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Abstract. The Normal Quantile Transform (NQT) has been
used in many hydrological and meteorological applications
in order to make the Cumulated Distribution Function (CDF)
of the observed, simulated and forecast river discharge, water
level or precipitation data Gaussian. It is also the heart of the
meta-Gaussian model for assessing the total predictive uncer-
tainty of the Hydrological Uncertainty Processor (HUP) de-
veloped by Krzysztofowicz. In the field of geo-statistics this
transformation is better known as the Normal-Score Trans-
form. In this paper some possible problems caused by small
sample sizes when applying the NQT in flood forecasting
systems will be discussed and a novel way to solve the
problem will be outlined by combining extreme value anal-
ysis and non-parametric regression methods. The method
will be illustrated by examples of hydrological stream-flow
forecasts.

1 Introduction

The Normal Score Transform or NQT has been applied in
various fields of geo-science in order to make the mostly
asymmetrical distributed real world observed variables more
treatable and to fulfil the basic underlying assumption of
normality, which is intrinsic to most statistical models (e.g.
Moran, 1970; Goovaerts, 1997). For example the meta-
Gaussian model is constructed by embedding the NQT of
each variate into the Gaussian law (Kelly and Krzysztofow-
icz, 1997), which allows the marginal distribution functions
of the variates to take any form and the dependence structure

between any two variates to be monotone non-linear and het-
eroscedastic. This most convenient property has been in-
corporated into the HUP (Krzysztofowicz and Kelly, 2000;
Krzysztofowicz and Herr, 2001; Krzysztofowicz and Maran-
zano, 2004), which is now part of several operational fore-
casting systems (e.g.Reggiani et al., 2009; Bogner and Pap-
penberger, 2011) in order to estimate the predictive uncer-
tainty of the hydrological forecasts. InMontanari and Brath
(2004) andMontanari and Grossi(2008) some problems of
the NQT are discussed regarding its limited possibility of
making the probability distribution of bivariate random vari-
ables multivariate Gaussian. However,Bogner and Pappen-
berger(2011) demonstrated that the application of error cor-
rection methods could minimize these problems in the case
of flood forecasting purposes significantly.

In Van der Waerden(1952, 1953a,b) the theory behind the
NQT is outlined and the practical application is demonstrated
(e.g. inKrzysztofowicz, 1997; Montanari, 2005; Seo et al.,
2006; Todini, 2008). The main objective of this study is to
show the difficulties occurring in the inversion of the empiri-
cal NQT, if the normal random deviates lie outside the range
of the historically observed range, which is particularly im-
portant, if this happens during the forecast lead-time.

Several approaches have been been applied in order to
solve this critical point of the NQT, for example inSeo
et al. (2006) the empirical CDF’s are extended beyond
the historical maxima by the hyperbolic approximation for
the uppermost-tail of the distribution (Deutsch and Journel,
1998). Similar to that approachCoccia and Todini(2011)
fitted some additional models for the lower and upper tails
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Table 1. River Gauging station information for Bohumin and Hofkirchen including stream-flow characteristic value MQ (mean discharge)
and MHQ (average yearly mean discharge).

Station River Area Channel gradient MQ MHQ Latitude Longitude
(km2) (m m−1) (m3 s−1) (m3 s−1) (◦) (◦)

Bohumin Oder 4350 0.008 40 350 49.92 18.33
Hofkirchen Danube 48 000 0.005 640 1870 48.68 13.11

of the variables by setting the maximum value, for which the
probability is assumed to be equal to one, to twice the maxi-
mum value of the observed historical maximum, resp. to zero
for the minimum value, for which the probability is assumed
to be null. InWeerts et al.(2011) a linear extrapolation is
applied on a number of points in the tails of the distribution.
In this study the approach of applying extreme value theory
and non-parametric methods will be analysed in more detail.

Following the work ofKrzysztofowicz(1997) the empiri-
cal NQT involves the following steps:

1. Sorting the sampleX from the smallest to the largest
observation,x(1), ...,x(n).

2. Estimating the cumulative probabilitiesp(i), ..., p(n)

using a plotting position likei/(n + 1) such that
p(i) =P(X≤ x(i)).

3. Transforming each observationx(i) of X into observa-
tion y(i) =Q−1(p(i)) of the standard normal variateY ,
with Q denoting the standard normal distribution and
Q−1 its inverse, applying discrete mapping.

For practical implementation of the methods discussed here,
the commands of the freely available and widely used sta-
tistical computing language R (R Development Core Team,
2011) are provided in Appendix A (e.g. for computing the
steps above).

The problems of applying the NQT arise for the reverse
process, when the sampled data points in the normal space
fall outside the range of historical samples (i.e. probability
quantiles greater thann/(n + 1) or lower than 1/(n + 1)).

In order to be able to extrapolate to extreme values, which
are rarely observed in the historical samples due to the lim-
ited amount of available data, different parametric and non-
parametric approaches have been tested in this paper. The
problem of a sufficient amount of data is naturally very com-
mon for example in flood frequency estimation (Laio et al.,
2009), downscaling of climate change scenarios for hydro-
logical applications (Bo et al., 2007; Vrac and Naveau, 2007,
2008), and hydrology in general (Zhu, 1987; Engeland et al.,
2004). This paper will specifically concentrate on the im-
pact of small sample sizes in real-time flood forecasting us-
ing ensemble driven systems in combination with the HUP.
Further discussion on unrepresentative sample sizes and the

advantage of Bayesian fusion techniques can be found in
Krzysztofowicz(2010).

In the next section a forecast example of the European
Flood Alert System (EFAS) is shown in order to demon-
strate the problem of the back-transformation and its impact
on the predictive uncertainty. Then several different solu-
tions are given and some advantages and disadvantages out-
lined. Finally some concluding remarks and practical advice
is given. However only a very limited number of flood events
have been observed during the operational run of the post-
processor and therefore the evaluation of the forecast quality
is rather subjective and has to be analysed in more detail.
For example the predictive QQ plot (Laio and Tamea, 2007;
Thyer et al., 2009; Bogner and Pappenberger, 2011) could
be used to assess whether the time-varying predictive distri-
bution of stream-flow is consistent with the observations or
similar quantile assessment methods described inCoccia and
Todini (2011) could be applied once more forecast data are
available.

2 Example forecast

The EFAS (Thielen et al., 2009; Bartholmes et al., 2009)
produces daily stream-flow forecasts and includes post-
processing through data assimilation and error correction at
selected stream-flow gauging stations.

Since 2010 ensembles of stream-flow forecasts issued
daily are corrected and predictive uncertainties are estimated
at some stations, for which historical time-series of simula-
tions and observations are available as well as observations
in real-time (see for detailsBogner and Pappenberger, 2011).

In Table 1 characteristic values from two selected sta-
tions are given, Bohumin (Odra river, CZ) and Hofkirchen
(Danube, DE), which will be analysed in more detail. For
the calibration of the post-processor, time series of daily ob-
served and simulated stream-flow data are necessary, which
can be quite different in length and occurrences of floods at
the various stations investigated. For example the data at sta-
tion Bohumin comprises six years only with a maximum ob-
served discharge of less than 600 m3 s−1, which corresponds
roughly to a flood event with a return period between two
and five years, whereas at Hofkirchen eight years of data are
available including some severe flood events with twenty to

Hydrol. Earth Syst. Sci., 16, 1085–1094, 2012 www.hydrol-earth-syst-sci.net/16/1085/2012/



K. Bogner et al.: Application of the NQT 1087

0
10

0
20

0
30

0
40

0
50

0

Time [d]

St
re

am
flo

w 
[m

3 /s
]

11/02 03/04 08/05 12/06 05/08

(a) Bohumin

50
0

10
00

15
00

20
00

25
00

30
00

Time [d]

St
re

am
flo

w 
[m

3 /s
]

10/98 02/00 06/01 11/02 03/04 08/05 12/06

(b) Hofkirchen

Fig. 1. Observed stream-flow and number of clusters exceeding
a threshold at station(a) Bohumin (Odra, CZ) and(b) Hofkirchen
(Danube, DE) with 6, resp. 8 yr of daily observations.

fifty years return periods (see Fig.1). In 2010 during the
testing period for the EFAS post-processor, the forecast dis-
charge at Bohumin far exceeded the maximum of the histor-
ical data sample, and this led to the initiation of this study.
Consequently we present the case of Bohumin here. At sta-
tion Hofkirchen the effect of sample size on the extrapolation
methods will be analysed in more detail by comparing the re-
sults of the total available and a split sample (divided into two
halves).

The post-processor runs operationally twice a day and in-
cludes the minimization of the error between the most recent
past observed and simulated discharge values and the cor-
rection of the deterministic ten days ahead forecasts and the
corresponding forecasts derived from two different Ensem-
ble Prediction Systems (EPS). The NQT is applied prior to
the post-processing to all available stream-flow data (mea-
sured, simulated and predicted). After the normalization step
the differences between observed and simulated stream-flow
values are minimized applying the Vector AutoRegressive
model with eXogenous input (VARX) to the transformed
time series of wavelet coefficients (i.e. fitting the VARX to

the wavelet transformed series of the observations and sim-
ulations simultaneously covering a range of scales). The re-
sults of the error corrected predictions are transformed back
from normal space into the real world and the predictive un-
certainty is estimated (seeBogner and Pappenberger, 2011
for details). In Fig.2 the final output of the post-processor is
shown with forecast initiation at time-step zero (dashed ver-
tical line). The past eight days (−8, ···, −1) are included to
demonstrate the performance of the error correction show-
ing the corrected one step ahead predictions, the observa-
tions and the prediction uncertainties estimated by the HUP
(Krzysztofowicz and Kelly, 2000). From lead-time one on-
wards (1,···, 10) the error corrected forecasts are shown
including two stream-flow forecasts based on deterministic
weather forecast systems (DWD, ECMWF-det.) and two en-
semble prediction systems (51 members EPS from ECMWF
and 16 members COSMO-LEPS). The resulting total pre-
dictive uncertainty integrating the model input uncertainty
(i.e the weather forecast uncertainty) and the hydrological
uncertainty is calculated for the different lead-times and is
shown as shaded areas. Additionally two thresholds are in-
dicated, the MQ value (lower horizontal line) representing
the mean daily average discharge and the MHQ (upper hor-
izontal line) representing the daily mean annual maximum
discharge.

In Fig. 2a and d the problem of back-transforming data
values exceeding the maximum of the historical sample used
for calibration is demonstrated. For the observations cor-
responding to the one step ahead predictions, the NQT has
been applied and the back-transformed measurements can
show discrepancies to the real observations, because of the
upper limit (observed maximum) in the historical data set.
That is the reason why the observed values in Fig.2a at time-
step zero (forecast initiation) and leadtime one do not match
the real observed data, but correspond to the much lower
historical observed maximum. This limitation clearly indi-
cates the necessity for including methods for extrapolation. It
should be noted that this problem of extrapolation will only
occur in the case of applying empirical NQT’s, that means
transforming empirical CDF’s, and could be circumvented
by fitting a theoretical CDF, e.g. the Weibull distribution,
to the historical data sets (Krzysztofowicz, 1999). However
the fitting of theoretical distribution functions is quite diffi-
cult under non stationary conditions and for data sets show-
ing long-range dependencies, what is typically the case for
hydrological time-series. That is the reason why the error
correction method developed byBogner and Pappenberger
(2011) works with wavelet coefficients. The transformation
of the time-series into the wavelet domain result in station-
ary and almost decorrelated variables, for which the intrinsic
assumptions of the HUP are fulfilled. Nonetheless for dif-
ferent regions probably different distribution functions will
be optimal, which would make a supervised fitting and de-
tailed verification at each single station (i.e. stream-flow pixel
in spatially distributed models) nearly impossible, especially
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Fig. 2. Corrected forecast of a flood event without extrapolation in May 2010 at station Bohumin(a), and in January 2011 at Hofkirchen
taking eight years of observation(b), eliminating the first half of the data set(c), eliminating the second half of the data set(d). At station
Bohumin(a) and in the second reduced sample at station Hofkirchen(d) the upper limit of applicability is shown, when the maximum of the
historical sample is exceeded during the forecast period.

for continental scale forecast systems such as EFAS which
runs on a 5 km grid over the whole of Europe.

3 Extrapolation methods

In this paper we concentrate on two approaches which rep-
resent a large class of possibilities and allow us to evaluate
them in a flood forecasting specific setting:

1. The first method is based on extreme value theory and
tries to estimate future possible extreme stream-flow
values by fitting a theoretical distribution to the upper
(and lower) tail of the sample. The resulting extreme
values are combined with the historical sample in or-
der to find an optimal transform function. There are
multiple approaches which could be used for extrapola-
tion based on extreme value theory, for example: nor-
mal and log-normal distributions and 3-parameter log-
normal; Log-Pearson Type III; Extreme Value type I, II,
or III; Generalized Extreme Value (GEV); Logistic and

General logistic; Goodrich/Weibull distribution; Expo-
nential distribution; or Generalized Pareto Distribution
(GPD) – to name a few. More mathematical and sta-
tistical details concerning extreme value theory can be
found for example inColes(2001) andFinkensẗadt and
Rootźen(2004).

2. In contrast to this approach the second is a non-
parametric regression method called Generalized Addi-
tive Model (GAM,Hastie and Tibshirani, 1986), where
the regression (i.e. transformation) function is estimated
directly without specifying its parametric form explic-
itly. GAMs are Generalized Linear Models (GLMs,
McCullagh and Nelder, 1989) in which the linear pre-
dictor is specified partly in terms of a sum of smooth
functions of covariates and have been introduced for
modelling non-linear relationships (Hastie and Tibshi-
rani, 1990; Wood, 2000, 2006). Generalized additive
mixed models have been proposed for over-dispersed
and correlated data, which arise frequently in hydrology
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(Lin and Zhang, 1999) and that gave the reason also for
choosing the GAM in this study. Many more differ-
ent non-linear (regression) models exist, such as neu-
ral networks, non-linear prediction methods (e.g.Laio
et al., 2003) and kernel based support vector machines
(e.g.Yu et al., 2006), but their application is beyond the
scope of this technical note. In Fig.3 some non-linear
relationships between the standardized normal observa-
tions and the observations are shown demonstrating the
appropriateness of GAMs in fitting this non-linear trans-
formation function.

3.1 Extreme values

The application of extreme value theory in hydrology has
a long tradition and an associated large literature.Fisher and
Tippett(1928) started to work on the asymptotic theory of ex-
tremes, whereas inGnedenko and Kolmogorov(1949/1954)
the theory for independent identically distributed random
variables was completed. Fitting methods of extreme value
type distributions to reliability data are outlined thoroughly
in the famous work ofGumbel(1958). The Gumbel distri-
bution is frequently applied, which is a double exponential
distribution representing the limiting distribution for Gaus-
sian data. Recently the GEV for annual maxima series (e.g.
Ailliot et al., 2011) and the GPD for maxima exceeding
thresholds have found the most attraction in environmental
extreme value analysis (e.g.MacKay et al., 2011; Moloney
and Davidsen, 2011; Mazas and Hamm, 2011).

For the practical implementation in R several packages are
available, like “ismev”, “evir” and “POT” (Ribatet, 2006),
which has been used in this study. In the Peaks Over Thresh-
old (POT) model the limiting distribution of normalised ex-
cesses over a threshold converges to the GPD, as the thresh-
old approaches the endpoint (Pickands, 1975; Davison and
Smith, 1990).

Although Hosking and Wallis(1987) recommended the
method of probability weighted moments for small sample
sizes, the following two-step approach has been applied here.
At first the GPD parameters were estimated by minimiz-
ing the Kolmogorov-Smirnov (KS) goodness-of-fit statistics,
which were taken in step two as initial values for optimizing
the maximum likelihood function by the use of the Nelder-
Mead method (Nelder and Mead, 1965) resulting in stable
parameter estimates and good agreements between the fit-
ted and the empirical maxima (Fig.4). The disadvantage
of the POT model is the somewhat subjective choice of a
thresholdu and the necessity to de-cluster the possible serial
correlated time-series by defining some criterion for mak-
ing the observed events independent (i.e. defining the min-
imum timespan between two consecutive events not exceed-
ing the threshold, see alsoBogner et al., 2012, for more de-
tails). In the example of R commands given in Appendix A
the observed data seriesx is de-clustered first by defining a
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Fig. 3. Normalization of stream-flow valuesX at station Bo-
humin (a) and at Hofkirchen – 8 yr(b). The range of obser-
vations with and without including extreme values (labelled as
“emp. + POT”, resp. “empirical”) has been extrapolated applying
GAMs.

timespan of eight days to ensure independence of events (see
also Fig.1).

3.2 Nonparametric regression

One remarkable property of the GAM is it’s flexibility, per-
mitting the data to influence the shape of the smooth func-
tions used for exploring the relationship between the trans-
formed variable (response) and the observation (explanatory
variable). In allowing user defined penalization in the fit-
ting by the use of natural splines it is possible to extrap-
olate to extreme values, without creating some unrealistic
artefacts, like arbitrary and impossible swings, resulting for
example from curve fitting methods based on higher degree
polynomials. Natural cubic splines, which are constructed
of piecewise third-order polynomials with continuity condi-
tions expressed until second derivatives (Hastie and Tibshi-
rani, 1990), are constrained to be linear outside the range of
the data, and therefore provide a useful tool for extrapola-
tion purposes. Note that requiring linearity outside the range
of the data imposes additional smoothness constraints inside
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Fig. 4. Resulting QQ plot for the fitted extreme value distribu-
tion (POT Model) versus empirical extreme values including the
95 % confidence interval in gray for Bohumin(a) and Hofkirchen –
8 yr (b).

the range. Within the R package “mgcv” (Wood, 2006) re-
cent developments of GAMs have been implemented and the
corresponding R function is given in Appendix A.

4 Results

In order to evaluate the dependence of the NQT on the sam-
ple size and its effect on the predictive uncertainty based on
the meta Gaussian distribution, two different cases have been
analysed with respect to (a) extreme values, (b) GAM based
and (c) combined extreme values plus GAM based extrapo-
lation. The two different cases are:

1. Small sample size (six years) at station Bohumin includ-
ing no severe flood events.

2. Sample at station Hofkirchen.

– Covering eight years (i.e. the complete data set
available, including severe events).

– After elimination of the first half of the data set
(reduced time series excluding most of the severe
events, which are concentrated in the first half of
the observed data set).

– After elimination of the second half of the data set
(most of the severe events remain included).

4.1 Station Bohumin – 6 yr

The available data set at station Bohumin has been very lim-
ited and the sample includes almost no severe events. There-
fore the flood event in May 2010 is well suited for test-
ing extrapolation methods in view of the NQT and deriving
rules for application. In the historical data set the observed
maximum was about 600 m3 s−1, whereas in May 2010 the
stream-flow values reached a maximum of approximately
1000 m3 s−1, which corresponds to a flood event with a re-
turn period of approximately twenty years (information pro-
vided by the Czech Hydrometeorological Institute, CHMI).
Starting from the situation shown in Fig.2a the historical data
set has first been extended including extreme values derived
from the POT model. The non-linear transformation func-
tion is shown in Fig.3a with the extended sample includ-
ing extreme values shown as green dots. Applying to this
“statistically” extended data set the NQT, the post-processor
will result in the corrected forecast including the predictive
uncertainty as shown in Fig.5a. Comparing the predictive
uncertainty estimated by the GAM based inter- and extrapo-
lation of the non-linear back-transformation function of the
NQT (Fig.5b) with the enormous range of uncertainty in the
forecast of the extreme value extended sample the drawback
of this method becomes quite obvious. Although this huge
uncertainty range corresponds quite well with the large un-
certainty range of the extreme values estimated by the POT
method (Fig.4a), from the decision maker’s point of view
the worth of the outcome of such an uncertainty band be-
comes questionable. Such enormous uncertainty ranges will
probably not be accepted from the end-users of flood forecast
system even when they would reflect the true uncertainty of
the forecast. Obviously the definition of huge uncertainty
ranges is quite subjective and it will be necessary to evalu-
ate the different methods in a more objective way taking into
consideration more flood events and more stations. From the
preliminary comparison of the three different approaches in
Fig. 5 one can see that the GAM based uncertainty range is
by far smaller than the ranges derived from methods includ-
ing extreme values, which could lead to an unrealistic im-
pression of sharpness of the forecast system, i.e. not explain-
ing all possible sources of uncertainty intrinsic to the flood
forecasts. The last method of extrapolation is the combina-
tion of (a) extending the sample by extreme values estimated
by the POT model and (b) GAM fit and extrapolation of this
extended sample. In Fig.5c the result of this method labelled
“GAM + POT” is shown. The advantage of this method
is the smooth transition between observed and extrapolated
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Fig. 5. Resulting forecast at station Bohumin applying three differ-
ent extrapolation methods: including extreme values based on the
POT method(a), fitting the GAM to the historical measurements
and linear extrapolation(b), combining the POT and the GAM(c).

extreme values as opposed to the result of extending the sam-
ple size with extreme values only without applying GAM,
which could result in sharp jumps in uncertainty as soon as
the estimated values exceed the historical observed maxi-
mum value. In Fig.5a this drastic discontinuity occurs at

time-step zero (at forecast initiation), where the innermost
quantile range (corresponding to the uncertainty range be-
tween 0.45 and 0.55 and shown by the darkest shaded area)
covers a range of more than 500 m3 s−1. Furthermore it can
be seen how a slight difference in the stream-flow value in
the normal space can cause a big difference in the real world
after back-transformation, like the differences in the DWD
deterministic forecast (based on weather forecasts provided
by the German Weather Service) ranging from 1000 m3 s−1

in Fig.5a and b to 1300 m3 s−1 in Fig.5c. However in Fig.5c
it can be seen that the inner quantile ranges (0.35–0.65) cover
all the observations in the forecast period (from leadtime 1
to 10) and the predicted median follows quite well the obser-
vations, whereas the first two methods result in under or over
predictions from a leadtime of three days onwards.

4.2 Station Hofkirchen

The historical data sample at station Hofkirchen comprises
eight years and includes several quite severe flood events
such as those in May 1999, spring 2002 and August 2002,
which correspond to flood events with return periods be-
tween 10 and 20 yr (information provided by the Bavarian
Environmental Agency). Given this representative data set
several tests have been conducted analysing the NQT per-
formance and its dependence on sample size and on the ex-
trapolation method. Since the majority of the flood events
occurred in the first half of the sample (between 1998 and
2003) the NQT and the post-processor have been applied on
the total sample and on the split (halved) sample (Fig.2b–
d). Taking the total data set of eight years for calibrat-
ing the post-processor results in a forecast with a predictive
uncertainty covering almost all the observations, although
the first peak of this double-peaked event is overestimated
and the second one, the more severe peak, is underesti-
mated (Fig.2b). Nonetheless the observed values of the sec-
ond peak fall within the upper quantile range (0.05–0.95) at
a leadtime of eight days, which is quite good for a medium
range forecast. Fitting the post-processor to the first half of
the sample size (Fig.2c) leads to an increased uncertainty
because of the greater variability of the sample. In compar-
ison to this the calibration based on the second half sample
results in to a forecast with smaller uncertainty bands be-
cause of the smaller variance of the sample, demonstrating
the importance of sample size and explaining the upper limit
of applicability of the NQT, when the observations exceed
the historical sample (Fig.2d).

In the case of the eight years data set, the artificial exten-
sion and/or the application of the GAM approach only re-
sulted in modest changes in the forecast and consequently
these results are not shown here. However taking only the
first half of the sample with several severe events results
in an extreme value distribution producing too heavy tails
and therefore heavily overshooting predictive uncertainty
ranges in the forecast example (Fig.6a). The inclusion of
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Fig. 6. Corrected forecast at station Hofkirchen including extreme
values for extrapolation based on(a) four years of the first half,
including several severe events and(b) four years of the second half
(less severe events) and(c) four years of the second half sample
combining the GAM and the POT model for extrapolation.

extreme values fitted to the second half sample results in
back-transformed forecast values which substantially exceed
the observations because of the discontinuity between the
historical data set and the estimated extreme values. Such
discontinuities will result in unrealistic, abrupt changes as

can be seen in Fig.6b at leadtime three and can be cir-
cumvented by the application of the GAM in combination
with the POT model, which will result in smooth forecasts
(Fig. 6c).

5 Conclusions

In this study of the applicability of the NQT in flood forecast-
ing systems different problems arising from the small sam-
ple sizes are discussed. The chosen forecast examples at two
different stream-flow gauging stations and for two different
flood events demonstrate the problems of extending the his-
torical data set by extreme values resulting from the fitted
POT model. Because of the discontinuity between the ob-
served historical sample and the estimated extreme values,
sharp and unrealistic rises (or falls) in the hydrograph can
occur after transforming the forecast from the Gaussian to
the “real world” space. The analysed GAM for approximat-
ing the non-linear (back)transformation function could be an
alternative, but the problem of possibly unrealistic small pre-
dictive uncertainty ranges has to be investigated in more de-
tail with longer time-series and at different stations. However
for these very limited data sets analysed the suggested way
would be the combination of the extension of the small sam-
ples by extreme values and the inter- and extrapolation of
this prolonged data set by the GAM, which results in smooth
forecast hydrographs and not too optimistic under-dispersive
predictive uncertainty ranges.

Appendix A

Listing of R commands

############
#NQT
#Step 1 :
x ← s o r t ( x )
#Step 2 :
p ← ppo in ts ( x , a )}
#wi th a = 0 f o r t h e Weibul l , r e s p. a = 1 /

2 f o r t h e Hazen p l o t t i n g p o s i t i o n)
#Step 3 :
y ← qnorm ( p )
#Step 2 and 3 a r e i n t e g r a t e d i n t h e

command
y ← qqnorm ( x )
#Step 4 :
f ← approx ( x , y )
###########
#Extreme v a l u e a n a l y s i s
requ i re (POT)
e v e n t s← c l u s t ( x , u=u , t im . cond=8/ 365)
mgf . f i t ← f i t g p d ( even ts , t h r e s h =u , e s t =” mgf

” , s t a t=” KS” )
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mle . f i t ← f i t g p d ( even ts , t h r e s h =u , e s t =” mle
” , method=” Nelder−Mead” ,

c o n t r o l = l i s t ( s t a r t = l i s t ( s c a l e=mgf . f i t $
pa ra [ 1 ] , shape =mgf . f i t$pa ra [ 2 ] ) )

############
#GAM
requ i re ( mgcv )
gam . f i t ← gam ( y ∼ s ( x , bs=” c r ” , k =10) )
#The smooth term of t h e o b s e r v a t i o n s x i s

s p e c i f i e d by s .
#By s e t t i n g t h e term bs=” c r ” and k=10 t h e

p e n a l i z e d c u b i c r e g r e s s i o n s p l i n e
# w i l l be a p p l i e d wi th t h e d imens ion k o f

t h e b a s i s , used t o r e p r e s e n t t h e
smooth term ,

#and which s e t s t h e upper l i m i t on t h e
d e g r e e s o f f reedom

Acknowledgements.The authors wish to thank the Deutsche
Wetterdienst, the European Centre for Medium-Range Weather
Forecasts, the Bavarian Environment Agency, the Czech Hydrome-
teorological Institute (CHMI) and the JRC’s Institute for Protection
and Security of the Citizen (IPSC) for data and information. The
work was also supported by the UK Natural Environment Research
Council (grant NE/I005366/1). Florian Pappenberger is partially
funded by GLOWASIS (Global Water Scarcity Information Ser-
vice) project (EC, FP7) and DEWFORA (Drought Early Warning
Forecasts, EC, FP7). Finally the authors gratefully acknowledge
the support of all staff of the JRC’s Institute for Environment and
Sustainability (IES) – Land Management and Natural Hazards Unit
– FLOODS Action.

Edited by: C. de Michele

References

Ailliot, P., Thompson, C., and Thomson, P.: Mixed methods for
fitting the GEV distribution, Water Resour. Res., 47, W0551,
doi:10.1029/2010WR009417, 2011.

Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The
european flood alert system EFAS – Part 2: Statistical skill as-
sessment of probabilistic and deterministic operational forecasts,
Hydrol. Earth Syst. Sci., 13, 141–153,doi:10.5194/hess-13-141-
2009, 2009.

Bo, J., Terray, L., Habets, F., and Martin, E.: Statistical and
dynamical downscaling of the Seine basin climate for hydro-
meteorological studies, Int. J. Climatol., 1655, 1643–1655, 2007.

Bogner, K. and Pappenberger, F.: Multiscale error analy-
sis, correction, and predictive uncertainty estimation in a
flood forecasting system, Water Resour. Res., 47, W07524,
doi:10.1029/2010WR009137, 2011.

Bogner, K., Cloke, H., Pappenberger, F., De Roo, A., and Thielen,
J.: Improving the evaluation of hydrological multi-model fore-
cast performance in the Upper Danube Catchment, Int. J. River
Basin Manage., 10, 1–12,doi:10.1080/15715124.2011.625359,
2012.

Coccia, G. and Todini, E.: Recent developments in predictive
uncertainty assessment based on the model conditional pro-
cessor approach, Hydrol. Earth Syst. Sci., 15, 3253–3274,
doi:10.5194/hess-15-3253-2011, 2011.

Coles, S.: An introduction to statistical modeling of extreme values,
Springer series in statistics, Springer, 2001.

Davison, A. C. and Smith, R. L.: Models for Exceedances over
High Thresholds, J. Roy. Stat. Soc. B, 52, 393–442, 1990.

Deutsch, C. and Journel, A.: GSLIB: Geostatistical Software Li-
brary and User’s Guide, 2nd Edn., Oxford University Press,
USA, 1998.

Engeland, K., Hisdal, H., and Frigessi, A.: Practical Extreme Value
Modelling of Hydrological Floods and Droughts: A Case Study,
Extremes, 7, 5–30,doi:10.1007/s10687-004-4727-5, 2004.
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