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Abstract. Reliable real-time forecasts of the discharge can
provide valuable information for the management of a river
basin system. For the management of ecological releases
even discharge forecasts with moderate accuracy can be be-
neficial. Sequential data assimilation using the Ensemble
Kalman Filter provides a tool that is both efficient and robust
for a real-time modelling framework. One key parameter in a
hydrological system is the soil moisture, which recently can
be characterized by satellite based measurements. A fore-
casting framework for the prediction of discharges is devel-
oped and applied to three different sub-basins of the Zam-
bezi River Basin. The model is solely based on remote sens-
ing data providing soil moisture and rainfall estimates. The
soil moisture product used is based on the back-scattering
intensity of a radar signal measured by a radar scatterome-
ter. These soil moisture data correlate well with the mea-
sured discharge of the corresponding watershed if the data
are shifted by a time lag which is dependent on the size and
the dominant runoff process in the catchment. This time lag
is the basis for the applicability of the soil moisture data for
hydrological forecasts. The conceptual model developed is
based on two storage compartments. The processes modeled
include evaporation losses, infiltration and percolation. The
application of this model in a real-time modelling framework
yields good results in watersheds where soil storage is an im-
portant factor. The lead time of the forecast is dependent on
the size and the retention capacity of the watershed. For the
largest watershed a forecast over 40 days can be provided.
However, the quality of the forecast increases significantly
with decreasing prediction time. In a watershed with little
soil storage and a quick response to rainfall events, the per-
formance is relatively poor and the lead time is as short as
10 days only.
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1 Introduction

The water resources in the Zambezi river basin are more
and more developed. Feasibility studies for several new
hydro-power plants are being carried out and new irriga-
tion schemes are developed all over the river basin. While
pressure on the resources is growing, long term forecasts of
the discharge with a few weeks lead time can help optimize
the operation of smaller reservoirs and water abstraction
schemes for irrigation without neglecting the river-dependent
ecosystems as an important water user.

Such a forecast of the inflows of the reservoir can be use-
ful, epecially if the management of a reservoir is targeted at
the release of ecological flows. For these releases the timing
is of great significance (Galat and Lipkin, 2000; Acreman
and Ferguson, 2010). Operating a dam according to a strict
rule curve without any information on future inflows leads
to a very late flood pulse since the flood is attenuated until a
prescribed water level is reached in the reservoir. With some
information on the expected inflow ecological releases can
mimic a more natural flow.

Kitanidis and Bras(1980a) stated that effective water man-
agement in a river basin system needs a reliable real-time
forecast. This involves a continuous correction of the fore-
casts based on the prediction errors of earlier forecasts. The
application of a model is accompanied by several sources of
errors, such as model, input and parameter uncertainty. This
leads to a deficient knowledge of the system states. Hence
it is appropriate to use observations to update the states of
the system (Kitanidis and Bras, 1980a,b). Sequential data
assimilation techniques such as the Ensemble Kalman Fil-
ter (EnKF) provide a state of the art method to perform this
update step (McLaughlin, 2002).

As soil moisture is a key parameter in land surface hydrol-
ogy, the availability of area representative measurements of-
fers a unique opportunity to improve hydrological modelling.
The first satellite-derived global dataset on soil moisture was
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presented byWagner et al.(1999a). It was shown that runoff
predictions were greatly improved when measured soil mois-
ture, both from ground measurements and from remote sens-
ing, were incorporated (Aubert et al., 2003; Crow and Ryu,
2009).

Recent studies have shown the usefulness of radar scat-
terometer derived soil moisture data for hydrological appli-
cations. Despite the generally coarse resolution, these data
can be applied successfully for hydrological modelling since
small scale spatial variability of the soil water content is aver-
aged within the scatterometer footprint (Ceballos et al., 2005;
Scipal et al., 2005).

The application of remotely sensed soil moisture data be-
comes more and more feasible. Several satellite missions
have been launched, or will be launched in the near future,
equipped with instruments to retrieve soil moisture infor-
mation using microwave frequencies. These missions in-
clude the MetOp Advanced Scatterometer (ASCAT), the Soil
Moisture and Ocean Salinity Mission (SMOS) and NASA’s
Soil Moisture Active-Passive instrument (SMAP) (Kerr
et al., 2001; Naeimi et al., 2009; Piles et al., 2009). Wag-
ner et al.(2007) showed the usefulness of high resolution soil
moisture data from the Envisat Advanced Synthetic Aperture
Radar (ASAR) instrument in hydrological modelling.

This study presents a prediction framework for river dis-
charge based solely on remotely sensed data of soil moisture
and rainfall, a simple conceptual model and data assimilation
techniques. The performance of the prediction is evaluated
in three different sub-basins of the Zambezi river basin. The
availability of the input data in real-time allows the model to
be operated in real-time, providing a prediction for discharge
each time new input data are retrieved. When observation
data are available the model state is updated using sequential
data assimilation techniques (EnKF). The update step allows
the model to be relatively simple.

The paper is organised as follows: after presenting the
study area in Sect. 2, the data used for modelling (soil mois-
ture, rainfall and discharge) are described in Sect. 3. The
soil moisture – runoff model and its application in the real-
time modelling framework is presented in Sect. 4. The per-
formance of the model with and without real-time updating
(deterministic mode and hindcast mode) is assessed (Sect. 5),
and finally conclusions on the usefulness of such a prediction
framework are drawn in Sect. 6.

2 Study area

This modelling approach is evaluated in three different sub-
basins within the Zambezi River Basin (Fig.1). The Zam-
bezi river basin, the fourth largest river basin in Africa,
lies in the semi-arid zone of southern Africa. Rainfall is
strongly seasonal and occurs almost exclusively between
October and March. The total amount of rainfall is on
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Fig. 1. Overview of the Zambezi River Basin (light blue) and
the three watersheds where the model is applied.(1) Upper Zam-
bezi;(2) Kafue River;(3) Luangwa River. The outlets of the water-
sheds are marked (� ).

average around 1000 mm yr−1, the potential evapotranspira-
tion around 2000 mm yr−1.

The three watersheds are (1) the Upper Zambezi upstream
of the gauging station Senanga with an area of 281 000 km2,
(2) the Kafue River where the discharge is measured at the
Kafue Hook Bridge with an area of 95 300 km2 and (3) the
Luangwa River which is gauged a few kilometers upstream
of the confluence with the Zambezi River (142 070 km2).
These watersheds cover together more than one third of the
whole Zambezi watershed and contribute more than one half
of the total runoff at the mouth of the Zambezi, where the
Upper Zambezi catchment contributes the largest amount
(850 m3 s−1 mean annual discharge), the Kafue River dis-
charges 300 m3 s−1 and the Luangwa River 700 m3 s−1.

The Upper Zambezi watershed is mainly characterized by
gentle slopes and large floodplains along the course of the
river. The largest floodplain, the Barotse Plains, spreads
along the river for around 200 km, a maximal width of 50 km
and an area of around 7500 km2. Similarly, the Kafue river
basin features a floodplain, the Luangwa Swamps with an
area of around 2500 km2. The main effect of the floodplains
is the attenuation of the flow and the loss of water through
increased evaporation (Vörösmarty and Moore, 1991). The
Luangwa river valley is an extension of the East African rift
valley characterized by steep slopes mainly in the upstream.
The tributaries of the Luangwa drain the steep escarpment or
the rift valley and therefore have a quick response to rain-
fall (Winsemius et al., 2009).
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3 Data

3.1 Soil moisture

The vadose zone is one of the most important components of
the global water cycle. Through the coupling of water and
energy fluxes, soil moisture determines the local and global
climate. However, the variability of soil moisture is very high
in both space and time. Traditional measurement methods,
such as Time Domain Reflectometry (TDR), are reasonably
accurate, but they provide information on a very local scale.
Monitoring large areas is nearly impossible. Typically, a cor-
relation between such measurements can be observed if they
are not more than a few tens of meters to a few hundred me-
ters apart (Western et al., 2004). On larger scales the tem-
poral variation seems to be very stable since it is mainly in-
fluenced by climatic conditions (Brocca et al., 2010). There-
fore, remotely sensed soil moisture data provide a valuable
dataset for hydrological monitoring on a larger scale.

There is a wide variety of techniques for measuring the
soil water content through remote sensing. However, the
data can only be retrieved by indirect measurements. Both
active and passive methods rely on the measurement of radi-
ation intensities in a certain range of wavelengths. For pas-
sive systems operating in the thermal infrared band the mea-
surement target is the soil surface temperature (Verstraeten
et al., 2006). The radiation intensity measured by systems
operating in the microwave band is controlled by the dielec-
tric constant of the top soil layer. Especially soil moisture
products based on radar satellite imagery provide an attrac-
tive source for data since the influence of cloud cover and
changing atmospheric conditions is minimal. Although they
are governed by the same physical principles, generally three
types of microwave techniques are distinguished: Passive ra-
diometry and the two active methods using synthetic aperture
radar (SAR) and radar scatterometer (Wagner et al., 2007).
SAR systems, providing data with a high spatial resolution,
show a good performance over bare soils. Despite the sig-
nificantly lower spatial resolution, the multiple antenna con-
figuration of scatterometers can facilitate the data processing
to reduce the influence of vegetation on the signal (Baghdadi
et al., 2008).

In this study the dataset of soil moisture derived from
the radar scatterometer on board the two European remote-
sensing satellites (ERS) is used (Wagner et al., 1999b). The
ERS radar scatterometers are operating in the C-band at a
frequency of 5.3 GHz using three sideways-looking antennas
arranged at an angle of 45 degrees.

The measured back-scattering intensity is dependent on
different properties of the surface, mostly on the surface
roughness, the vegetation and the soil moisture. Generally
wet soil results in higher back-scattering intensity than a dry
soil. Since the arrangement of the antennas allows for the
ruling out of the effects of vegetation, and the surface rough-

ness can be considered to be constant over time, the dry and
the wet state of each pixel can be determined using a change
detection algorithm (Wagner et al., 1999a).

3.2 Rainfall

Besides the soil moisture data which are described in the pre-
vious section, rainfall data are used as forcing data and mea-
sured discharge is applied for updating the model.

The rainfall dataset is provided by the Famine Early Warn-
ing Systems Network (FEWS NET) and can be downloaded
free of charge from the internet. The data are available at a
10 day interval starting from July 1995. FEWS NET rain-
fall data incorporate various satellite-based rainfall estimates
and data measured at gauging stations (Herman et al., 1997).
Since the soil moisture data used are available only up to Jan-
uary 2002, the period where soil moisture data and rainfall
data overlap is only little more than six years.

3.3 Discharge

Daily discharge data are available at the outlets of the three
sub-basins. For the Kafue and the Luangwa sub-basin the
data available cover the whole period where rainfall and soil
moisture data are available simultaneously. The discharge
of the Upper Zambezi sub-basin is measured from Octo-
ber 1996 only.

4 Methodology

4.1 Soil water column content

While the surface soil moisture can be directly derived from
the scatterometer data, the soil column water content has to
be estimated. This is due to the fact that the electromagnetic
waves in the microwave bandwidth only penetrate the top
few centimeters of the soil.Wagner et al.(1999b) proposed a
method to calculate a so-called Soil Water Index (SWI) based
on a simple two-layer moisture balance model. It computes
a weighted average of the past measurements using an ex-
ponential filter of the form exp(−t

T
) and therefore acts as a

low-pass filter. A value of 20 days was assigned to the pa-
rameterT globally. The dataset used in this study provides
SWI data at a 10-daily time step.Scipal et al.(2005) con-
cluded that even this low resolution soil moisture data can be
applied in hydrological modelling.

The scatterometer based soil moisture data are strongly
correlated to the occurrence of rainfall events but less cor-
related to the magnitude of these rainfall events (Fig.2). In
all three catchments the probability that a rainfall event has
taken place grows for higher soil moisture in the same pe-
riod, whereas the amount of rainfall is mainly correlated to
soil moisture when the soil has not yet reached a certain de-
gree of saturation (around values of 0.8).
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Fig. 2. The probability of rainfall event given a Soil Water Index
(SWI) class and the average rainfall amount for the same classes
for the three watersheds Upper Zambezi(1), Kafue River(2) and
Luangwa River(3).

A similar effect can be observed if the correlation between
the Basin Water Index (BWI) and the measured discharge
is analyzed (Fig.3). The BWI is calculated by averaging the
SWI over the whole river basin (Scipal et al., 2005). The vari-
ation of the discharge is relatively small for low soil moisture
values. If the values exceed 0.5 to 0.6 the variation suddenly
increases. This indicates that the discharge is to some extent
decoupled from the soil moisture as the soil approaches com-
plete saturation. This decoupling is mainly caused by rain-
fall. Therefore modelling efforts which include rainfall data
seem to be more realistic. It also shows that to obtain the best
correlation the discharge has to be shifted by very different
time lags. Not surprisingly, the largest watershed shows a
long time lag of two months. For the second largest water-
shed (Luangwa River) the time lag has to be set to zero to
obtain an optimal fit, indicating that the response time is sig-
nificantly less than 10 days. The optimal time lag for the Ka-

fue River up to Kafue Hook Bridge is one month. These dif-
ferences can be explained by the geological and geomorphic
settings of the watersheds. The more gentle slopes of the
Upper Zambezi and the Kafue River and the large wetlands
retard the flow of the water. The water storage in wetlands
cannot be tracked by the soil moisture product used. These
wetlands are usually small compared to the area of the whole
watershed. They therefore cause an additional retardation of
the discharge which is mainly formed outside the wetlands.

4.2 Soil moisture – runoff model

In hydrological forecasting, fully distributed, physically
based models provide the ability to account both for the het-
erogeneity of a watershed and physical changes of the sys-
tem (e.g. induced by the construction of irrigation schemes
or land use change). On the other hand, simple conceptual
models can provide a satisfactory performance for forecasts.
This can be an advantage, especially in regions with limited
facilities for the measurement of relevant hydrological data.

The finding that the BWI correlates well with the observed
discharge only for low values of BWI leads to the conclusion
that additional data are needed to model the discharge. This
is the reason why rainfall data are included in the model.

To model the discharge at the outlet of a basin a simple
conceptual model was developed. The model consists of two
compartments: a surface water storage and a subsurface wa-
ter storage (Fig.4). All input data of the model, the soil
moisture and the rainfall, are averaged over the whole river
basin. Hence, the spatial variability is not considered. The
basin-averaged soil moisture is equivalent to the Basin Water
Index (BWI) introduced byScipal et al.(2005). The model
we developed in this study is based on the following balance
equations:

IGW = k1AR(t)(1−BWI(t)) (1)

1SS(t)

1t
= k1AR(t)−IGW−k2SS(t −1) (2)

1SGW(t)

1t
= max(IGW+k3(BWI(t)−BWI(t −1)) ; 0) (3)

−k4SGW(t −1)

where SS and SGW are the surface storage volume and
the subsurface storage volume in m3, respectively,IGW is
the direct infiltration of rainfall to the subsurface storage
in m3/10 d, R is the average rainfall in the river basin in
mm/10 d, A is the total area of the watershed in km2 and
ki are the model parameters. The BWI is dimensionless and
can take values between 0 and 1.

The storage compartments are considered to be single lin-
ear storages. Depending on the value of the BWI, a part of
the rainfall is routed to the surface water storage whereas the
remaining water volume is routed to the subsurface storage.
If BWI is 0 all water is routed to the subsurface. If BWI is 1
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Fig. 3. Correlation between Basin Water Index (BWI) and discharge shifted by the time lag (1τ ) which resulted in the best correlation.
(1) Upper Zambezi:1τ = 60 d;(2) Kafue River:1τ = 30 d;(3) Luangwa River:1τ = 0 d.
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Fig. 4. Structure of the conceptual hydrological model.

all water is routed to the surface storage. The storage change
in the subsurface is modeled through the measured change in
soil moisture (BWI(t)−BWI(t −1)). The sum of the rain-
fall routed to the subsurface and the measured change in soil
moisture represent the recharge to the subsurface compart-
ment which is not allowed to be negative in this model. For
the surface runoff (QS) and the subsurface runoff (QGW) two
different time lags1τS and1τGW are applied to calculate the
total discharge according to Eq. (4).

Q(t) = QS(t −1τS)+QGW(t −1τGW) (4)

with

QS(t) = k2SS(t −1) and QGW(t) = k4SGW(t −1).

According to Eqs. (1–4) the parameterk1 is dimensionless,
the parametersk2 andk4 have the unit s−1 andk3 has the unit
m3 s−1. A physical interpretation of the parameters assigns
the parameterk1 to the losses through evaporation and inter-
ception of rainfall before it enters a storage. Besides being

dependent on the infiltration properties of the soil it also de-
pends on the average retention time in the catchment and is
therefore correlated to the size of the watershed. For larger
watersheds a lower value ofk1 is expected. The parame-
ter k3 relates the BWI to the total volume of water stored in
the subsurface zone. The two parametersk2 andk4 are the
rates at which the linear storage compartments are depleted.
These model parameters are calibrated by running the model
in deterministic mode using the Levenberg-Marquardt algo-
rithm (Marquardt, 1963).

In a strict sense, parameterT which governs the estimation
of the soil column water content (see Sect.4.1) is a model
parameter for itself. It drives the infiltration rate at which
the measured water content at the surface flows downwards.
A sensitivity analysis revealed that parameterT has only a
marginal influence on the goodness of the fit between the
observed and the modeled discharge.

The time lags (1τS and1τGW) are mostly dependent on
the size of the watershed. In this model the time lags are
considered to be an integral multiple of the length of a sin-
gle time step (1τ = n1t, n = 1,2,3,...). Due to the discrete
nature of the time lag, the parameter identification is done in
two steps. For different pairs of1τS and1τGW the model
parameterski are calibrated. The set of time lags with the
minimal root mean square error (RMSE) between the ob-
served and the computed flow together with the correspond-
ing ki are then chosen as the optimal parameter set. Since the
input data used are available every ten days the time step1t

of the model was set to ten days.
A long time lag entails a long potential forecast period.

Therefore, models using only soil moisture and rainfall as
input have a longer lead time in larger watersheds.

4.3 Reference method

The regression model developed byScipal et al.(2005)
was used for comparison. This model uses a logarithmic
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regression between soil moisture and discharge Eq. (5). It
uses three parameters representing a baseflow (Q0), a hydro-
metric scaling factorχQ and a time lag1τ .

Q(t) = Q0+χQln

(
BWImax

BWImax−BWI(t −1τ)

)
(5)

To assess the overall quality of the model presented in
this article it is run in deterministic mode, without the data
assimilation step. The simulated discharges are compared
to the measured ones by calculating the root mean squared
error (RMSE) and the Nash-Sutcliffe efficiency (Nash and
Sutcliffe, 1970). Furthermore, they are compared to the dis-
charges simulated with the reference model Eq. (5).

4.4 Real-time model

For effective real-time forecast of discharge the modeled
states of the system need to be updated using observed dis-
charges. This so-called data assimilation problem can be
solved in different ways. In real-time applications a new
assimilation problem is formulated at every time step. To
solve this problem efficiently sequential assimilation tech-
niques are considered superior (McLaughlin, 2002). Sequen-
tial assimilation algorithms, also known as filtering algo-
rithms, are divided into two steps: first a propagation step,
where the system states are propagated through time using
a model and forcing data; second an update step, where the
modeled states of the system are updated based on the dif-
ference between the model output and the real-world obser-
vation. To solve nonlinear filtering problems the Ensem-
ble Kalman Filter (EnKF) has proven to be both efficient
and robust (Evensen, 1994). EnKF has, along with standard
batch calibration, the advantage of being able to incorpo-
rate a wide range of uncertainties. The uncertainties of forc-
ing data, model parameters and model output are considered
separately but can be incorporated in the same mathematical
scheme (Thiemann et al., 2001).

The state variables which are updated in this study are the
two storage volumesSS andSGW. As observation data the
measured discharge is used. Observed discharge data are
available on a daily basis. Since the temporal resolution of
the model is 10 days, data assimilation is carried out in every
time step.

For the real-time modelling framework an ensemble of
randomly perturbed input and observation data are generated.
The rainfall data ensemble is generated using the gamma dis-
tribution on the FEWS NET rainfall data. The gamma distri-
bution only needs two parameters (0(k,θ)). The expected
value of a gamma distributed random variableX is defined
asE(X) = kθ and the standard deviation asσX =

√
kθ . The

standard deviation is set to a fixed value (σR = 50 mm) which
reflects the uncertainty of the rainfall data product (Herman
et al., 1997). Using the measured rainfall amount as ex-
pected value of the perturbed rainfall for each time step, the
two parametersk andθ can be calculated. Based on these

parameters the rainfall ensembleR̃t at time t is generated
according to Eq. (6).

R̃t =

 R̃1
t
...

R̃i
t

, with R̃i
t ∼ 0(k;θ) = 0

(
R2

t

σ 2
R

;
σ 2

R

Rt

)
, (6)

whereRt is the measured rainfall at timet .
For the uncertainty of the BWI the standard deviation is set

to 0.025. This is according to the standard error found byCe-
ballos et al.(2005) for the SWI. Whether this uncertainty can
be translated directly to the BWI is unclear. Since the BWI
is the arithmetic mean of all the SWI values in the watershed
the uncertainty could be lower as well. A detailed analysis
showed that this uncertainty has almost no influence on the
quality of the forecast. The dominant sources of uncertainty
in the real-time modelling framework are the rainfall data.

For the observed discharge data the variance of the added
noise is proportional to their magnitude with a standard de-
viation of 0.05 times the measured value, as the absolute
measurement error of discharge measurements is generally
considered to be dependent on the discharge itself. Both the
BWI and the discharge perturbations are considered to follow
a Gaussian distribution.

To assess the possible accuracy of the forecast, the model
is run in hindcast mode which includes the data assimilation
step for the historic time series from the years 1995 to 2002.

5 Results and discussion

The parameters for the developed model are calibrated for all
three watersheds. To analyze the performance of the model
it was assessed both in a deterministic modelling mode and
in hindcast modelling mode.

5.1 Deterministic model

The model parameters obtained by calibration in the deter-
ministic mode are shown in Table1. For the time lags one
can see a similar dependency on the size and geomorphology
of the different watersheds as it was already observed for the
correlation analysis (Fig.3). The Upper Zambezi catchment
has by far the longest response time whereas the Luangwa
river basin shows a relatively quick response.

The only model parameter that shows a distinct depen-
dency on the area of a watershed is the parameter (k3) that
correlates the BWI to the total volume of water stored inside
the subsurface storage. One can assume that the wetlands
present in the Upper Zambezi and the Kafue watersheds have
a huge impact on the water storage capacity.

The parameterk1 mainly reflects the water losses in the
watershed. The Upper Zambezi basin, being the largest wa-
tershed, shows the lowest value fork1. The Kafue River basin
shows a very similar value ofk1 which suggests that the soil
properties in the two basins are similar. However, due to the
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Table 1. Estimated parameters for the three sub-basins and the 95%
confidence interval for each parameter.

Upper Kafue Luangwa
Zambezi River River

1τS 40 d 20 d 10 d
1τGW 100 d 70 d 50 d

k1 (×10−5) 4.22±1.13 5.00±0.99 10.44±3.68
k2 (s−1) 0.22± 0.09 0.29±0.09 0.68±0.46
k3 (×103 m3 s−1) 32.23±6.41 5.61±1.32 18.06±5.58
k4 (s−1) 0.15±0.03 0.13±0.03 0.35±0.09

absence of detailed information on the soil properties in the
area this statement cannot be verified. The influence of the
size of the watershed on the parameterk1 is marginal. While
the area of the Luangwa basin is only one half of the size
of the Upper Zambezi watershed the parameter value ofk1
is twice as big. This supports the conclusion that the water
is drained quickly from the surface to the river and therefore
losses are low.

While the parametersk2 and k4 show similar values for
the Upper Zambezi basin and the Kafue river, they are much
higher for the Luangwa river. This correlates well with the
generally steeper slopes in the Luangwa basin where water
flows faster.

The performance of the model running in the determinis-
tic mode is illustrated in Fig.5 and compared to the refer-
ence method. The modeled discharge agrees in general quite
well with the measured flows. For all the applied models
the root mean squared error (RMSE) and the Nash-Sutcliffe
efficiency are calculated (Tables2 and3). The model devel-
oped gives better results than the reference method for the
Upper Zambezi and the Kafue River basin where both the
Nash-Sutcliffe efficiency and the RMSE are slightly higher
or lower, respectively. It is clearly visible that the flood
maxima are reproduced much better than in the reference
method. Obviously the inclusion of rainfall information is
most beneficial for the maxima as the correlation between
BWI and rainfall deteriorates for large precipitation events.
However, for the Luangwa river the model performance was
not satisfactory when running in the deterministic mode. It
even showed a slightly poorer performance than the reference
method which also does not allow for adequate modelling of
the situation.

Due to the parameter uncertainty the error band becomes
large, especially in the wet season. This uncertainty is mostly
attached to the model parameterk1 since with a high rainfall
amount a slight change in the parameter can greatly affect the
amount of water which is routed to the system.

A drawback for the testing of the method is the short
time period over which data are available. The model re-
lies on soil moisture data, on rainfall data and on measured
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Fig. 5. The discharge simulated in the hindcast mode (red line)
including the 95% confidence interval compared to the measured
discharge (blue line) for the three watersheds Upper Zambezi(1),
Kafue River(2) and Luangwa River(3).

discharge. The overlap of these three datasets dictates the
longest continuous time span that can be modeled. Even-
tually it is only possible to test the model on a period of a
bit more than six years, for the Upper Zambezi catchment
even less. For this reason a validation of the model was not
possible. The available data were used to obtain a stable cal-
ibration.

The application of the model provides a seamless integra-
tion of remote sensing products. With only four parameters
and a simple conceptual formulation this model is applicable
to a class of watersheds which comply with certain character-
istics. All data used are developed to an operational standard.
Therefore the user does not have to undertake extensive data
processing. This model is especially suited for use in a real-
time modelling framework.
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Table 2. RMSE of the different forecast lead times up to the max-
imum possible lead time (1τS). For comparison the RMSE of the
deterministic model run and the reference method are indicated. All
values are given in m3 s−1.

Upper Zambezi Kafue River Luangwa River

Lead time:

Lag 4 (40 d) 281.5
Lag 3 (30 d) 265.1
Lag 2 (20 d) 238.8 70.5
Lag 1 (10 d) 199.1 59.8 483.6
assimilated 131.4 46.5 412.6

Deterministic 269.3 99.5 513.7
Reference 285.0 103.8 502.6

Table 3. Nash-Sutcliffe efficiency of the different forecast lead
times up to the maximum possible lead time (1τS). For comparison
the Nash-Sutcliffe efficiency of the deterministic model run and the
reference method are indicated.

Upper Zambezi Kafue River Luangwa River

Lead time:

Lag 4 (40 d) 0.85
Lag 3 (30 d) 0.87
Lag 2 (20 d) 0.90 0.84
Lag 1 (10 d) 0.93 0.88 0.68
assimilated 0.98 0.96 0.80

Deterministic 0.90 0.82 0.74
Reference 0.88 0.80 0.75

5.2 Real-time model

For the successful application of the model for real-time pre-
diction it does not necessarily have to be mechanistically
correct but needs to reflect the correct tendency. When oper-
ating in the data assimilation mode the quality of the forecast
is of interest. The length of the forecast period is defined by
the shortest time lag (1τ ) in the model. The ensemble of the
forecast can be represented by the ensemble mean and the
confidence interval. As time approaches the time of predic-
tion for a certain timestep the error generally gets smaller
(Fig. 6a, 6b and 6c). This statement is supported by the
analysis of the RMSE and the Nash-Sutcliffe efficiency (Ta-
bles2 and3). While the prediction for the maximum forecast
time shows the highest RMSE and lowest coefficient of effi-
ciency, the model prediction gets significantly more accurate
for shorter forecast periods. Again the absolute error of the
prediction is much higher in the wet season, whereas the rel-
ative error is especially high during ascending and receding
flows (Fig.6a, 6band6c).
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Fig. 6a. Absolute (solid line) and relative (dashed line) forecast
error for the Upper Zambezi watershed for the different forecast
periods and the assimilation step.
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Fig. 6b. Absolute (solid line) and relative (dashed line) forecast
error for the Kafue watershed for the different forecast periods and
the assimilation step.
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Fig. 6c. Absolute (solid line) and relative (dashed line) forecast
error for the Luangwa watershed for the different forecast periods
and the assimilation step.

These results show that the model presented is capable of
providing useful discharge forecasts in semi-arid river basins.
Yet this model can not be applied to every river since its
model structure is not designed to reproduce the processes in
watersheds with a relatively low storage volume and a quick
response to rainfall events. This is the case in the Luangwa
river basin where uncertainties become very large.

The SWI which was used to calculate the BWI assumes a
uniform soil thickness everywhere. The actual thickness of
the soil in a river basin does not have a big influence on the
model results. The spatial variability of the soil thickness,
however, has a huge influence on the results because certain
areas with a relatively thin soil layer can suddenly dominate
the behaviour of the system.

6 Conclusions

Hydrological modelling under conditions of data scarcity re-
mains a big challenge. Recent developments offer promising
opportunities to advance in this field. On one hand, real-
time modelling techniques allow the assimilation of data in
a model, updating the modeled system state every time ob-
servation data are available. On the other hand, techniques
for extracting information on the hydrological cycle from re-
mote sensing data have advanced in the past few years. While
some years ago the satellite systems were designed to gather
as many types of data as possible in order to provide the sci-
entific community with data that could be exploited in several
ways, nowadays satellite missions are designed for a specific
purpose. Several satellite missions have been deployed re-
cently, or will be launched in the near future, especially for
the retrieval of soil moisture.

Radar scatterometer data were found especially promising
for use in hydrological modelling where the soil moisture
is one of the most important parameters. Since the radar
signal penetrates only the top few centimeters of the soil,
hence only giving information on the surface soil moisture,
the water content in the soil column has to be modeled. The

simple two-layer model used to generate the SWI produces
data which are appropriate to be used as input data for a con-
ceptual model. Since rainfall is one important driver of soil
moisture a conceptual model should also utilize rainfall data.

The prediction framework presented in this paper exploits
the available data sets on rainfall and soil moisture. The
relatively simple model consisting of two reservoirs, for the
surface water and the subsurface water, and an infiltration
process based on the soil moisture, shows a fairly good per-
formance. Especially in watersheds where the storage of wa-
ter in the soil is of high importance the model predictions are
accurate. In the Luangwa river basin, which is dominated by
steep slopes and quick runoff formation, the model’s perfor-
mance is not satisfactory.

Running the model in real-time with a data assimilation
procedure provides long term forecasts which can be used
for a wide variety of applications. To manage a river basin
system such a forecast is beneficial since the discharge ex-
pected for the next few weeks can be quantified. Releases
for power production, irrigation water demands or ecologi-
cal flood releases can be planned based on this information.

If water management options for a period exceeding the
forecast lead time have to be assessed the described model
is not suitable because it is not physically based. Due to the
relatively long time step flood forecasting is also not possi-
ble. If the quality of the input data is greatly improved flash
flood forecasting could eventually be an option. More and
more data from the newer satellite systems will be available
in real-time. A higher temporal and/or a higher spatial reso-
lution can greatly improve modelling efforts.

A higher spatial resolution of the data (e.g. as provided by
Envisat ASAR) would allow a higher spatial resolution of the
model. Since the BWI and the rainfall are averaged over the
whole area, the runoff processes are also averaged. The spa-
tial variability of the different runoff processes is completely
neglected. If heavy convective rainfall is occurring in an area
with high soil moisture a peak in the runoff should be ob-
served. Therefore if the soil moisture data allow the model
to divide the watershed into sub-basins a better prediction of
peak discharges could be feasible. A higher temporal resolu-
tion of soil moisture data can allow models to account for the
usually high temporal variability of the soil water content.

Further research should focus on the improvement of the
quality of the data and the development of more sophisti-
cated hydrological models tailored to use remotely sensed
soil moisture data. The quantification of the relevant un-
certainties demands attention as well. If the generally high
uncertainties of the prediction presented in this study can be
minimized such a forecast can be used for applications where
low uncertainties are necessary.
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