th WBE 22 16 25 24
Median WBE 13 8 15 12
75th WBE 6 4 9 5
Average WBE 14 11 22 17
0.60 0.50
dry 110003 dry_110003
050 Nt wet 110003 | | mmeeees wet_110003
dry 401210 040 | dry_401210
— — — —wet_401210 ————wet 401210/ ¢
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Fig. 8. Probability density functions for 4 parameters of the DWBM model under dry and wet calibration periods in catchments 110003
and 401210.

likely at a higher value in the dry periods than in the wet 5 Discussion
periods. However, the results did not reveal any systematic

trends in the other parameters. For the DWBM model, theS f ¢ h is infl db ber of f
most likely value for the parametet was higher in the dry treamflow of a catchment is influenced by a number of fac-

period than in the wet period for catchment 110003 and vicetors,’ most not|_ceably rainfall and antecedent soll mmstgre.
During dry periods, catchments are generally characterized

versa for catchment 401210 (Fig. 8). The paramétgix b I o di & nfall rafi ith
showed different distributions in the dry and wet periods and y smallruno events and lowerruno to rainiall ratios W't.
higher percentage error in both rainfall and runoff. In this

these distributions vary across the catchments. _ o
case, rainfall-runoff models become very sensitive to both
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Table 4. Summary results of the model validation when calibrated Table 5. Percent of the catchments in which the model parame-

under different climatic conditions. ter distributions for a dry and wet calibration period were signif-
icantly different (p <0.01) under Monte Carlo simulation. Also
Indicator  dry/dry dry/wet wet/dry wet/wet shown are the results for water-limited /P > 1) and energy-
25th NSE 0.72 0.74 0.68 0.77 limited (E,/P <1) catchments_. _ For eac_h mgdel, thg parameters
Median NSE 0.55 0.64 051 o069 areranked from the most sensitive to calibration conditions to least
75th NSE 042 044 041 055  sensitive.
Average NSE 0.57 0.61 0.54 0.66
Model Parameter Percent Percent of Percent of
25th_dl 0.74 0.78 0.74 0.78 of catchments  water-limited  energy-limited
SIMHYD Medlandl 0.71 0.74 0.70 0.75 catchments catchments
75thdq 0.66 0.70 0.63 0.72 SUB = a1 Py
Averagedq 0.69 0.73 0.68 0.74 SMSC 60 75 43
25th WBE 34 30 39 23 SQ 53 56 50
Median WBE 20 19 28 13 sIMHYD CRAK 50 63 36
75th WBE 14 8 16 7 K 37 31 43
Average WBE 24 21 29 17 COEFF 33 38 29
INSC 10 13 7
25th NSE 0.56 0.65 0.51 0.72
Median NSE 0.46 0.48 0.45 0.61 gl S; ?é 28
75th NSE 034 035 030 042 pweM 47 63 29
Average NSE  0.48 0.52 0.45  0.59 s 23 o5 21
25thdq 0.69 0.73 0.68 0.74
Mediandq 0.65 0.69 0.63 0.70
DWBM  75thg, 058 064 056 0.6
Averaged 0.62 0.68 0.61  0.69 In this study, the differences in average annual rainfall be-
25th WBE 35 29 53 25 tween the wet and dry periods ranged from 10 to 47 % of the
Median WBE 22 20 33 18 long-term average rainfall and are comparable with percent-
75th WBE 15 12 18 11 age change in man annual rainfall for 2030 relative to 1990
Average WBE 27 23 36 19 from 15 GCMs for the Murray Darling Basin in Australia

(Chiew et al., 2008).

The results of this study indicate that calibration peri-
rainfall and parameter optimization. Also, dry periods may s can cause significant shifts in model parameter distri-
not contain enough high flows to adequately calibrate modeptions. Some model parameters are relatively sensitive to
parameters responsible for simulating high flows (Gan et al.the choice of calibration periods, while the others are fairly
1997). Apart from rainfall amount, spatial variability of jnsensitive. As well as the impact of calibration periods
rainfall can also affect runoff. Smith et al. (2004) showed g parameter distributions, whether catchments are water-
that improved runoff simulations can be obtained from dis- |imited or energy-limited also needs to be taken into con-
tributed versus lumped rainfall-runoff models in catchmentsgjderation. For the SIMHYD model, the most sensitive pa-
with considerable rainfall variability. Spatial variability of ameters are SUB, SMSC, and CRAK. The parameter SUB
rainfall was also found to be the dominant control on runoff s sed to estimate interflow and it can be an important pa-

production (Segond et al., 2007). In this study, spatially av-;gmeter in some catchments (Chiew and McMahon, 1994).
eraged rainfall was used in both model calibration and val-However, it is difficult to estimate this parameter a priori
idation. This is likely to affect the model results and it is a5 it is poorly correlated with any catchment characteristics
expected that the rainfall variability effect will be greater in (Chiew and McMahon, 1994). The soil moisture store ca-
dry periods than in wet periods. pacity (SMSC) affects many processes such as infiltration
It has been widely acknowledged that spatial variability of 3ng evapotranspiration and it is determined by soil proper-
antecedent soil moisture conditions plays an important rolgjes and vegetation characteristics (e.g. rooting depth). Ac-
in runoff generation (Grayson anddichl, 2000). Minet et  cyrate estimation of this parameter is essential to achieving
al. (2011) investigated the effect of spatial soil moisture Vari'satisfactory model performance. The parameter CRAK de-
ability on runoff simulations using a distributed hydrologic termines groundwater recharge/baseflow and is highly cor-
model and showed that model results are sensitive to Soilg|ated with soil types. For the DWBM model, the most
moisture spatial variability, especially in dry conditions. At genpsitive parameters acg and Smax, andd, representing
catchment scales, soil moisture exhibit larger heterogeneity.gichment rainfall retention efficiency, maximum storage ca-
under dry conditions than wet conditions and this means erpacity, and the recession constant, respectively (L. Zhang et
rors associated with dry period runoff simulations are likely g 2008). In a way, these parameters are similar to those
to be greater as runoff generation exhibits non-linear threshgensitive parameters in SIMHYD in terms of their functional
old behaviour. controls on water balance components. Merz et al. (2011)
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applied a semi-distributed conceptual rainfall-runoff model for calibration and a wet period for validation, the models
to 273 catchments in Austria and showed that the parameproduced more accurate estimates of streamflow (i.e. higher
ters of the soil moisture accounting schemes exhibited strongNSE and lower bias) compared with estimates produced us-
dependence on calibration conditions, consistent with the reing a wet period for calibration and a dry period for valida-
sults of the current study. This also suggests that parametion (see Table 4). Similar results have been reported by Vaze
ters related to soil moisture accounting are likely to changeet al. (2010) and the finding can be partly explained by the
with calibration conditions. The fact that these parame-fact that hydrological models generally perform better in wet
ters are sensitive to the choice of calibration period (i.e. dryperiods than in dry periods (Vaze et al., 2010; Gallart et al.,
vs. wet) also indicates that large uncertainty may be asso2007; Perrin et al., 2007; L&h and Harlin, 2000; Gan et al.,
ciated with these parameters and cares need to be exercis&é897; Hughes, 1997).

when transferring the parameters to conditions different from A closer examination of model errors reveals that when
the calibration. the model parameters, calibrated on a dry period, were used

These findings have major implications for studies of cli- to simulate runoff during a wet period, the mean of the simu-
mate change impact on streamflow. When a hydrologicalated runoff was usually underestimated; conversely, when
model calibrated for a given climatic condition (e.g. wet pe- model parameters, calibrated on a wet period, were used
riods) is used to simulate runoff of different climatic con- to simulate dry period runoff, the mean simulated runoff
ditions (e.g. dry periods), transfer of some model parameiwas overestimated, consistent with the findings of Gan et
ters (i.e. sensitive parameters) may result in large errors iral. (1997). Vaze et al. (2010) also showed that when hydro-
simulated runoff. One may argue that the sensitive modelogical models were calibrated using long period of record
parameters should be updated by functionally relating themand tested for sub-periods with above long-term average rain-
with climatic variables such as rainfall (Merz et al., 2011). fall, the model performed well. However, performance of the
This could potentially reduce uncertainty and lead to moremodels starts to deteriorate when tested for sub-periods with
accurate predictions. However, some of the parameters argelow long-term average rainfall.
poorly related to catchment characteristics (e.g. rainfall) and Traditionally, one would use a sufficiently long period of
the problem is further complicated by the fact that not ev-records for model calibration to ensure proper presentation
ery parameter is well identified and different parameter val-of climate/streamflow variability and to achieve stable model
ues can result in equal model performance, i.e. equifinalityparameters. If the model is to be used under stationary con-
(Beven, 1993). It has also been recognized that model caliditions, it is generally recommended that the whole record
bration tends to compensate model structural errors (Merz eshould be divided into two segments, one for calibration and
al., 2011; Wagener et al., 2003), making it difficult to under- the other for validation. However, if a model is to be used un-
stand how model parameters vary with calibration conditionsder non-stationary conditions, its parameters should be trans-
(Wagener et al., 2010). ferable. In other words, the parameters should be estimated

The differential split-sample test can be considered as theo that the model gives accurate estimates of streamflow out-
first step in addressing the issue of parameter transferabilside the climatic conditions encountered in calibration pe-
ity under non-stationary conditions. Monte Carlo simula- riod. In this case, one should identify two periods with dif-
tion provided an effective and pragmatic approach to explor-ferent climatic conditions (e.g. a dry period and wet period)
ing uncertainty in hydrological model parameters. The per-from the whole record and apply the so-called differential
formance of rainfall-runoff models is related to catchment split-sample test (Klemes, 1986). One another approach to
characteristics such as climate, topography, soil, vegetatiorthis problem is to examine how other catchments behave un-
catchment shape, geology, drainage network. In such a conder these different climatic conditions, i.e. trading space for
plex situation, it is hard to pinpoint the source of param- time (Singh et al., 2011).
eter uncertainty, but the results of this study showed that
calibration periods and catchment climatic conditions are
both important factors that can result in uncertainty in model6 Conclusions
performance.

Credibility of a hydrological model has traditionally been Potentially large uncertainties arise when predicting hydro-
tested using streamflow data from a validation period thatiogical responses to future climate change — due to factors
is similar to calibration period. The assumption is that the such as the choice of emission scenario, GCM, downscaling
model will be used under conditions similar to those of the technique, hydrological model, optimization technique, and
calibration. However, when dealing with impact of climate the way the model is calibrated. It is therefore important to
change on streamflow, the assumption is not generally validlevelop reliable ways to calibrate hydrological models under
and the model needs to be tested under conditions differpresent-day conditions. This study compared hydrological
ent from those of the calibration. For this purpose, themodel performances under nonstationarity by using the dif-
two hydrological models were evaluated using differential ferential split-sample test and two conceptual rainfall-runoff
split-sample test (Klemes, 1986). When using a dry periodmodels, DWBM and SIMHYD, applied to 30 catchments in

www.hydrol-earth-syst-sci.net/16/1239/2012/ Hydrol. Earth Syst. Sci., 16, 123254 2012



1252 C. Z. Li et al.: The transferability of hydrological models under nonstationary climatic conditions

Australia. Monte Carlo simulation was used to explore pa-Calder, I. R.: Water use by forests, limits and controls, Tree Phys-
rameter stability and transferability in the context of historic  iol., 18, 625-631, 1998.

climate variability. Chiew, F. H. S. and McMahon, T. A.: Application of the daily
model structure, performance of a hydrological model is aIsoCht_ra“aE cstcgms\;ﬁs, J. Hﬁdrﬂ"' l\l/lsill 3:3_4-%6,&1994& bittock. A
dependent on how it is calibrated. If a hydrological model is IBe\'N,SiI:nuiati;J,n of?ﬁ(e)ri];n e Ofcli%;r;’ ot :'Ln rg:%if o
intended to simulate runoff for a wet climate scenario thenit _". P d

. - . soil moisture in Australian catchments, J. Hydrol., 167, 121-147,
should be calibrated on a wet segment of the historic record. ;gg5

Conversely, if it is intended to simulate runoff for a dry cli- chjew, F. H. S., Peel, M. C., and Western, A. W.: Application and
mate scenario then it should be calibrated on a dry segment testing of the simple rainfall-runoff model SIMHYD, in: Math-
of the historic record. We also found that when using a ematical Models of Small Watershed Hydrology and Applica-
dry period for calibration and a wet period for validation, tions, edited by: Singh, V. P. and Frevert, D. K., Water Resources
the models produced more accurate estimates of streamflow Publication, Littleton, Colorado, USA, 335-367, 2002.
compared with estimates produced using a wet period for calChiew, F. H. S., Teng, J., Kirono, D., Frost, A. J., Bathols, J. M.,
ibration and a dry period for validation. In other words, trans- ~ Vaze, J., Viney, N. R., Young, W. J., Hennessy, K. J., and Cai,
ferring model parameter values obtained from dry periods to W- J:: Climate data for hydrologic scenario modelling across
wet periods will resultin smaller errors in streamflow estima- ¢ Murray-Darling Basin. A report to the Australian Govern-
tion than transferring model parameter values obtained from ment from the CSIRO Murray-Darling Basin Sustainable Yields

. . - Project, Water for a Healthy Country Flagship, CSIRO, 42 pp.,
wet periods to dry periods. The soil related model parame- 555
ters are more sensitive to the choice of calibration period tharehiew, F. H. s., Teng, J., Vaze, J., Post, D. A., Perraud, J. M.,
other parameters and large uncertainty may be introduced Kirono, D. G. C., and Viney, N. R.: Estimating climate change
when transferring the soil related parameters to conditions impact on runoff across southeast Australia: method, results, and
different from the calibration. Our research has implications implications of the modeling method, Water Resour. Res., 45,
for hydrological modellers looking to estimate future runoff ~ W10414.doi:10.1029/2008WR007332009.
and we hope this study will stimulate further research intoFu, B. P.: On the calculation of the evaporation from land surface,

the selection of calibration data. Sci. Atmos. Sin., 5, 23-31, 1981. o
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