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Universit́e Laval, Qúebec, G1V 0A6, Canada
2Computer Vision and Systems Laboratory (CVSL), Department of Electrical Engineering and Computer Engineering,
Universit́e Laval, Qúebec, G1V 0A6, Canada
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Abstract. Hydrological Ensemble Prediction Systems
(HEPS), obtained by forcing rainfall-runoff models with
Meteorological Ensemble Prediction Systems (MEPS), have
been recognized as useful approaches to quantify uncer-
tainties of hydrological forecasting systems. This task is
complex both in terms of the coupling of information and
computational time, which may create an operational bar-
rier. The main objective of the current work is to assess
the degree of simplification (reduction of the number of
hydrological members) that can be achieved with a HEPS
configured using 16 lumped hydrological models driven by
the 50 weather ensemble forecasts from the European Cen-
tre for Medium-range Weather Forecasts (ECMWF). Here,
Backward Greedy Selection (BGS) is proposed to assess
the weight that each model must represent within a subset
that offers similar or better performance than a reference
set of 800 hydrological members. These hydrological mod-
els’ weights represent the participation of each hydrologi-
cal model within a simplified HEPS which would issue real-
time forecasts in a relatively short computational time. The
methodology uses a variation of thek-fold cross-validation,
allowing an optimal use of the information, and employs
a multi-criterion framework that represents the combination
of resolution, reliability, consistency, and diversity. Results
show that the degree of reduction of members can be estab-
lished in terms of maximum number of members required
(complexity of the HEPS) or the maximization of the rela-
tionship between the different scores (performance).
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(darwin.brochero.1@ulaval.ca)

1 Introduction

In hydrology, as in many applications, it is accepted that there
is no superior model for every application under all circum-
stances (Duan et al., 2007; Alpaydin, 2010). Today, the avail-
ability of the Meteorological Ensemble Prediction Systems
(MEPS) and its subsequent coupling with multiple hydro-
logical models offers the possibility of building Hydrologi-
cal Ensemble Prediction Systems (HEPS) relying on a large
number of members. But the complexity of such HEPS be-
comes an operational burden when one has to evaluate sev-
eral hundreds of scenarios at each time step.

To provide an idea of the complexity that can be achieved
in HEPS, represented for example by the number of members
to handle, it is worth mentioning the principal areas of un-
certainty associated with the hydrological process (Schaake
et al., 2007) as follows:

– Uncertainty from the meteorological data: in this case,
the MEPS are responsible for providing this informa-
tion. Different centres around the world are currently
working on this issue, for example the TIGGE initia-
tive consists of ensemble forecast data from ten global
centres, for a total of 259 members (TIGGE,Bougeault
et al., 2010). In relation to this,Bao et al.(2011) have
shown that a HEPS comprised of meteorological mem-
bers derived from multiple meteorological centres may
actually perform better as compared to an ensemble de-
rived from a single meteorological model.

– Uncertainty from the rainfall-runoff model: each hy-
drological model combines two important elements re-
garding the uncertainty associated with the hydrological
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process: the initialization uncertainty (i.e. the initial
state of the model) and the model uncertainty (from pa-
rameter identification to model conceptualization). In
this regard, the methodology proposed byBeven and
Binley (1992) provides the evaluation of parameter un-
certainty from the point of view of equifinality. For ex-
amplePappenberger et al.(2005) have shown the advan-
tages in HEPS to flood inundation predictions coupling
MEPS with both hydrological and hydraulic models that
have been evaluated at the same time with the GLUE
methodology.

Another way of conceptualizing the uncertainty of the
model focuses on a multi-model approach, making good use
of the resources invested in the development of dozens of
hydrological models. For instance,Velázquez et al.(2011)
have shown, based on the database of the present paper,
that the ensemble predictions produced by a combination
of several hydrological model structures and meteorologi-
cal ensembles have higher skill and reliability than ensemble
predictions given either by a single hydrological model fed
by weather ensemble predictions or by several hydrological
models driven by a deterministic meteorological forecast.

Cloke and Pappenberger(2009) have already highlighted
the computational demand of using MEPS for flood forecast-
ing as one of the main points to overcome in the future, either
by new technologies (stochastic chip technology) or by effi-
cient use of computing clusters. Thus, the selection of hydro-
logical members as part of a simplified model can be useful
given the computational cost of running models and creating
ensembles.Vrugt et al.(2008) have suggested the selection
of hydrological models as an additional task that can be run
based on the results of the post-processing using Bayesian
Model Averaging (BMA) in a multi-criteria framework.

As a compromise, researchers have attempted to cluster
MEPS for flood prediction in various ways: by lagging en-
sembles and deriving representative members through hier-
archical clustering over the domain of interest, and thus to
produce a reduced ensemble set at higher resolution (Mar-
sigli et al., 2001); by analyzing the relation between atmo-
spheric circulation patterns and extreme discharges (Ebert
et al., 2007), or by establishing, in a deterministic way (“best
match” approach), the location of the forecast that is the most
similar to the rainfall pattern of the catchment (Xuan et al.,
2009).

Here, we propose the selection of hydrological mem-
bers directly in the HEPS with a technique called Back-
ward Greedy Selection under the different scores presented
in Sect.2. In the case of MEPS with interchangeable mem-
bers (the case presented here), the selection is oriented to
evaluate the hydrological models participation inside a sub-
set of a few members.

The HEPS under study is formed of 16 lumped hydrolog-
ical models forced by the 50 meteorological inputs of the
ECWMF EPS, leading to a grand-ensemble of 800 members.

This approach was tested in 10 catchments located in France
for a period of seventeen months (from March 2005 to
July 2006). Another important feature of the HEPS at hand
is the short duration of the series. This has been highlighted
by several authors as a negative point in the evaluation of
system performance in the case of extreme events (Renner
et al., 2009; Cloke and Pappenberger, 2009). This condition
imposes the use of resampling and recombination techniques
in the proposed methodology shown in Sect.3.

Other studies that focused on periods of analysis very sim-
ilar to the one used in this paper have also proven the useful-
ness of the ECMWF EPS. For exampleRousset et al.(2007)
evaluated hundreds of French catchments from 4 Septem-
ber 2004 to 31 July 2005 showing that the information
given by the ensemble forecast is useful for flood warning
and water management agencies. Similarly,Thirel et al.
(2008), in a comparative analysis of short-range meteoro-
logical forecasts from the ECMWF EPS and PEARP EPS
of Mét́eo-France under the scheme of SIM coupling, anal-
ysed the competence jurisdiction of each of the two EPS
from 11 March 2005 to 30 September 2006, showing that
the ECMWF EPS seemed best suited for low flows and large
basins while the PEARP EPS was best suited for floods and
small basins.

We do emphasize that the results shown in this first phase
focused primarily on the analysis of the scores in the process
of selecting hydrological members. Furthermore, we evalu-
ated the notion of interchangeability of the MEPS and HEPS
members, concluding that the participation of the hydrologi-
cal models in the subset of selected members is sufficient to
guide the members’ selection, as shown below in Sect.4. Fi-
nally, conclusions are drawn and a guideline for future work
is given in Sect.5.

2 Verification statistics for ensemble forecasts

Following the guidelines given byCloke and Pappenberger
(2009), we consider several metrics in the selection of hy-
drological members with BGS. We thus quote some of the
features that are evaluated in probabilistic forecasting. The
reader is referred toMurphy (1993) andWilks (2005) for a
detailed description of these features.

– Bias: correspondence between mean forecast and mean
observation.

– Reliability: correspondence between conditional mean
observation and conditioning forecast, averaged over all
forecasts.

– Resolution: degree to which the forecasts sort the ob-
served events into groups that are different from one
another. It is related to reliability, in that both are con-
cerned with the properties of the conditional distribu-
tions of the observations given the forecasts.
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– Sharpness: variability of forecasts as described by their
distribution.

– Consistency: degree to which the ensembles apparently
include the observations being predicted as equiproba-
ble members.

Additionally, we propose the use of the diversity con-
cept studied in machine learning, i.e. the members should
be as correct as possible, and when they make errors, these
errors should be complementary (Kuncheva, 2004). Thus,
the scores used in this research have been chosen because
they quantify different aspects of the ensemble prediction’s
quality.

In some cases, it is necessary to establish a priori a proba-
bilistic distribution function that fits systematically the previ-
sion ensembles for each time step. In the hydrological com-
munity, it is accepted that an adjustment of the gamma distri-
bution makes more sense than a normal distribution given the
asymmetry in the distribution of precipitation and discharge
(Vrugt et al., 2008); however, the gamma function evalua-
tion involves a distribution which is more complex than the
normal distribution which has explicit mathematical expres-
sions. Sźekely (2003) proposes Monte Carlo techniques for
the adjustment of any distribution to the ensembles.

For this study, some simulations were performed to eval-
uate differences between normal and gamma distributions in
the case of the Continuous Ranked Probability Score (CRPS)
and the Ignorance Score (IGNS). The results showed minor
variations in contrast with a high computational cost. It is
nonetheless important to note that this similarity is evaluated
inside the ensembles with previsions varying between 30 and
800 hydrological members, as detailed below; in small sam-
ples it is expected that the results represent the expected
asymmetry of information.

Note that the CRPS can be evaluated directly from the
cumulative distribution of observed frequencies (Hersbach,
2000). However, considering the computational cost in eval-
uating this score thousands of times, a normal distribution
was assumed.

The mathematical notation of each element in the scores,
explained below, is drawn from Appendix A.

2.1 Continuous ranked probability score (CRPS)

The CRPS simultaneously evaluates reliability, resolution,
and uncertainty (Hersbach, 2000; Gneiting and Raftery,
2007). Smaller values indicate better performance. Its min-
imal value of zero is only achieved in the case of a perfect
deterministic forecast. Note that the CRPS has the dimen-
sion of the observationot . Its mean value is equivalent to
the mean absolute error for a deterministic forecast (Hers-
bach, 2000). Assuming that the forecast ensembles (yt ) are

normally distributed, the CRPS at the timet is defined by
Eq. (1) (Gneiting and Raftery, 2007):
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2.2 Ignorance score (IGNS)

Proposed byGood(1952) as the logarithmic score, the IGNS
is given by Eq. (2):

IGNS
(
yt , ot

)
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]
. (2)

This score is described in detail byRoulston and Smith
(2002). It is used to evaluate the sharpness or spread (Vrugt
et al., 2006). It severely penalizes the bias, since positioning
the observation in forecast regions of low probability lead to
values that tend to infinity. It is defined simply as the log-
arithm of the ensemble probability density function (f (yt ))
at the point corresponding to the observation (ot ). Smaller
values indicate better performance.

The logarithmic score involves a harsh penalty for low
probability events and therefore is highly sensitive to extreme
cases (Gneiting and Raftery, 2007). To rule out the possibil-
ity that the results solely reflect the effect of a few outliers,
we analysed trimmed means of the IGNS series excluding
the highest and lowest 2% data values, followingWeigend
and Shi(2000). Infinite values were replaced by the next
worst non-infinite value, followingBoucher et al.(2010).

2.3 Reliability diagram – mean square error (RDMSE)

Given thatm denotes the differentM thresholds of proba-
bility to assess, the reliability of the system can be directly
measured from the comparison of theseM thresholds with
the conditional probability of observation as a function of
the forecast (om). Since observation of the event is dichoto-
mous (r t = 1 if the event occurred andr t = 0 otherwise) such
conditional probability or relative frequency observedōm is
given by Eq. (3):

ōm =
1

N

N∑
t=1

r t where r t
=

{
1 if ot

∈ Im

0 otherwise
, (3)

whereN is the number of forecast-observation pairs used
in verification. The goal is to have well-calibrated forecast
systems where the relative frequency is essentially equal to
the probability of the forecast, i.e.̄om ≈ Im (Wilks, 2005).
The plot of the conditional probability versus the probability
of the forecast (Im) is called the reliability diagram. In this
study, as discussed later in Sect.3.3, it is necessary to estab-
lish a single target value, so the Mean Square Error between
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the probability forecast and the observed frequency in the Re-
liability Diagram (RDMSE), as suggested byWilks (2005), is
evaluated by Eq. (4):

RDMSE(Y, o) =
1

M

M∑
m=1

(ōm − Im)2. (4)

These distances are all small for well-calibrated forecasts.

2.4 Normalized deviation of the rank histogram from
flatness (δ ratio)

The reliability, consistency and bias of the ensemble are eval-
uated in this score. That is, the rank histogram is used to
evaluate whether the ensembles apparently include the obser-
vations being predicted as equiprobable members. The rank
histogram is a graphical approach that was devised indepen-
dently byAnderson(1996); Hamill and Colucci(1997) and
Talagrand et al.(1997). The rank of the observations within
each ensemble is evaluated and then plotted in the form of a
histogram. In the case of equality of observation with one or
more of the ensemble members, the rank is chosen randomly.
For a reliable system, over alld + 1 members, the number of
elements in each interval of the rank histogram (Sc) has an
expected valueN/(d + 1), while the deviation (1) of the his-
togram from flatness is measured by Eq. (5) (Talagrand et al.,
1997):

1 =

d+1∑
c=1

(Sc − href)
2 where href =

N

d + 1
. (5)

A reliable system has an expectation of10 = dN
d+1. The

δ ratio (δ =1/10), proposed byTalagrand et al.(1997) is
used as a measure of the reliability of an ensemble prediction
system for a scalar variable. A value ofδ that is considerably
larger than 1 is a proof of unreliability.

Given the difficulty of assessing the probabilistic nature
of the studied HEPS, the use of the rank histogram is to-
tally dependent upon eventually relaxing the ensemble mem-
bers distribution, such as has been proposed by some authors
(see Sect. 2c inAnderson, 1996and Sect. 3a inHamill and
Colucci, 1997).

2.5 Median of coefficients of variation (MDCV)

Velázquez et al.(2011) showed that the reliability of the stud-
ied HEPS improved in two ways: first with the combination
of all perturbed members from ECMWF EPS and the 16 hy-
drological models studied, and second, by increasing the lead
time. A common feature is that the higher the observed dis-
persion, the greater the HEPS reliability.

The standard deviation is a classical measure of disper-
sion; however, it preserves the magnitude of the observed
variable, complicating the joint interpretability of the results
of the 10 basins in evaluation. So, the coefficient of variation

(CV) as a dimensionless measure is useful in comparing dif-
ferent data sets with respect to central location and dispersion
(Kottegoda and Rosso, 2009).

In this research, the analysis of the HEPS dispersion,
through CV (results are omitted in this article), showed an
increase proportional to the lead time, so the first lead time
has a mean CV of 0.05 while longer lead times (e.g. 9 days),
reached a mean value of 0.6. Note that CV is calculated for
each time step. However, the mean CV is not a good measure
of location in the skewed CV series evaluated for each basin.
The MeDian of the Coefficients of Variation (MDCV), given
by Eq. (6), turns out to be a much better measure:

N

MDCV(Y) = med CV
(
yt

)
.

t=1 (6)

The hypothesis under the maximization of the MDCV is
that a gain in dispersion should increase the reliability of the
HEPS.

2.6 Combined criterion (CC)

Selecting only one criterion may give a partial view of the
forecast performance and even be misleading. The combi-
nation of several metrics into one diagram has already been
evaluated (Taylor, 2001), but is inappropriate for this study
because a scalar objective value is required for the selection
procedure. So, we propose the following guidelines to define
the CC:

CC = w1
CRPSse

CRPSie
+w2

z1 − IGNSse

z1− IGNSie
+w3

RDMSEse

RDMSEie

(7)

+ w4
δse

δie
+ w5

z2 − MDCVse

z2 − MDCV ie
,

– The combination should assign weights to each of the
scores as a direct measure prioritizing some of the char-
acteristics of the HEPS in evaluation. Additionally,
these weights, in a general framework, offer the possi-
bility of constructing a trade-off among different objec-
tives. In our case, weights were used only to give prior-
ity to the reliability in the selection, becauseVelázquez
et al. (2011) showed that this was the most influential
aspect in the evaluation of the HEPS studied here. For
this reason the weight assigned to the reliability corre-
sponds to twice that of the other factors, which have a
unit weight.

– Each score in the selected ensemble of hydrological
members (se subscript) is normalized from the division
by the corresponding score in the initial 800-member
ensemble (ie subscript), placing each component on the
same scale.

– All scores except the MDCV function are oriented for
minimization. However, the IGNS has the peculiarity
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Fig. 1. Hydrological members’ selection methodology.

of having negative values, making it necessary to estab-
lish a threshold (z1) in the normalization so as to ma-
nipulate the duality of having a positive (or negative)
score in the selection and a negative (or positive) score
in the 800-member set. Thus, we establishz1 =−2,
since the preliminary analysis of selection under dif-
ferent scenarios (different catchments and number of
members to be selected) showed minimum values for
this score of about−1.5. With regard to the MDCV
function, a threshold ofz2 = 1 is used to change the ori-
entation since the objective is to maximize dispersion,
as testing different scenarios showed maximum values
of about 0.8.

2.7 Elements to compare the performance of members’
selection (NS,GNS, GSC)

Note that the CC could be used to compare the performance
of the members’ selection with respect to the 800-member
set. So, in a general framework, if all features of the ensem-
ble forecast have the same importance, one members’ selec-
tion with equal performance to the 800-member set will lead
to a CC equal to 5, values lower than 5 indicate a selection
of higher performance than the base set of 800 members, and
values greater than 5 indicate the detriment of any feature of
the 800-member set. Hereafter this particular condition of
unit weights in the CC will be called Normalized Sum (NS).
This distinction is important to display the priority that can
be defined a priori to any feature in the members’ selection
training with BGS. In this way, it is possible to define a gain
index for the scores balance with respect to 5 (Eq.8):

GNS(%) = 100 ×

(
5

NS
− 1

)
. (8)

Fig. 2. Selected catchments are identified with the first three digits
of each code used in Table1. The other delimited basins are part of
the study of results’ generalization shown inBrochero et al.(2011).

It is possible that the NS evaluated in the selected sets with
BGS hides undesirable effects on the balance of the scores,
for example to substantially improve one score with respect
to the other score(s). To check this condition, a gain index
for each score is also proposed:

GSC(%) = 100 ×
Scoreie − Scorese

|Scoreie|
. (9)

A positive index indicates superior performance of the se-
lected set. The absolute value in the denominator is needed
to assess the performance of IGNS, which can have positive
and negative values.

3 Experimental set-up

Figure1 shows the selection procedure applied to the 800-
member HEPS. The main elements of the methodology are
described below.

3.1 Database: 800-member HEPS

Database details can be found inVelázquez et al.(2011). The
study is conducted over 10 French catchments with a typical
response time of 3 days. These catchments represent a large
variety of hydro-climatic conditions (Fig.2 and Table1), and
were evaluated over a period of 17 months (from March 2005
to July 2006).

Temperature, rainfall, and flow data are available at a daily
time step over the period extending from 1970 to 2005, and
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Table 1. Main characteristics of the studied basins (mean annual
values) based on a 36 year length of the series (1970–2006).

Catchment Area Altitude P ET Q
codes (km2) (m a.m.s.l.) (mm) (mm) (mm)

A7930610 9387 155 2.78 1.80 1.21
B2130010 2290 227 2.57 1.80 0.87
B3150020 3904 162 2.58 1.80 1.09
H3621010 3900 48 1.98 1.95 0.45
J8502310 2465 4 2.36 1.89 0.81
K7312610 1712 85 2.13 2.01 0.68
M0421510 1890 56 2.04 1.89 0.62
O3401010 2170 349 3.19 1.80 1.90
Q2593310 2500 17 2.52 2.24 0.75
U2542010 4970 201 3.63 1.75 1.88

P: precipitation, ET: potential evapotranspiration, Q: flow.

were used for the calibration and validation of the hydrolog-
ical models. Observed data for the period 11 March 2005
to 31 July 2006 was used only for the evaluation of the
forecasts. The forecast verification period is thus indepen-
dent of the calibration/validation period. Rainfall data come
from the meteorological analysis system SAFRAN of Mét́eo-
France (seeQuintana-Segúı et al., 2008 for details). They
consist of rainfall accumulated at a daily time step and avail-
able for the entire country of France at an 8× 8-km grid reso-
lution. Daily streamflow data come from the French database
Banque Hydro (http://www.hydro.eaufrance.fr/). The length
of available observed streamflow time series varies accord-
ing to the catchment, with, on average, 29 years of available
daily data for the catchment dataset used here.

The 50 perturbed forecasts from ECMWF was provided at
a 0.5◦ × 0.5◦ lat/lon grid resolution. A detailed description of
the ECWMF EPS model can be found inMolteni et al.(1996)
or Buizza(2005). Forecasts are issued at 12:00 UTC and ex-
tend over 240 h. Rainfall amounts were accumulated at 24 h
time steps, starting at 0 h to match with observed daily data,
which resulted in nine daily lead times. No bias removal
or disaggregation was performed. For each catchment, areal
mean rainfall forecasts were computed by averaging the rain-
fall amounts of each grid above the catchment, weighted by
the percentage of the catchment area inside the grid.

The sixteen hydrological models are lumped models and
correspond to various conceptualizations of the rainfall-
runoff transformation at the catchment scale. Some origi-
nal model structures were modified. Thus, to avoid unfair
comparisons of models, they will be referred to hereafter as
HM## (Table2). It is beyond the scope of this article to
present these models. References with a detailed explana-
tion of each model structure can be found inVelázquez et al.
(2011).

On the other hand, analysis of the median coefficient
of variation (MDCV), as a measure of the diversity of the
HEPS, revealed the following characteristics:

Table 2. Hydrological models.

Hydrological Base model and Hydrological Base model and
models parameters models parameters

HM01 CEQU 9 HM09 CREC 8
HM02 GR3J 3 HM10 GR4J 4
HM03 HBV0 9 HM11 SIMH 8
HM04 IHAC 6 HM12 MOHY 7
HM05 MORD 6 HM13 PDM0 8
HM06 SACR 13 HM14 HYM0 5
HM07 SMAR 9 HM15 TANK 10
HM08 TOPM 8 HM16 WAGE 8

– The variability is low at least for the first three days of
predictions (MDCV< 0.12), many models showing no
variability (i.e. the same response for all members). As
shown byVelázquez et al.(2011), part of this difficulty
may be inherited from the meteorological ensembles,
which are not reliable prior to about a 3-day lead time.
More importantly, it is believed that not including un-
certainties associated with the hydrological initial con-
ditions at the onset of the forecasts takes its toll on re-
liability, at least for the first few time steps of the hy-
drological predictions, i.e. until the mean characteristic
response time scale of the studied catchments (3 days)
is reached.

– As for the incremental variability, it depends on the
forecast horizon. MDCV for 4 to 9-day predictions
reached between 0.2 and 0.6, respectively.

Consequently, the results presented in this paper are
strictly based on the 9-day forecast horizon. This decision
is justified on the variability within the ensemble forecasts as
well as on the fact that the selection of hydrological members
as a method of simplifying HEPS should be unique regard-
less of the forecast horizon. The companion paper (Brochero
et al., 2011) assesses the transferability of the 9-day mem-
bers’ selection to other forecast horizons.

3.2 Resampling technique

In some algorithms, such as the BGS, the overfitting1 is high-
lighted as a structural problem. So, one method for improv-
ing generalization which is called early stopping (Hudson
and Demuth, 2011; Alpaydin, 2010), well-known in the neu-
ral network community, is used in the methodology proposed
here.

In this technique, the available data is divided into three
subsets. The first subset is the training set, which is used in
BGS for sequentially removing the members. The second
subset is the validation set. The error on the validation set

1When the error on the training set is driven to small values, but
the error of the model is large on new data.
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is monitored during the training process. The validation er-
ror normally decreases during the initial phase of training,
as does the training set error. However, when the selection
begins to overfit the data, the error on the validation set typ-
ically begins to rise. When the validation error increases for
a specified number of members, the training is stopped. The
test set error is not used during training, but it is used to com-
pare different models.

The need to define three subsets to run the BGS and the
short length of the series impose the use of resampling tech-
niques such ask-fold cross-validation, which maximizes the
utilization of the available information.

Moreover, one notes the high degree of linear correlation
exhibited in the first lags of the correlogram of the flow se-
ries at hand (e.g. in the 80 % of the catchments evaluated, the
correlation using a lag of three days was greater than 0.82).
So, the choice of the training and validation data should be
directed in order to temporarily avoid near data to form the
two subsets. For example, suppose that the linear correlation
betweenot andot+1 is equal to 0.8 and that the selection of
members has been trained inot and validated inot+1. The
validation could consequently be highly contaminated by the
effect of the correlation between data. Correlation contami-
nation is avoided by forming training and validation subsets
from groups of 10 consecutive data (blocks) rather than from
individual data. It is important to note that contrarily to stan-
dard hydrology applications, the order of the events is not
important in the BGS process.

Here, the dataset is divided into 5 equal-sized parts in or-
der to create 5 experiments. In each experiment, a part is
kept out for testing, while the remaining four parts, a priori
divided in blocks, are randomly combined to form training
and validation subsets. The detailed process develops in two
steps:

– Step 1: Data and test set configuration.The test set
is set-up from simple cut-offs to “guarantee” statistical
independence with the training-validation process. To
build the test set, the series is subdivided into five folds,
each of which corresponds to the test set of each ex-
periment. For example, ifN denotes the length of the
series, the test set of the first experiment corresponds
to the first fold (i = 1 to bN/5c), similarly the test set
of the fifth experiment will be the last fold (i = d4N/5e

to N ). Thus, strong linear correlation between training-
validation and the test dataset is limited only to the val-
ues situated near the cut-off line.

– Step 2: Blocks’ selection of the training and validation
sets. The remaining 4 parts are grouped intok blocks
of consecutive pairs of observations-ensemble forecast,
then randomly choosing 75 % of the blocks for the train-
ing set and the remaining 25 % sets for the validation
set.

3.3 Backward Greedy Selection (BGS)

In Machine Learning, the evaluation of multiple models for
simulation or prediction of an event, and to further select
those which together enhance or simplify a condition for ad-
justment, is known as an overproduce and select. In a gen-
eral context of selection, numerous methods have been devel-
oped. There are greedy selection methods (Backward or For-
ward Selection) but also methods such as integer program-
ming and evolutionary algorithms.

Here, BGS and the idea of subdividing the data into three
subsets to improve the generalization are applied. For its im-
plementation it is necessary to define the error function “E”
(that it is one of the given statistical scores shown in Sect.2)
and the minimum number of members. With regard to the
minimum number of members, which was arbitrarily defined
as 30 here, the choice is mainly due to the high availability
of initial members (800), for example with 30 hydrological
members a level of compression of information equivalent
to 96.25 % is reached. It is certain that if the selection task
had started with a pool of 50 members, then the minimum
number of members could have been defined as 10, for ex-
ample. Moreover, the minimum number of members is just
a stopping criterion of selection with BGS because the num-
ber of members to define as optimal should focus on specific
analysis in each basin.

The members’ elimination mechanism begins with all
members (d) and removes them one by one, at each step re-
moving the one that decreases the error the most (or increases
it the least). The removal mechanism is as follows:

1. It begins with a subdivision of the dataset (χ ) into train-
ing (χt), validation (χv), and test set (χp).

2. The reference setGd , containing all of the originald
members, is presented.

Gd
= {y1, y2, y3, ..., yd}

3. For iter =d − 1, d − 2, ..., nmin
The hydrological member “yj ” corresponds to the one
that, when it is removed, has the greater impact on the
training set errorE (i.e. minimise train error the most).
It is important to note thatE must be a scalar or single
value.

yj = argmin E
(
Giter+1

\
{
yi

}
|χt

)
yi∈Giter+1

The reference set is then updated by removing theyj

member inG.

Giter
= Giter+1

\yj

4. At this point, the errorE in the validation setχv, ex-
cluding theyj member, is evaluated.

Et
v = E

(
Gt

|χv
)
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5. The subsetGnmin of the selected members is achieved,
then the whole selection process is analysed on the
training and validation results.

Backward Greedy Selection is a local search procedure
that does not guarantee finding the optimal subset. For ex-
ample,yx andyp by themselves may not be pertinent but
together they may decrease the error substantially. But,
because the algorithm is greedy and removes hydrological
members one by one, it may not be able to detect this. Here,
the BGS is executed with a resampling technique explained
in Sect.3.2.

3.4 Combination of results

The variability of each experiment set-up in the cross-
validation step increases the probability of reaching different
hydrological member’ selections. So, it is necessary to de-
termine an integration mechanism for a global solution for
each catchment. Here, the importance of each hydrological
memberyi within the ensemble is then assumed as being di-
rectly proportional to the iteration number at which it was
eliminated during the selection process in each experiment
(iter

yi
xp). The combined ranking is thus the mean rank of elim-

ination as defined in Eq. (10):

R
(
yi

)
=

1

5

5∑
xp=1

iter
yi
xp. (10)

For example, if the rank of elimination of the hydrological
memberyi is 50, 60, 200, 10, and 150 in the five experiments,
then the mean rank of elimination is equal to 94. Finally, the
final selection (s) of thenm2 best members corresponds to the
members which have the highest mean rank of elimination
given by Eq. (11):

s =
{
Rp, yp

}nm

p=1, Ri ≥ Rj where 1≤ i ≤ j ≤ d. (11)

It should be noted that another possibility to integrating
the results could have been based on the frequency of se-
lection of each hydrological member of the ensemble, and
later to elect the members with the highest frequency, but as
this integration leads to a low performance, these results are
omitted from this paper.

3.5 Interpretability of hydrological members’ selection

In the case of MEPS in which the members are not perfectly
interchangeable (e.g. Meteorological Service of Canada –
MSC, TIGGE database), the selection of hydrological mem-
bers with BGS focuses directly on the combinations of hy-
drological members that maintain or improve characteristics
of the super ensemble of reference.

2nm is not necessarily equal tonmin becausenm reflects the
analysis of the error on the validation set regarding the number of
selected members.

Table 3. Performance for the 16-member ensemble (16 hydrolog-
ical models are driven by the deterministic forecast from ECMWF
EPS) and the 800-member ensemble (16 hydrological models are
driven by the 50 perturbed members forecast from ECMWF EPS)
for a 9-day forecast time horizon. Hereafter, RDMSE values are
expressed on a 10−3 basis.

Catchment
codes

HEPS
Scores MDCV

function
CRPS IGNS RDMSE δ

A7930610
16 0.338 4.51 93.95 42.5 0.18
800 0.263 0.44 5.06 3.3 0.41

B2130010
16 0.282 1.05 39.29 23.3 0.32
800 0.230 −0.29 2.43 2.2 0.57

B3150020
16 0.164 0.77 39.21 21.3 0.13
800 0.135 −0.88 4.51 2.7 0.22

H3621010
16 0.181 0.84 34.89 17.4 0.19
800 0.161 −0.99 3.50 1.5 0.37

J8502310
16 0.184 0.69 34.49 15.8 0.20
800 0.163 −0.98 2.16 1.6 0.37

K7312610
16 0.184 0.53 33.98 15.8 0.19
800 0.165 −0.93 3.09 1.9 0.35

M0421510
16 0.177 0.49 27.24 13.7 0.19
800 0.160 −0.99 1.74 1.5 0.37

O3401010
16 0.198 0.77 36.39 16.8 0.19
800 0.169 −0.86 3.46 1.5 0.36

Q2593310
16 0.186 0.66 32.89 14.9 0.21
800 0.163 −0.98 2.15 1.5 0.37

U2542010
16 0.390 3.29 39.73 21.0 0.19
800 0.289 −0.36 3.39 2.6 0.35

But in the HEPS driven by a MEPS with interchangeable
members (e.g. ECMWF EPS), the selection should be di-
rected more clearly to a method of selection and weighting
of hydrological models based on their participation in the fi-
nal selected subset. Therefore, we can create a new simpli-
fied high-performance HEPS using the same proportion of
the hydrological members associated with a random choice
of the meteorological members.

For example if the final selection shows that the simplified
HEPS should consist of ten members for the hydrological
model “A” and thirty members for the hydrological model
“B”, then we should expect to achieve a high performance
HEPS if we randomly pick ten meteorological members to
evaluate the hydrological model “A” and thirty meteorologi-
cal members, randomly chosen once again, to assess the hy-
drological model “B”. Section4.3presents such an analysis.

4 Results and analysis

Table 3 presents a comparison of results for two HEPS
schemes analysed byVelázquez et al.(2011). It should be
stressed that the 800-member HEPS serves as a reference for
results in the selection of members and that their scores show
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a desired behaviour. Note that theδ ratio and RDMSE, scores
on which rest the main advantages of the 800-member HEPS,
are directly interpretable since the scale is independent of the
measured variable.

With respect to the IGNS score, mean values are gener-
ally negative, which shows that on average the system has
an acceptable bias. Finally, in terms of CRPS,Velázquez
et al. (2011) show in detail the efficiency of CRPS in this
800-member HEPS.

Note that results discussed in this paper correspond to
a “pseudo test dataset” for comparing the performance be-
tween different scores in the process of selecting hydrologi-
cal members, since the data used to minimize all error func-
tions are exactly the same.

It is a “pseudo test dataset” because there is a high proba-
bility that the data used in testing (the complete series) have
been used in the BGS training process, becoming the indi-
cator of an optimistic estimator of the selection (Diaman-
tidis et al., 2000); however, we do emphasize that the first
part of this research focuses on an analysis of scores in the
BGS process with the subsequent integration of results, and
the second phase presented in a companion paper (Brochero
et al., 2011) shows a rigorous test of generalization in time
and space.

Validation results were omitted mainly because they have
a trend similar to the training ones, except for some experi-
ments where the random distribution of the training and val-
idation sets was not statistically homogeneous.

In order to illustrate the interchangeability of the mem-
bers of the ECMWF EPS and equiprobability of this system,
Sect.4.3 shows both the performance of the subset found
with the BGS and the boxplot diagrams of 200 random ex-
periments of 50 members, with and without the guidance of
the BGS solution.

4.1 Selection performance

An example of the results obtained is shown in Fig.3, which
compares the 30-member and the 800-member results for the
M0421510 catchment, after an optimization based on theδ

criterion. In general the 30-member scores are better or as
good as the reference set.

We stress the fact that the selection task focuses on the par-
ticipation of the hydrological models. For instance, Fig.3e
shows that the selected hydrological members make use of 13
of the 16 available lumped models, however, the strong par-
ticipation of the models 3, 7, 9, and 14 is displayed, which
is an interesting combination of hydrological models, espe-
cially taking into account the much poorer performance of
the 16-member multi-model approach driven by the deter-
ministic prediction (Table3) and knowing that these hydro-
logical models are not of equal quality with regards to MSE
performance. This suggests that the selection favoured a di-
versity of errors.

Specifically, Fig.3a shows that the 30-member CRPS
equals the reference value. Also, taking into account that
the CRPS generalizes the Mean Absolute Error (MAE) for
a point forecast (Gneiting and Raftery, 2007), it is impor-
tant to stress that the CRPS values are always lower than the
MAE values, when the deterministic counterpart was taken
as the mean of each daily ensemble, in agreement with results
obtained by other authors (Boucher et al., 2009; Velázquez
et al., 2011). Another remarkable feature of CRPS is its di-
rect relationship with the flow magnitude; the shapes of the
CRPS and of the hydrograph are similar. A direct strategy of
optimization could then focus on removing the hydrological
members that have a large impact in the daily extreme CRPS
values. Note also that the selection not only preserves the
mean CRPS (0.16) but also the structure of the CRPS series.

Figure3b shows that the 30-member 4 % trimmed mean
ignorance score (−1.01) has also improved over the initial
value (−0.99). Regarding the time structure of the IGNS, it
is observed that both the 30-member and 800-member values
have many extreme values which suggest low assessments of
the predictive distribution of the ensembles, i.e. a bias prob-
lem in the forecasts (note that a value of 4.5 corresponds to
an evaluation of thepdf near 0.0442).

With regard to the reliability diagram, Fig.3c shows a con-
siderable agreement improvement (1.09e-3) over the initial
value (1.74e-3). This gain in reliability may be traced back
to the optimization criterion used: theδ ratio, which is en-
tirely based on the integration of the whole range in terms of
corresponding verifications (observations). Similarly, Fig.3d
reveals that the rank histograms have a nearly uniform distri-
bution, even if the first rank reflects a slight bias. Those im-
perfections demonstrate the difficulty inherent in minimizing
theδ ratio.

At the end of the selection process, the (MDCV) has
slightly decreased, from 0.37 to 0.35. This confirms that op-
timization with theδ criterion seeks diversity of the ensemble
forecasts in the correct way, not necessarily maximizing the
MDCV.

Figure3e illustrates the occurrence of each lumped model
from the 30-member ensemble. A wide selection of models
alone could justify the multi-model approach advocated here.
Results show that 13 models out of 16 were selected in this
case, and that no models were selected more than 7 times.

Taking into account the detailed analysis for the 30-
member selections and the global analysis performed for
each of the catchments, the combined criterion leads to the
best BGS results. The next section presents this analysis.
However, the issue of the optimal number of hydrological
members remains somehow blurred. So, Fig.4 revisits that
question in terms of the gain index based on NS defined in
Eq. (8). Figure4 emphasizes that the 30-member selection
always displays a positive gain index. However, one should
keep in mind that the optimal number of members should
be based on an individual analysis of the different scores
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Fig. 3. Comparison between the initial ensemble (800 members) and the ensemble selected (30 members) for the lead time 9 in the catchment
M0421510. (a) Figure above: observed flow; figure below: CRPS, x-axis indicates day/month. Note the correspondence between higher
observed flows and higher mean CRPS.(b) Figure above: observed flow; figure below: IGNS. Note that there is no full correspondence
between the higher IGNS and higher observed flow, x-axis indicates day/month.(c) Reliability diagram error (RDMSE based on vertical
distances between the points).(d) Rank histogram for the 30 selected hydrological members. The horizontal dashed line indicates the
frequency (N/d + 1) attained by a uniform distribution.(e) Occurrences of the employed models in the final solution of 30 hydrological
members.

balance, i.e. evaluating that the normalized sum does not
mask the detriment in a score(s) with gains made in other.

On the other hand, to reflect the BGS performance in
the selection, Fig.4 also presents the NS evaluation with
200 random selections of 30, 50, 100, 200, and 400 members
in terms of gain index defined in Eq. (8). It is clear that BGS
selection with positive gains are always obtained – improving
the balance of the scores. Otherwise in random experiments
the percentiles 10, 25, 50, 75, and 90 are shown generally
in the range of a negative gain index (i.e. a detriment to the
balance of the criteria). This tendency is obviously stronger
in random selections of 100 or fewer hydrological members
where the probability of taking the most representative hy-
drological responses is lower. It is important to note how
even in the random selection of 200 and 400 members (25 %
and 50 % of the 800 hydrological members) the NS in 75 %
of the evaluations shows a negative gain index.

To check each score individually, Table4 shows the me-
dian of 200 random selections for basin H36 optimized with
the combined criterion. The random selections pick 50 hy-
drological members to evaluate each score in a standardized
fashion, that is, dividing the score obtained in the selection
subset by the reference score of all 800 members of base (see
each component in Eq.7 without weight parameter).

Table4 shows an analysis to evaluate the sensitivity of the
scores with respect to the selection of hydrological members
in the database under study. So, it is possible to point out the
following:

– In the hydrological members’ selection, the greatest
challenge is selecting a small set of members, for ex-
ample 30 or 50.

– CRPS indifference to the selection of members, and to
a lesser extent, both the low variability of the IGNS and
the MDCV function.
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Fig. 4. Evolution of the normalized sum (NS) in terms of gain index for the lead time 9, optimization with the combined criterion. Loga-
rithmic scale on the x-axis. The normalized sum equal to 5 represents the performance of the initial 800-member ensemble. The thin red
line represents the normalized sum under different numbers of members found with BGS. Symbols for the 200 random selection experi-
ments: the blue vertical line identifies the interquartile range, white circles represent the median and yellow diamonds corresponding to the
percentiles 10 and 90.

Table 4. Median of 200 random selections in catchment H36 for
the lead time 9. The scores are presented in a standardized fashion
and oriented at the minimization coinciding with the formulation of
each component of the combined criterion (Eq.7).

Members CRPS RDMSE δ MDCV IGNS NS

30 1.01 1.50 1.80 1.05 1.11 6.47
50 1.01 1.25 1.53 1.03 1.06 5.88
100 1.00 1.09 1.28 1.02 1.02 5.41
200 1.00 1.02 1.11 1.01 1.01 5.15
400 1.00 0.98 1.03 1.00 1.00 5.01

– The hydrological members’ selection presents its great-
est challenges in maintaining or improving reliability
and the consistency of the ensemble represented by the
δ ratio, as shown in Table3. Therefore, to define the
combined criterion, such as an error term in BGS, the
reliability term (RDMSE) has more weight to guide the
optimization in this way. At this point it should be noted
that consistency has a direct relationship with reliabil-
ity, although ensemble consistency does not necessar-
ily imply that probability forecasts constructed from the
ensemble are reliable in the sense of conditional out-
come relative frequencies being equal to the forecast

Table 5. Results of BGS in catchment H36 for the lead time 9 with
the combined criterion as error function. The scores are presented in
a standardized fashion and oriented at the minimization coinciding
with the formulation of the Eq.7.

Members CRPS RDMSE δ MDCV IGNS NS

30 1.00 1.00 0.96 1.00 1.00 4.96
50 1.00 0.92 0.99 1.00 1.00 4.91
100 1.00 0.80 1.01 1.00 1.00 4.81
200 1.00 0.58 0.97 0.99 1.00 4.54
400 0.99 0.45 0.88 0.98 1.00 4.30

probabilities yielding a 45◦ calibration function on a re-
liability diagram, unless either the ensemble size is rel-
atively large or the forecasts are reasonably skillful, or
both (Wilks, 2011).

Finally, Table5 shows detailed results for each score in
the selection process with BGS for the basin H36. It shows
that in the BGS methodology, with the combined criterion
as error function, is not detrimental to any of the scores.
Instead, gains in the balance scores (normalized sum) are
mainly due to optimization of system reliability while pre-
serving the quality of the other scores.
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4.2 Scores interaction in the selection

Table 6 summarizes results for more catchments and opti-
mization criteria. The 30-member comparison is based on
a normalized sum (Sect.2.7). In this way, a value of NS
lower than 5 indicates an overall improved performance. Per-
formance for all criteria are also given in Table6 for com-
pleteness, and the best optimization criterion for each catch-
ment is identified in bold letters.

Overall, the combined criterion (CC) offers an effective
and direct rule, finding balance between features offered by
each of the criteria. However, it is important to point out the
two cases for which theδ criterion provides a slightly better
optimum. This reflects the limitations of the BGS technique
or the effects of the combination of results, because if the
objective function (CC) is equal to the criterion used to com-
pare results obtained with different objectives, the CC should
obviously always find the best solution within the vision of
a global optimization tool.

The δ ratio criterion, based on a rank histogram which is
the most common approach for evaluating whether a collec-
tion of ensemble forecasts for a scalar predictand satisfies the
consistency condition (Wilks, 2005), comes to a close sec-
ond. It led to the best performance for two catchments and to
the second best performance for five other catchments. This
is particularly interesting considering the simplicity of this
approach with respect to the combined approach. In addition,
the δ criterion favoured the highest average participation of
hydrological models.

The CRPS and IGNS led to a poorer selection, to the point
that they were not considered further after experimenting
with the first four catchments allowing an economy in com-
putational time. The CRPS showed low variability, so it is
not very sensitive to changes in the selection of hydrologi-
cal members, as was shown in Tables4 and5. The IGNS
demonstrated a negative relationship with reliability, leading
to poor performance in terms of the reliability diagram (RD)
andδ ratio. They are also correlated, optimizing one criterion
often favouring the improvement of the other one.

Specifically the behaviour of the optimization of each
score could also be described from the following relation-
ships observed in Table6:

– Optimization based on CRPS is detrimental to the reli-
ability. For example, it had the effect of increasing RD
by a factor of 10, for catchment Q25. The CRPS also
decreases diversity of the members (MDCV), except for
catchment B31 where it remained stable.

– The combined criterion (CC) leads to stable CRPS val-
ues. The most remarkable gains come in terms of RD,
as provided in the weights definition of the Eq. (7). With
reference toδ ratio, evaluations reveal the difficulty in
maintaining the stability of this criterion, but the dif-
ferences between the selection and the reference set are
not pronounced. As for the MDCV, the diversity is in

most cases maintained or improved. The IGNS perfor-
mance is often slightly decreased. In conclusion, the
CC promotes overall good performance, increasing the
reliability of the system (decrease of the RDMSE score)
and ensuring the stability in the other scores.

– Selection based on the RD score is detrimental to the
CRPS. As for reliability, there are some cases for which
the error increases. This condition is surprising given
that the combined criterion always achieved reductions
of this error, but it could not last under the assumption
of a greater weight of this score in the combination be-
cause the relationship is constant, which highlights the
interaction between the scores as a mechanism implicit
in the reduction of error reliability (RDMSE). Theδ ra-
tio is never improved, while diversity (MDCV) is lost
except in three cases (B31, Q25, and U25) where inter-
estingly the MDCV increased (theoretically consistent
effect). Finally, the IGNS shows a negative trend to the
minimization of the RD.

– By definition, theδ ratio focuses on the reliability and
the consistency of the ensemble. In fact, it leads to bet-
ter reliability performance in terms of RD, than when
the selection is optimized with RD itself. Theδ ratio
also preserves the resolution of the forecast, as shown
by the CRPS and IGNS results. All of this is accompa-
nied by a slight loss in performance in terms ofδ ratio,
which can be explained by the direct relationship of this
score with the number of members. However, this de-
pendency rather than becoming an obstacle in the selec-
tion stands as a logical consequence of the system, since
statistically a better performance is expected from a sys-
tem that combines a larger number of members (Alpay-
din, 2010). Finally, with respect to MDCV, it is shown
once again that diversity, hypothetically represented by
MDCV, fluctuates between values that indicate the ex-
tent to which such diversity needs to be maintained in
the ensemble.

– When the selection process focuses on the maximiza-
tion of MDCV, the relationship with CRPS, the IGNS
andδ ratio is always negative. However, there are four
cases in which the reliability is improved by increasing
the diversity index, from which it follows that while re-
liability improves the resolution drops.

In summary, the interaction of different scores, as seen
from the 30-member selection, shows that the optimization
focused on scores that mainly define the resolution of the
ensemble (CRPS, IGNS) has a negative impact on the reli-
ability, consistency, and ensemble diversity. It also reveals
that if the selection is based only on a reliability view, the
ensemble loses resolution and consistency. Maximization of
the MDCV is in general detrimental to the other criteria, but
sometimes improves reliability, a condition that can easily
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Table 6. Selection of 30 hydrological members based on different scores in all the basins or the lead time 9. NHM indicates the number of
hydrological models participating in the solution.

Basin
Optimization
criterion

CRPS RDMSE δ MDCV IGNS NS NHM

CRPS 0.24 7.0 4.3 0.34 0.41 5.7 8
CC 0.26 1.8 3.4 0.40 0.38 4.4 10
RD 0.26 2.8 4.6 0.40 0.49 5.0 7

A79 δ 0.27 5.1 3.7 0.40 0.48 5.2 13
MDCV 0.28 11.1 5.0 0.46 0.65 6.8 7
IGNS 0.24 9.6 4.8 0.31 0.38 6.5 6
800 members 0.26 5.0 3.3 0.41 0.44 5.0 16

CRPS 0.21 4.0 4.5 0.49 −0.48 6.7 8
CC 0.23 1.3 2.6 0.63 −0.16 4.7 13
RD 0.23 2.5 3.9 0.53 −0.33 5.9 8

B21 δ 0.23 2.1 3.0 0.56 −0.27 5.2 14
MDCV 0.24 5.2 3.7 0.61 −0.26 6.8 8
IGNS 0.22 23.2 8.0 0.39 −0.33 16.7 7
800 members 0.23 2.4 2.2 0.57−0.29 5.0 16

CRPS 0.18 5.9 4.6 0.22 −0.97 5.9 7
CC 0.13 0.9 2.0 0.23 −0.85 4.0 10
RD 0.15 3.5 5.2 0.24 −0.62 6.2 8

B31 δ 0.13 2.9 3.3 0.23 −0.86 4.9 12
MDCV 0.14 12.1 7.3 0.24 −0.70 8.7 7
IGNS 0.12 17.4 7.1 0.17 −0.97 9.5 8
800 members 0.14 4.5 2.7 0.22−0.88 5.0 16

CRPS 0.14 21.9 5.9 0.25 −0.96 17.2 6
CC 0.16 0.7 1.8 0.37 −0.97 4.5 9
RD 0.17 1.7 3.1 0.38 −0.84 6.0 5

Q25 δ 0.16 0.6 1.6 0.37 −0.98 4.4 13
MDCV 0.18 3.9 3.5 0.45 −0.74 7.3 5
IGNS 0.15 32.0 12.5 0.18 −0.41 26.9 6
800 members 0.16 2.2 1.5 0.37−0.98 5.0 16

CC 0.16 1.1 1.7 0.36 −0.97 4.5 11
RD 0.16 2.9 2.5 0.34 −1.00 5.5 7

H36 δ 0.16 2.4 1.9 0.36 −1.02 4.9 13
MDCV 0.17 2.5 3.8 0.44 −0.79 6.4 6
800 members 0.16 3.5 1.5 0.37−0.99 5.0 16

CC 0.16 0.5 2.3 0.39 −0.98 4.6 12
RD 0.17 2.3 3.1 0.35 −0.91 6.2 7

J85 δ 0.16 1.3 1.6 0.36 −0.99 4.6 13
MDCV 0.18 1.6 2.5 0.44 −0.74 5.5 6
800 members 0.16 2.2 1.6 0.37−0.98 5.0 16

CC 0.16 1.3 2.4 0.36 −0.96 4.6 9
RD 0.17 3.4 3.7 0.35 −0.89 6.1 7

K73 δ 0.16 2.1 3.3 0.33 −0.95 5.5 13
MDCV 0.17 2.5 4.2 0.43 −0.68 6.2 6
800 members 0.17 3.1 1.9 0.35−0.93 5.0 16

CC 0.16 0.7 1.9 0.36 −0.99 4.5 12
RD 0.16 2.1 2.9 0.36 −0.92 6.3 6

M04 δ 0.16 1.1 1.3 0.35 −1.01 4.4 13
MDCV 0.17 2.6 3.3 0.44 −0.75 7.0 5
800 members 0.16 1.7 1.5 0.37−0.99 5.0 16

CC 0.17 0.9 1.3 0.36 −0.87 4.1 13
RD 0.17 2.5 4.2 0.36 −0.67 6.6 5

O34 δ 0.17 1.9 1.8 0.37 −0.85 4.7 12
MDCV 0.19 5.7 4.9 0.44 −0.51 7.9 4
800 members 0.17 3.5 1.5 0.36−0.86 5.0 16

CC 0.29 1.2 2.9 0.37 −0.34 4.4 12
RD 0.30 2.9 5.0 0.37 −0.25 5.8 6

U25 δ 0.29 1.8 2.9 0.34 −0.32 4.7 15
MDCV 0.30 3.0 3.7 0.43 −0.10 5.4 5
800 members 0.29 3.4 2.6 0.35−0.36 5.0 16
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Fig. 5. Evolution of the gain index for each score under different optimization schemes in the basin A79 for the lead time 9. A logarithmic
scale is used on the x-axis. The chosen optimization criterion in the selection is shown at the top of each subfigure. The lower part of each
subfigure indicates the values of the normalized sum (NS) for the number of hydrological members shown on the x-axis.

be understood from a theoretical point of view. Theδ ratio
improves reliability while maintaining resolution. The com-
bined approach stands out as the most balanced criterion.

The above analysis focused exclusively on 30-member se-
lections. However, a global vision requires the analysis of the
evolution of the scores as the number of hydrological mem-
bers is reduced. Such an analysis is specific to each catch-
ment, so as an example, Fig.5 shows evolution diagrams of
the various scores as a function of the number of members,
for the catchment A79.

In order to assess the joint evolution of all scores the gain
index defined by Eq. (9) was used. Figure5a and5e clearly
show that an optimization based on resolution of the sys-
tem (CRPS or IGNS) is detrimental to the reliability. Fig-
ure5 also highlights the correspondence of CRPS and IGNS
throughout the selection process, when the optimization is
focused on one or the other.

RD optimization (Fig.5b) is surprisingly unfavourable to
theδ ratio (negative gain index), which is related to the indif-
ference of the RD with respect to the location of the observa-
tion within the ensemble, while this location analysis creates
a solid indicator of the system consistency. Likewise, it is

remarkable that the normalized sum for RD is equal to 4.96
when the number of hydrological members is equal to 100.
This is strictly because loss in consistency (negative gain in-
dex in theδ ratio of 40 %) and resolution (IGNS equivalent to
losses of 10 %) is balanced by a positive gain of about 50 %
in RD.

The δ ratio (Fig. 5c) displays a gradual overall improve-
ment of individual scores in a selection of about 70 hydro-
logical members, when the various scores show a tendency
to decrease in performance. At this point it is important to
note that the normalized sum (NS) reached 4.53.

Figure 5d shows that criteria focusing on the resolution
and the consistency have a negative relationship with the
maximization of the diversity (MDCV), overall gains are
achieved only when the number of hydrological members is
greater than 400.

The combined criterion (Fig.5f) improves collective per-
formance of all scores in the selection, with an optimal num-
ber of hydrological members of 70 for this catchment, coin-
ciding with the interaction shown in the minimization of the
δ ratio (Fig.5c). Scores tend to lose quality afterwards.
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Table 7. Selection of 100 hydrological members based on the combined (CC) andδ criteria. NHM indicates the number of hydrological
models participating in the solution.

Basin
Optimization
criterion

CRPS RDMSE δ MDCV IGNS NS NHM

A79
CC 0.26 1.8 3.0 0.43 0.33 4.2 13
δ 0.27 3.5 3.0 0.41 0.43 4.6 16
800 members 0.26 5.1 3.3 0.41 0.44 5.0 16

B21
CC 0.23 1.0 2.3 0.63 −0.19 4.4 14
δ 0.28 1.2 2.4 0.59 −0.28 4.5 16
800 members 0.23 2.4 2.2 0.57 −0.29 5.0 16

B31
CC 0.13 1.0 2.4 0.25 −0.83 4.2 14
δ 0.14 2.3 2.5 0.23 −0.85 4.5 16
800 members 0.14 4.5 2.7 0.22 −0.88 5.0 16

Q25
CC 0.16 0.4 1.3 0.40 −0.98 4.0 16
δ 0.16 0.6 1.4 0.36 −1.05 4.2 16
800 members 0.16 2.2 1.5 0.37 −0.98 5.0 16

H36
CC 0.16 0.6 1.6 0.38 −1.03 4.2 14
δ 0.16 2.5 1.8 0.36 −1.04 4.8 16
800 members 0.16 3.5 1.5 0.37 −0.99 5.0 16

J85
CC 0.16 0.4 1.5 0.39 −0.98 4.0 15
δ 0.16 1.3 1.7 0.38 −1.00 4.6 16
800 members 0.16 2.2 1.6 0.37 −0.98 5.0 16

K73
CC 0.16 0.6 1.7 0.39 −0.91 4.0 14
δ 0.16 2.6 2.2 0.34 −0.95 5.0 16
800 members 0.17 3.1 1.9 0.35 −0.93 5.0 16

M04
CC 0.16 0.3 1.7 0.37 −1.00 4.2 15
δ 0.16 0.8 1.3 0.36 −1.03 4.2 16
800 members 0.16 1.7 1.5 0.37 −0.99 5.0 16

O34
CC 0.17 0.7 1.4 0.38 −0.87 4.1 16
δ 0.17 2.2 2.1 0.37 −0.89 4.9 16
800 members 0.17 3.5 1.5 0.36 −0.86 5.0 16

U25
CC 0.29 0.9 2.2 0.39 −0.38 4.1 14
δ 0.29 1.4 2.5 0.36 −0.42 4.3 16
800 members 0.29 3.4 2.6 0.35 −0.36 5.0 16

Table 7 groups the 100-member scores following opti-
mization with the combined score and theδ ratio, the two
best ones. These values confirm the superiority of the com-
bined score, leading to the smallest NS for all catchments,
mainly because of the great influence on minimizing relia-
bility. This also maximizes MDCV to such an extent that it
allows a proper balance between reliability, resolution, and
consistency. It is also remarkable that for 8 catchments out
of 10, theδ ratio is minimized even more than when the
optimization is focused on theδ ratio itself. Optimization
based on theδ ratio also improved scores over the initial 800-
member values (NS< 5) for 9 catchments out of 10. This
single criterion is thus also very appealing, especially be-
cause it makes use of all 16 models in its selection.

Additionally, the δ ratio can be highlighted as a simple
optimization criterion, which for 100 % of the catchments,

makes use of the participation of all hydrological models in
the formation of the solution, which is not the case for the
optimization with the CC.

4.3 Interchangeability of MEPS members as input of
hydrological models

In order to illustrate the interchangeability of the members of
the ECMWF EPS and equiprobability of this system, Fig.6a
shows that a random selection oriented only with the hydro-
logical models’ participation in the BGS has a chance to have
even better performance than the 800-member HEPS upper
90 % (top of the box diagram). These box plots are con-
structed by retaining the participation of hydrological mod-
els in the response but with a random selection of members
of the MEPS. On the other hand, Fig.6b shows the same kind
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of results under different random selections but without con-
sidering the participation of hydrological models found with
BGS.

Figure6 highlights three main aspects: high-performance
solutions based on the proportion given by the BGS, low vari-
ability, and high performance of the BGS solutions.

The performance of selections based on the proportion of
members found in the BGS solution is evident in Fig.6a. So,
it is demonstrated that the proportion of members for a hy-
drological model is generally a sufficient criterion to reduce
the number of members while improving the balance of the
scores represented by the normalized sum. For comparison,
Fig. 6b illustrates the system response to random selections
without any a priori guidance, showing that in all cases the
normalized sum is greater than 5 and have recurring extremes
greater than 7.

Regarding the variability of the normalized sum evaluated
in random selections guided by the BGS solution, it can be
seen that the interquartile range (Q3 − Q1) is at worst equal
to 0.3 (catchment H36), which is a much lower value than for
the purely random selection, as shown in Fig.6b where the
latter interquartile range is equal to 0.6.

The generalization of the BGS method is discussed in de-
tail in the companion paper, where the temporal and spatial
generalization is evaluated for a nearby catchment. However,
Fig.6a shows that the catchments H36 and J85 obtained com-
binations with a normalized sum lower than those obtained
with the BGS method (see only cross points at the bottom
in Fig. 6a), which can be associated with the integration of
experiments carried out in a subdivision database for each
catchment or the BGS algorithm structure – it is known that
the classical BGS algorithm is unable to detect the collective
influence of the variables.

5 Conclusions

Previous results on the number of hydrological members and
the HEPS conformation (Velázquez et al., 2011) have shown,
based on the database of the present paper, that the ensem-
ble predictions produced by a combination of several hydro-
logical model structures and meteorological ensembles (800-
member set) have higher skill and reliability than ensemble
predictions given either by a single hydrological model fed
by weather ensemble predictions (50-member set) or by sev-
eral hydrological models driven by a deterministic meteoro-
logical forecast (16-member set). So, our goal was focused
on at least replicating the good quality of the 800-member
set with fewer hydrological members.

Hydrological member selection is justified by the com-
putational cost to issue a hydrological forecast based on
the combination of meteorological models and hydrological
models. In this line, the selection of hydrological members
without sacrificing the quality of a forecast stands out as an
operational option.

Fig. 6. Backward Greedy Selection (BGS) and Box-plots in
200 random experiments of 50 hydrological members for the lead
time 9. On each box, the central mark is the median, the edges of
the box are the 25th (Q1) and 75th percentiles (Q3), the whiskers
or limits to consider the outliers extend fromQ1 − 1.5× (Q3 − Q1)
to Q3 + 1.5× (Q3 − Q1) points (but not necessarily correspond to
observed data), and the outliers are plotted individually as cross
points. (a) Random selection oriented with the frequency observed
in the BGS to check the interchangeability in the 800 member-set,
(b) Random selection without any guidance to check the BGS per-
formance.

Results presented here support the idea that selecting
HEPS members is viable. It is in general even possible to
expect a better balance of scores in the subset of selected hy-
drological members than in the original much larger ensem-
ble, based on standard scores such as the CRPS, the IGNS,
the reliability diagram, and theδ ratio. The diversity, sought
in the multi-model approach with MEPS, may also be main-
tained in the final selection.

The simplification of the HEPS can be addressed from two
points of view: as a function of the maximum simplification
of the number of hydrological members or as a function of
the maximization of the balance of the scores. Simplification
of the number of hydrological members involves the defini-
tion of a limit ensuring statistical consistency of the scores
assessed. A trade-off exists between the number of hydro-
logical members and the level of improvement in scores. For
example, in this study, the best balance of scores is achieved
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with a number of members fluctuating between 30 and 100,
maximizing the qualities of the system: reliability, consis-
tency, resolution, and diversity. So in the worst case this
corresponds to a 87.5 % (700 members/800 members) com-
pression level. The ultimate level of compression is in fact
a compromise between the gain index and the complexity of
the system. The ultimate decision should be established ac-
cording to the requirements and the operational capacity of
the hydrological probabilistic forecast system.

The evaluation of five individual scores as criteria for op-
timizing the selection process revealed the complexity of the
relationship between them. In many situations, improving
one score is achieved at the expense of another score. There-
fore, the design of a combined criterion (CC) led to an impor-
tant methodological improvement that integrates many char-
acteristics of each score. Theδ ratio is the best single op-
timization criterion, not very distant to the achievements of
the combined criterion (CC).

The CRPS is often the primary score used for evaluating
HEPS performances. However, results here indicate that it
is not a good choice for hydrological members’ selection in
this case of study. In fact, it was often possible to preserve
or minimize the CRPS using other objective criteria. Like-
wise, the centralization of the selection process in the IGNS
heavily penalized the reliability and the consistency of the
system. With respect to the MDCV, the uncontrolled maxi-
mization of this parameter, which describes diversity, leads
to a deterioration of the other sought qualities of the system.
There exists a threshold beyond which the system abruptly
loses reliability, resolution, and consistency. On the other
hand, experiments showed that both theδ ratio and the CC
improve the balance of the scores.

The proposed methodology is part of the so-called data-
driven models, so the design is independent of the database,
in this case the evolution of MEPS or hydrological models.
Precisely this point stands out as one of the advantages of the
proposed methodology, since the selection of hydrological
members could be implemented in any desired combination
between any MEPS (e.g. ECMWF EPS, MSC, US National
Centers for Environmental Prediction – NCEP) and hydro-
logical models.

The cross-validation, a vital part of the proposed method-
ology, systematically deals with the issue of the short length
of the series. However, it is widely applicable to any length
of condition series.

Finally, the encouraging results of this study will lead to
an interest in testing other global search (non-greedy) tools
such as evolutionary algorithms.

Appendix A

Notations
t Time-step
N Number of pairs observations-

forecasts
d Total number of hydrological mem-

bers in the forecast ensembles
M Total number ofm intervals to anal-

yse the reliability diagram
c Identification of the rank or class to

analyse the uniformity in the rank
histogram

ot Observed flow at the timet
yt Ensemble flow forecast at the timet

yt
i i-th flow forecast member inyt

Y Ensemble flow forecast fromt = 1
to N

o Observations vector fromt = 1 toN

F Cumulative distribution function
f Probability density function
φ Normalized variables for probabil-

ity density function
8 Normalized variables for cumula-

tive distribution function
ōm Conditional probability of the event

as a function of the intervalIm as-
signed to the forecastm→P(ot

|Im)

r t Binary indicator, 1 if the event oc-
curs for thet th forecast-event pair,
0 if it does not

Sc Number of elements of thec-
th interval of the rank histogram
(c = 1, ...,d + 1)

N
med
t=1

Median value evaluated fromt = 1
to N

µt Mean ensemble flow forecasts at
the timet

σ 2
t Variance ensemble flow forecasts at

the timet

χ t Training set
χv Validation set
χp Test or publication set

{xt
}
N
t=1 Set ofx with index t ranging from

1 toN

argmin g(x|θ)
θ

The argumentθ for which g has its
minimum value

E(θ |χ) Error function with parametersθ on
the sampleχ

wcp Weights of the components of the
combined criterion (CC)

iter
yi
xp Iteration number at which was elim-

inated theyi hydrological member
during the selection process in the
xp experiment
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R(yi) Mean rank of elimination of theyi

hydrological member
s Final selection of thenm best hy-

drological members in the selection
process
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