
Hydrol. Earth Syst. Sci., 16, 1239–1254, 2012
www.hydrol-earth-syst-sci.net/16/1239/2012/
doi:10.5194/hess-16-1239-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

The transferability of hydrological models under nonstationary
climatic conditions

C. Z. Li 1,2,3, L. Zhang2, H. Wang1, Y. Q. Zhang2, F. L. Yu1, and D. H. Yan1

1State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and
Hydropower Research, Beijing, 100038, China
2CSIRO Land and Water, Canberra, ACT 2601, Australia
3State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China

Correspondence to:L. Zhang (lu.zhang@csiro.au)

Received: 8 September 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 23 September 2011
Revised: 3 April 2012 – Accepted: 10 April 2012 – Published: 26 April 2012

Abstract. This paper investigates issues involved in cali-
brating hydrological models against observed data when the
aim of the modelling is to predict future runoff under differ-
ent climatic conditions. To achieve this objective, we tested
two hydrological models, DWBM and SIMHYD, using data
from 30 unimpaired catchments in Australia which had at
least 60 yr of daily precipitation, potential evapotranspira-
tion (PET), and streamflow data. Nash-Sutcliffe efficiency
(NSE), modified index of agreement (d1) and water balance
error (WBE) were used as performance criteria. We used a
differential split-sample test to split up the data into 120 sub-
periods and 4 different climatic sub-periods in order to assess
how well the calibrated model could be transferred different
periods. For each catchment, the models were calibrated for
one sub-period and validated on the other three. Monte Carlo
simulation was used to explore parameter stability compared
to historic climatic variability. The chi-square test was used
to measure the relationship between the distribution of the
parameters and hydroclimatic variability. The results showed
that the performance of the two hydrological models dif-
fered and depended on the model calibration. We found that
if a hydrological model is set up to simulate runoff for a
wet climate scenario then it should be calibrated on a wet
segment of the historic record, and similarly a dry segment
should be used for a dry climate scenario. The Monte Carlo
simulation provides an effective and pragmatic approach to
explore uncertainty and equifinality in hydrological model
parameters. Some parameters of the hydrological models
are shown to be significantly more sensitive to the choice
of calibration periods. Our findings support the idea that

when using conceptual hydrological models to assess future
climate change impacts, a differential split-sample test and
Monte Carlo simulation should be used to quantify uncer-
tainties due to parameter instability and non-uniqueness.

1 Introduction

Climate change caused by increasing atmospheric concen-
tration of greenhouse gases may have significant effects on
the hydrological cycle and water availability, hence affecting
agriculture, forestry, and other industries (Rind et al., 1992;
IPCC, 2007). Changes in the hydrological cycle may mean
more floods and droughts, and increased pressure on water
supply and irrigation systems. It is important for us to be
able to estimate the potential impact of climate change on
water resources and develop sustainable management strate-
gies. One of the challenges in predicting hydrological re-
sponse to climate change is the issue of hydrological nonsta-
tionarity (Milly et al., 2008). There are numerous factors that
can affect hydrological stationarity and these include vegeta-
tion responses to elevated CO2, changes in land use and rain-
fall characteristics. It is crucial to improve our understanding
of the effect of nonstationarity on hydrological assessments
of climate change.

Hydrological models are important tools for predicting the
impact of climate change on future water resources and as-
sociated socioeconomic impacts. A number of models have
been used to evaluate hydrological effects of climate change
(Rind et al., 1992). Predicting the hydrological impacts
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of climate change involves two key steps: downscaling the
outputs from global climate models (GCMs) and then run-
ning hydrological models. At present, outputs from different
GCMs have been used to drive hydrological models for pre-
dicting streamflow under a changed climate (Chiew et al.,
2009). There are many factors that can affect the accuracy
of a rainfall-runoff model in predicting the hydrological re-
sponses to climate change, including the particular hydro-
logical model chosen, the GCM used, the optimisation tech-
nique employed, and the calibration period of the model.
Most researchers usually use an ensemble of these techniques
to minimise the uncertainty in predicting climate change im-
pacts. For instance, Chiew et al. (1995) used results from
5 separate GCM experiments and reported that, in certain
parts of Australia, the GCMs did not even agree on the direc-
tion of change in rainfall (i.e. increasing or decreasing rain-
fall). Boorman and Sefton (1997) evaluated effects of climate
change on mean runoff, flood magnitude, and low flow for
3 catchments in UK using 2 conceptual rainfall-runoff mod-
els. In their study, they considered 2 climate scenarios and
8 climate sensitivity tests. Minville et al. (2008) produced an
uncertainty envelope of future hydrological variables by con-
sidering 10 equally weighted climate projections from a com-
bination of 5 GCMs and 2 greenhouse gas emission scenar-
ios. Monomoy and O’Connor (2007) used 6 automatic opti-
misation techniques to calibrate a conceptual rainfall-runoff
model, and there have been a number of more recent studies
for estimating the impact of climate change on hydrological
processes (Chiew et al., 2009; Vaze et al., 2010; Boyer et al.,
2010). An implicit assumption in all these studies is that
rainfall-runoff models calibrated over the historical period
are valid for predicting the future hydrological regime under
a changed climate and this relates directly to the assumption
of hydrological stationarity. However, little has been carried
out to test the validity of this assumption.

Calibration of hydrological models generally involves op-
timizing model parameters to match measured streamflow
using observed rainfall as input. Performance of the model is
usually tested using a simple spilt-sample test, i.e. the model
is calibrated for one period of the record and tested for an-
other period. The simple split-sample test may be sufficient
for applications where hydroclimatic conditions between the
calibration period and validation period are similar. How-
ever, when the model needs to be applied to simulate stream-
flow from periods with different conditions from those in the
calibration periods, a more powerful test is required (Klemes,
1986; Xu, 1999; Seibert, 2003). In a recent paper, Andreas-
sian et al. (2009) used crash test to advocate for more com-
prehensive model testing in hydrology. For predicting the
impact of climate change on streamflow, the input rainfall
series are varied according to an assumed future climate sce-
nario and this often means different climatic conditions. But
is it appropriate to use these models for future climatic con-
ditions when rainfall-runoff relations could be very different
to those experienced historically?

This paper investigates the transferability of hydrological
models under nonstationary climatic conditions. We com-
pare results obtained with different hydrological models cal-
ibrated under different climatic conditions. The paper first
presents two hydrological models chosen for this study – the
Dynamic Water Balance Model (DWBM) and the SIMHYD
model – and then describes the data used to calibrate them.
We describe different methods of applying the data, includ-
ing a differential split-sample test, a Monte Carlo simulation,
and a performance criterion. Finally, we analyse the perfor-
mance of the models under different calibration conditions
and discuss the optimal parameters for each.

2 Description of hydrological models and data

Two lumped hydrological models with daily inputs were
chosen for this study: the Dynamic Water Balance Model
(DWBM) (L. Zhang et al., 2008) and the SIMHYD model
(Chiew et al., 2002), and detailed description of the two mod-
els is presented below.

2.1 The Dynamic Water Balance Model (DWBM)

The DWBM model used in this study was developed by
L. Zhang et al. (2008). It is a lumped conceptual water bal-
ance model with two stores: a near surface root-zone store
and a deeper zone store (Fig. 1). The model is based on
Budyko’s concept of water availability and atmospheric de-
mand (Budyko, 1958) or the concept of “limits and controls”
(Calder, 1998). Fundamental to this model is a functional
form that represents a smooth transition between supply and
demand limits (Fu, 1981):

E

P
= 1 +

E0

P
−

[
1 +

(
E0

P

)w]1/w

(1)

wherew is a model parameter ranging between 1 and∞.
For the purpose of model calibration, we defineα = 1− 1/w
so thatα varies between 0 and 1. This definition also conve-
niently associates an increase inα with an increase in evap-
otranspiration efficiency.P is rainfall andE0 is potential
evapotranspiration at mean annual timescale. More details
of this mean annual water balance model are given in Zhang
et al. (2004) and L. Zhang et al. (2008).

It is assumed that rainfallP(t) in time stept will be
partitioned into direct runoffQd(t) and catchment rainfall
retention:

P(t) = Qd(t) + X(t) (2)

where X(t)is called catchment rainfall retention and is
the amount of rainfall retained by the catchment for
evapotranspiration ET(t), change in soil moisture storage
S(t) − S(t − 1) and rechargeR(t).

The demand limit forX(t) is the sum of available storage
capacity (Smax− S(t − 1)) and potential evapotranspiration

Hydrol. Earth Syst. Sci., 16, 1239–1254, 2012 www.hydrol-earth-syst-sci.net/16/1239/2012/



C. Z. Li et al.: The transferability of hydrological models under nonstationary climatic conditions 1241

 39

 918 

RAIN
PET

direct runoff
SMS

soil 
moisture 
store Smax

GW

groundwater store

baseflow

recharge Q

Model parameters and description
α1          retention efficiency
α2          evapotranspiration efficiency
Smax        soil water storage capacity (mm)
d            baseflow linear regression  919 

Figure 1 Structure of the lumped dynamic water balance model (DWBM). 920 
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Fig. 1. Structure of the lumped dynamic water balance model
(DWBM).

(E0(t)) and is denoted asX0(t), while the supply limit can
be considered as rainfallP(t). Following a similar argument
to Budyko (1958), we can postulate that:

X(t)/P (t) → 1 asX0(t)/P (t) → ∞ (very dry conditions) (3)

X(t) → X0(t) asX0(t)/P (t) → 0 (very wet conditions). (4)

The catchment rainfall retentionX(t) can be calculated as:

X(t) = P(t) F

(
X0(t)

P (t)
, α1

)
(5)

whereF ( ) is Fu’s curve – Eq. (1),α1 is rainfall retention
efficiency, i.e. a largerα1 value will result in more rainfall
retention and less direct runoff.

From Eqs. (2) and (5), direct runoff is calculated as:

Qd(t) = P(t) − X(t). (6)

At sub-annual time scales, water availabilityW(t) can be de-
fined as:

W(t) = X(t) + S(t − 1). (7)

Combining the definition ofX(t) with Eq. (7), one obtains:

W(t) = ET(t) + S(t) + R(t). (8)

While Eq. (7) defines the source of the water availability,
Eq. (8) determines the partitioning. Next define evapotran-
spiration opportunity (Sankarasubramanian and Vogel, 2003)
asY (t) = ET(t) +S(t), we obtain:

W(t) = Y (t) + R(t). (9)

Table 1. Ranges of parameter values in DWBM.

Parameter Units Description Lower Upper
bound bound

α1 / retention efficiency 1 5
α2 / evapotranspiration efficiency 1 5
Smax mm soil water storage capacity 5 500
d / baseflow linear regression 0.01 1

/ indicates dimensionless

The demand limit forY (t) can be considered as the sum of
potential evapotranspiration (E0(t)) and soil water storage
capacity (Smax) and is denoted asY0(t), while the supply
limit is the available waterW(t). Similar to Budyko (1958),
we can postulate that:

Y (t)/W(t) → 1 asY0(t)/W(t) → ∞ (very dry conditions) (10)

Y (t) → Y0(t) asY0(t)/W(t) → 0 (very wet conditions). (11)

The evapotranspiration opportunityY (t) can be estimated
from the following relationship:

Y (t) = W(t) F

(
E0(t) + Smax

W(t)
, α2

)
. (12)

Thus groundwater rechargeR(t)can be calculated from
Eq. (9). The next step is to calculate evapotranspiration
ET(t). The demand limit for ET(t) can be considered as po-
tential evapotranspirationE0(t) and the supply limit is the
available waterW(t). Similar to Budyko (1958), evapotran-
spiration ET(t) can be calculated as:

ET(t) = W(t) F

(
E0(t)

W(t)
, α2

)
(13)

whereα2 is a model parameter, representing evapotranspira-
tion efficiency.

Soil water storage can now be calculated as:

S(t) = Y (t) − ET(t). (14)

Finally, groundwater storage is treated as linear reservoir, so
that baseflow and groundwater balance can be modelled as:

Qb(t) = d G(t − 1) (15)

G(t) = (1 − d) G(t − 1) + R(t) (16)

whereQb is baseflow,G is groundwater storage, andd is a
recession constant.

The DWBM model has been applied to 265 catchments in
Australia and showed encouraging results (L. Zhang et al.,
2008). The model has four parameters: retention efficiency
(α1); evapotranspiration efficiency (α2); soil water storage
capacity (Smax), and baseflow linear recession constant (d).
The range of the parameter values is shown in Table 1.
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Figure 2 Structure of the lumped daily rainfall–runoff model SIMHYD. 934 
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Fig. 2. Structure of the lumped daily rainfall-runoff model (SIMHYD).

2.2 The SIMHYD model

The SIMHYD model is a lumped conceptual daily rainfall-
runoff model (Chiew et al., 2002), driven by daily rainfall and
PET, which simulates daily streamflow. It has been tested
and used extensively across Australia (Chiew et al., 2002;
Siriwardena et al., 2006; Viney et al., 2008; Y. Q. Zhang et
al., 2008; Zhang et al., 2009). Figure 2 shows the structure

of the SIMHYD model and the algorithms controlling how
water enters the system from precipitation, flows into sev-
eral stores, and then flows out through evapotranspiration and
runoff. The SIMHYD model has 7 parameters, and the useful
ranges of them are shown in Table 2.

In the SIMHYD model, daily rainfall is first intercepted
by an interception store, which is emptied each day by evap-
oration. Incident rainfall, which occurs if rainfall exceeds

Hydrol. Earth Syst. Sci., 16, 1239–1254, 2012 www.hydrol-earth-syst-sci.net/16/1239/2012/
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Table 2. Ranges of parameter values in the SIMHYD model.

Parameter Units Description Lower Upper
bound bound

INSC mm interception store capacity 0.5 5.0
COEFF mm maximum infiltration loss 50 400
SQ / infiltration loss exponent 0 6.0
SMSC mm soil moisture store capacity 50 500
SUB / constant of proportionality in interflow equation 0 1
CRAK / constant of proportionality in groundwater recharge equation 0 1
K / baseflow linear regression parameter 0.003 0.3

/ indicates dimensionless
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Figure 3 Location map of the 30 catchments used for this study. 943 
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Figure 4 Annual historical precipitation of the Corang River catchment showing 946 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 947 

conditions. 948 

Fig. 3. Location map of the 30 catchments used for this study.

the maximum daily interception, is then subjected to an infil-
tration function. The incident rainfall that exceeds the infil-
tration capacity becomes infiltration excess runoff. A soil
moisture function diverts the infiltrated water to the river
(as saturation excess runoff/interflow), groundwater store (as
recharge) and soil moisture store. The saturation excess
runoff/interflow is first estimated as a linear function of the
soil wetness (soil moisture level divided by soil moisture ca-
pacity). The equation used to simulate interflow therefore
attempts to mimic both the interflow and saturation excess
runoff processes (with soil wetness used to reflect those parts
of the catchment that are saturated and from which satura-
tion excess runoff can occur). Groundwater recharge is then
estimated, also as a linear function of the soil wetness. The
remaining moisture flows into the soil moisture store. Evap-
otranspiration from the soil moisture store is estimated as
a linear function of the soil wetness, but cannot exceed the

potential rate (PET minus intercepted water). The soil mois-
ture store has a finite capacity and overflows into the ground-
water store, baseflow from which is simulated as a linear re-
cession from the groundwater store. The model has therefore
three runoff components: infiltration excess runoff, satura-
tion excess runoff/interflow, and baseflow.

2.3 Study catchments and data

In this study 30 catchments from Australia were selected
with at least 60 yr of unimpaired daily streamflow data
(Fig. 3). Unimpaired streamflow is defined as streamflow that
is not subject to regulation or diversion. The catchment area
ranges from 82 to 1891 km2 with mean annual streamflow
varied between 53 to 1363 mm. The mean annual precipi-
tation (P ) ranges from 628 to 2095 mm and annual poten-
tial evapotranspiration (PET) ranges from 817 to 2098 mm,

www.hydrol-earth-syst-sci.net/16/1239/2012/ Hydrol. Earth Syst. Sci., 16, 1239–1254, 2012
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representing diverse hydrological and climatic conditions.
The runoff coefficient varies from 0.08 to 0.65.

Catchment averaged annual rainfall was estimated from
gridded SILO daily rainfall (http://www.longpaddock.qld.
gov.au/silo, Jeffrey et al., 2001). The SILO Data Drill pro-
vides surfaces of daily rainfall and other climate data inter-
polated from point measurements made by the Australian
Bureau of Meteorology. The spatial resolution of the grid-
ded daily rainfall data is 0.05◦ based on interpolation of over
6000 rainfall stations across Australia. The interpolation uses
monthly rainfall data, ordinary kriging with zero nugget, and
a variable range. Monthly rainfall for each 5×5 km grid cell
was converted to daily rainfall using daily rainfall distribu-
tion from the station closest to the grid cell (Jeffrey et al.,
2001). The daily time series of maximum and minimum tem-
peratures, incoming solar radiation, actual vapour pressure,
and precipitation at 0.05× 0.05 (∼5 km× 5 km) grid cells
from the SILO Data Drill (http://www.longpaddock.qld.gov.
au/silo) were used.

Potential evaporation was calculated using the Priestley-
Taylor equation (Priestley and Taylor, 1972) for each catch-
ment with the Priestley-Taylor coefficient set to 1.26 follow-
ing Raupach (2000). In the calculation, the available energy
was taken as equal to the net radiation by neglecting ground
heat flux. The net radiation was calculated from the incom-
ing global shortwave and longwave radiation, surface albedo,
surface emissivity, and surface temperature as described by
Raupach et al. (2001).

Daily streamflow data were obtained from the Australian
Land and Water Resources Audit project (Peel et al., 2000)
and have been quality checked. Firstly, data quality codes
were checked for any missing and poor-quality data as most
gauging stations provide numerical codes indicating quality
of streamflow data. Missing streamflow data were infilled
by interpolating streamflow values at previous and following
days. Secondly, time series of daily rainfall and streamflow
were plotted to identify any inconsistency and recording er-
rors in the data (e.g. spikes, same streamflow value for a long
period of time). The quality checks are to ensure good qual-
ity streamflow data are used in the study.

3 Methods

3.1 Differential split-sample test

In general, hydrological models rely on stationary condi-
tions (Xu, 1999). Usually, model calibration requires a split-
sample test, where the model is calibrated during one cli-
matic period and validated on another independent period.
The split-sample test is the classical test, being applicable to
cases where there is sufficiently long time series of the cli-
matic data for both calibration and validation and where the
catchment conditions remain unchanged, i.e. stationary (Ref-
sgaard and Storm, 1996). This test gives an indication how

the model might perform for an independent period having
similar conditions. Unfortunately, this test is unable to guar-
antee the applicability of hydrological models under nonsta-
tionary conditions (Xu, 1999; Henriksen et al., 2003).

In order to try to answer the question of whether the trans-
fer of parameter values from the present-day climate to a fu-
ture climate is justified, the “differential split-sample test”
proposed by Klemes (1986) was considered, in which the
hydrological model is tested on calibration and validation pe-
riods under contrasting climatic conditions. In this case, dif-
ferent sub-periods are chosen with different historical rainfall
conditions.

In this study, different periods with various climatic con-
ditions were identified. First of all, we calculated annual and
mean annual precipitation over the whole period of record
for each catchment. Then sub-periods with consecutive an-
nual precipitation greater than the mean were selected as
the “wet” periods and sub-periods with consecutive annual
precipitation less than the mean were selected as the “dry”
periods. The precipitation in the “wet” periods is 10.2 %
to 47.1 % above the long-term average annual precipitation,
while the precipitation in the “dry” periods is 10.4 % to
28.3 % below the long-term average annual precipitation. In
the selection, the minimum length of the sub-period was set
to 5 yr to ensure stable model calibration. If this process re-
sults in more than two “wet” or “dry” periods, then the two
wettest periods or two driest periods were selected for model
calibration and validation (Fig. 4). The hydrological model
was calibrated for each of the 4 sub-periods and validated on
each of the remaining 3 sub-periods in turn, resulting in a
total of 12 calibration and validation tests.

To examine model performance under different calibration
and validation conditions, results from the above tests are
grouped as “dry/dry”, “dry/wet”, “wet/wet”, and “wet/dry” to
represent climatic conditions in the calibration and validation
periods respectively.

3.2 Monte Carlo simulation

It has been widely recognized that hydrological models can
perform equally well against measured runoff estimates even
with different parameter sets and this so-called parame-
ter equifinality may result in large prediction uncertainty
(Beven, 1993; Boorman and Sefton, 1997; Niel et al., 2003;
Wilby, 2005; Minville et al., 2008). The parameter equifinal-
ity is related to overparamterzation of hydrological models
and poor parameter identifiability. For some practical appli-
cations, the parameter equifinality problem may not be an is-
sue and any of the parameter sets may be appropriate. How-
ever, these equally good parameter sets may give different
predictions when the model is used to estimate the effects
of climate change and land use change on streamflow (Uh-
lenbrook et al., 1999). The need for improved model cal-
ibration and testing has been emphasized in recent years.
Monte Carlo simulation is an effective way of calculating
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Figure 3 Location map of the 30 catchments used for this study. 943 
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Figure 4 Annual historical precipitation of the Corang River catchment showing 946 

estimation of 2 wet periods (A) and 2 dry periods (B) to represent different calibration 947 

conditions. 948 

Fig. 4. Annual historical precipitation of the Corang River catchment showing estimation of 2 wet periods(A) and 2 dry periods(B) to
represent different calibration conditions.

confidence limits of predicted time series and exploring pa-
rameter stability and identifiability in the context of historic
climate variability (Uhlenbrook et al., 1999; Wilby, 2005;
Widen-Nilsson et al., 2009).

For each catchment and each calibration period, a Monte
Carlo simulation was undertaken with 1 000 000 runs, each
with randomly generated parameter values within the given
ranges listed in Tables 1 and 2 for the two models respec-
tively. We then selected assemblies of the 100 best parameter
sets for each catchment and each calibration period according
to a goodness-of-fit measure which is defined in Sect. 3.3. Fi-
nally, the models were run during the validation periods with
all the 100 best parameter sets. Calibration with the 100 best
parameter sets gave very similar results and the means were
used in subsequent analysis.

3.3 Model performance criteria

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe,
1970) was used as the statistic criterion of the model perfor-
mance. The objective function used in the model calibration
is the Nash and Sutcliffe efficiency of daily runoff, which is
defined as:

NSE = 1 −

N∑
i=1

(
Qobs,i − Qsim,i

)2

N∑
i=1

(
Qobs,i − Qobs,i

)2
(17)

whereQsim,i andQobs,i are the simulated and observed daily
runoff, respectively,Qobs,i is the mean observed runoff,i is
the i-th day, andN is the number of days sampled and it
varies with individual catchment.

Following recommendations by Legates and Mc-
Cabe (1999) and Hogue et al. (2006), two statistics are
used to indicate the accuracy of the SIMHYD and DWBM

models: the modified index of agreement (d1) and the water
balance error (WBE):

d1 = 1.0 −

N∑
i=1

∣∣Oobs,i − Osim,i
∣∣

N∑
i=1

(∣∣Osim,i − Oobs,i
∣∣ +

∣∣Oobs,i − Oobs,i
∣∣) (18)

WBE =

N∑
i=1

∣∣Qsim,i − Qobs,i
∣∣

N∑
i=1

Qobs,i

× 100 % (19)

with the symbols defined above.

3.4 Analysis of parameter probability distributions
under different calibration periods

For each of the models, we ended up with 100 best parameter
sets for each catchment and for each calibration period. From
these parameters sets we calculated a probability distribution
of each parameter. For a given significance levelα, the chi-
square test (χ2 test) was used to test the null hypothesis that
the parameter distributions obtained for a dry period and a
wet period were significantly different. Ap value greater
than 0.01 indicates a rejection of the null hypothesis, which
means that the parameter probability distributions for the two
different calibration periods are similar.

4 Results

4.1 Comparisons of model calibration under different
climatic conditions

Results of model calibration under different climatic condi-
tions are shown in Fig. 5 and Table 3. Figure 5a shows the
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Figure 5 (a) Percentage of model calibration tests with a NSE value greater than or 950 

equal to a given NSE value. Similarly, Figure 5 (b-c) are corresponding plots of the 951 

modified index of agreement (d1) and the water balance error (WBE), respectively. 952 

Fig. 5. (a)Percentage of model calibration tests with a NSE value
greater than or equal to a given NSE value. Similarly, panels(b–
c) are corresponding plots of the modified index of agreement (d1),
the water balance error (WBE), respectively.

percentage of model calibration tests that have a NSE value
exceeding a given NSE value. Similarly, Fig. 5b–c are corre-
sponding plots of the modified index of agreement (d1), the
water balance error (WBE), respectively. It can be seen that
the SIMHYD model was well calibrated under both dry and
wet conditions. The average value is greater than 0.70 for
NSE, 0.73 ford1. The average water balance error is 14 %
and 11 % for the dry and wet calibration periods. Compared
with the SIMHYD model, the DWBM model showed slightly
poorer results. The average value for the DWBM model is
greater than 0.57 for NSE, 0.65 ford1. The average water

balance error is 22 % and 17 % for the dry and wet calibra-
tion periods.

The plots show that both models were better calibrated un-
der wet periods than under dry ones, with higher values of
NSE andd1 and lower values of WBE in the wet calibration
periods. For example, under the dry conditions, average NSE
was 0.70 and 0.57 for the SIMHYD and the DWBM model.
Under the wet conditions, average NSE was 0.76 and 0.65 re-
spectively for the two models. In Fig. 5a, a larger NSE value
means a better performance, whereas in Fig. 5c, a smaller
percentage WBE value is better. It can be noted that all the
results became worse when the calibration periods became
drier, indicating a higher sensitivity of the models to dry cli-
matic conditions. The results also indicated that the errors
in the simulated runoff were increased under drier climatic
conditions.

It can be seen from Table 3 that under dry and wet calibra-
tion periods, the median NSE values are, for the SIMHYD
model, 0.70 and 0.77, respectively, and for the DWBM
model, 0.58 and 0.66. The mediand1 values showed sim-
ilar patterns under dry and wet calibration conditions. The
median percentile of the WBE values are 13 % and 8 % for
the SIMHYD model under dry and wet calibration periods
respectively, and 15 % and 12 % for the DWBM model. All
these results indicate that the two models can be calibrated
satisfactorily for most of the tests, although the calibration
results of the DWBM model are slightly poorer compared
with those of the SIMHYD model. The average NSE val-
ues calibrated under the wet periods are higher – i.e. better
– by 0.06 (SIMHYD model) and 0.08 (DWBM model) than
those calibrated under dry periods. The average WBE values
calibrated under wet periods are lower – again better – by
3 % (SIMHYD model) and 5 % (DWBM model) than those
calibrated under the dry period.

4.2 Comparisons of model validation using different
calibration periods

Validation runs were conducted for 60, 120, 60, and 120 tests
for the dry/dry, dry/wet, wet/dry, andwet/wet groups, re-
spectively. The model validation results are summarized in
Fig. 6 and Table 4. As expected, the validation results are
slightly poorer than the calibration results, with the averaged
NSE values in the model validation generally being 0.1 to 0.2
lower than those in the model calibration and percentage wa-
ter balance error being 2 to 7 % higher.

Comparing the validation results of thedry/dry, dry/wet,
wet/dry, andwet/wet groups in Fig. 6, it can be noted both
the SIMHYD and DWBM models gave similar patterns. The
results for thewet/wet are better than those of thedry/wet –
this means that the models performed better during a wet pe-
riod when they are calibrated against a wet period, compared
to when they are calibrated against a dry period. These re-
sults suggest, not unexpectedly, that if a hydrological model
is intended to simulate streamflow for a wet climate period
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Figures 6 (a) and (d) Percentage of model validation tests with a NSE value greater 956 

than or equal to a given NSE value. Similarly, Figures 6 (b) and (e), Figures 6 (c) 957 

and (f) are corresponding plots of the modified index of agreement (d1), the water 958 

balance error (WBE), respectively. 959 
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Fig. 6. Panels(a) and(d): percentage of model validation tests with a NSE value greater than or equal to a given NSE value. Similarly,
panels(b) and(e), (c) and(f) are corresponding plots of the modified index of agreement (d1), the water balance error (WBE), respectively.

then it should be calibrated on a wet segment of the historic
record. They also show that hydrological models will, in
general, perform better when calibrated in a wet period than
when calibrated in the dry period.

Table 4 summarizes the 25th percentile, median, 75th per-
centile, and average values of NSE,d1 and WBE in the vali-
dation periods. The results from thedry/dry test are slightly
better than the results from thewet/dry test in terms of NSE,
d1 and WBE. The results indicate, again reasonably, that the
hydrological models perform better in a dry period when cal-
ibrated in a dry period rather than in a wet period.

4.3 Parameter uncertainty under climatic
nonstationarity

As described in Sect. 3.2, assemblies of the 100 best param-
eter sets were selected from Monte Carlo simulation under
different calibration conditions. Table 5 shows the percent-
age of the catchments in which the model parameter distri-
butions for a dry and wet period were significantly different
(p < 0.01). For each model, the parameters are ranked from
the most sensitive to calibration conditions to least sensitive.
For the SIMHYD model, the most sensitive parameters were
SUB, SMSC, SQ, and CRAK, each of which significantly
affected 50 % or more of the catchments. The other three
parameters,K, COEFF, and INSC had smaller effects, with
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Figure 7 Probability density functions for 7 parameters of the SIMHYD model under 962 

dry and wet calibration periods in catchments 110003 and 401210. 963 

Fig. 7. Probability density functions for 7 parameters of the SIMHYD model under dry and wet calibration periods in catchments 110003
and 401210.

INSC (having an effect in only 10 % of catchments) being the
most insensitive to choice of dry and wet calibration periods.

In order to further examine the effects of climatic condi-
tions on the results, we grouped the 30 study catchments into
two climatic types: 16 water-limited catchments with an in-
dex of dryness (Ep/P ) greater than 1, and 14 energy-limited
catchments with an index of dryness less than 1. It can
be noted that all parameters performed differently in water-
limited and energy-limited catchments, in particular SUB,
SMSC, and CRAK.

For the DWBM model, the parametersα1 andSmax exhib-
ited different effects on runoff under the dry and wet cali-
bration periods as 67 % and 63 % of the catchments showed
statistically different results at the 0.01 level. At the other
extreme, the parameterα2 displayed an apparent insensitiv-
ity to the calibration periods (just 23 % of catchments were
affected). The parameterα2 represents evapotranspiration ef-
ficiency and it behaves similarly to the parameterw of Zhang

et al. (2001, 2004), which was shown to be mostly correlated
with vegetation cover. The parameterdwas more sensitive
to the choice of the calibration period for the water-limited
catchments than for the energy-limited catchments. It is in-
teresting to note that all the parameters behaved differently
under the water-limited and energy-limited conditions, ex-
cept perhaps for parameterα2.

The above results indicate that some of the model param-
eters are sensitive to calibration conditions and the others
are relative robust. An important question is how the sen-
sitive parameters vary between the different calibration peri-
ods. Figures 7 and 8 show the distributions of the optimized
parameters of the two models under the dry and wet condi-
tions in two selected catchments. The catchment 110003 has
summer-dominant rainfall and catchment 401210 is winter-
dominant. For the SIMHYD model, some parameters ex-
hibited different distributions in the dry and wet calibration
periods. For example, the parameter SUB tends to be more
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Table 3. Summary results of the model calibration under different climatic conditions (i.e. dry and wet periods).

Indicator SIMHYD SIMHYD DWBM DWBM
calibrated on calibrated on calibrated on calibrated on
dry period wet period dry period wet period

25th NSE 0.84 0.85 0.71 0.77
Median NSE 0.70 0.77 0.58 0.66
75th NSE 0.61 0.68 0.43 0.54
Average NSE 0.70 0.76 0.57 0.65

25thd1 0.77 0.79 0.71 0.75
Mediand1 0.72 0.76 0.67 0.71
75thd1 0.70 0.74 0.61 0.68
Averaged1 0.73 0.76 0.65 0.71

25th WBE 22 16 25 24
Median WBE 13 8 15 12
75th WBE 6 4 9 5
Average WBE 14 11 22 17
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Figure 8 Probability density functions for 4 parameters of the DWBM model under 965 

dry and wet calibration periods in catchments 110003 and 401210. 966 

Fig. 8. Probability density functions for 4 parameters of the DWBM model under dry and wet calibration periods in catchments 110003
and 401210.

likely at a higher value in the dry periods than in the wet
periods. However, the results did not reveal any systematic
trends in the other parameters. For the DWBM model, the
most likely value for the parameterα1 was higher in the dry
period than in the wet period for catchment 110003 and vice
versa for catchment 401210 (Fig. 8). The parameterSmax
showed different distributions in the dry and wet periods and
these distributions vary across the catchments.

5 Discussion

Streamflow of a catchment is influenced by a number of fac-
tors, most noticeably rainfall and antecedent soil moisture.
During dry periods, catchments are generally characterized
by small runoff events and lower runoff to rainfall ratios with
higher percentage error in both rainfall and runoff. In this
case, rainfall-runoff models become very sensitive to both
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Table 4. Summary results of the model validation when calibrated
under different climatic conditions.

Indicator dry/dry dry/wet wet/dry wet/wet

SIMHYD

25th NSE 0.72 0.74 0.68 0.77
Median NSE 0.55 0.64 0.51 0.69
75th NSE 0.42 0.44 0.41 0.55
Average NSE 0.57 0.61 0.54 0.66

25thd1 0.74 0.78 0.74 0.78
Mediand1 0.71 0.74 0.70 0.75
75thd1 0.66 0.70 0.63 0.72
Averaged1 0.69 0.73 0.68 0.74

25th WBE 34 30 39 23
Median WBE 20 19 28 13
75th WBE 14 8 16 7
Average WBE 24 21 29 17

DWBM

25th NSE 0.56 0.65 0.51 0.72
Median NSE 0.46 0.48 0.45 0.61
75th NSE 0.34 0.35 0.30 0.42
Average NSE 0.48 0.52 0.45 0.59

25thd1 0.69 0.73 0.68 0.74
Mediand1 0.65 0.69 0.63 0.70
75thd1 0.58 0.64 0.56 0.66
Averaged1 0.62 0.68 0.61 0.69

25th WBE 35 29 53 25
Median WBE 22 20 33 18
75th WBE 15 12 18 11
Average WBE 27 23 36 19

rainfall and parameter optimization. Also, dry periods may
not contain enough high flows to adequately calibrate model
parameters responsible for simulating high flows (Gan et al.,
1997). Apart from rainfall amount, spatial variability of
rainfall can also affect runoff. Smith et al. (2004) showed
that improved runoff simulations can be obtained from dis-
tributed versus lumped rainfall-runoff models in catchments
with considerable rainfall variability. Spatial variability of
rainfall was also found to be the dominant control on runoff
production (Segond et al., 2007). In this study, spatially av-
eraged rainfall was used in both model calibration and val-
idation. This is likely to affect the model results and it is
expected that the rainfall variability effect will be greater in
dry periods than in wet periods.

It has been widely acknowledged that spatial variability of
antecedent soil moisture conditions plays an important role
in runoff generation (Grayson and Blöschl, 2000). Minet et
al. (2011) investigated the effect of spatial soil moisture vari-
ability on runoff simulations using a distributed hydrologic
model and showed that model results are sensitive to soil
moisture spatial variability, especially in dry conditions. At
catchment scales, soil moisture exhibit larger heterogeneity
under dry conditions than wet conditions and this means er-
rors associated with dry period runoff simulations are likely
to be greater as runoff generation exhibits non-linear thresh-
old behaviour.

Table 5. Percent of the catchments in which the model parame-
ter distributions for a dry and wet calibration period were signif-
icantly different (p < 0.01) under Monte Carlo simulation. Also
shown are the results for water-limited (Ep/P > 1) and energy-
limited (Ep/P < 1) catchments. For each model, the parameters
are ranked from the most sensitive to calibration conditions to least
sensitive.

Model Parameter Percent Percent of Percent of
of catchments water-limited energy-limited

catchments catchments

SIMHYD

SUB 63 81 43
SMSC 60 75 43
SQ 53 56 50
CRAK 50 63 36
K 37 31 43
COEFF 33 38 29
INSC 10 13 7

DWBM

α1 67 81 50
Smax 63 75 50
d 47 63 29
α2 23 25 21

In this study, the differences in average annual rainfall be-
tween the wet and dry periods ranged from 10 to 47 % of the
long-term average rainfall and are comparable with percent-
age change in man annual rainfall for 2030 relative to 1990
from 15 GCMs for the Murray Darling Basin in Australia
(Chiew et al., 2008).

The results of this study indicate that calibration peri-
ods can cause significant shifts in model parameter distri-
butions. Some model parameters are relatively sensitive to
the choice of calibration periods, while the others are fairly
insensitive. As well as the impact of calibration periods
on parameter distributions, whether catchments are water-
limited or energy-limited also needs to be taken into con-
sideration. For the SIMHYD model, the most sensitive pa-
rameters are SUB, SMSC, and CRAK. The parameter SUB
is used to estimate interflow and it can be an important pa-
rameter in some catchments (Chiew and McMahon, 1994).
However, it is difficult to estimate this parameter a priori
as it is poorly correlated with any catchment characteristics
(Chiew and McMahon, 1994). The soil moisture store ca-
pacity (SMSC) affects many processes such as infiltration
and evapotranspiration and it is determined by soil proper-
ties and vegetation characteristics (e.g. rooting depth). Ac-
curate estimation of this parameter is essential to achieving
satisfactory model performance. The parameter CRAK de-
termines groundwater recharge/baseflow and is highly cor-
related with soil types. For the DWBM model, the most
sensitive parameters areα1 and Smax, and d, representing
catchment rainfall retention efficiency, maximum storage ca-
pacity, and the recession constant, respectively (L. Zhang et
al., 2008). In a way, these parameters are similar to those
sensitive parameters in SIMHYD in terms of their functional
controls on water balance components. Merz et al. (2011)
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applied a semi-distributed conceptual rainfall-runoff model
to 273 catchments in Austria and showed that the parame-
ters of the soil moisture accounting schemes exhibited strong
dependence on calibration conditions, consistent with the re-
sults of the current study. This also suggests that parame-
ters related to soil moisture accounting are likely to change
with calibration conditions. The fact that these parame-
ters are sensitive to the choice of calibration period (i.e. dry
vs. wet) also indicates that large uncertainty may be asso-
ciated with these parameters and cares need to be exercised
when transferring the parameters to conditions different from
the calibration.

These findings have major implications for studies of cli-
mate change impact on streamflow. When a hydrological
model calibrated for a given climatic condition (e.g. wet pe-
riods) is used to simulate runoff of different climatic con-
ditions (e.g. dry periods), transfer of some model parame-
ters (i.e. sensitive parameters) may result in large errors in
simulated runoff. One may argue that the sensitive model
parameters should be updated by functionally relating them
with climatic variables such as rainfall (Merz et al., 2011).
This could potentially reduce uncertainty and lead to more
accurate predictions. However, some of the parameters are
poorly related to catchment characteristics (e.g. rainfall) and
the problem is further complicated by the fact that not ev-
ery parameter is well identified and different parameter val-
ues can result in equal model performance, i.e. equifinality
(Beven, 1993). It has also been recognized that model cali-
bration tends to compensate model structural errors (Merz et
al., 2011; Wagener et al., 2003), making it difficult to under-
stand how model parameters vary with calibration conditions
(Wagener et al., 2010).

The differential split-sample test can be considered as the
first step in addressing the issue of parameter transferabil-
ity under non-stationary conditions. Monte Carlo simula-
tion provided an effective and pragmatic approach to explor-
ing uncertainty in hydrological model parameters. The per-
formance of rainfall-runoff models is related to catchment
characteristics such as climate, topography, soil, vegetation,
catchment shape, geology, drainage network. In such a com-
plex situation, it is hard to pinpoint the source of param-
eter uncertainty, but the results of this study showed that
calibration periods and catchment climatic conditions are
both important factors that can result in uncertainty in model
performance.

Credibility of a hydrological model has traditionally been
tested using streamflow data from a validation period that
is similar to calibration period. The assumption is that the
model will be used under conditions similar to those of the
calibration. However, when dealing with impact of climate
change on streamflow, the assumption is not generally valid
and the model needs to be tested under conditions differ-
ent from those of the calibration. For this purpose, the
two hydrological models were evaluated using differential
split-sample test (Klemes, 1986). When using a dry period

for calibration and a wet period for validation, the models
produced more accurate estimates of streamflow (i.e. higher
NSE and lower bias) compared with estimates produced us-
ing a wet period for calibration and a dry period for valida-
tion (see Table 4). Similar results have been reported by Vaze
et al. (2010) and the finding can be partly explained by the
fact that hydrological models generally perform better in wet
periods than in dry periods (Vaze et al., 2010; Gallart et al.,
2007; Perrin et al., 2007; Lid́en and Harlin, 2000; Gan et al.,
1997; Hughes, 1997).

A closer examination of model errors reveals that when
the model parameters, calibrated on a dry period, were used
to simulate runoff during a wet period, the mean of the simu-
lated runoff was usually underestimated; conversely, when
model parameters, calibrated on a wet period, were used
to simulate dry period runoff, the mean simulated runoff
was overestimated, consistent with the findings of Gan et
al. (1997). Vaze et al. (2010) also showed that when hydro-
logical models were calibrated using long period of record
and tested for sub-periods with above long-term average rain-
fall, the model performed well. However, performance of the
models starts to deteriorate when tested for sub-periods with
below long-term average rainfall.

Traditionally, one would use a sufficiently long period of
records for model calibration to ensure proper presentation
of climate/streamflow variability and to achieve stable model
parameters. If the model is to be used under stationary con-
ditions, it is generally recommended that the whole record
should be divided into two segments, one for calibration and
the other for validation. However, if a model is to be used un-
der non-stationary conditions, its parameters should be trans-
ferable. In other words, the parameters should be estimated
so that the model gives accurate estimates of streamflow out-
side the climatic conditions encountered in calibration pe-
riod. In this case, one should identify two periods with dif-
ferent climatic conditions (e.g. a dry period and wet period)
from the whole record and apply the so-called differential
split-sample test (Klemes, 1986). One another approach to
this problem is to examine how other catchments behave un-
der these different climatic conditions, i.e. trading space for
time (Singh et al., 2011).

6 Conclusions

Potentially large uncertainties arise when predicting hydro-
logical responses to future climate change – due to factors
such as the choice of emission scenario, GCM, downscaling
technique, hydrological model, optimization technique, and
the way the model is calibrated. It is therefore important to
develop reliable ways to calibrate hydrological models under
present-day conditions. This study compared hydrological
model performances under nonstationarity by using the dif-
ferential split-sample test and two conceptual rainfall-runoff
models, DWBM and SIMHYD, applied to 30 catchments in

www.hydrol-earth-syst-sci.net/16/1239/2012/ Hydrol. Earth Syst. Sci., 16, 1239–1254, 2012



1252 C. Z. Li et al.: The transferability of hydrological models under nonstationary climatic conditions

Australia. Monte Carlo simulation was used to explore pa-
rameter stability and transferability in the context of historic
climate variability.

Apart from quality of the input data (e.g. rainfall) and
model structure, performance of a hydrological model is also
dependent on how it is calibrated. If a hydrological model is
intended to simulate runoff for a wet climate scenario then it
should be calibrated on a wet segment of the historic record.
Conversely, if it is intended to simulate runoff for a dry cli-
mate scenario then it should be calibrated on a dry segment
of the historic record. We also found that when using a
dry period for calibration and a wet period for validation,
the models produced more accurate estimates of streamflow
compared with estimates produced using a wet period for cal-
ibration and a dry period for validation. In other words, trans-
ferring model parameter values obtained from dry periods to
wet periods will result in smaller errors in streamflow estima-
tion than transferring model parameter values obtained from
wet periods to dry periods. The soil related model parame-
ters are more sensitive to the choice of calibration period than
other parameters and large uncertainty may be introduced
when transferring the soil related parameters to conditions
different from the calibration. Our research has implications
for hydrological modellers looking to estimate future runoff
and we hope this study will stimulate further research into
the selection of calibration data.
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