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Abstract.  Spatial water resource monitoring systems pends on the availability of detailed information on obser-

(SWRMS) can provide valuable information in support of vational error and understanding of the relationship between

water management, but current operational systems are fenemotely-sensed and model variables, as affected by concep-

and provide only a subset of the information required. Nec-tual discrepancies and spatial and temporal scaling.

essary innovations include the explicit description of water

redistribution and water use from river and groundwater sys-

tems, achieving greater spatial detail (particularly in key fea- .
2 ; . 1 Introduction

tures such as irrigated areas and wetlands), and improving ac-

curacy as assessed against hydrometric observations, as well

§1  Background
as assimilating those observations. The Australian water re- g

sources assessment (AWRA) system aims to achieve this byne first spatially-distributed water resources model was
coupling landscape models Wlt.h models describing S“rf?‘ceconceived in the 1960s (Freeze and Harlan, 1969; Craw-
water and groundwater dynamics and water use. A revieW, 4 ang |insley, 1966). Satellite observations were first
of opgratlonal an'd researgh applications demonstratgs thQatperationally assimilated into numerical weather prediction
satellite observations can improve accuracy and spatial de('NWP) models in the early 1970s (Tracton and McPher-
tail in hydrological model estimation. All operational sys- son 1977). The first operational uses of satellite observa-

tems use dynamic forcing, land cover classifications and gjong jn water resources were developed in the early 1980s
priori parameterisation of vegetation dynamics that are par'(Ramamoorthi, 1983). Almost 30 years later, few satellite

tially or wholly derived from remote sensing. Satellite 0b- 515 are used in only a handful of operational surface wa-
servations are used to varying degrees in model evaluatiogy, resoyrces monitoring systems (SWRMS, reviewed further
and data assimilation. The utility of satellite observatlonson)l_ There appears to be little evidence that the information

through data assimilation can vary as a function of dominantthey provide has found wide uptake in water management.
hydrological processes. Opportunities for improvement are This seems curious when considering the ever increas-

ﬁeﬂtn‘led, |_nc|:|ud|dng the del\/eloplmgnt of more gccuratg and g pressure on water resources in many countries and
igher spatial and temporal resolution precipitation products,q utility of water resource information in water manage-

and the use of a greater range of remote sensing products Rent. Some benefits of SWRMS include: (1) improved

a priori model parameter estimation, model evaluation andgaiia| ynderstanding of the water cycle and its sensitiv-
data assimilation. Operational challenges include the con{}e

Uity of h li o 4 d , y to climate variation, natural disturbances and human in-
tinuity of research satellite missions and data services, angsentions: (2) generation of retrospective water resources
the need to find computationally-efficient data assimilation

techniques. The successful use of observations critically de- 1ye define “operational” here as producing information on a

regular basis, and “spatial water resources monitoring systems”

. (SWRMS) as software that integrates observations into models to
CorreSpond?nce toﬁ\ . J. M. van Dijk produce spatial estimates of current (and past) water resources dis-
BY (albert.vandijk@csiro.au) tribution.
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accounts for policy planning and evaluation and compliance — What operational SWRMS currently exist?
monitoring (Molden, 1997); (3) near-real time monitoring of

soil, river and groundwater availability to support droughtre- — How do these systems use satellite observations?
sponse policies and actions (Henricksen and Durkin, 1986);
(4) initialisation of flood warning and water resource forecast
models; and (5) data to evaluate hydrological models used for
“what-if” scenario assessments.

— What research applications have been published that
may be implemented operationally?

Th indicati that the devel t of i These questions will be considered through the prism of the
ere are indications that the development of operationay, q - information requirements that led to the development

SWRMS is currently progressing rapidly however, partic- of AWRA. A short description of the system is therefore pro-
ularly now that some of the main technological obstaclesvided

have been overcome. Internet communication and teleme-

try have become fast and inexpensive. Reliable and accessi-

ble near-real time satellite data services have become avaib  gpatial water resource monitoring systems

able (though much data is still collected by research mis-

sions and therefore arguably not truly operationally reliable).2.1  Spatial hydrological models

Robust yet flexible information and communications tech-

nology (ICT) solutions have been developed to support theOver the years, a wide range of spatial hydrological mod-
development of operational systems (Kumar et al., 2008gls has been developed. Several reviews of these models
Werner and Whitfield, 2007). The onus, therefore, is on thehave been published (e.g. Kampf and Burges, 2007, and ref-
hydrological community to develop modelling systems thaterences therein). Typical applications of these models are
integrate satellite and on-ground observation systems as neeither at the catchment or groundwater systems scale. The
essary to produce water resources information that is of uséirst dynamic hydrological model that was feasibly appli-

to decision makers. cable over large areas (e.g. a continent) as well as demon-
_ strated utility for water resources applications was the vari-
1.2 Australian context able infiltration capacity (VIC) model, developed in the early

] ) ] ] nineties (Wood et al., 1992; Liang et al., 1994). VIC was
Recent experiences in Australia provide an example whergye\ejoped with the intention to be included in global cli-

demand for water resources information has led to the develyate models (GCMs) but was also evaluated against stream-
opment of a SWRMS. Large swathes of Australia have beenyq,y with satisfactory results. Since then, the land surface
experiencing extraordinary drought conditions since aroungy,qdels (LSMs) in most GCMs have received at least some
2001 prompting federal and state governments to reform wagention to the representation of hydrological processes in
ter information management and dissemination. New watetart que to their participation in the Project for Intercom-
laws in 2007 delegated a legislative mandate and resources g’arison of Land-Surface Parameterization Schemes (PILPS;
the Bureau of Meteorology (BoM) to develop a range of up- yenderson-Sellers et al., 1995, 1993) and similar initiatives.
to-date water information services and the statutory poweip e to their lineage, LSMs typically evolve at sub-daily time
to request water observations from all relevant sources. Sers'teps and have a domain and resolution commensurate with
vices will include an annual national water account, schedthe GCM. LSMs are not primarily intended to provide wa-
uled water resources assessments that interpret current aRgk resources information and are not used widely in water
future water availability, and forecasts of water availabil- management. When compared to more conventional catch-
ity for days to decades{tp://www.bom.gov.au/watgr/ To  ment models, LSMs show poorer performance in reproduc-
achieve this, BoM and the Commonwealth Scientific andi,g streamflow observations and other water resources re-
Industrial Research Organisation (CSIRO) in 2008 initiated|ated variables (Oki et al., 1999; Nijssen et al., 2001; Wood et
development of an underpinning SWRMS. The Australian g 1998: | ohmann et al., 2004). Reasons include the more
water resources assessment (AWHaﬁp://t_:onnect.c5|r0-a_U/ elaborate parameter calibration techniques used in catchment
water) system currently exists as experimental operationalyggels, and the combination of coarse resolution (of precipi-
systems in CSIRO and in BoM; that is, information is gener- ation forcing in particular) and strong non-linearity in runoff
ated rout|_nely and automatically but is not yet provided as 8generating processes. LSMs also vary in the degree to which
data service. hydrological processes important to water resources manage-

S ment (such as groundwater dynamics, streamflow generation
1.3 Objective and water use) are represented.

The aim of this paper is to assess the current state of progress, 1 "€ first uses of dynamic continental to global hydrolog-

opportunities and challenges to achieve greater use of satelc@ modelling for large scale water resources assessment
lite observations in SWRMS. This is pursued by considering’€re Published between 1998 and 2000, including the land-
the following questions: mark study of \brosmarty et al. (2000). Since then, several

more distributed water resource models have been developed
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to help understand the characteristics and sensitivities of waby the University of Washington for the western USA
ter resource systems. A distinguishing feature of these mod¢http://www.hydro.washington.edu/forecast/westwjde/

els is that they consider water resource generation and us®&oth systems evolved from NLDAS, use the VIC model,
Initial studies manipulated tabulated data on aggregate waand provide near-real time (latency around one day) spatial
ter use, but in recent years models have been developed thatodel estimates of soil moisture and snow water equivalent,
include a dynamic description of in-river processes (the man-as well as weekly streamflow at gauging locations. Com-
agement and dynamics of reservoirs and other water bodiegonents of the two systems are currently being merged to
extractions, irrigation water use) yet can still be applied for provide operational seasonal forecasts for the US through
large areas or even globally ¢ et al., 2003). NCEP (E. F. Wood, personal communication, 2010).

The European Flood Alert System (EFASttp://floods.
jrc.ec.europa.eu/efas-flood-forecastises a gridded catch-
ment model (LISFLOOD; Van der Knijff et al., 2010) that
is initialised using atmospheric conditions inferred from on-
Arguably, the only SWRMS specifically designed for use ground observations, near real-time satellite data and fore-
by water resource managers is the Netherlands Hydrologicagasts of precipitation, temperature and evaporation up to
modelling Instrument (NHI) that was made operational very 15 days out (Thielen-del Pozo et al., 2009). The same sys-
recently (Berendrecht et al., 2009; Weerts et al., 2009). Ittem outputs are used to provide daily updates of soil moisture
provides daily water resources estimates and forecasts acroggnditions at 0.05resolution through the European Drought
the Netherlands (41 526 Knat 250-m resolution to support Observatory (EDOhttp://edo.jrc.ec.europa.gu/
surfa_ce water aIIocation decision_s during drought. The SyS- Apart from the discussed operational systems, some mon-
tem integrates a grid-based vertical soil water model withitoring and forecasting systems exist that are not intended
surface and groundwater models that are coupled online witlor ater resources applications but nonetheless contain hy-
a regional surface water model and water distribution modelyo|ogical models or land surface models. An example is
to provide estimates of variables such as surface water anghe experimental AWAP system (Australian Water Availabil-
groundwater levels and root zone soil moisture. ity Project; Raupach et al., 2008; King et al., 2010) which

In addition, a handful of systems exist that provide syn- provides monthly and weekly updates on soil moisture sta-
optic information about landscape hydrological variables.tys for Australia at 0.05resolution bittp://www.eoc.csiro.au/
Some of these are described briefly below. While incompleteawapy. Groundwater and flow routing are not represented,
from a water resources perspective, they do provide informanyt the system has been shown to produce monthly estimates
tion that can be relevant to water management, such as sodf runoff that show useful agreement with observed stream-
moisture status and streamflow in unregulated systems.  fjgw (Raupach et al., 2008).

A Land Data Assimilation System (LDAS) technology  Finally, various monitoring and warning systems exist
was developed in the US to combine data from multiple that have relevance to water resources but do not use a dy-
sources within models to produce gridded maps of land surnamic spatial hydrological model. These include flood and
face states and fluxes. |mp|ementati0ns include the Northjrought monitoring Systems based on atmospheric mode|
America LDAS (NLDAS, http://www.emc.ncep.noaa.gov/ output, data collected by in situ networks, satellite products,
mmb/nldasandhttp://ldas.gsfc.nasa.gov/nldp@itchellet  or 3 combination of these. Examples include the US Drought
al., 2004) and the Global LDAS (GLDAShttp://ldas.gsfc.  Monitor (http:/watermonitor.goy/ Global Flood Detection
nasa.gov/gldap(Rodell et al., 2004). Both rely on the Land system fttp://www.gdacs.org/flooddetectin/Dartmouth
Information System (Kumar et al., 2008), a software infras- F|lood Observatoryhttp://www.dartmouth.edufloods) and
tructure that driVeS Several Spatial m0de|S, inC|uding Noah,ﬂood Warning Services in many Countries (inc'uding Aus-

Mosaic, VIC, the Community Land Model, and the Sacra- traja; http://www.bom.gov.au/hydro/floogl/ These systems
mento model (for details and comparison see Mitchell et al. are beyond the scope of this paper.

2004; Rodell et al., 2004). Retrospective and updated NL-

DAS model output is available with five days latency, and soil

moisture percentile and anomaly maps are provided throughy  The Australian Water Resources Assessment (AWRA)

the experimental NLDAS Drought Monitor websitatip: system

[lIwww.emc.ncep.noaa.gov/mmb/nidas/drought/ GLDAS

output is produced as 3-hourly and monthly values and aB.1 Design

0.25-F resolution. Data are available from the NASA web

site with around one month latency. The purpose of AWRA is to provide up-to-date, accurate and
Two large-scale experimental operational hydrological relevant information about the history, present state and fu-

monitoring and forecasting systems have been developed byure trajectory of the water balance, with sufficient detail to

Princeton University for the eastern USAttp://hydrology.  inform water resources management. Intended dissemina-

princeton.edufluo/research/FORECAST/project.phpand tion of the information is by BoM through occasional and

2.2 Operational monitoring systems
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Fig. 1. Conceptual structure of the AWRA system showing the connections between models for the different hydrological processes, and
the role of satellite and on-ground observations (indicated by the pictograms). Blue arrows indicate a water transfer from one model to
another, black arrows indicates data flow through initialization or assimilation. Not all fluxes between models are shown and direction of
water transfer can be reverse in some cases.

scheduled water resources assessments and the annual N#®98) to estimate groundwater recharge. These models are
tional Water Account. The systems described in Sect. 2 proeften simpler than LSMs and only target specific water bal-

vide important lessons but do not generally fulfil all require- ance terms and time scales, but they have been more compre-
ments. hensively compared against field observations and are trusted

First, regulated and unregulated redistribution through surby water resource managers. Their performance sets a bench-
face water and groundwater systems forms the primary foimark in system development.
cus of water resources management and needs to be repre-Third, the on-ground hydrometric network of streamflow
sented explicitly and accurately. Features that need to band water level gauges, groundwater monitoring wells and
described include irrigation, off-reach wetlands, floodplain diversion and extraction meters needs to be integrated with
inundation, surface water-groundwater exchanges, groundhe model. For example, lumped rainfall-runoff models tend
water discharge to the soil, and the dynamic behaviour ofto be amenable to optimisation of a small number of (non-
water stored in public and private reservoirs and other watedistributed) parameters to observed streamflow, and these pa-
bodies. Except for the NHI, current SWRMS do not describerameter sets can have predictive value in nearby catchments
these processes and therefore additional development is ras well (Chiew, 2010). Achieving similar performance in
quired. This is achieved by coupling the spatial landscapedistributed models requires some of these parameterisation
hydrological model to lumped river models as well as lumpedtechniques to be used. Moreover, in water accounting hydro-
or distributed groundwater models, where required. In addi-metric observations and model estimates will need to be rec-
tion, surface and groundwater water extraction metering datanciled. This introduces a need for model-data fusion tech-
are combined with satellite ET estimates to synthesise spatiatiques that do not only integrate satellite observations, but
information on water use (Fig. 1). also on-ground observations.

Second, the system needs to achieve estimates of river- Fourth, the information needs to have sufficient spatial res-
and groundwater balance terms that are as good as thos#ution for water resources applications. Some processes or
achieved with “conventional” hydrological tools, and prefer- features tend to occur at resolutions lower than those con-
ably better. Tools widely used in Australia include lumped sidered in LSMs; for example irrigation, surface water bod-
rainfall-runoff tools to estimate streamflow (e.g. Sacramento;ies, floodplains and wetlands, and residential water use. In
Burnash et al.,, 1973); rational methods to estimate landheory, there is high resolution satellite data to provide in-
cover effects on ET (Zhang et al., 2001); and soil-vegetationformation on these features at very high50 m) resolu-
atmosphere models such as WAVES (Zhang and Dawegjon. In practice, it is currently not feasible computationally
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to model at this resolution over areas as large as Australidution, domain and the number of sub-grid land cover classes
(7.7 million knr?). (Hydrological Response Units; HRUs) are not prescribed but
To address these challenges, the AWRA system has cordefined by the model inputs. The version implemented in
ceptually been designed as a modular system with four comthe experimental AWRA system uses Australia-wide forc-
ponents (Fig. 1): (1) a grid-based, one-dimensional land4ing data at 0.05resolution and considers two HRUSs; deep-
scape hydrological model (AWRA-L; Sect. 3.2) that shows rooted vegetation and shallow-rooted vegetation.
similarities to both LSMs and conventional hydrological ~The model evolves on a daily time step. The water bal-
tools; (2) a lumped model describing the river and flood- ance of a top soil, shallow soil and deep soil compartment
plain water balance and routing; (3) lumped or finite elementare simulated for each HRU and groundwater and surface
aquifer models for regions where groundwater dynamics argvater dynamics are simulated at grid resolution. Simple and
not well described by the landscape model (high transmissivwhere available well-established equations were used to de-
ity regional groundwater systems, floodplain aquifers); andscribe processes determining the radiation, energy and water
(4) a water use model that uses metering and gridded satebalance. Evapotranspiration (ET) can be estimated following
lite ET estimates to spatially infer lateral inflow derived from the Penman-Monteith equation or the Priestley-Taylor equa-
the river and groundwater systems (Van Dijk and Renzullo,tion (Priestley and Taylor, 1972; Monteith, 1965), depend-
2009b). ing mainly on the availability of wind speed data. Storm
The two-way coupling between these four models needsind baseflow generation equations were selected after an
to be described in a way that is practical for operational ap-evaluation of alternatives against streamflow observations
plication. This currently rules out fully-dynamic coupling. (Van Dijk, 2009, 2010b). A simplified soil water hydraulics
Instead, initialisation and data assimilation approaches arécheme that has minimal computational demands was de-
being developed to reconcile component models. Thesgived empirically from simulations with a detailed model us-
estimates are subsequently reconciled within the landscapi@g Richards’ equation. New approaches were developed to
and river water balance models through data assimilation irdescribe surface albedo dynamics and vegetation phenologi-
model re-analysis. These components and exchanges agél response to water availability (Van Dijk, 2010a)
currently still in development and not implemented opera- All HRU and catchment parameters can be prescribed as
tionally. The focus of satellite data use is in the AWRA uniform values or as spatially-varying grids. Prior estimates
landscape hydrological model, which is operational and defor all parameters were based on literature review or analyses

scribed below. carried out as part of model development. The minimum me-
teorological inputs are daily gridded precipitation, incoming
3.2 AWRA Landscape model short-wave radiation and daytime average or maximum and

minimum temperature. Where daily or daytime wind speed,

The design of the AWRA Landscape (AWRA-L) model re- vapour pressure and air pressure data are available they can
flects a desire for parsimony — from a computational per-be used optionally.
spective, to achieve operational robustness (e.g., numerical AWRA-L simulations have been compared against vari-
model solutions requiring iteration were avoided), and fromous in situ and satellite observations to assess performance
a scientific perspective, to reduce parameter uncertainty (oin the absence calibration or assimilation. Satellite observa-
equifinality; Beven and Binley, 1992; Beven, 1989). The tions used for model evaluation are discussed in Sect. 4.4.
choices made in model formulation do sometimes represenin situ observations included streamflow measurements from
a compromise between the aim for parsimony and the nee@62 small Australian catchments affected minimally by reg-
to simulate variables that can be assimilated or that are rewlation and flux tower ET observations at four sites across
quired for reporting purposes (e.g. in the National Water Ac-Australia (Van Dijk and Warren, 2010). Flux tower ET for
counts; Bureau of Meteorology, 2010). As all AWRA com- dry canopy conditions was reproduced well; the main source
ponents, AWRA-L has been designed as modular softwarepf error was found to be caused by differences between
so that process descriptions are easily included, replaced andwer-based precipitation measurements and grid-based esti-
removed. mates. Comparison of total ET was difficult due to the large

The current model version 0.5 is described in a report (Vanuncertainty in rainfall interception evaporation estimated
Dijk, 2010a) and summarised briefly here. The AWRA-L from the flux tower measurements. Streamflow records were
structure may be described as a hybrid between a simplifiedeproduced with very similar accuracy to that achieved by
“tiled” (sensu Avissar and Pielke, 1989) LSM and a lumped lumped rainfall-runoff models in the absence of calibration.
catchment model applied at grid resolution (cf. Chiew, 2010).Simulations are likely to be improved by applying more
Effectively, each grid cell is conceptualised as a catchmentdvanced parameter calibration developed for such models
(or several identical catchments in parallel) that does not lat{Chiew, 2010), particularly at smaller spatial and temporal
erally exchange water with neighbouring cells. The validity scales.
of this assumption will vary as a function of model resolu-
tion, geohydrological conditions, and time scale. Grid reso-
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3.3 Operational implementation

As part of operational trialling, two experimental AWRA
systems have been implemented, using respectively the ICT
frameworks developed for the AWAP system (King et al.,
2010) and Delft-FEWS (Werner and Whitfield, 2007). Both
systems use 0.05esolution forcing data of daily precipita-
tion, short-wave radiation, and minimum and maximum tem- &
peratures produced by the BoM. The precipitation fields are
derived by interpolation of gauge observations only and are .
produced in a staged manner as observations with increasini
latency become available (Jones et al., 2009). Minimum and
maximum temperature fields are also derived by interpola-
tion of station observations (Jones et al., 2009). Incoming
short-wave radiation is estimated by blending station obser-
vations and geostationary measurements (see Sect. 4.2).
Satellite observations were used to estimate HRU fractions

Water storage anomaly

- 4250 mm

and some of the parameter fields (see Sect. 4.3). The opere .

250 500 1,000 km
S S T S T

tional AWRA-L model has not yet undergone any automated = =™

parameter optimisation. Simple observational models hav?:_ 2. Total water st | for 1 Feb 2010. i
been implemented to facilitate data assimilation for state up- 1. 2. total waler storage anomaly map for - February N

. R cluding water in the vegetation, soil, ground water and surface stor-
_datmg (see Sect. 4'_5) but data assimilation is currently I"Otages. Anomalies are calculated with reference to the average for
implemented operationally.

the same day in the years 1980-2009. Points indicate the location

_ Outputs pro_duced include gridded fields of water storagef rain gauges used in the derivation of the interpolated model forc-
in the three soil compartments and groundwater, ET, streaming.

flow generation, groundwater recharge. In addition some
variables are produced for diagnostic purposes and as a pre-
cursor to operational data assimilation. These include veg-
etation biomass and leaf area index (LAI), and “synthetic”
satellite observations such as fractional cover, vegetation

greenness indices, soil surface wetness, and total column ter-

restrial water storage. An example output is shown in Fig. 2.

4 Operational use of satellite observations
4.1 Utility of satellite observations

Several papers have surveyed the potential or actual uses
of satellite observations in hydrology (Schultz and Engman,
2000; Wagner et al., 2009; Fénmdez Prieto et al., 2009;
Schmugge et al., 2002; Rango and Shalaby, 1998). They are
summarised here with a focus on use in SWRMS and com-
pared to the ground observations currently used in hydrolog-
ical modelling (Fig. 3).

— Atmosphere:
Conventionally, the atmospheric variables that are re-
quired as forcing for hydrological models are precipita-
tion gauge and weather station observations or derived
interpolation products. Particularly in data sparse re-
gions, satellite observations can help improve the qual-
ity of these inputs, for example by blending precipita-
tion gauge information with rainfall radar and multi-
satellite rainfall products; and combining satellite ob-
servations of cloud cover, atmospheric composition and

Hydrol. Earth Syst. Sci., 15, 385, 2011

temperature with weather station observations and/or
NWP models.

Vegetation and snow:

Optical and passive microwave observations can pro-
duce estimates of snow cover and snow water equivalent
water storage, which can be used to initialise hydrolog-
ical models. Optical satellite observations can be used
to classify the landscape into land cover classes. Op-
tical observations of albedo and thermal infrared (TIR)
and microwave brightness temperatures or derived land
surface temperatures (LSTs) can be assimilated into sur-
face radiation and energy balance models to improve the
accuracy of ET estimates. Similarly, optical observa-
tions of vegetation greenness and derived products such
as the fraction of absorbed photosynthetically active ra-
diation (FPAR) and leaf area index, and passive or active
microwave derived estimates of vegetation water con-
tent, biomass and vegetation structure, can be used to
estimate such variables as emissivity, canopy conduc-
tance and vegetation roughness, which affect the parti-
tioning of radiation into ET and other terms.

Soil:

Active and passive microwave observations have been
used to estimate the topsoil moisture content, and the
temporal decay in soil (brightness) temperature ob-
servations has been used to estimate soil hydraulic
properties.

www.hydrol-earth-syst-sci.net/15/39/2011/
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Fig. 3. Diagram showing the potential ways in which satellite observations can inform water resource assessment systems. Conventionally

used on-ground observations are listed in italics.

— Surface water: namic forcing; (2) a priori parameter estimation; (3) model
Satellite altimetry can be used to measure water levekevaluation and development; and (4) data assimilation, in-
in larger water bodies, and optical active and passivecluding both non-sequential techniques (such as parameter
microwave remote sensing have been applied to monitorcalibration) and sequential techniques (i.e., state updating).
the extent of water bodies and floods, as well as volume
(through combination with elevation data). 4.2 Dynamic forcing

— Groundwater:
While optical and microwave observations are too su-
perficial to produce much information on groundwater

Several NWP systems routinely assimilate satellite observa-
tions and their products make their way into some of the op-
dynamics, they have been used interpretatively in geo_erational systems that use weather analysis data and fore-

hydrological mapping, and the occurrence of thermal €aStS: For example, the NLDAS system uses daily grid-

anomalies can indicate groundwater discharge zones. ded 0.25 resolution precipitation esnmqted by mterpqlauon
of data from 6500 gauges measured in near-real time and

Finally, gravity measurements such as those by the Gravityl3 000 gauges with greater latency; these data are interpo-
Recovery and Climate (GRACE; Tapley et al., 2004) providelated to 0.125 resolution and subsequently disaggregated
observations of total column water storage, which includesto hourly estimates using rainfall radar observations (Cos-
water in all stores mentioned above. Despite their currentlygrove et al., 2003). Geostationary satellite observations are
coarse spatial resolution, they are a unique integrated meaised to estimate incoming shortwave radiation at @e50-
surement and have proven valuable for evaluation of largdution. Other atmospheric variables (e.g. humidity, tempera-
scale hydrological models. ture, wind) are derived from NCEP NWP analysis (Cosgrove
This brief summary shows a wealth of possibilities for et al., 2003). The GLDAS system uses 2-hourly meteoro-
satellite observations to aid in hydrological modelling, in- logical forcing derived from the NCEP global data assim-
cluding “soft” or interpretative uses (e.g., mapping, evalua-ilation system (GDAS) as a default. Precipitation is esti-
tion) as well as “hard” or quantitative uses (as model inputmated from global 2 5resolution 5-day precipitation fields
or in data assimilation). Below, we review published oper- derived retrospectively by blending gauge and satellite obser-
ational and experimental uses of these observations, makingations (CMAP; Xie and Arkin, 1997) that are disaggregated
a distinction between the use of satellite products for (1) dy-in time and space using GDAS precipitation fields. Radiation
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is based on a 0.25resolution global satellite cloud cover
product (Rodell et al., 2004). The two experimental seasonal.-
forecasting systems for the USA use NLDAS forcing data s
for initialisation, augmented by non-operational station data 8
for the western USA (E. F. Wood, personal communication, g &
2010. EFAS uses near-real time meteorological data basec
on approximately 2000 weather stations around Europe anc
available with 1 day latency. NHI uses precipitation forcing
that includes 1 km radar derived rainfall fields and observa-
tions from 325 gauges. o ,

The AWAP and AWRA systems both use 0°0&solution Ll Ry
gridded fields of daily rainfall and temperature based on in- ¢ 2 40 60 8 100
terpolated station data only (Jones et al., 2009). Satellite obl—:ig_ 4. Daily rainfall estimates for 5 January 200&) gauge-only

servations are however used in the operational estimation O:Emalysis (Jones et al., 2009) (black dots represent gauge locations);

incoming shortwave radiation, by combining solar reflective (b) 24-h accumulations of satellite-based TMPA 3B42 rain rates;
measurements from imagers aboard the Japanese GMS ajfq c) blended satellite-gauge rainfall estimate generate using the
MTSAT-IR geostationary satellites with station-level radia- kernel-based algorithm of Li and Shao (2010).
tion measurements (Weymouth and Le Marshall, 2001).

The quality and resolution of precipitation data is recog-
nised as one of the main limitations on useful hydrological timated and observed peak streamflow is due to these pro-
monitoring (Nijssen et al., 2001). An important aspect of cesses (Van Dijk, 2010b; Giannoni et al., 2003).
AWRA development has been the generation of better qual- There are also challenges to be addressed when using
ity precipitation fields, in terms of spatial and temporal res- satellite data to generate dynamic forcing operationally. In
olution as well as in accuracy. In several regions the densityarticular, caution needs to be taken when ingesting a prod-
of stations is very low and consequently interpolation uncer-uct for which continuity is not assured, or the quality of
tainty large (cf. Fig. 2). The global Tropical Rainfall Measur- which relies on research missions (the TMPA product is a
ing Mission (TRMM) Multi-satellite Precipitation Analysis case in point). Another challenge is the need to understand
(TMPA 3B42; Huffman et al., 2007) is a product that extendsthe error in gauge records as well as satellite products, and
back to 1998. Only a subset of the Australian station networktemporal and spatial scaling between the two.
is used for bias correction in the product. Alternative statis-
tical approaches to blending station data and satellite rainfalf.3 A priori parameter estimation
products have been explored. Li and Shao (2010) tested or-
dinary kriging and co-kriging with the TMPA data as a co- The adjective a priori is used here to distinguish those pa-
variate, and developed a double kernel-smoothing techniquéameters estimated in independent data analysis or heuris-
to blend the two rainfall data sets. An example of the kernel-tics from those obtained via formal model optimisation (see
based blended rainfall estimate for Australia is given in Fig. 4Sect. 4.5).
along with gauge-only analysis generated by the BoM and There are several examples of the use of satellite observa-
daily accumulation computed from the TMPA 3B42 rain tions and derived products to parameterise hydrological mod-
rates. Cross validation suggested that among the approachéts. The most common use is for land cover classification
tested the double smoothing technique produced the lowesand to prescribe vegetation canopy structural and biophysical
standard error and bias. The degree to which the resultingroperties. Both NLDAS and GLDAS use a 1-km resolution
blended precipitation product improves AWRA estimates is13-class land cover data set derived from AVHRR (Hansen et

».

-

currently being tested. al., 2000). The different models in NLDAS use different ap-
proaches to prescribing an LAl or canopy fraction climatol-
Opportunities and challenges ogy, but all are based on AVHRR NDVI data (see Mitchell et

al., 2004 for details). GLDAS, too, uses AVHRR NDVI ob-
Opportunities for further development include the use of al-servations to produce gridded LAI climatologies for the vari-
ternative satellite precipitation products (e.g. Joyce et al.ous land cover classes using a procedure described in Rodell
2004) in blending, as well as additional data sources suclet al. (2004) and Gottschalck et al. (2002). The LISFLOOD
as NWP analysis data and rainfall radar. These data sourcenodel in EFAS uses a classification based on a blend of
may facilitate the generation of informative estimates of sub-AVHRR (Mucher et al., 2000) and SPOT/VEGETATION
daily rainfall distribution. Rainfall intensity is known to in- (Bartholormé and Belward, 2005) derived products; monthly
fluence processes such as overland flow generation and raih-Al estimates are derived from SPOT/VEGETATION and
fall interception losses, and there is reason to assume tha&TSR/AATSR (Garrigues et al., 2008). AWAP uses NDVI
a significant fraction of the differences between model es-and FPAR derived from SeaWiFS (Gobron et al., 2002).
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In AWRA, grid cell fractions of deep- and shallow- 4.4 Model evaluation and improvement
rooted vegetations are estimated from persistent and recur-
rent greenness fractions based on AVHRR NDVI observa-While not essential to support an operational system, satel-
tions (Donohue et al., 2009). MODIS albedo and vegeta-lite observations can be useful to evaluate the performance
tion properties (Knyazikhin et al., 1999; Myneni et al., 2002; of hydrological models. Evaluation can help to (1) set a
Schaaf et al., 2002) were also used to derive parameters déenchmark against which future modifications can be tested;
scribing the interrelationships between LAl fraction canopy (2) understand how and against which observations model
cover and albedo, whilst a photosynthetic capacity index wagstimates are most usefully compared, (3) identify processes
calculated from the enhanced vegetation index (EVI; Hueteor quantities that are not described well by the model; (4) in-
et al., 2002) and used to estimate surface conductance. Fform the development of model-data assimilation techniques;
nally, ENVISAT ASAR GM radar (Pathe et al., 2009) ob- and (5) allow the model results to be used with appropriate
servations were used to derive parameters describing the rg¢aveats and “fit for purpose” disclaimers.
lationship between topsoil moisture content and soil albedo Several SWRMS have undergone evaluation against satel-
(Van Dijk, 2010a). Canopy dynamics are explicitly simu- lite observations. Such evaluations are usually included
lated by the model and satellite vegetation climatology is notwhen testing the performance of satellite data assimilation

used operationally. techniques (e.g. as “open loop” estimates; see Sect. 4.5). For
example, NLDAS LST simulations were compared to GOES
Opportunities and challenges satellite LST fields (Mitchell et al., 2004) and Laguardia

and Niemeyer (2008) compared soil moisture simulations by
There are many opportunities for greater use of satellite obihe EFAS/LISFLOOD system against ERS radar derived soil
servations to derive spatially continuous fields of soil andyojsture. There have also been numerous studies using satel-
vegetation parameters. Examples include the use of multijite ohservations to evaluate results from non-operational hy-
and_ hyperspectral data to estimate canopy assimilative C&rological models. For example, Kite and Droogers (2000)
pacity and/or water content and thereby surface conducgzompared several hydrological models and satellite-based
tance (Guerschman et al., 2009; Glenn et al., 2008); the=T estimation methods, as well as field measurements. Spa-
use of radar and microwave data to parameterise vegetaiy| soil moisture fields derived from hydrological models
tion biomass or water content (Meesters et al., 2005), heighfave peen compared to estimates derived from passive mi-
(Kelindorfer et al., 2004) and aerodynamic roughness (Pri-crowave observations (Liu et al., 2010) and radar (Vischel et
gent et al.,, 2005). Satellite albedo products can improvea|_, 2008; Parajka et al., 2009). Biftu and Gan (2001) used
radiation balance estimates which can help hydrological esayHRR and Landsat LST and radar soil moisture to evalu-
timation. Finally, it has been shown feasible to estimateate model results. GRACE observations have been used to
soil hydraulic properties with the aid of temporal patterns in eyajyate simulated total water storage in several studies (see
remotely-sensed temperatures or soil moisture or ET prodeyiews by Gintner, 2008; Ramillien et al., 2008).
ucts (Mattikalli et al., 1998), although this is perhaps bet-  awRA simulations have been assessed against satellite-
ter approached through parameter optimisation techniquegyerived estimates of topsoil moisture content, surface and
given the.inﬂuence of forcing on the temporal behaviour of vegetation properties (fraction cover, FPAR, EVI), total ter-
these variables (Gutmann and Small, 2010; Pauwels et alyggirial water storage, and ET estimates. Topsoil moisture
2009; and references thgreln). ] ) derived from ENVISAT/ASAR GM showed spatial patterns
There are also some difficult challenges in the inference ot ¢ corresponded well with independent satellite product er-
vegetation and soil parameter fields. All biophysical prop- o estimates (Pathe et al., 2009; Van Dijk, 2010a; Doubkova
erties (e.g. LAI, albedo, biomass) are inferred from remoteg; al., 2010). AVHRR- and MODIS-derived estimates of
sensing and are thus subject to uncertainties in the paramg=paR  canopy cover fraction and greenness were reproduced
ters and assumptlons of the retrieval model (e.g. Glenn etalyq for seasonal vegetation that responds dynamically to
2008). In_addltlon, there can pe_ Conc_ep_tual differences bey 4oy availability, while temperature driven phenology and
tween variables that are superficially similar between remoteym || variations in canopy properties for evergreen forests
sensing products and models. Examples include the differyyere not reproduced. AWRA simulated total terrestrial water
ence between FPAR and fraction canopy cover, between opsiorages have also been evaluated against GRACE-derived
tical depth and biomass, and between remotely-sensed SUfsrestrial water storage estimates (Van Dijk and Renzullo,
face soil properties and desired integrated soil properties. 2009a).This showed generally good agreement in the dy-
namic range and patterns (Fig. 5) and emphasised the utility
of satellite gravity observations to identify errors in forcing
and the model description of soil and groundwater dynamics,
even if currently only at coarse scale.
More recently, evaluation against MODIS albedo (Schaaf
et al., 2002) has proven useful in assessing where the model
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300 trieval methods indeed rely on pragmatic but, strictly speak-
€ ing, wrong assumptions and/or unknown or uncertain model
E 9] parameters, this ignores the fact that the estimation of bio-
% 200 phys_ical fluxes from field measurements also requi_res pro-
5 cessing that can equally introduce large uncertainties. Ex-
§ 150 1 amples include the potential for large errors in the discharge
£ 100 4 rating curve to convert water level to streamflow; and the
3 various corrections and gap-filling required to estimate ET
% 50 | from flux tower measurements. A distinct additional dis-
F advantage of field observations can be the uncertainty when

0 ‘ ‘ ‘ ‘ ‘ ‘ scaling these observations to model resolution. In fact it has
2002 2003 2004 2005 2006 2007 2008 @ been argued that satellite ET algorithms have reached an ac-
200 curacy that is on par with flux tower techniques (Guerschman
’g et al., 2009; Van Dijk and Warren, 2010).
% 150 | 4.5 Data assimilation
3 Data assimilation here includes all computational techniques
% 100 used to minimise differences between modelled and observed
= variables, including non-sequential techniques such as pa-
f_g rameter calibration (or “tuning”) and sequential state updat-
= 5 ing techniques.

The use of hydrometric observations to calibrate hydro-
logical models is well established, but the use of satellite
Fig. 5. Comparison of large scale average TWS derived from threeObServations to estimate parameters in spatially-distributed
GRACE products (orange band) and AWRA (blue line) for¢ap  hydrological models is less common. A challenge is the
Timor sea drainage division, and tti®) Murray Basin. computational burden of finding an optimal parameter set for

each model unit (e.g. grid cell-HRU combination). Exist-

ing examples appear to be restricted to research studies. For
performs better than a climatology (Van Dijk et al., 2010); example, Kalma et al. (2008) reviewed some uses of LST
and evaluation against AMSR-E and TRMM derived soil observations to calibrate LSMs, and additional studies have
moisture products (Liu, 2008) along with radar based esti-been published since (Winsemius et al., 2008; Renzullo et al.,
mates and in situ observations has helped to assess optim2008; Immerzeel and Droogers, 2008; Droogers et al., 2010).
soil moisture blending methods (Liu et al., 2010). Compar-Campo et al. (2006) and Parajka et al. (2009) attempted the
ison against a MODIS reflectance-based scaling ET produse of radar soil moisture retrievals to calibrate hydrologi-
uct (Guerschman et al., 2009) has allowed the mapping ofal models. GRACE data were included in multi-objective
areas where lateral inflows of river or groundwater occurparameter optimization approaches to constrain groundwater

2002 2003 2004 2005 2006 2007 2008 (b)

(Van Dijk et al., 2010). hydrological parameters (Lo et al., 2010).
In models with a large number of modelling units (e.g. grid
Opportunities and challenges cells), state updating can require fewer model iterations than

parameter optimization and hence be more attractive for op-
Where systematic differences are observed and can be agrational applications. Operational satellite-based state up-
tributed to model error, this can subsequently lead to im-dating in NWP has existed since the 1970s and has improved
provements in model structure or parameterization. Severahe accuracy of short<7 day) term forecasts remarkably
model inter-comparison experiments have been undertake(Simmons and Hollingsworth, 2002) and continues to do so
in order to assess alternative modelling approaches, althougfPoli, 2010). Common approaches include optimal inter-
interpretation tends to be confounded by the inability to as-polation, three- and four-dimensional variational techniques
cribe observed performance differences to forcing, param{Bouttier and Courtier, 1999; Kalnay, 2003). Apart from the
eters and model structure (e.g. Dirmeyer et al., 2006; Foxuse of remotely-sensed LAI time series, operational assim-
et al., 2006; Henderson-Sellers et al., 1995). An additionalilation in hydrological models appears to be limited to the
challenge in using satellite retrieved data can be the uncerGLDAS system. GLDAS assimilates sub-daily LST from
tainty introduced by the retrieval model. It has frequently TIROS/TOVS geostationary observations (&tnd Vidal-
been suggested to the authors that an evaluation against sat&tadjar, 1992) by optimal interpolation and assimilates a
lite retrieved products is not strictly valid, as it constitutes MODIS snow cover product (Hall et al., 2002) using a rule-
“a comparison of models against models”. While some re-based algorithm. Experiments have been done to assimilate
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KL AP A priori parameter estimates, no calibration
% PV Non-sequential estimation of six parameters by calibrating against
SN PV
E 64 PEV @ EVI
a s ) PKL PP Non-sequential estimation of rainfall scaling coefficient by calibrating
5 © ‘ against EVI
- E ~— AP
e g 44 PE KL Sequential leaf cover updating using prior parameter values
i
g Ks Sequential soil moisture updating using prior parameter values
e}
§ 21 PKL PV followed by sequential leaf cover updating
2]
PKS PV followed by sequential soil moisture updating
0 T T T PE Non-sequential estimation of six parameters by calibration against
0 10 20 30 40 flux tower ET
. Non-sequential estimation of six parameters by calibration against
0,
Average bias (%) PEV EVI and flux tower ET

Fig. 6. Indicators of estimation uncertainty for alternative model-data fusion approaches for flux tower ET (the area of the circles is propor-
tional to the unexplained variance, varying between 11-17%). The most desirable result would show a small circle in lower left corner. Note
that the absolute value of bias for each site was calculated before averaging.

passive microwave derived soil moisture and GRACE ob- AWRA currently does not assimilate satellite observa-
servations but these have not yet been implemented operdions, but some assimilation experiments have been done
tionally (Rodell et al., 2004; Zaitchik et al., 2008). Similarly, to guide implementation. The effectiveness of assimilat-
experiments have been done to assimilate remotely-sensdédg MODIS Enhanced Vegetation Index (EVI) (Huete et al.,
snow cover and microwave brightness temperature (Pan €2002) observations into AWRA was tested at four flux tower
al., 2009; Andreadis and Lettenmaier, 2006). sites (Van Dijk and Renzullo, 2009c). Approaches tested in-
There are several more published off-line data assimila-clude non-sequential parameter optimisation of, respectively,
tion experiments. The assimilation of satellite observationssix sensitive model parameters (calibration against EVI, and
such as LST and microwave brightness temperature has tygor comparison against ET or both EVI and ET) or a single
ically involved LSMs rather than models with a hydrological rainfall scaling factor. An ensemble Kalman filter was ap-
lineage (Troch et al., 2003). Probably an important reasorplied for sequential updating of either LAI or soil moisture,
has been that assimilation of radiances and surface temperaespectively. Performance was evaluated in terms of stan-
tures requires description of the diurnal surface radiation andlard error, bias and the fraction of variance left unexplained,
energy balance; consideration of atmospheric transmissivityising daily flux tower ET estimates as well as passive mi-
on sensor observations; and a model structure and ICT inerowave derived soil moisture for the site (Liu et al., 2007).
frastructure that facilitate (gridded) data assimilation — all The approaches are summarised and results shown in Fig. 6.
of which are available within NWPs but not usually in hy-  Prior model parameter estimates already appear to produce
drological models. One of the first studies attempting as-quite good estimates of ET. For these sites, parameter es-
similation of satellite observations into a conventional hy- timation did not appear to provide much benefit compared
drological model was O#l and Vidal-Madjar (1994), who to using prior parameter estimates. A combination of pa-
used AVHRR-derived LST and NDVI to update a rainfall- rameter estimation and state updating led to a smaif)
runoff model. Houser et al. (1998) were among the firstimprovements in some aspects of ET evaluation when com-
to use brightness temperature to improve soil moisture espared to using a priori parameter estimates. However it was
timation in a distributed hydrological model. More straight- also about three orders of magnitude more computationally
forward in hydrological models is the assimilation of satel- intensive, as six parameters first needed to be simultaneously
lite derived products. So far, research results have been ineptimised, and subsequently a 100-member ensemble prop-
conclusive as to whether assimilating remotely-sensed soidgated. Parameter optimisation and Kalman filtering com-
moisture products improves estimates of streamflow; soméined also led to very small improvements in the agreement
studies found improvements (Francois et al., 2003; Pauwelsvith soil moisture (Van Dijk and Renzullo, 2009c). The qual-
et al., 2002) while others obtained mixed or unsatisfactoryity of rainfall forcing was an important factor in the unex-
results (Parajka et al., 2006; Crow et al., 2005). Other asplained variance, which was confirmed in evaluation of off-
similation experiments with distributed hydrological models line AWRA-L model simulations against observations (Van
have used Landsat LST-derived ET (Schuurmans et al., 2003ijk and Warren, 2010). It is noted that none of the sites
Qin et al., 2008), Landsat and SPOT derived LAI (Boegh underwent disturbances during the one- to four-year analysis
et al.,, 2004), and both MODIS LAl and LST-derived ET period; assimilation would likely be more effective in areas
(Vazifedoust et al., 2009). undergoing vegetation change unrelated to water availability.
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Opportunities and challenges straightforward but tends to introduce errors through the poor
specification of observational errors required for assimila-
The operational uses and published experiments of data asion. A promising approach would be to use the product re-
similation emphasise that the greatest benefit can be expecterieval models to generate spatially and temporally explicit
where the model does not simulate processes well and obsetmncertainty bounds.
vations are of sufficient accuracy and relevance to improve A third challenge is the assimilation of satellite obser-
the analysis; that is, “good data can fix a bad model”. Thevations obtained at scales coarser than the model resolu-
effectiveness of data assimilation hinges on the degree teion. Given the resolution required for useful water resources
which the target variables are influenced by the processes immonitoring this is particularly the case for GRACE and pas-
proved by assimilation. For example, satellite observationssive microwave observations. Progress towards the develop-
of surface radiances may not help estimate hydrological proment of operational approaches has been made (Pan et al.,
cesses that occur within small areas below satellite resolutior2009; Zaitchik et al., 2008), but challenges remain, includ-
(such as runoff from saturated zones) or that are more afing a accurate specification of the footprint, and in the case
fected by unknown precipitation characteristics (such as spaef microwave observations, the development of methods to
tial and temporal rainfall intensities in the case of infiltration account for the non-linearity in scaling and the variable in-
excess runoff) or forcing errors (such as rainfall in sparselyfluence of surface water on the soil moisture retrieval.
gauged areas). Dominant runoff processes vary in response A fourth challenge for operational application is the com-
to climate and catchment conditions, and this may partly ex-putational overheads that parameter optimisation and state
plain the variable effectiveness of soil moisture assimilationupdating can introduce. In particular, multi-dimensional pa-
reported in literature. Similarly, because of the low impor- rameter optimisation can require a very large number of itera-
tance of snow in Australia’s water resources, AWRA-L doestions, and ensemble filtering approaches are computationally
not simulate snow hydrological processes, nor would assimiintensive (see Van Dijk and Renzullo, 2009c for an example).
lation of snow observations improve water balance estimates
except perhaps for a small fraction of the continent. On the-
oretical grounds (Budyko, 1974) the constraint imparted by> ~Conclusions

different satellite observations can be predicted to be a func-_ . e
tion of climate wetness: where ET is only limited by avail- SPatial water resource monitoring systems (SWRMS) can

able energy, radiation and energy balance measures such B&Vide important benefits for water management. All ma-
albedo and surface roughness may be informative, althougl?" technological obstacles have been overcome to facilitate
precipitation uncertainty may well be the greatest source ofNe development and operational deployment of such sys-

uncertainty in streamflow and recharge estimation. Wherd€Ms: and indeed some already exist, albeit as experimental
ET is limited by water availability, observations of soil mois- services with limited scope. The Australian water resources

ture and vegetation are likely to be informative, and can pos-2SS€ssment (AWRA) system is one such example and is in-

sibly even be used to correct errors in precipitation estimatedroduced in this paper. In addition, the current state of opera-
(Crow et al., 2009: Crow and Ryu, 2009). The information tional SWRMS is surveyed, with an emphasis on the way in

content of observations also varies as a function of transienfvhich satellite observations are used. The following conclu-

vegetation and soil moisture conditions. Experiments withSIONs are drawn:
a precursor of AWRA-L indicated that microwave and TIR
observations only impart useful information under certain
conditions: microwave emissions are informative for topsoil
wetness in sparsely vegetated areas, whereas TIR can con-
strain root-zone water content over vegetated areas (Barrett
and Renzullo, 2009).

A second challenge is the observation model required to 2. Developments required to extend the use of current
assimilate “raw” observations (that is, radiances, brightness = SWRMS approaches to a wider range of water manage-
temperatures and backscatter) rather than derived products. ment purposes include (a) explicit description of water
While assimilation of these original observations is desirable redistribution and use in regulated and unregulated river
from a theoretical point of view, hydrological models typi- systems and groundwater systems; (b) a performance
cally require considerable extensions to produce forward es-  against hydrometric observations that is equal or better
timates of these variables, with associated complexity, model  than existing water resources models; (c) optimal use of
structural errors and parameter uncertainties. This approach these hydrometric observations to constrain estimates;
can also increase computational requirements and affect sys- and (d) higher spatial resolution. These developments
tem robustness, for example where observations in several require the coupling of landscape models with models
bands or polarisations simultaneously need to be assimilated.  describing surface water and groundwater dynamics and
Assimilation of derived hydrological products can be more water use.

1. Most operational SWRMS focus on the landscape com-
ponent of the water cycle, in line with their heritage as
land surface models (LSMs) in large scale weather and
climate models. There is however convergence between
these LSMs and water resource models.
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