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Abstract. The present study describes the assimilation ofmodeling, based on mass, momentum and energy conser-
river water level observations and the resulting improvementvation equationsGhow, 1959 Hervouet 2003. Still, un-

in flood forecasting. The Kalman Filter algorithm was built certainties in these models are such that river stream flow
on top of a one-dimensional hydraulic model which describesmodeling remains strenuous work. Major uncertainties come
the Saint-Venant equations. The assimilation algorithm foldsfrom the model itself as the physics of the system are sim-
in two steps: the first one was based on the assumption thatlified and discretized, as well as from hydrological bound-
the upstream flow can be adjusted using a three-parameteary conditions (upstream flow or lateral inflow), meteorolog-
correction; the second one consisted of directly correctingcal boundary conditions (precipitation, pressure and wind)
the hydraulic state. This procedure was applied using a fourand from hydrological initial conditions. Hydraulic mod-
day sliding window over the flood event. The backgroundels also rely on various parameterizations expressed as nu-
error covariances for water level and discharge were repremerical parameters (stability conditions for the numerical
sented with anisotropic correlation functions where the cor-scheme), geometric parameters (cross sections, gates and
relation length upstream of the observation points is largemweir dimensions) and hydraulic parameters (flood plain stor-
than the correlation length downstream of the observatiorage, friction, discharge). Calibrating a hydraulic model of-
points. This approach was motivated by the implementationten means adjusting Strickler coefficients, discharge coef-
of a Kalman Filter algorithm on top of a diffusive flood wave ficients at cross or lateral devices, seepage values or cross
propagation model. The study was carried out on the Adoursectional geometry. The calibration of these parameters has
and the Marne Vallage (France) catchments. The correctiofeen widely investigatedDurand et al.2008 Geese et al.

of the upstream flow as well as the control of the hydraulic 2011, Malaterre et al.2010 by focusing either on calibra-
state during the flood event leads to a significant improve-tion algorithms, sensitivity indications, or optimization of the
ment in the water level and discharge in both analysis andbservation network.

forecast modes. . . . ) o
Both parameter calibration and physical field description

can be formulated as inverse probleniar@ntola 1987).
1 Introduction The formulation of inverse problems in hydrology fits into
a wider mathematical framework presented\bgclaughlin
River stream flow forecasting is a critical issue for the se-and Townley(1996. Data assimilation combines model sim-
curity of people and infrastructures, the function of power ulation and observational information of the system in order
plants, and water resources management. Many effort§0 provide a better estimate of itde et al, 1997 Boulttier

have contributed to the development of open channel flonand Courtiey 1999 Kalnay, 2003. The benefit of data as-
similation has already been greatly demonstrated in meteo-

o rology (Parrish and Derbe1992 Rabier et al. 2000 and
Correspondence tdB. Ricci oceanographyGODAE, 2009 over the past decades, espe-
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cially for providing initial conditions for numerical forecast.
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Data assimilation is now being applied with increasing fre- the difference between the simulation results and the obser-

quency to hydrology Thirel et al, 2010ab) and hydraulic  vations in re-analysis or forecast modes is used to illustrate

problems with two main objectives: optimizing model pa- the assimilation scheme performance. A summary and a dis-

rameters and improving stream flow simulation and forecast-cussion are finally given in Sect. 5.

ing. Existing literature proposes several methods based on

a minimization techniqueAtanov et al, 1999 Das et al. ] ) o

2004 Honnorat et al.2007 Besseres et al.2007. The 2 Context and implementation of the data assimilation

filtering approach, e.g. Kalman Filter or Monte Carlo algo-

rithms, also enables the estimation of roughness coefficient

(_Sau et al.2_OlQ _Pappenberger _Et 009 and the correc- MASCARET is a one-dimensional free surface hydraulic

tion of physical fields Jean-Baptiste et aR010). model developed by EDFand CETMER, based on
The present study describes the assimilation of river Waihe saint-Venant equationsGéutal and Maurel 2002.

ter level observations and the resulting improvement in flood\yascARET is widely used for modeling flood events, sub-

forecasting. The data assimilation algorithm was built on topme sjon waves resulting from the failure of hydraulic infras-

of a one-dimensional hydraulic model describing the Saint-y,ctyres, regulation of river infrastructures, and canal waves

Venant equations. The assimilation algorithm folds in two propagation.

steps: the first one was based on the assumption that the e conservative form of the one-dimensional Saint-

upstream flow can be adjusted using a three-parameter co{zanant equations reads:

rection, the second one consisted of directly correcting the

g.l Modeling of the physics

hydraulic state. The variables to correct are gathered in the§+g _ QJFQ(Qz/SH 32 _ _ g0? "
control vector; the control vector is indeed different in the 9  dx Qo> 57 T ox £9%9% SKSgRﬁ/f‘J'

two previously described assimilation steps. For both steps, o ]
a Kalman Filter algorithm was applied. In order to decrease'”zth'S formula the stream cross sectiSnis expressed in
the cost of the data assimilation algorithm, the background™ @nd is, at each locatian, a function of the water height
error covariance matrix for the second step was not propal! = Z(X,1) — Zpottom(x, 1) Where Z(x,r) is the free surface
gated by the dynamics of the hydraulic model. The impactn€ight in m andZpotom(x, ) is the bathymetry in m The
of the analysis and propagation steps in the Kalman Filteldischarge in s is denoted byO (x, 1), ¢a(x,1) in mPs™*

in this matrix was emulated: anisotropic correlation func- IS the lateral inflow per unit lengtiKs is the Strickler coeffi-
tions were used to represent the spatial error correlations fofi€Nt Rr is the hydraulic radius andis the gravity.
water level and discharge. This choice results from the im- The unsteady kernel of MASCARET was used in this
plementation of the Kalman Filter algorithm on a simplified Study-  Significant uncertainties in the input parameters of
hydraulic model (representing the diffusive flood wave prop- MASCARET, such as the Strickler coefficient or the up-
agation equations). This demonstrates that the analysis argiréam flow and lateral inflow, result in errors in the simu-
dynamics of the physics turns a Gaussian correlation funclated water level and discharge. The aim of the data assim-
tion into an anisotropic function at the observation point. Thellation approach is to reduce the uncertainties in either the
data assimilation study with MASCARET was performed on INPuts or the outputs of the simulation.

the Adour (France) and the Marne Vallage (France) catch- Lo
ments. Th(e impro)vement in river waterglev(el predi)ctions, 2.2 The data assimilation method

using data assimilation, in analysis and forecast modes ar¢a Kalman Filter (KF) approacl&elh, 1974 Todling and
presented W'thm this paper. ) ) Cohn 1994 Talagrand1997) identifies the optimal estimate
The outline of the paper is as follows: Se2tdescribes ¢ the true value of an unknown variabte This estimate
the assimilation system, paying particular attention to thejg optimal when its variance is at a minimum, meaning, for
choice of the control vector for the data assimilation algo- gayssian cases, that its probability density function is dense
rithm. Two approaches to data assimilation were imple-5.6,nd the mean. Suppose thds the control vector which
mented: the correction of the hydraulic state and the congap include the hydraulic variables (water level and discharge
trol of the upstream flow. The modeling of the background o, \ASCARET), the model parameters (Strickler coeffi-
covariances matrix and f[he 'param'eterllzatlon .used to Comr%ients), the boundary conditions (upstream flows), or the ini-
the upstream flow are highlighted in this section. Sec8on 5| condition (initial water level and discharge), or a mix of
provides the theoretical framework explaining the choice ofinege. The solution of the KF algorithm is the analysis vector
anisotropic correlation functions for the spatial error correla-,.a The a priori knowledge of the system is the background

tions in the background error covariance maBiXn Sect4, vectorx? and the observation vector j€. The background,

the improvements in the river flood simulations and forecast-ypservation and analysis error covariances are respectively

ing are presented. The evaluation of the statistics describing

ZEIectricité de France

lShallow water equations 3Centre d’Etudes Techniques Maritimes Et Fluviales
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gathered in the matriceB, R and A. Assuming that the 2.3.1 Correction of the upstream flow
background, the observation and the analysis are unbiased,
the analysis at timecan be formulated as a correction to the The first data assimilation approach is based on the assump-

background state defined as: tion that a considerable part of the error in the simulated
4 b o b water level can be attributed to uncertainty in the upstream
xi=x; +K; [J’i —H; (xi)]’ (2)  boundary condition (usually deduced from water level ob-

servations through a calibration procedure). This first step is
described in the top part of Fig. In order to control this
di=y?—H; (x?), 3) uncertainty with a data assimilation procedure, a large con-
trol vector which contains the discharge boundary conditions
at each time step of the simulation period, should be intro-
The KF analysis is optimal when the variance of its error duc_ed_. This would resultin a cpmputationally expen_sive data
assimilation procedure, especially for the computation of the

is at a minimum. Minimizing the variance of the error analy- . . . :
. LTS : Jacobian of the observation operator since the relation be-
sis comes down to minimizing the trace of the analysis error’

: . ; . . tween the control space and the observation space is given
covariance matrix which leads to the formulation of the gain . . :
. . . . by an integration of the numerical model. In order to com-
matrix (Bouttier and Courtierl999:

pute the Jacobian of the observation operator, the numerical
K;=B;H] (H;B;H] +R)7L (4) model should be partially differentiated with respect to each
element of the control vector, hence the size of the control
vector should be reduced.

For this reason, the upstream flow forcifigvas corrected

wherekK; is the gain matrixd; is the innovation vector

andy; = H;(x;) is the model equivalent of the observations,
generated by the observation operatbr

In this formulation,H; is the Jacobian matrix off; in the
vicinity of the background state? which can be written as:

_ 0y 0H;(x)) (5) through a three-parameter linear transformation over a time
"Tox, T ox window (assimilation windowo, 7;.]):
The analysis error covariance matrix reads ~
y Fy=af(t—c)+b. ©)
Ai=(-K;H;)B;. (6)

, o o _ This parametric correction enables a simple and physical
The analysis at timéis propagated in time by a dynamic  ¢ntro| of the time series: homothetic vertical transformation
model which defines the background at time1: (a), shift in amplitude(s) and shift in time(c). For instance,
x?+1:Mi,i+1(x?)s (7)  atthe upstream stations, water levels are usually observed
) and a rating curve (extrapolated for high discharge values)
where M; ;1 represents the model propagation between s seq to describe the discharge time series used by the hy-
andi +1. . . . . draulic model. The parameteash, ¢ allow for a correction
The analysis error covariance matrix at e propa-  uf the uncertainty related to the use of this rating curve. Ad-
gated in time by the dynamic model in order to define the yjsionally, the parametric correction allows for the estimation
background error covariance matrix at time 1 (when the ¢ an ynknown intermediate input flow, accounting for influ-
model is assumed to be perfect). ents that are not modeled in the hydraulic network.
Bit1=M;it1 A Mzi+1, (8) For this approach, the control vector is composed of the
coeficientsa, b, ¢ for each of theS upstream stations; =
(a1,b1,c1,-+-,a5,bs,c5,-+-,as,bs,cs). The characteristics of
this data assimilation approach are:

whereM; ;11 is the tangent linear approximation &f; ; 1

in the vicinity of xP.

2.3 Implementation of the assimilation scheme — The control parameters are assumed to be constant over
the time window over which the data assimilation is per-
formed. Since no models for the temporal evolution of
the parameters are describéd,; .1 =1 in Egs. {) and
Eq. @). For this reason, the indideis dropped in the
following of the Sect2.3.1

The water levels simulated with MASCARET (or any hy-
draulic model), may be significantly different from the ob-
served water levels. A two step data assimilation algorithm
was implemented to account for some of the uncertainties in
the hydraulic model (inputs and outputs). The first step was
based on the assumption that the error in the simulated water _ The background values for the control parame-
level was mainly due to an imperfect description of the up- ters arex® = (a2, b0, cP, ..., aP, b0, cb ... 4B pb, by =
stream flows. The second step consisted of dynamically cor- 19 . 1 ¢ 0111 6 0. §787s
recting the water level and the discharge states for the entire

catchment (discretized im cells) when observations were  _ The size of the background error covariance matrix
available. The two-step data assimilation procedure overthe  js (3x $)2. The errors in the background parame-
time window([0, 7, ] is described in Figl. ters(akl’,btl’,ci‘, -~~,a§’,b§’,c?,~~-,a2,b'§,c2) are assumed
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STEP 1: Analysis over assimilation window [0,T,]
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STEP 2: Loop of analysis over observation times

Fig. 1. Two-step data assimilation procedure flowchart on the time win@o®].

to be uncorrelated and the variances are estimated statis-
tically to represent the variability of the upstream flow.

servation times at selected locations in the hydraulic
network. It is a vector of size wherep is the number
of observations over the data assimilation time window.

CARET

The observation covariance matiik is a p x p ma-
trix. Its diagonal terms are the observation error vari-

using

culated water level at the observation points and at the
observation times.

The observation vector represents the water level at ob- — Hup(x®) represents the water level at the ob-
servation points and times computed by MAS-

parameters

the  background

b b b b b b
(alvblsclv"'7asvbsvcsv"'1aS7bS76S)'

— The JacobiarHp of Hyp is the tangent linear of the
hydraulic model computed in the vicinity af.

from statistics using several sets of measurements. Th@y of the background? as follows:

off-diagonal terms are covariances between the observa-

tion errors at different observation points; these correla-Hup(x® + Ax) ~ Hyp(x®) + HyplpAx,

tions are assumed to be negligible since the observatio

points are far enough from each other. ence scheme:

(10)

thereHup|b is discretized using an uncentered finite differ-

— The relation between the control space and the ob- dy; 8Hup,j(xb)
servatfioE space is nlon—lirclje?r ashit imbplies the integra-up.jklb= e 9
tion of the numerical model. The observation opera- b b
. . Hyp, i Ax)—Hyp, Ay,
tor Hyp consists of two operations, the more costly of ~ upj (X" + Ax) up.j (¥7) = A—yf. (11)
Xk Xk

which is the integration of the hydraulic model given
the upstream flow conditions over the assimilation win- In this study,Ay; is the change in water level at the observa-
dow. The second operation is the selection of the cal-tion station; resulting from a changax; in thek-th control

Hydrol. Earth Syst. Sci., 15, 3558575 2011
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variable ¢, by or ¢g) with s € {1,---,S}. The ability of the A parametrization for thd8 matrix was chosen to emulate
observation operator to represent, in an approximate senséhe propagation of the covariance function by the hydraulic
the response of the water level to changes in the control vecmodel. This parametrization, presented in S&¢tresults
tor is a crucial tenet of this algorithm. The computation of from the application of a full Kalman filter algorithm (where
Hyp requires an additional integration of the hydraulic model Eq. @) is solved) on a simplified propagation model with a
for each control parameter. An efficient computation of the steady observation network. The propagated covariance ma-
operatorHyp in the case of a larger control space was imple-trix from this application was then used as the invariént
mented byThirel et al.(20103. in the Kalman Filter algorithm for MASCARET. This algo-
The small size of the control vector, as well as of the ob-rithm will be further referred to as IKF (Invariant Kalman
servation vector, enables the use of a KF algorithm involv-Filter). The background error matrix for this second step of
ing matrix operations for the computation of the gain ma- assimilation is denoted Bstep2in Fig. 1.
trix. Still, the algorithm relies on the hypothesis that the The background covariance matrix isiza« n symmetric
observation operator can be approximated by a linear operpositive-definite matrix that can be represented by blocks:
ator on the{x?, x?] interval. The linearity of the hydraulic T
S Bzz B
model response to a perturbation in the control parameterg = ( ' ZﬁQ).
(a®,bP, cP) (with s € {1,---, S}) was investigated. The differ- Bz.Q Bag
ence between the right hand side and the left hand side ofhen x n diagonal blocksBz z andBq,q represent respec-
Eq. 10 should be quantified, and idealy should not exceed aively the statistics of the errors; in the water level and
couple of percents, in order to assess the integrity of the lin<, in the discharge. Its diagonals represent respectively the
earity assumption. It was found that the relation between anariance of the background error in the water level and dis-
upstream flow perturbation (of the form E®). and the hy-  charge whereas the extra diagonal terms of these blocks are
draulic state response is reasonably approximated by a lineahe covariances between the error in the water level or dis-
function in the vicinity ofx®. charge at different locations on the grid. These covariances
The implementation of this algorithm allows not only for are commonly defined amivariateas opposed to theul-
an improvement in the simulated water level within the as-tivariate covariances in the extra-diagonal blocBs,q and
similation window but also for an improvement in the fore- B J which represent the covariances between the errors in
cast since, in forecast mode, the upstream flow is set equal tthe water level and the errors in the discharge.

the last analyzed value. The innovation vectod (Eq. 3) expresses the difference
. _ between the observed water level and the simulated water
2.3.2  Correction of the hydraulic state level at the nearest grid point. The observation operator

o ) is a selection matrix with dimensiong, x n, denoted by
The second data assimilation approach consists of dynamiy ., |n this study, the observation network is stationary,
cally correcting the water level and discharge states for thepys the observation operator doesn't vary over the assim-
entire catchment (discretized im cells) when observations jjation cycles, the index is then dropped in the follow-

are available (timé in Eqs2 to 8). This second step is de- jhg. The water level correction vector at the observation
scribed in the bottom part of Fig. The observation vector points §7 = (871 g‘“Zl 87;)) (with 7 € {1,---, p}) is

is kept the same as the one previously described but in thighe product of the innovation vector and the matrix product

case evaluated at a given timgg instead of over a time HT (HseBHZ +R)~Lin Eq. @):

window (in the following, the subscriptpg is replaced by ~ °

the subscript). 8Z =HI (HseBHI +R)1d. (12)
Here, the control vector at time, is composed of

the discretized water level and discharge staies- L ~ .
from the multiplication o8 Z by Bz z. The water level vari-
(Z)C]_"")Z.va QX15"'7 me)=(Z,Q) p y Z,Z

o . . . ances translate as uncertainties in the simulated water level.
The background state is given by a previous integration . . . . .

I : .27 """ An anisotropic correlation functiop was used to describe

of the modelM describing the Saint-Venant equations; it is . : -
. : the spatial error correlations 8% as presented in Fig-

composed of the simulated water level and discharge vectors
and is denoted byz® Qb). The size of the control and the In order to keep the anayzed control vector coherent

A with the Saint-Venant equations, the discharge state should

background vectors is=a 2m. be corrected along with the water level state. This was

d InllEq.t (?,bMit’;]H denlgtes the p:_opaganoln CI)Ef the hy- done specifying multivariate error covariancesBing. The
raulic state by the non-linear equation Ef). (In Eq. @), discharge correction vector at the observation péigt=

M; ;11 denotes the tangent linear approximationMf; ;1. —~ ~ .
; oo ) T (6Q1,--+,80;,---) with 1 € {1,---, p}, was deduced fromMdZ
:\r/:_t_he app|lf{3a’[l0l’l V;'l'thtr'\]/lASCARE:’ as ftf:re] cgmrl)(utatlor(ljof at the observation points using the local rating curve. Assum-
i.i-+1 Was 100 costly, the propagation ot th€ background ers,, 1, rating curve can be formulated as
ror covariance matriB; was not explicitly implemented; it
was assumed tha¥; ;.1 =1 in Eq. 8) so thatB; 1 = B. Orc(Z2)=aZ” + 8, (13)

Water level correctiordZ over the entire domain results

www.hydrol-earth-syst-sci.net/15/3555/2011/ Hydrol. Earth Syst. Sci., 15, 35552011
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1 ‘ ‘ ‘ ‘ The implementation of the two-step assimilation and fore-
cast procedure is schematically represented in Figover

the four-day assimilation window, a free run integration of
the model is achieved (black curve). The upstream flow cor-
rection — correction of the parametets b, ¢) — is computed

06 | using observations from the second and the third days (blue
' dots). The observations from the first day are not used as the
model is potentially not adjusted yet. The resulting analyzed
0.4 : : : parameters are used to correct the upstream flows over the
first, second and third days.This is the first step of the analy-
sis. The updated upstream flows are then used for a new inte-

0.8

0.2- 7 gration of the model (starting from the beginning of the four-
day window), providing a new integration. This integration
0 ‘ ‘ L ‘ ‘ (green curve) is intermediate as it describes the background
0 100 200 *ebs 300 400 500 state for the hydraulic state correction procedure. During the
X third day of the integration, at each observation time, the wa-

ter level is adjusted; this correction is instantaneous and cor-
respond to the second step of the analysis. The model is then
integrated starting from the corrected state at the current ob-
servation time to the next observation time, leading to a dis-

the discharge correction at the observation point reads: continuous description of the hydraulic state (discontinuous

red curve). In this study, the observation time step is equal

to the model time step so that the resulting integration is no

more discontinuous than any other model integration.

For each cycle, beyond the reference time, the upstream
where QP and Zp are the background values for the water flows are kept constant and the initial condition for the fore-
level and discharge at the observation points. cast is given by the analysed water level and discharge states

A calibration procedure was used to evaluate the coeffi-at 7;.,
cientsa, B,y at each observation point. However, because of  The data assimilation algorithm was implemented using
the tidal influence at some observation points, the identificathe pALM (Parallel Assimilation with a Lot of Modularity,
tion of a bijective function (valid for both high and low tides) Lagarde 200Q Lagarde et a).2001) dynamic coupler devel-
was not always possible. In this case, the rating curve wagped at CERFACS. This software was originally developed
crudely approximated by the identity function, leadingto  for the implementation of data assimilation in oceanography

b for use with the MERCATOR project. PALM allows for the
50 = %52 for 1€[1,p]. (15) coupling of independent code components with a high level
5 9Zls )
Z of modularity in the data exchanges and treatment while pro-
As for the water level, the discharge correctid@ for the viding a str_aightfpryvard par.allelization environmehRb(il-
whole domain was determined from the multiplicatiosg ~ '0Ux and Piacentinil999 Buis et al, 2009).

by Bg,q. The correlation function and length f&Q are the
same as those used @&.

Fig. 2. Local anisotropic correlation function at observation point
Xobs

~ QrcI(Zb+§Z)—Qrc(Zb)
§O1 = ob Lot |
=0 Ore(ZP)

, for 1e[l,p], (14)

3 Modeling of B
2.3.3 Cycling of the analysis , . )

As explained in Sect2.3.2 when the Kalman Filter algo-
The two previously described assimilation approaches are seithm is applied to correct the hydraulic state computed by
quentially applied over the period covering a flood event asMASCARET, the explicit propagation of the background er-
described in Figl. The assimilation is performed over a ror covariance matrix is not implemented because the com-
four-day sliding window, also referred to as a cycle, with putation of the tangent linear of the model is too costly. The
three days of re-analysis and one day of forecast. The lastovariance functions initially described B are kept con-
observation time from which the forecast integration starts isstant instead of being propagated by the dynamic model. For
the reference timd;. The sliding window is shifted every that reason, it is crucial to model covariance functions that
hour and a new assimilation performed. The forecasted stat@ccount for some of the physics of the dynamic model, rather
at Ty is stored and used as the initial state for the following than Gaussian functions.
cycle. For the first three days of the event, the simulation The objective of the present Section is to provide a
starts from a standard state for water level and discharge. parametrization for th& matrix that emulates the propaga-

tion of the covariance function by the hydraulic model. In

Hydrol. Earth Syst. Sci., 15, 3558575 2011 www.hydrol-earth-syst-sci.net/15/3555/2011/
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Re-analysis Forecast

® Observation ° I//\
—— Free run i ./
‘Intermediate analysis using analysed a, b, ¢

—— | Two-step assimilation L4 ./

Water level

—

Reference
time T,

day 1 day 2 day 3 day 4 Time

- Model adjustement Step 1: Assim for a, b, ¢ correction

Step 2: Assim for
Z, Q instantaneous
correction

Fig. 3. Schematic representation of the two-step assimilation algorithm over one cycle.

order to find such a parametrization, an initially Gaussianobservation points as opposed to Gaussian functions. This
covariance function is used by a full Kalman Filter algorithm result will later be used to model the background error co-
applied to a simplified dynamic model. For the simplified variance function for the hydraulic state correction proce-
model, which will be described in Se@.1 (diffusive flood dure performed on MASCARET with IKF as represented in
wave approximation), the analysis and propagation steps ofig. 1.

the Kalman Filter are achieved since the computation of the

tangent linear for a diffusive flood wave propagation model3 1 The diffusive flood wave approximation

on a restricted spatial domain is reasonable. With this exper-

iment, it will be demonstrated that the analysis and propaga-

tion steps of the Kalman Filter modify the covariance func- In t_h|5 study,_ Itis to _assume_d_ that the solution of the propa-
tion at the observation point. As will be shown in S&®, gation of a given initial condition by the MASCARET equa-

the resulting covariance function at the observation point ist'onS is close to the one propagated by the diffusive flood

anisotropic, with a shorter correlation length downstreamVaVe approximation equations. More precisely, itis assumed

of the observation point than upstream. A validation step

in the following, that the covariance function of a signal (and
for this parametrization will be performed with the diffusive thus its correlation length) propagated by MASCARET is
flood wave propagation model in Se@t3. In this section,

similar to the covariance function of the same signal propa-
an anisotropic covariance function will be described for thegme‘j by the diffusive flood wave approximation equations.

IKF and the results of the assimilation will be compared to  In the framework of the diffusive flood wave approxima-
those of the IKF with a Gaussian covariance function. It will tion (S(x,7) = Lh(x,1), whereL is a constant river width),
be shown that the emulation of the dynamics of the modefthe diffusive Saint Venant equations (Ed.of MASCARET
with a parametrized covariance function for the IKF is then can be crudely approximated as
equivalent to the full KF.

These parametrization and validation exercises seektojussy, 5y, a5 92

i i i i i i —t— — =k—, 16
tify the choice of an anisotropic covariance function at the P 3 9x Kk 952 (16)
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whereQ = hU, h = h,+h andU = U, +U , with (h,U) rep- 1
resenting small perturbations to the equilibrighy, U,,) and

ZUtg’r’]; for a constant slopg. The statg/,, U,) is such
2/3

thatU, = KsI*?h;’" is a solution of the flood wave approx-
imation equations, wheré =siny. The equilibrium state
(h,,U,) for the diffusive flood wave propagation model is
chosen as a representative mean state for the following sim
ulations with MASCARET over each catchment. Etp)(is

a classical advection-diffusion equation wheris the diffu-
sion coefficient and = 5% is the advection speed. In order 0
to use this model as a support for data assimilation, an ope

boundary condition for Eq16) is imposed downstream with
ML, +c%(~L,t) =0. The upstream boundary condition

is imposed by (0,7) =¢(¢), whereg is a random Gaussian —(. i i i i
function of zero mean: g >= 0. The auto-correlation func- 100 200 x 300 400 500
tion of g(¢)

K =

Fig. 4. Initial Gaussian background error covariance function (black
~ i~ 2 72 curve) and anisotropic background error covariance function (red
R(1)=<q0)q(t+7)>= ‘SqmeXp(_ﬁ) (A7) curve) from KF, at the observation point.

q
is assumed to have the shape of a Gaussian function. Using
the theory of random function diffusion, the spatial covari- along the assimilation cycles by the analysis and propagation
ance function of:(x,#) can be approximated by a Gaussian steps of the Kalman Filter algorithm. Considering a steady
function. observation network, the shape of the covariance function
converges to an anisotropic function as represented in red in
3.2 Kalman Filter algorithm applied to the diffusive  Fig. 4. The covariance between the observation point and
flood wave propagation model its neighbours is reduced since information at the observa-
) ) ) tion point was introduced at this location by the analysis pro-
The Kalman Filter algorithm was implemented on the 1- ceqyre through the innovation vector. The background er-
D diffusive flood wave propagation model described by ror covariance matrix for the next assimilation cycle results
Eq. (16), using the identical-twin experiment framework from the propagation of the previous cycle analysis error co-
(also known as OSH. The identical-twin experiment was yariance matrix by the tangent linear of the molfeaind its
set up withr € [0, 7] andx € [0,L]. The 1-D domain was  adjointM as formulated in Eq8). After several KF cycles,
discretized inm cells and Eq. 16) was integrated using an  ihe covariance function at the observation point is character-
explicit Euler scheme in time and a first order centered finitej,oq by a shorter correlation length scale downstream of the

difference scheme in space. A reference run was integrategpseryation point than upstream (see Apperdior further
using a set of parameters and forci@gue, «true, thLge(t)), to details).

simulate therue water leveliye. The observationeps(t) =
huue(t) + €,(1) was calculated in the middle of the 1-D do- 3.3 |nvariant Kalman Filter algorithm applied to the

main (rops= 5) wheree,(t) is a Gaussian noise defined diffusive flood wave propagation model
by its standard deviatiom,. The background trajectory

hy(x,t) was integrated using a perturbed set of parameterghe covariance function computed with the Kalman Filter

and forcing(cper, kper. gper(t)) Where< Gpedt)gpert +1) >= algorithm in Sect3.2was used to parameterize the invariant
5%% perexp(_;]_zz)_ covariance function of the IKF; here applied to the diffusive
’ q

flood wave propagation model, for validation. The results of
the IKF using this parametrisation Bfwill be compared to
?hose of a IKF using an isotropic Gaussian function.

By default, the spatial correlations Bare represented by
the Gaussian function

In this context, the background error covariance matrix
was updated by the analysis and propagated in time, to th
next observation time, by the tangent linear of the diffusive
flood wave propagation model (E¢68). As a consequence,
the gain matrix evolves over the assimilation cycles.

As described in Sec8.1, the initial covariance function (x —x)2
at the observation point, for the signalx,r), is close to  p(x,x) =exp|:——/} (18)
a Gaussian as represented in black in Big.AppendixA 2p(x,x")

describes how this isotropic covariance function is modified . .
P meaning thaB(x,x") =ab2p(x,x/). The lengthlg(x,x"), is

40bserving System Experiment an isotropic function of andx” which represents the local

Hydrol. Earth Syst. Sci., 15, 3558575 2011 www.hydrol-earth-syst-sci.net/15/3555/2011/



S. Ricci et al.: Data assimilation for flood forecasting 3563

correlation length for the paitc, x’). For this study, only the MASCARET. The details for the estimation of the correla-
correlationso (x, xops) between the errors atpsand the rest  tion lengthl (xope) are given in AppendiB.
of the domain are relevant. The lenghix, xop9) is assumed
to depend only on the observation location and is denoted
by I (xobs).- 4 Results of the IKF analysis

Figure 5a, b, ¢ shows the trué;, the non-assimilated
hs, backgroundi, and analysedi, water level state over
the 1-D domain at = T = 500x 10°s where the analysis
is performed evenyAr = 10x 10, for different functions

Ig(x,Xobs). Whenlg(x,xops) =1(xobs for all x (Fig. 5a),  The Adour maritime catchment area is located in Southwest-
the data assimilation corrects the water level over the in-g;p France, from the Pyrenean Piedmont to the Aquitain
terval [xobs— I (xobs) /2, Xobs+1(xobs)/2]. Still, the analysis  coast The drainage area (16 89(%movers the departe-
(red curve) is closer to the true state (blue dotted curve) thanants of Atlantic Pyrenees and Landes. The Adour river
the background (green curve) only upstream of the obserises in the Pyrenees at an altitude of 2600 m and reaches
vation point. To the contrary, whelg (x, xops) =/(xob9/10  the Atlantic ocean at Bayonne 312km further. The Adour
for all x, in Fig. 5b, the analysis is closer to the true state caichment is one of the wettest in France due to heavy precip-
only downstream of the observation point. Finally, as it ap-jiaiions in the upper part of the basin. The Adour catchment
pears in Fig5c, a better fit to the true state is obtained with i givided in two regions: the mouth of the river which is
an anisotropic functior (x, xops as predicted by the full  qg1y influenced by the tide and the upstream region which
Kalman Filter algorithm. An optimal value for the reduction s mostly influenced by influents. A schematic description of
factor of the length scale was identified by trial and error; theéine Adour catchment is shown in Fig. The Adour river
best results were obtained with has three main influents (responsible for 65% of the total
discharge at Bayonne during flood conditions). The Gaves
(19) de Pau and d'Oloron, respectively draining 5226kamd
608 knt, are often affected by flash floods and join with the
main influent of the catchment Gavéenis. The Nive drains
980 knt and joins up with the Adour close to Bayonne.

The hydrological data at the upstream stations (Dax, Es-
cos, Orthez and Cambo-les-bains) are provided in real time
The application of a full Kalman Filter on a diffusive flood Egrtlzﬁi(?rf)s%o:?reledﬁ;;riﬁiec“r;nc? dﬁ”?f}:ﬁ;ﬁﬁg:ﬁgggﬁgf‘;y
wave propagation model enabled the understanding of the )

impact of the analysis and the physics on an initial Gaus—cond't'ons are given by the SPC tide gauge located in the

sian correlation function. It was shown that the correlation estuary. Tide forecasts are given by the SHONhe un-

) . ._certainty in the maritime boundary condition is smaller than
length scale is reduced downstream of the observation poin : . :

T : . : . _that in the hydrological upstream station, as a consequence,
and that the initial Gaussian correlation function evolves into

an anisotropic correlation function. These results were uset? n_Iy upstream stations were controled by the data assimi-
) . .__lation algorithm. Sensitivity tests revealed that the tangent
to model the correlation function for the water level and dis-

. . ) . .
charge computed in the MASCARET data assimilation pro-!mear model (Eq.11) is valid for a pertubation up to 20%

71 - - . . _
cedure. An approximate reduction factor of ten was appliedIn a, 6mP°s~*in b and 6 h inc. Additionally, tide gauge ob

: rvations located at Lesseps, Urt and Peyrehorade stations
between the correlation lengths upstream and downstream of. ; .

. . isplay the water level every five minutes or hourly. These
the observation points.

| der t lete th deli t the back d observations were used for the data assimilation process. The

n order to c?mpte_ € tﬁ mo Ie lngf (t)h N a(l: tgrouln etrr;correlation lengths were set, using the procedure described
ror covanance function, the vaiue ot the correfation fengthy, Sect.3, to 20 km, 6 km and 34 km at Peyrehorade, Urt and
l(xopg) Was then estimated. The estimation of the correla-

tion length of the spatial correlation function for the errors Lesseps, respectively.
. . . . The Marne Vallage catchment is located East of the Paris
in the water level and the discharge simulated with MAS- 9

) . I - basin. The Marne river is the main influent of the Seine river
CARET occured in two steps. First a diffusion coefficient _and is 525km long. This study focuses on the Marne Val-

bas;gd on tgel d)éniréncs of the ?][ffuiwe fltt_)odtwg\ge a‘t)péox"lage drainage area that lies between Condes and Chamouil-
mation model (Eq16) was graphically estimated by study- ley. This karstic basin is characterized by slow flood rises,

e e oo ot g o7 104 pariodsand s sty oca ey
. : . . itations. The Marne river has two main influents, of which

spatial correlation length of the state perturbation covariance

function. This procedure was used to predict the correlation  Sservice de Fevision des Crues

length at each observation point for the data assimilation in Bservice Hydrographique et ®anographique de la Marine

4.1 Experimental procedure

4.1.1 Description of the catchments

I_=1Ipg(x,xon9 = [(xops Whenx <xops
Iy = Ig(x,Xobs) = I (xobg) /10 Whenx > xops

3.4 Parameterization of the covariance function for the
MASCARET application
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'
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Fig. 5. Water level perturbatioﬁ of the advection-diffusion model for thieue simulation (dotted blue line), thieee simulation (black solid
line), thebackgroundsimulation (green solid line) and ttenalysedsimulation (red solid line) witha) - =1+ =1(xgpg), (b) - =1+ =
1(x0p9)/10, (€) I_ =1I(xope andly =1(xgpg)/10.

the Rognon is responsible for 50 % of the Marne dischargeto three times larger than the observation error variances. At
A schematic description of the Marne Vallage catchment iseach observation point, only the observations above a mini-
shown in Fig.7. The hydrological data at the upstream sta- mum value were taken into account for the assimilation pro-
tions (Condes and Saucourt) are provided in real time bycess in order to avoid representativeness errors. The observed
the Champagne-Ardenne DIREN. The downstream boundvalues that were found to be too far from the simulated val-
ary condition in Chamouilley is described by a rating curve. ues were not assimilated; thus was accomplished by applying
Only the upstream stations were controled by the data assima threshold to the misfit between the observed and the simu-
ilation algorithm. Sensitivity tests revealed that the tangentlated water levels.
linear model (Eq11l) is valid for a pertubation up to 20 % in The MASCARET model was chosen by the SCHAPI
a, 6m’s~1in b and 6h inc. The hourly tide gauge obser- to simulate the physical processes of the study catchments.
vations at Joinville and Chamouilley were used for the dataA preliminary calibration procedure of several model pa-
assimilation procedure. The correlation lengths were set, usrameters was performed by the SCHAPI and the SPC us-
ing the procedure described in Se&tto 51 km and 55km at  ing data from twelve flood events of varying intensity. The
Joinville and Chamouilley, respectively. geometry of the hydraulic network, the computation time
In this study, the observed water level reached a maximunstep and the Strickler coefficient were adjusted so that the
of several meters and the observation error standard devidgtood events were, on average, well represented at the ob-
tions were set to 0.1 m. The observation error covarianceservation stations. Globally, at Peyrehorade (Adour), the
were neglected, assuming that the observation stations arsimulation tends to overestimate the flood peak for extreme
far enough apart for the spatial errors to be weakly corre-
lated. The background error variances were chosen to be two 7Service Central d’Hydro#teorologie et d’Apput la Pevision des Inondations
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Fig. 6. The Adour catchment with the measurement stations in red and the upstream stations in blue.

flood events and underestimate the flood peak for moderfun is either the Free run, the Interp run or the Assim run.

ate events. In the Marne catchment, a constant lateral inMmO is computed at a given lead time in re-anaysis and fore-
flow was ajusted so that the flood events were, on averagesast: 24 h before the reference time, and hourly, up to 12 h,
well represented at Joinville and Chamouilley. The simulatedafter the reference time. The mean and standard deviation
water levels at Joinville were globally correct, though often of MmO, respectively denoted by C1 and C2, are computed
overestimated while the flood peak was often underestimatedver the analysis cycles, at each observation station and for

at Chamouilley. each flood event. The criteria C3 (in %) is defined as
N
4.1.2 Criteria for the interpretation 100 & M — pobS
C3= Z' obs E (20)
Nobs 1 h

The baseline scenario was chosen as the simulation without . ) ]
assimilation (Free run). A post-treatment scenario for the?Where Nobs is the number of observations over a period of
Free run forecast was also explored: at the reference timéme andi™ is the simulated water level for either the Free
Tr, the increment between the observation and the Free run i&/n, the Interp run or the Assim run. C3 is a cumulative
computed and added to the Free run water level. A correctioffitéria as opposedtoCland C2.

that linearly decreases to zero over a 6-h forecast period is !N Practical terms, when the simulation is close to the ob-
then applied. This post-treatment correction scenario (Interggervations, the criteria C1, C2 and C3 are small. C1, C2 and
run) allows for a perfect fit with the observationzt for the ~ C3 were computed for the Free run, the Interp run and the
water level at the observation locations. By construction, theASSim run. The percentage of reduction for each criteria was

Interp run merges with the Free run after 6 h of forecast. ~ computed twice: (1) comparing the Free run and the Interp

The comparison of the Free run, Interp run and assimila.'un @nd (2) comparing the Free run and the Assim run.

tion run (Assim run) with the observation was performed at
the observation locations and times for the water level. The
difference between the simulation and the observations is de-
noted by MmO (Model minus Observation) where the model
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Water level, discharge rating curve over the forecast period, the analysis remains far from the
observation. This shows that the improvement of the initial
/ condition at the reference tinie = Day 22 is not enough to
improve the simulation during the following day. The im-
provement is only significant over a couple of hours as the
% simulation is also degraded by other uncertainties. The anal-

Chamouilley ysis after the correction of the upstream flow (green curve)
shows a good fit with the observation over the re-analysis
Marne with the observation only reaches 9% of the observed value

period as well as over the forecast period. The difference
at Day 22.5. The upstream flow was corrected over the two-
day period (Day 20 to Day 22) allowing for a better simu-
lation of the water level over this period. Additionally, over
the forecast period, the upstream flow is held equal to the last
analysed value (which is better than the non-analysed one)
Rognon . . . . .
\\ allowing for an improvement in the water level simulation
during Day 22. In summary, the water level hydraulic state
correction procedure plays a major role in the re-analysis
Marne mode and the upstream flow correction plays a major role
Constant lateral inflow in forecast mode. The analysis after the two-step assimila-
tion procedure is plotted in red and shows an improvement
? over the re-analysis period as well as during the forecast pe-
riod. It should be noted that after a couple of hours of fore-
cast, only the upstream flow correction is still effective as the
;;;;;;;&;;; green curve merges with the red curve.
I M For this event, the two-step analysis was cycled every hour
(Ty varies from Day 18 to Day 26) so that, at an observation
point, the water level is forecasted over the whole flood event.
Fig. 7. The Marne Vallage catchment with the measurement stationq:ig' 9 shows the six-hour forecast for the Free run (black
in red and the upstream stations in blue. curve) and the Assim run (red curve) as well as the non as-
similated observations (blue curve). For this lead time, the
average C3 criteria for the flood event is 4.98 % for the Free
4.2 Flood events simulation with data assimilation run and 2.21 % for the Assim run, meaning that this criteria
is improved by 55 % with the two-step data assimilation al-
4.2.1 Interpretation of the November 2002 event in the  gorithm. For the Interp run, the average C3 criteria is equal
Adour catchment to 3.5 % and is only improved by 29 % when compared to the
Free run. At a six-hour forecast range, on average over the
Figure8 shows the water level over a four-day period (Day 19 flood event, the assimilation procedure brings the simulation
to Day 22 of a flood event starting 2 November 2011) at thesignificantly closer to the observation. The accuracy of the
observation station at Peyrehorade in the Adour catchmentassimilation procedure was therefore found to be better than
The reference time for this cycle i§ = Day 22. The Free the accuracy of the post-treatment procedure (Interp run).
run integration of MASCARET starting from a previously  Figure 10 displays the criteria C3 for the flood event
calculated state is plotted in black and the hourly observaat Peyrehorade, computed 24 h before the reference time
tions are plotted in blue. The difference between these twddashed curves) and 6h after the reference time (solid
curves reaches 15 % of the observation at the beginning o€urves), for the Free run (black curves) and the Assim run
Day 22. The assimilation procedure was applied to improve(red curves). It appears that during the re-analysis and the
the water level over the first three days (re-analysis periodforecast period, the assimilation procedure brings the analy-
as well as over the forecast period (Day 22). The analysissis closer to the observations than the Free run. As expected,
with the instantaneous correction of the water level (greenC3 remains larger in forecast mode than in re-analysis mode
dashed curve) shows an excellent fit with the observationdecause of the uncertainties in the boundary conditions at the
over the re-analysis period but leads only to a minor improve-controlled upstream stations (as well as other boundary con-
ment over the forecast period. The model is constrained talitions such as the maritime water level forcing as forecasted
the observed state by the hydraulic state correction procedurey tide models at SHOM).
from Day 19 to Day 22. Though the analyzed state is al-
most equal to the observed state at the beginning of Day 22,

Joinville

—
—
—

Saucourt

Condes
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Fig. 8. November 2002 event, Adour catchment. Water level at Peyrehorade from Day 19 to DBy=23afy 22): hourly observation in
blue, Free run in black, analysis with the correction of the upstream flow only in green, analysis with the instarifan@aasrection in
dashed green and analysis with the two-step assimilation (Assim run) in red.

6.5 \ \
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Fig. 9. November 2002 event, Adour catchment. Six-hour forecasted water level at Peyrehorade for the Free run (black curve), the observa-
tion (blue curve) and the analysis of the Assim run with the two-step assimilation (red curve).
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Fig. 10. November 2002 event, Adour catchment. C3 for the Free run (in black) and Assim run (in red) computed over the 24 before
(dashed curves) and over the six hours dfteisolid curves) at Peyrehorade.

4.2.2 Interpretation of the April 2006 event in the that in order to improve the simulation at one observation
Marne catchment station, the data assimilation algorithm must degrade the sim-
ulation at the other observation location. The application of
The two-hour and the six-hour forecasted water levels in thethe two-step data assimilation procedure enabled the detec-
Marne Vallage catchment, at Joinville, for the April 2006 tion of a model incoherence in the Marne Vallage that could
event are presented in Figsl and12, respectively. The Free not be satisfactorily accounted for with the present control
run significantly overestimates the flood peak at Joinville andvector. Further work towards the improvement of the cali-
Chamouilley (not shown) however the two-step data assimi-bration of the model for the Marne Vallage catchment is on-
lation procedure allows for a good simulation of the peak atgoing at the SPC Seine-aval Marne-amont and will be used
the two-hour forecast. The simulated peak at the six-houmwith the data assimilation procedure when available.
forecast is also in better agreement with the observations
than the Free run, though an overestimation of the peak re4.2.3 Statistical interpretation
mains. For the 2-h forecast, the average C3 (for the whole
flood event) was improved by 35 % at Joinville and 32 % at Figure13shows that the forecasting ability of the model with
Chamouilley. For the 6-h forecast, the average C3 was im-data assimilation decreases with lead time. The mean reduc-
proved by 33 % at Joinville and 26 % at Chamouilley. During tions in criteria C1, C2 and C3 between the Free run and the
this flood event in forecast mode, the assimilation procedureAssim run (red curves) as well as between the Free run and
brings the simulation significantly closer to the observation.the Interp run (black curves) were computed over seven flood
It should be noted that in Figdl and 12, the Assim run  events in the Adour catchment, at Peyrehorade. The dashed-
merges with the Free run when all the observations are undedotted, dashed and solid curves represent the improvement
a minimim value as explained in Sedt1.1 in C1, C2 and C3 respectively. The two-step assimilation
Further analyses were carried out for flood events in thealgorithm improves C1 by 72 % and C2 by 67 % at the refer-
Marne Vallage catchment. Globally, the results were not asence time where as the Interp scenario improves C1 and C2
satisfying as in the Adour catchment. The main reason forby 100 % as the simulated water level is literally corrected to
this dampened performance is an incomplete calibration othe observed values &. The improvement of C3 over the
the numerical model (namely for the Strickler coefficient and first hour of forecast with the two-step assimilation algorithm
lateral input flow) in the Marne Vallage catchment before theis 60 % and 70 % for the Interp scenario. Even though the In-
assimilation procedure. It was shown during some eventsterp scenario gives the best results at short forecast range (up
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Fig. 11. April 2006 event, Marne Vallage catchment. Two-hour forecasted water level at Joinville for the Free run (black curve), the
observation (blue curve) and the analysis of the Assim run with the two-step assimilation (red curve).
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Fig. 12. April 2006 event, Marne Vallage catchment. Six-hour forecasted water level at Joinville for the Free run (black curve), the

observation (blue curve) and the Assim run (red curve).
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Table 1. C1, C2, C3 improvement between Free run and Assim runTable 3. C3 improvement between Free run and Assim run over
over the twenty four hours before the reference time. Average ofthe twenty four hours before the reference times and the six hours
seven flood events in the Adour catchment, at Peyrehorade, Urt andfter the reference time. Average of four flood events in the Marne

Lesseps. catchment, at Joinville and Chamouilley.
—24 hre-analysis (Adour) Peyrehorade Urt Lesseps C3improvement (%) Chamouilley Joinville
C1 improvement (%) 72 60 54 —24 h re-analysis 41 24
C2 improvement (%) 67 58 50 +6 h forecast 24 10
C3 improvement (%) 80 65 54

Table 2. C1, C2, C3 improvement between Free run and Assim run The improvement in C1 is shown in Tabefor the wo

over the six hours after the reference time. Average of seven ﬂood\llarne stations (J0|r!V|IIe and Chamouilley) for the 24 h be-
events in the Adour catchment, at Peyrehorade, Urt and Lesseps. fore the reference time and for the 6h after the reference

time. Again, for both stations, the criteria are improved and
the improvement is larger in re-analysis mode than in fore-
cast mode. Still, the improvement at the Marne stations is

+6 h forecast (Adour) Peyrehorade Urt Lesseps

C1improvement (%) 15 15 0.5 smaller than that described at the Adour stations, especially
C2 improvement (Z@ 13 11 0 at Joinville. As previously stated, the calibration of the model
C3 improvement (%) 36 25 3 parameters for the Marne catchment should be revised. For

example, a lateral inflow could be added to represent addi-
tional inputs from the karstic drainage area. With a more

to 3-h forecast), it should be kept in mind that this ScenariOPhysica| model for the Marne catchment, the two-step data
only corrects the water level at observation locations and thugssimilation algorithm would then lead to better results.
describes a hydraulic state that is not coherent with the phys-
ical equations. In this case, water level state is discontinuous
in space and discharge values are not corrected according  symmary and conclusions
water level values. Therefore, the resulting hydraulic state
from the Interp run can not be used as an initial condition for s paper presented the improvement in river flood forecast-
a forecast integration of the MASCARET model. Addition- jng when assimilating water level observations. The study
ally, the improvement of C1 and C2 for the Interp run is neg-as carried out with the one-dimensional hydraulic model
ligible for a lead time equal 6 h and above (by construction) MASCARET, on the Adour and Marne Vallage catchments.
whereas the improvement with the assimilation approach rerepresentative events were presented for both catchments
mains between 13 % (at +6h) and 4 % (at +12h). For a leadynq statistics of the results were computed. The water level
time equal to 3h and above, the improvement in C3 is signif-gata were assimilated using a Kalman Filter algorithm to
icantly larger with the two-step assimilation approach thancontro| the upstream flow and dynamically correct the hy-
with the post-treatment approach. draulic state. The first step of the analysis was based on

The average improvement of C1, C2 and C3 was computeghe assumption that the upstream flow can be adjusted us-
for each observation station in the Adour catchment (overing a simple three-parameter correction. These three control
seven events) and in the Marne catchment (over four eventsjarameters were adjusted over a two-day time window af-
showing that the overall effect of the assimilation improves e one day of free run. The second step of the assimilation
the description of the water level and discharge for all theconsisted of correcting the hydraulic state every hour (the
observation stations. observation frequency) during one day. The simulation was

The improvementin C1, C2 and C3is displayed in Tdble  then integrated in forecast mode for an additional day. With
for the three Adour stations (Peyrehorade, Urt and Lessepshjs algorithm, the background error covariance matrix is not
for the 24 h before the reference time and, in Tablerthe  explicitly propagated by the dynamics of the system. Still,
6h after the reference time. For the three stations, the criz particular effort was made to model background error co-
teria were improved, with the improvement being larger in yariance functions which were coherent with the dynamics of
re-analysis mode than in forecast mode. The evaluation ofhe hydraulic model. Anisotropic functions were used to rep-
the criteria at Urt and Peyrehorade are similar as both staresent the background error spatial correlations for the water
tions are influenced by hydrological conditions. The Lessepsevel and the discharge, respectively. The justification for this
station which is closer to the maritime boundary, is signif- chojice was made by applying a full Kalman Filter algorithm
icantly influenced by the tides that are not controled; as &pn a diffusive flood wave propagation model. It was shown
consequence, the results of the assimilation are not as goofat the analysis turns a Gaussian correlation function into an
at Lesseps as at Peyrehorade and Urt. anisotropic correlation function where the correlation length
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Fig. 13. Improvement in C1 (dashed-dotted),C2 (dashed) and C3 (solid) (in %) between Assim run and Free run (red curves) and between
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Fig. 15. (a)Error variance at each point for cycle one (dashed curves): analysiged) andB., (black), and for cycle seven (solid curves):
analysisAq7 (red) andB.g (black). (b) Analysis error covariances i1 (dashed curves) and .7 (solid curves) for points; = 180
(green)xo = xgps= 250 (black) andi3 = 320 (blue).(c) Error correlation irB¢1 (dashed curve) anflcg (solid curve) forxy = xgpg

scale is shorter downstream of the observation point. This apperiod. This justifies the need for the two-step data assimi-
proach enabled a realistic modeling of the spatial error correlation approach. This two-step procedure was applied to the
lations for the data assimilation algorithm with MASCARET. Adour and Marne catchments (France) and the results were

. . - . interpreted for several events in each catchment.
This procedure was applied on a four-day sliding window P

over the entire period of each flood event. It was shown that The assimilation procedure presented in this paper could
the simulation with data assimilation is significantly closer to potentially be applied to other catchment areas. Yet, a care-
the observation than the free run over the re-analysis periodul estimation of the data assimilation statistics must be car-
as well as over the forecast period. This conclusion is evi-ried out as they are representative of the local physics. The
denced by the fact that the mean and standard deviation afelation between the water level and discharge errors should
the distance between the simulation and the observation at also be further investigated. This aspect would be enriched
given time (as well as the sum of this difference over a timeby the use of localZ, Q) calibration functions. Addition-
period) are reduced by the data assimilation procedure. lally, the approximation of a state independent background
was shown that the instantaneous correction of the hydraulierror covariance matrix, was validated with the flood wave
state leads to a significant improvement in re-analysis moderopagation model. Further work could be done to assess
and for short forecast range. It was also shown that the sensthe integrity of this assumption using the Saint-venant equa-
tivity to an initial condition for the forecast mode is negligi- tions model. Also, the impact of the observation frequency
ble compared to the sensitivity to the upstream flow, exceptand the observation error statistics could be investigated: on
at very short forecast range. For this reason, the upstreargoing work suggests that when the observation frequency is
flow correction leads to a larger correction in forecast modelow, the propagation of the covariance function is negligible
On average, the correction of the hydraulic state is not agnd the covariance matrix remains state independent. Be-
predictive as the upstream flow correction and is not suffi-yond this study, the extension of the control space could be
cient to constrain the simulation over an interesting forecasuseful as other sources of uncertainties or model errors (for
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example the simplification of the flood plain representation) xqps, hereBca(x2,x), for this second assimilation are fun-
result in errors in the hydraulic state. For example, the cor-damentally different from those initially described By1

rection of the Strickler coefficients or of the lateral dischargefor the first assimilation, her8c1(x2,x).

could be investigated.

Appendix A

Evolution of the local covariance functions with the
Kalman Filter algorithm in a 1-D diffusive flood
wave propagation model.

The Kalman Filter algorithm was implemented on a 1-D dif-

Still, the sym-
metric property of the covariance matrix is conserved and
Beo(x1,x2) = Bea(x2,x1) (these values are represented by
dots in Fig.14c). The initially described isotropic correlation
function at the observation poing has been modified into a
local and anisotropic function. At the observation poipt
the correlation function is anisotropic with a shorter correla-
tion length downstream than upstream.

Figure15a represents the diagonal terms of the first anal-
ysis covariance matrixraz(x) = Aci1(x,x) (in red dashed

curves) and the second background covariance matrix
2

fusive flood wave propagation model and the covariance ma@h (¥) = Bea(x, x) (in black dashed curves). As expected,

trices were updated following EqQ¥—-8).
The initial background covariance matftiBc; was mod-

the analysis error variance is smaller than the initial back-
ground error varianceB1(x, x) = 0.25) in the vicinity of the

eled by spatially constant variances and correlation length@Pservation point. The size of the area is controled by the

for a Gaussian correlation function.
sis, ag(x) =0.25 for all x. The covariance®8¢1(x1,x),
Bc1(x2,x) andB¢1(x3,x) between respectively, x2, x3 and
any pointx are displayed in Figl4a (x> is the observation
point in this example). It should be noted th&a (x;, x;) =
sz(xi) =0.25 fori € {1,2,3}. By constructionBc¢; is sym-
metric and isotropic.

For this analy-

correlation length initially described iB¢1. The variances
which were initially set to the spatially constant valu@®

are now local, for example?(x2) = 0.0497 ando(x1) =
0.2474. Additionally, the variances in the updat®g (in
black dashed curves) are also local, they correspond to the
propagation of the variancesAq1 by M and its adjoin 7.

The update of the background error covariances by the anal-

After one assimilation cycle, the error covariances are lo-Ysis and the propagation of the background error covariances

cally modified. The analysis error covariancesAig are
computed from Eq.q) and shown in Figl4b for x1, x2 and
X3.
variancena2 at the observation poinp is smaller thararg. At
the observation point, the covariance functidg (x2, x) re-
mains isotropic. Conversely, at the upstream peindnd at
the downstream points, the covariance functiomsc1(x1, x)
andAc1(x3,x) are anisotropic. The covariance betwegn
and the observation poinp, as well as betweerg and the
observation pointy, is reduced since information at the ob-

matrix by the tangent linear model consists of the evolution
of both the variances and the correlations. It appears that the

It should be noted that, as expected, the analysis erroforrelation lengths tend to shorten downstream of the obser-

vation point. After several iterations (7 in this example) of
the Kalman Filter, the variances are globally reduced down-
stream of the observation point as shown in Biga for Ac7
andBgg. Effectively, the uncertainty at the observation point
is reduced by the data assimilation algorithm, allowing the
information to be propagated downstream.

The covariancefc7(x1,x), Ac7(x2,x) andAc7(x3, x) be-

servation point was introduced at this location by the analy-IWeen respeCtiVE|yC1,xz,x33 aftler seven iFerations of the
sis procedure through the innovation vector. The covariancét@man Filter, are shown in Figl3 in solid curves. For

functions atv; andxz are isotropic aroundy. It should also

comparison, the covariances from cycle 1 were also plot-

be noted that the analysis covariance matrix modeled wit€d in dashed curves in Fig=b. It is worth noting that at
the represented covariance function is symmetric, for exam#3 = 320, the amplitude of the variance has been divided by

ple,Ac1(x1,x2) =Ac1(x2,x1) = 0.0057; these two values are
represented by dots in Fig4db.
The background error covariance matyp = M7 Ac1M

approximately two over the seven assimilation cycles. The
shape of the covariance function evolves over time, espe-
cially downstream of the observation point. The correlation

for the next (the second so far) assimilation cycle is com-functions are clearly anisotropic with a shorter correlation
puted from Eq. 8), meaning that the previous cycle analysis length scale downstream than upstream of the observation

background covariance matrix is propagated by the tange

linear of the modeM and its adjoint” .
The columns of the updateBc, for x1, x2 and x3 are

shown in Fig.14c. The anisotropic covariances and corre-

ntPoint. The local correlation function fon = xgpsin B¢1 and

Bcg, respectively denoted byci(x2,x) and pcg(x2,x), are
shown in Fig.15c. The correlation length is divided by ap-
proximately five in this plot along the 7 assimilation cycles

lation functions at all the upstream and downstream loca.Of the Kalman Filter. This factor doesn't vary significantly

tions were propagated to the observation points so that th

(\_f.vhen the Kalman Filter is further iterated.

covariance and correlation functions become anisotropic at

the observation point. The spatial covarianceBja for

8The subscripti denotes the number of the assimilation cycles
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Appendix B Like the initial and boundary conditions, the temporal co-
variance functiorR () of g(¢) is also propagated by the dif-

Estimation of the local correlation length in B for fusive flood wave propagation equation Efi6), Since the

the hydraulic state correction procedure temporal covariance functioR(z) is Gaussian and because

o ' . the theory of random function diffusion applies, the spatial
The objective here was to determine the correlation lengthcovariance function of(x, ) can be approximated as Gaus-
of the spatial correlation function for the errors in the water sjan. Assuming that the spatial covariance function for the

level and the discharge errors produced with MASCARET. houndary condition is chosen to be Gaussian and denoted
This determination was two-fold. First a diffusion coeffi- by By, the covariance function for the solution at timés

cientx, based on the dynamics of the diffusive flood wave given byB, = M,BoMT whereM, stands for the advection-
approximation model (EdL6), was graphically estimated by diffusion processes. Since advection process no effect on the
studying the propagation of a perturbation of the hydrauliccovariance function, this formula can be written in the ad-
state. Then, this diffusion coefficient was used to calculateyected referential. In this referentidé, =L, LT =Ly where

the spatial correlation length of the state perturbation covariq_, represents the diffusion operator. The spat|al correlation

ance function. length in B, decreases with the distance:
The diffusion coefficienk is estimated by simulating the

response to an upstream perturbation along the water I|n%
For a stationary discharge and water level, for each stretch
of the river, a small but steep perturbation is added to the
upstream flow. This perturbation is propagated and diffusedl e correlation lengtli(x) is locally defined for any loca-

over time to the observation points. A perturbation of the tion in the domain. For the IKF assimilation algorithm, only
form the correlation length at the observation paigisis needed.

The local correlation length at the observation point is then
)+}, (B1) calculated using Eq.B3). For an application with MAS-
2 CARET, a realistic upstream flow is described from which
lg could be determined or when the observation point is far
enough from the upstream statid§&< vile X°Tb5

2(x) =12+ 4k . (B3)
C

E(x, 0) = erf( f
tempO

that sums up to a Heaviside functiongf— 0, was added at
the upstream flowg(¢). This perturbation is propagated by

Eq. (16) towards the observation points where, at timthe This graphical approach leads to the estimation of a local
state is described by(x, ) given by: correlation lengthi?(x) at each observation point based on
the perturbation of the upstream flow at one upstream station.
1 x—ct 1 Since there are several upstream stations for this study, there
h(x t)_ +5 (B2) I Iting si nzﬂsx t) reaching the observation
f 2 lemp) | 2 are several resulting signafix, ) g
point, leading to several estimations/@fops). At the obser-
With lemp(t)% = ltem o2t vation poi_nt, the spgtial correlation function is gpproximated
The parameters andc are estimated from the numerical as Gaussian, resulting from the sum of Gaussian functions of
solution’ (x, ) of MASCARET as follows: respective correlation lengthand amplitudez;. The corre-

lation length of the resulting Gaussian can be approximated
— ¢~ wheres; is the curvilinear distance between the by:
upstream station and the observation point ansl the
time between the upstream perturbation and the arrival ca;l;
P P 1(xobe) = 2 aili (xops) (B4)
of the step perturbation at the observation point, o S a;

-1 tr) ~ ¢T whereT is the time between the +20% of .
ttﬁg?fwirt)ial discharge and 20% of the final discharge” where the subscript denotes the number of the upstream

is graphically estimated for the simulated discharge atStat'on ( €[1.4] for the Adour catchment anie [1.4] for
‘ . the Marne Vallage catchment).
the observation points,

= ,/ltemp(lr) tempO with 12
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