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Abstract.  Hydrological Ensemble Prediction Systems 1 Introduction

(HEPS), obtained by forcing rainfall-runoff models with

Meteorological Ensemble Prediction Systems (MEPS), havdn hydrology, as in many applications, itis accepted that there
been recognized as useful approaches to quantify uncets no superior model for every application under all circum-
tainties of hydrological forecasting systems. This task isstancesQuan et al.2007 Alpaydin, 2010. Today, the avail-
complex both in terms of the coupling of information and ability of the Meteorological Ensemble Prediction Systems
computational time, which may create an operational bar{MEPS) and its subsequent coupling with multiple hydro-
rier. The main objective of the current work is to assesslogical models offers the possibility of building Hydrologi-
the degree of simplification (reduction of the number of cal Ensemble Prediction Systems (HEPS) relying on a large
hydrological members) that can be achieved with a HEPSwumber of members. But the complexity of such HEPS be-
configured using 16 lumped hydrological models driven by comes an operational burden when one has to evaluate sev-
the 50 weather ensemble forecasts from the European Cergral hundreds of scenarios at each time step.

tre for Medium-range Weather Forecasts (ECMWF). Here, To provide an idea of the complexity that can be achieved
Backward Greedy Selection (BGS) is proposed to assesi# HEPS, represented for example by the number of members
the weight that each model must represent within a subseto handle, it is worth mentioning the principal areas of un-
that offers similar or better performance than a referencecertainty associated with the hydrological proceSshaake

set of 800 hydrological members. These hydrological mod-et al, 2007) as follows:

els’ weights represent the participation of each hydrologi-
cal model within a simplified HEPS which would issue real-
time forecasts in a relatively short computational time. The
methodology uses a variation of thefold cross-validation,
allowing an optimal use of the information, and employs
a multi-criterion framework that represents the combination
of resolution, reliability, consistency, and diversity. Results
show that the degree of reduction of members can be estab-
lished in terms of maximum number of members required
(complexity of the HEPS) or the maximization of the rela-
tionship between the different scores (performance).

— Uncertainty from the meteorological data: in this case,
the MEPS are responsible for providing this informa-
tion. Different centres around the world are currently
working on this issue, for example the TIGGE initia-
tive consists of ensemble forecast data from ten global
centres, for a total of 259 members (TIGAEuUgeault
et al, 2010. In relation to thisBao et al.(2011) have
shown that a HEPS comprised of meteorological mem-
bers derived from multiple meteorological centres may
actually perform better as compared to an ensemble de-
rived from a single meteorological model.

— Uncertainty from the rainfall-runoff model: each hy-
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process: the initialization uncertainty (i.e. the initial This approach was tested in 10 catchments located in France
state of the model) and the model uncertainty (from pa-for a period of seventeen months (from March 2005 to
rameter identification to model conceptualization). In July 2006). Another important feature of the HEPS at hand
this regard, the methodology proposed Bgven and is the short duration of the series. This has been highlighted
Binley (1992 provides the evaluation of parameter un- by several authors as a negative point in the evaluation of
certainty from the point of view of equifinality. For ex- system performance in the case of extreme evdreniier
amplePappenberger et §2005 have shown the advan- et al, 2009 Cloke and Pappenberg®009. This condition
tages in HEPS to flood inundation predictions coupling imposes the use of resampling and recombination techniques
MEPS with both hydrological and hydraulic models that in the proposed methodology shown in Sé&ct.
have been evaluated at the same time with the GLUE Other studies that focused on periods of analysis very sim-
methodology. ilar to the one used in this paper have also proven the useful-
ness of the ECMWF EPS. For exampleusset et a(2007)
Another way of conceptualizing the uncertainty of the evaluated hundreds of French catchments from 4 Septem-
model focuses on a multi-model approach, making good usger 2004 to 31 July 2005 showing that the information
of the resources invested in the development of dozens ofjiven by the ensemble forecast is useful for flood warning
hydrological models. For instanc®glazquez et al(201)  and water management agencies. Similaflgjrel et al.
have shown, based on the database of the present papgpoog, in a comparative analysis of short-range meteoro-
that the ensemble predictions produced by a combinationggical forecasts from the ECMWF EPS and PEARP EPS
of several hydrological model structures and meteorologi-of Méteo-France under the scheme of SIM coupling, anal-
cal ensembles have higher skill and reliability than ensemblgsed the competence jurisdiction of each of the two EPS
predictions given either by a single hydrological model fed from 11 March 2005 to 30 September 2006, showing that
by weather ensemble predictions or by several hydrologicathe ECMWF EPS seemed best suited for low flows and large
models driven by a deterministic meteorological forecast.  pasins while the PEARP EPS was best suited for floods and
Cloke and Pappenberg&009 have already highlighted small basins.
the computational demand of using MEPS for flood forecast- We do emphasize that the results shown in this first phase
ing as one of the main points to overcome in the future, eithefocused primarily on the analysis of the scores in the process
by new technologies (stochastic chip technology) or by effi-of selecting hydrological members. Furthermore, we evalu-
cient use of computing clusters. Thus, the selection of hydroated the notion of interchangeability of the MEPS and HEPS
logical members as part of a simplified model can be usefumembers, concluding that the participation of the hydrologi-
given the computational cost of running models and creatingcal models in the subset of selected members is sufficient to
ensemblesVrugt et al.(2008 have suggested the selection guide the members’ selection, as shown below in Sedi-

of hydrological models as an additional task that can be rumally, conclusions are drawn and a guideline for future work
based on the results of the post-processing using Bayesiag given in Sect5.

Model Averaging (BMA) in a multi-criteria framework.
As a compromise, researchers have attempted to cluster o o

sembles and deriving representative members through hierli lowing th idell : belok qp b
archical clustering over the domain of interest, and thus to ollowing the guidelines given bEloke and Pappenberger

produce a reduced ensemble set at higher resolukitan-( (2009,. we consider sgveral metrics in the selection of hy-
sigli et al, 200J); by analyzing the relation between atmo- drological members with BQS. we th.u.s guote some of the
spheric circulation patterns and extreme dischargéeeit feature; that are evaluated in prObabI|I§tIC forecasting. The
et al, 2007, or by establishing, in a deterministic way (“best read_Tr(;s drefer_re_d tMl]frF;]hy (1f993 andWilks (200 for a
match” approach), the location of the forecast that is the mos[jetale escription of these features.

similar to the rainfall pattern of the catchmentu@an et al, — Bias: correspondence between mean forecast and mean

2009. observation.

Here, we propose the selection of hydrological mem-
bers directly in the HEPS with a technique called Back- — Reliability: correspondence between conditional mean
ward Greedy Selection under the different scores presented  observation and conditioning forecast, averaged over all
in Sect.2. In the case of MEPS with interchangeable mem- forecasts.

bers (the case presented here), the selection is oriented to
evaluate the hydrological models participation inside a sub-
set of a few members.

The HEPS under study is formed of 16 lumped hydrolog-
ical models forced by the 50 meteorological inputs of the
ECWMF EPS, leading to a grand-ensemble of 800 members.

— Resolution: degree to which the forecasts sort the ob-
served events into groups that are different from one
another. It is related to reliability, in that both are con-
cerned with the properties of the conditional distribu-
tions of the observations given the forecasts.
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— Sharpness: variability of forecasts as described by theinormally distributed, the CRPS at the times defined by

distribution. Eqg. @) (Gneiting and Raftery2007):
1 Ot _ Ml
— Consistency: degree to which the ensembles apparentiZRPSF (y').0") = o; [ﬁ — 2¢( pr > (1)

include the observations being predicted as equiproba-
ble members.

t t t t
(=) () )
Additionally, we propose the use of the diversity con- 4 7
cept studied in machine learning, i.e. the members shoul% 2
be as correct as possible, and when they make errors, these

errors should be .com'plementanﬁL(ncheva 2004. Thus, Proposed by500d(1952 as the logarithmic score, the IGNS
the scores used in this research have been chosen beca S

they quantify different aspects of the ensemble prediction’éi %Nen by Eq. 2):
quality. N . o IGNS(y', o) = —log, [£(¥'),.]- @)

In some cases, it is necessary to establish a priori a proba-
bilistic distribution function that fits systematically the previ-  This score is described in detail lRoulston and Smith
sion ensembles for each time step. In the hydrological com{20032. It is used to evaluate the sharpness or spre¥adg
munity, it is accepted that an adjustment of the gamma distri-et al, 2008. It severely penalizes the bias, since positioning
bution makes more sense than a normal distribution given théhe observation in forecast regions of low probability lead to
asymmetry in the distribution of precipitation and dischargevalues that tend to infinity. It is defined simply as the log-
(Vrugt et al, 2008; however, the gamma function evalua- arithm of the ensemble probability density functiof(¢’))
tion involves a distribution which is more complex than the at the point corresponding to the observatiof).( Smaller
normal distribution which has explicit mathematical expres- values indicate better performance.
sions. Szekely (2003 proposes Monte Carlo techniques for  The logarithmic score involves a harsh penalty for low
the adjustment of any distribution to the ensembles. probability events and therefore is highly sensitive to extreme

For this study, some simulations were performed to eval-casesGneiting and Raftery2007). To rule out the possibil-
uate differences between normal and gamma distributions ity that the results solely reflect the effect of a few outliers,
the case of the Continuous Ranked Probability Score (CRPSYe analysed trimmed means of the IGNS series excluding
and the Ignorance Score (IGNS). The results showed minofhe highest and lowest 2% data values, followivgigend
variations in contrast with a high computational cost. It is @nd Shi(2000. Infinite values were replaced by the next
nonetheless important to note that this similarity is evaluatedvorst non-infinite value, following@oucher et al(2010.
inside the ensembles with previsions varying between 30 and
800 hydrological members, as detailed below; in small sam2-3 Reliability diagram — mean square error (RDuse)

ples it is expected that the results represent the expected )
asymmetry of information. Given thatm denotes the different/ thresholds of proba-

. bility to assess, the reliability of the system can be directly
Note that the CRPS can be evaluated directly from themeasured from the comparison of thegethresholds with

cumulative distribution of observed frequenciéte(sbach . . : .
. : . the conditional probability of observation as a function of

2000. However, considering the computational cost in eval- . : L

. : . ... the forecastd,). Since observation of the event is dichoto-
uating this score thousands of times, a normal distribution A .

mous ¢’ =1 if the event occurred and =0 otherwise) such
was assumed. » . . s
) ) ) conditional probability or relative frequency obsenggdis
The mathematical notation of each element in the SCOreSyiven by Eq. 8):

explained below, is drawn from Appendix A.

Ignorance score (IGNS)

.1y, . 1 ifo' el
2.1 Continuous ranked probability score (CRPS) Om:N;r where ' =145 Cherwise )

The CRPS simultaneously evaluates reliability, resolution,where N is the number of forecast-observation pairs used
and uncertainty Hersbach 200Q Gneiting and Raftery in verification. The goal is to have well-calibrated forecast
2007. Smaller values indicate better performance. Its min-systems where the relative frequency is essentially equal to
imal value of zero is only achieved in the case of a perfectthe probability of the forecast, i.@,, ~ I,, (Wilks, 2005.
deterministic forecast. Note that the CRPS has the dimenThe plot of the conditional probability versus the probability
sion of the observation’. Its mean value is equivalent to of the forecast£,) is called the reliability diagram. In this
the mean absolute error for a deterministic forechigré-  study, as discussed later in SE&&8, it is necessary to estab-
bach 2000. Assuming that the forecast ensemblg9 @re lish a single target value, so the Mean Square Error between
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the probability forecast and the observed frequency in the Re(CV) as a dimensionless measure is useful in comparing dif-
liability Diagram (RDysEg), as suggested Bivilks (2009, is ferent data sets with respect to central location and dispersion
evaluated by Eq4): (Kottegoda and Ross@009.

In this research, the analysis of the HEPS dispersion,
through CV (results are omitted in this article), showed an
increase proportional to the lead time, so the first lead time
has a mean CV of 0.05 while longer lead times (e.g. 9 days),
These distances are all small for well-calibrated forecastsreached a mean value of 0.6. Note that CV is calculated for
each time step. However, the mean CV is not a good measure
of location in the skewed CV series evaluated for each basin.
The MeDian of the Coefficients of Variation (MDCV), given

by Eqg. ©), turns out to be a much better measure:
The reliability, consistency and bias of the ensemble are eval-

uated in this score. That is, the rank histogram is used to
evaluate whether the ensembles apparently include the obse ©6)
vations being predicted as equiprobable members. The rank

histogram is a graphical approach that was devised indepen- The hypothesis under the maximization of the MDCYV is
dently by Anderson(1996; Hamill and Colucci(1997 and  that a gain in dispersion should increase the reliability of the
Talagrand et al(1997. The rank of the observations within HEPS.

each ensemble is evaluated and then plotted in the form of a

histogram. In the case of equality of observation with one or2.6  Combined criterion (CC)

more of the ensemble members, the rank is chosen randomly. ] o . S

For a reliable system, over all+ 1 members, the number of Selecting only one criterion may give a partial view of the

R
RDuse(Y, 0) = — > @On = In)*. 4
m=1

2.4 Normalized deviation of the rank histogram from
flatness ¢ ratio)

N
MDCV(Y) = med CV(y).
=1

elements in each interval of the rank histograsy) (has an
expected valu&v/(d + 1), while the deviation4) of the his-
togram from flatness is measured by Ex).(Talagrand et al.

forecast performance and even be misleading. The combi-
nation of several metrics into one diagram has already been
evaluated Taylor, 2001, but is inappropriate for this study

because a scalar objective value is required for the selection

1997%):

procedure. So, we propose the following guidelines to define

d+1 the CC:
A= Z(Sc — hren® where href = N (5) S— N
= d+1 CcC— w CRPSe z1 — IGNSge RDmsE. )
| _ N 'CRP% © 71-IGNSe RDuse,
A reliable system has an expectation®p=73. The
§ ratio ($=A/Ag), proposed byTalagrand et al(1997) is +ws Sse ws 2~ MDCVse’
used as a measure of the reliability of an ensemble prediction Jie 72 — MDCVje

system for a scalar variable. A valuethat is considerably
larger than 1 is a proof of unreliability.

Given the difficulty of assessing the probabilistic nature
of the studied HEPS, the use of the rank histogram is to-
tally dependent upon eventually relaxing the ensemble mem-
bers distribution, such as has been proposed by some authors
(see Sect. 2c inderson 1996and Sect. 3a itHamill and
Colucci 1997

2.5 Median of coefficients of variation (MDCV)

Velazquez et al2011) showed that the reliability of the stud-
ied HEPS improved in two ways: first with the combination
of all perturbed members from ECMWF EPS and the 16 hy-
drological models studied, and second, by increasing the lead
time. A common feature is that the higher the observed dis-
persion, the greater the HEPS reliability.

The standard deviation is a classical measure of disper-
sion; however, it preserves the magnitude of the observed
variable, complicating the joint interpretability of the results
of the 10 basins in evaluation. So, the coefficient of variation

Hydrol. Earth Syst. Sci., 15, 3303325 2011

The combination should assign weights to each of the
scores as a direct measure prioritizing some of the char-
acteristics of the HEPS in evaluation. Additionally,
these weights, in a general framework, offer the possi-
bility of constructing a trade-off among different objec-
tives. In our case, weights were used only to give prior-
ity to the reliability in the selection, becauselazquez

et al. (2011 showed that this was the most influential
aspect in the evaluation of the HEPS studied here. For
this reason the weight assigned to the reliability corre-
sponds to twice that of the other factors, which have a
unit weight.

— Each score in the selected ensemble of hydrological

members (se subscript) is normalized from the division
by the corresponding score in the initial 800-member
ensemble (ie subscript), placing each component on the
same scale.

All scores except the MDCV function are oriented for
minimization. However, the IGNS has the peculiarity

www.hydrol-earth-syst-sci.net/15/3307/2011/
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Reference HEPS
(50 perturbed members from ECMWF EPS
+ 16 hydrological models)
800-member set

L7

Resampling with a variation of

k-fold cross-validation

Define error function
Y (e.g. CRPS, IGNS, etc)

Members selection with
Backward Greedy Selection

+ Set minimum number of
members ( nmin)
k -results
Members elimination history
Combination of results

Final HEPS with nmin members

Fig. 1. Hydrological members’ selection methodology.

of having negative values, making it necessary to estab¥ig. 2. Selected catchments are identified with the first three digits
lish a threshold ;) in the normalization so as to ma- ©of each code used in Table The other delimited basins are part of
nipulate the duality of having a positive (or negative) the study of results’ generalization showrBrochero et al(20117).
score in the selection and a negative (or positive) score

in the 800-member set. Thus, we establigh —2,
since the preliminary analysis of selection under dif-
ferent scenarios (different catchments and number o
members to be selected) showed minimum values fo
this score of about-1.5. With regard to the MDCV
function, a threshold af; =1 is used to change the ori-

Itis possible that the NS evaluated in the selected sets with
1BGS hides undesirable effects on the balance of the scores,
rfor example to substantially improve one score with respect
to the other score(s). To check this condition, a gain index
for each score is also proposed:

entation since the objective is to maximize dispersion, Scorg. — Scorge
as testing different scenarios showed maximum value<Zsc(%) = 100 x Score| )
of about 0.8.

A positive index indicates superior performance of the se-
lected set. The absolute value in the denominator is needed
2.7 Elements to compare the performance of members’ to assess the performance of IGNS, which can have positive
selection (NSGns, Gsc) and negative values.

Note that the CC could be used to compare the performance

of the members’ selection with respect to the 800-membei3 Experimental set-up

set. So, in a general framework, if all features of the ensem-

ble forecast have the same importance, one members’ sele€igure 1 shows the selection procedure applied to the 800-
tion with equal performance to the 800-member set will leadmember HEPS. The main elements of the methodology are
to a CC equal to 5, values lower than 5 indicate a selectiorfiescribed below.

of higher performance than the base set of 800 members, and

values greater than 5 indicate the detriment of any feature of-1 Database: 800-member HEPS

the 800-member set. Hereafter this particular condition of

it weights in th ill lled N li NS).
unit weights in the CC will be called Normalized Sum (NS) study is conducted over 10 French catchments with a typical

This distinction is important to display the priority that can i £ Th wch ; Cal
be defined a priori to any feature in the members’ selectior] €SPONSe imeé o ays. These catchments represent a large

training with BGS. In this way, it is possible to define a gain variety of hydro-climatic cgndmons (Fig-and Tablel), and
index for the scores balance with respect to 5 @q. were evaluated over a period of 17 months (from March 2005

to July 2006).
0 5 Temperature, rainfall, and flow data are available at a daily
Gns(%) = 100 x NS 1). ®)  time step over the period extending from 1970 to 2005, and

Database details can be foundfelazquez et al2011). The

www.hydrol-earth-syst-sci.net/15/3307/2011/ Hydrol. Earth Syst. Sci., 15, 33252011
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Table 1. Main characteristics of the studied basins (mean annualTable 2. Hydrological models.

values) based on a 36 year length of the series (1970-2006).

Hydrological Base modeland Hydrological Base model and

Catchment  Area Altitude P ET Q models parameters models parameters

codes (k) (mamsl) (mm) (mm) (mm) HMOL CEQU 9 M09 CREC 3
A7930610 9387 155 278 180 1.21 HMO02 GR3J 3 HM10 GR4J 4
B2130010 2290 227 257 180 0.87 HMO03 HBVO 9 HM11 SIMH 8
B3150020 3904 162 258 1.80 1.09 HMO04 IHAC 6 HM12 MOHY 7
H3621010 3900 48 198 195 045 HMO05 MORD 6 HM13 PDMO 8
J8502310 2465 4 236 1.89 0.81 HMO06 SACR 13 HM14 HYMO 5
K7312610 1712 85 213 201 0.68 HMO7 SMAR 9 HM15 TANK 10
M0421510 1890 56 2.04 1.89 0.62 HMO08 TOPM 8 HM16 WAGE 8
03401010 2170 349 319 180 190
Q2593310 2500 17 252 224 075
U2542010 4970 201 363 175 1.88

P: precipitation, ET: potential evapotranspiration, Q: flow.

were used for the calibration and validation of the hydrolog-
ical models. Observed data for the period 11 March 2005
to 31 July 2006 was used only for the evaluation of the
forecasts. The forecast verification period is thus indepen-
dent of the calibration/validation period. Rainfall data come
from the meteorological analysis system SAFRAN d#t&b-
France (se®uintana-Seduet al, 2008 for details). They
consist of rainfall accumulated at a daily time step and avail-
able for the entire country of France at ar 8-km grid reso-
lution. Daily streamflow data come from the French database
Banque Hydrolfttp://www.hydro.eaufrance.jt/ The length

of available observed streamflow time series varies accord- —

ing to the catchment, with, on average, 29 years of available
daily data for the catchment dataset used here.

The 50 perturbed forecasts from ECMWF was provided at
a 0.5 x 0.5° lat/lon grid resolution. A detailed description of
the ECWMF EPS model can be found\tolteni et al.(1996

— The variability is low at least for the first three days of
predictions (MDCV< 0.12), many models showing no
variability (i.e. the same response for all members). As
shown byVelazquez et al(2017), part of this difficulty
may be inherited from the meteorological ensembles,
which are not reliable prior to about a 3-day lead time.
More importantly, it is believed that not including un-
certainties associated with the hydrological initial con-
ditions at the onset of the forecasts takes its toll on re-
liability, at least for the first few time steps of the hy-
drological predictions, i.e. until the mean characteristic
response time scale of the studied catchments (3 days)
is reached.

As for the incremental variability, it depends on the
forecast horizon. MDCV for 4 to 9-day predictions
reached between 0.2 and 0.6, respectively.

Consequently, the results presented in this paper are

strictly based on the 9-day forecast horizon. This decision

or Buizza(2005. Forecasts are issued at 12:00 UTC and ex-is justified on the variability within the ensemble forecasts as
tend over 240 h. Rainfall amounts were accumulated at 24 Wvell as on the fact that the selection of hydrological members
time steps, starting at 0 h to match with observed daily datags @ method of simplifying HEPS should be unique regard-
which resulted in nine daily lead times. No bias removal less of the forecast horizon. The companion paBeo¢hero
or disaggregation was performed. For each catchment, areglt al, 2011) assesses the transferability of the 9-day mem-
mean rainfall forecasts were computed by averaging the rainbers’ selection to other forecast horizons.
fall amounts of each grid above the catchment, weighted by ] ]
the percentage of the catchment area inside the grid. 3.2 Resampling technique

The sixteen hydrological models are lumped models an
correspond to various conceptualizations of the rainfall

runoff transformation at the catchment scale. Some origi-, o S .
nal model structures were modified. Thus, to avoid unfair'9 generalization which is called early stoppirtdugison

comparisons of models, they will be referred to hereafter asand Demuth2011 Alpay'din, 201.0’ well-known in the neu-
HM## (Table2). It is beyond the scope of this article to ral network community, is used in the methodology proposed

present these models. References with a detailed explang-ere‘

tion of each model structure can be found/glazquez et al. In this technllque, the ayallable ‘.""?ta IS d'V'de.d mto thre‘?
(2019). subsets. The first subset is the training set, which is used in

On the other hand, analysis of the median coefficientBGS for sequentially removing the members. The second

of variation (MDCV), as a measure of the diversity of the subset is the validation set. The error on the validation set
HEPS, revealed the following characteristics:

_qn some algorithms, such as the BGS, the overfittisgnigh-
lighted as a structural problem. So, one method for improv-

Iwnhen the error on the training set is driven to small values, but
the error of the model is large on new data.

Hydrol. Earth Syst. Sci., 15, 3303325 2011 www.hydrol-earth-syst-sci.net/15/3307/2011/
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is monitored during the training process. The validation er-3.3 Backward Greedy Selection (BGS)

ror normally decreases during the initial phase of training,

as does the training set error. However, when the selectiof? Machine Learning, the evaluation of multiple models for
begins to overfit the data, the error on the validation set typ-Simulation or prediction of an event, and to further select
ically begins to rise. When the validation error increases forthose which together enhance or simplify a condition for ad-

a specified number of members, the training is stopped. Théustment, is known as an overproduce and select. In a gen-
test set error is not used during training, but it is used to com-£ral context of selection, numerous methods have been devel-

pare different models. oped. There are greedy selection methods (Backward or For-

The need to define three subsets to run the BGS and thward Selection) but also methods such as integer program-
short length of the series impose the use of resampling techMing and evolutionary algorithms.
niques such ak-fold cross-validation, which maximizes the ~ Here, BGS and the idea of subdividing the data into three
utilization of the available information. subsets to improve the generalization are applied. For its im-

Moreover, one notes the high degree of linear correlationPlementation it is necessary to define the error functigh
exhibited in the first lags of the correlogram of the flow se- (that it is one of the given statistical scores shown in Sct.
ries at hand (e.g. in the 80 % of the catchments evaluated, thand the minimum number of members. With regard to the
correlation using a |ag of three days was greater than 082)m|n|mum number of members, which was arbitrarily defined
So, the choice of the training and validation data should beas 30 here, the choice is mainly due to the high availability
directed in order to temporarily avoid near data to form theOf initial members (800), for example with 30 hydrological

two subsets. For example, suppose that the linear correlatiomembers a level of compression of information equivalent
betweerv’ ando’ ™1 is equal to 0.8 and that the selection of t0 96.25% is reached. It is certain that if the selection task

members has been traineddhand validated imf+1_ The had started with a p00| of 50 members, then the minimum

validation could consequently be highly contaminated by thenumber of members could have been defined as 10, for ex-
effect of the correlation between data. Correlation contami-ample. Moreover, the minimum number of members is just

nation is avoided by forming training and validation subsetsa stopping criterion of selection with BGS because the num-
from groups of 10 consecutive data (blocks) rather than fromper of members to define as optimal should focus on specific
individual data. It is important to note that contrarily to stan- analysis in each basin.

dard hydrology applications, the order of the events is not The members’ elimination mechanism begins with all
important in the BGS process. membersd) and removes them one by one, at each step re-

Here, the dataset is divided into 5 equal-sized parts in ornoving the one that decreases the error the most (or increases
der to create 5 experiments. In each experiment, a part i§ the least). The removal mechanism is as follows:
kept out for testing, while the remaining four parts, a priori 1. |t pegins with a subdivision of the datasgf)(nto train-
divided_in l_)locks, are randomly gombined to form trair_ling ing (xt), validation (ry), and test setyp).
and validation subsets. The detailed process develops in two

steps: 2. The reference séB?, containing all of the originall

members, is presented.
— Step 1: Data and test set configuratiofhe test set

is set-up from simple cut-offs to “guarantee” statistical

independence with the training-validation process. To 3

build the test set, the series is subdivided into five folds,
each of which corresponds to the test set of each ex-
periment. For example, iV denotes the length of the
series, the test set of the first experiment corresponds
to the first fold (=1 to | N/5]), similarly the test set

of the fifth experiment will be the last fold € [4N /5]

to N). Thus, strong linear correlation between training-
validation and the test dataset is limited only to the val-
ues situated near the cut-off line.

Step 2: Blocks’ selection of the training and validation
sets. The remaining 4 parts are grouped irtdlocks

of consecutive pairs of observations-ensemble forecast,
then randomly choosing 75 % of the blocks for the train-
ing set and the remaining 25 % sets for the validation
set.

www.hydrol-earth-syst-sci.net/15/3307/2011/

G! = {y1. Y2, Y3, oo Yal}

Foriter=d —1,d — 2, ..., nmin

The hydrological membery";” corresponds to the one
that, when it is removed, has the greater impact on the
training set erro (i.e. minimise train error the most).

It is important to note thaE must be a scalar or single

value.

y; = argmin E (Gite“’l\{yi}l)(z)

yieGiter+1
The reference set is then updated by removingythe
member inG.

Glter — Glter—&-l\yj

. At this point, the errorE in the validation sef,,, ex-

cluding they ; member, is evaluated.

El = E(G'|xv)
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nmin 4 i
5. The subseG of the selected members is achieved, Table 3. Performance for the 16-member ensemble (16 hydrolog-

then the whole selection process is analysed on thca) models are driven by the deterministic forecast from ECMWF
training and validation results. EPS) and the 800-member ensemble (16 hydrological models are

Backward Greedv Selection | | | h q driven by the 50 perturbed members forecast from ECMWF EPS)
ackwar reedy Selection Is a local search proce Ur8or a 9-day forecast time horizon. Hereafter, RREk values are

that does not guarantee finding the optimal subset. For eXaypressed on a 1§ basis.

ample,y, andy, by themselves may not be pertinent but

together they may decrease the error substantially. But, = ;chment Scores MDCV
because the algorithm is greedy and removes hydrological codes = HEFS function
members one by one, it may not be able to detect this. Here, CRPS IGNS Riwse )

the BGS is executed with a resampling technique explained 7930510 8 0338 451 9395 425 018
in Sect3.2 800 0.263  0.44 506 33 041

16 0282 105 3929 233 032
B2130010  goo 0230 -029 243 22 057

16 0164 077 3921 213 013
B3150020 g0y 0135 —0.88 451 27 022

16 0.181 0.84 3489 17.4 0.19
800 0.161 -0.99 3.50 15 0.37

16 0.184 0.69 3449 158 0.20

3.4 Combination of results

The variability of each experiment set-up in the cross-
validation step increases the probability of reaching different H3zg21010
hydrological member’ selections. So, it is necessary to de-
termine an integration mechanism for a global solution for J8502310  go0 163 _pos 216 16 037
each catchmept. Here, the |mportance of each hydrqlog|cgl 16 0184 053 33.98 158 019
membery; within the ensemble is then assumed as being di- K7312610 o5y 165 _0.03 309 19 035

re_ctl_y proporti(_)nal to the ite_ration numbt_ar at which it was . o 16 0177 049 2724 137 0419
eliminated during the selection process in each experiment M0421510 g5, 5150 _0.99 174 15 037
(iter{{)). The combined ranking is thus the mean rank of elim- 03401010 16 0198 0.77 36.39 16.8  0.19
ination as defined in Eq10): 800 0.169 -0.86 346 15 036

02593310 16 0186  0.66 3289 149 021

5

_ 1S, 800 0163 —098 215 15 037

R(yi) = 5 > iters. (10) Ussazolo 16 039 320 3973 210 019
xp=1 800 0289 —036 339 26 035

For example, if the rank of elimination of the hydrological
membely; is 50, 60, 200, 10, and 150 in the five experiments,
then the mean rank of elimination is equal to 94. Finally, the
final selection) of thenn? best members corresponds tothe ~ But in the HEPS driven by a MEPS with interchangeable

members which have the highest mean rank of eliminationmembers (e.g. ECMWF EPS), the selection should be di-
given by Eq. L1): rected more clearly to a method of selection and weighting

- - of hydrological models based on their participation in the fi-
s = R, yp}Z':l, R; > R; where 1<i < j <d. (11) nal selected subset. Therefore, we can create a new simpli-
fied high-performance HEPS using the same proportion of

It should be noted that another possibility to integrating the hydrological members associated with a random choice
the results could have been based on the frequency of sgs the meteorological members.

lection of each hydrological member of the ensemble, and For example if the final selection shows that the simplified

later to elect the members with the highest frequency, but a$,-pg should consist of ten members for the hydrological

this integration leads to a low performance, these results are odel “A” and thirty members for the hydrological model

omitted from this paper. “B”, then we should expect to achieve a high performance
HEPS if we randomly pick ten meteorological members to
evaluate the hydrological model “A’” and thirty meteorologi-

ycal members, randomly chosen once again, to assess the hy-

In the case of MEPS in which the members are not perfectl 4 s ) )
interchangeable (e.g. Meteorological Service of Canada “drological model “B”. Sectiord.3 presents such an analysis.

MSC, TIGGE database), the selection of hydrological mem-
bers with BGS focuses directly on the combinations of hy- .

drological members that maintain or improve characteristics4 Results and analysis
of the super ensemble of reference.

3.5 Interpretability of hydrological members’ selection

Table 3 presents a comparison of results for two HEPS
2nmis not necessarily equal tomin becausenm reflects the ~ Schemes analysed Belazquez et al(2013). It should be

analysis of the error on the validation set regarding the number ostressed that the 800-member HEPS serves as a reference for

selected members. results in the selection of members and that their scores show
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a desired behaviour. Note that theatio and Rysg, scores Specifically, Fig.3a shows that the 30-member CRPS
on which rest the main advantages of the 800-member HEPSquals the reference value. Also, taking into account that
are directly interpretable since the scale is independent of théhe CRPS generalizes the Mean Absolute Error (MAE) for
measured variable. a point forecast@neiting and Raftery2007, it is impor-

With respect to the IGNS score, mean values are genertant to stress that the CRPS values are always lower than the
ally negative, which shows that on average the system haMAE values, when the deterministic counterpart was taken
an acceptable bias. Finally, in terms of CRR@8lazquez asthe mean of each daily ensemble, in agreement with results
et al. (2011 show in detail the efficiency of CRPS in this obtained by other author8¢ucher et al.2009 Velazquez
800-member HEPS. et al, 2011). Another remarkable feature of CRPS is its di-

Note that results discussed in this paper correspond teect relationship with the flow magnitude; the shapes of the
a “pseudo test dataset” for comparing the performance be€RPS and of the hydrograph are similar. A direct strategy of
tween different scores in the process of selecting hydrologi-optimization could then focus on removing the hydrological
cal members, since the data used to minimize all error funcmembers that have a large impact in the daily extreme CRPS
tions are exactly the same. values. Note also that the selection not only preserves the

Itis a “pseudo test dataset” because there is a high probanean CRPS (0.16) but also the structure of the CRPS series.

bility that the data used in testing (the complete series) have Figure 3b shows that the 30-member 4 % trimmed mean
been used in the BGS training process, becoming the indiignorance score+{1.01) has also improved over the initial
cator of an optimistic estimator of the selectidbigman-  value (-0.99). Regarding the time structure of the IGNS, it
tidis et al, 2000; however, we do emphasize that the first js observed that both the 30-member and 800-member values
part of this research focuses on an analysis of scores in thRave many extreme values which suggest low assessments of
BGS process with the subsequent integration of results, anehe predictive distribution of the ensembles, i.e. a bias prob-

the second phase presented in a companion p&pectiero  |em in the forecasts (note that a value of 4.5 corresponds to
et al, 2011) shows a rigorous test of generalization in time g evaluation of thedf near 0.0442).

and space.

validati it itted mainlv b thev h With regard to the reliability diagram, Fi§c shows a con-

i a Ida !or)I reiu ti wterg Omitted mainly te]f:ause €Y NaVesiderable agreement improvement (1.09e-3) over the initial
a frend simiiar 1o the fraining ones, Except 1or Some €xpefly ;o (1.74e-3). This gain in reliability may be traced back
ments where the random distribution of the training and val-

dati istically h to the optimization criterion used: tleratio, which is en-
dation sets was not statistically homogeneous. tirely based on the integration of the whole range in terms of
In order to illustrate the interchangeability of the mem-

. - . corresponding verifications (observations). Similarly, Biy.
bers of the ECMWF EPS and equiprobability of this SYSteM, eveals that the rank histograms have a nearly uniform distri-

Sect.4.3 shows both the performance of the subset foundb ; : . : : ;
ution, even if the first rank reflects a slight bias. Those im-
with the BGS and the boxplot diagrams of 200 random ex- -

. . . ) erfections demonstrate the difficulty inherent in minimizin
periments of 50 members, with and without the guidance ofp y g

the BGS solution the s ratio.
' At the end of the selection process, the (MDCV) has
4.1 Selection performance slightly decreased, from 0.37 to 0.35. This confirms that op-

timization with thes criterion seeks diversity of the ensemble
An example of the results obtained is shown in Bgwhich forecasts in the correct way, not necessarily maximizing the
compares the 30-member and the 800-member results for thDCV.

MO0421510 catchment, after an optimization based onsthe  Figure3e illustrates the occurrence of each lumped model
criterion. In general the 30-member scores are better or afom the 30-member ensemble. A wide selection of models
good as the reference set. _ alone could justify the multi-model approach advocated here.

We stress the fact that the selection task focuses on the paResults show that 13 models out of 16 were selected in this

ticipation of the hydrological models. For instance, Bg.  case, and that no models were selected more than 7 times.
shows that the selected hydrological members make use of 13 Taking into account the detailed analysis for the 30-

of the 16 available lumped models, however, the strong pari,emper selections and the global analysis performed for

ticipation of the models 3, 7, 9, and 14 is displayed, which ¢4ch of the catchments, the combined criterion leads to the
is an interesting combination of hydrological models, espe-pegt BGS results. The next section presents this analysis.

cially taking into account the much poorer performance OfHowever, the issue of the optimal number of hydrological
the 16-member multi-model approach driven by the deternempers remains somehow blurred. So, Bigevisits that

ministic prediction (Table8) and knowing that these hydro- 4 estion in terms of the gain index based on NS defined in
logical models are not of equal quality with regards to MSE Eq. @). Figure4 emphasizes that the 30-member selection
performance. This suggests that the selection favoured a dié\lways displays a positive gain index. However, one should

versity of errors. keep in mind that the optimal number of members should
be based on an individual analysis of the different scores

www.hydrol-earth-syst-sci.net/15/3307/2011/ Hydrol. Earth Syst. Sci., 15, 33252011
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MO0421510 — Opt.crit: 3 — 800—-member — CRPS = 0.160, RD(e-3) = 1.74, 5 = 1.5, MDCV = 0.37, IGNS = -0.99

(a) CRPS = 0.16 mm , MAE = 0.21 mm (b) IGNS = -1.01 bits (e) Models’ participation
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Fig. 3. Comparison between the initial ensemble (800 members) and the ensemble selected (30 members) for the lead time 9 in the catchmen
M0421510. (a) Figure above: observed flow; figure below: CRPS, x-axis indicates day/month. Note the correspondence between higher
observed flows and higher mean CRR9. Figure above: observed flow; figure below: IGNS. Note that there is no full correspondence
between the higher IGNS and higher observed flow, x-axis indicates day/m@)tReliability diagram error (Rijsg based on vertical
distances between the pointg)d) Rank histogram for the 30 selected hydrological members. The horizontal dashed line indicates the
frequency {V/d +1) attained by a uniform distribution(e) Occurrences of the employed models in the final solution of 30 hydrological
members.

balance, i.e. evaluating that the normalized sum does not To check each score individually, Tableshows the me-
mask the detriment in a score(s) with gains made in other. dian of 200 random selections for basin H36 optimized with
On the other hand, to reflect the BGS performance inthe combined criterion. The random selections pick 50 hy-
the selection, Fig4 also presents the NS evaluation with drological members to evaluate each score in a standardized
200 random selections of 30, 50, 100, 200, and 400 memberfashion, that is, dividing the score obtained in the selection
in terms of gain index defined in EEB)( It is clear that BGS  subset by the reference score of all 800 members of base (see
selection with positive gains are always obtained —improvingeach component in E@.without weight parameter).
the balance of the scores. Otherwise in random experiments Table4 shows an analysis to evaluate the sensitivity of the
the percentiles 10, 25, 50, 75, and 90 are shown generallgcores with respect to the selection of hydrological members
in the range of a negative gain index (i.e. a detriment to thein the database under study. So, it is possible to point out the
balance of the criteria). This tendency is obviously strongerfollowing:
in random selections of 100 or fewer hydrological members
where the probability of taking the most representative hy-
drological responses is lower. It is important to note how
even in the random selection of 200 and 400 members (25 %
and 50 % of the 800 hydrological members) the NS in 75% — CRPS indifference to the selection of members, and to
of the evaluations shows a negative gain index. a lesser extent, both the low variability of the IGNS and
the MDCYV function.

— In the hydrological members’ selection, the greatest
challenge is selecting a small set of members, for ex-
ample 30 or 50.
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Fig. 4. Evolution of the normalized sum (NS) in terms of gain index for the lead time 9, optimization with the combined criterion. Loga-

rithmic scale on the x-axis. The normalized sum equal to 5 represents the performance of the initial 800-member ensemble. The thin red
line represents the normalized sum under different numbers of members found with BGS. Symbols for the 200 random selection experi-
ments: the blue vertical line identifies the interquartile range, white circles represent the median and yellow diamonds corresponding to the

percentiles 10 and 90.

Table 4. Median of 200 random selections in catchment H36 for Table 5. Results of BGS in catchment H36 for the lead time 9 with
the lead time 9. The scores are presented in a standardized fashidghe combined criterion as error function. The scores are presented in
and oriented at the minimization coinciding with the formulation of a standardized fashion and oriented at the minimization coinciding

each component of the combined criterion (Eyg. with the formulation of the Eq.

Members CRPS Rfase 8 MDCV IGNS NS Members CRPS Rfgse 8 MDCV IGNS NS

30 1.01 1.50 1.80 1.05 111 6.47 30 1.00 1.00 0.96 1.00 1.00 4.96
50 1.01 1.25 1.53 1.03 1.06 5.88 50 1.00 0.92 0.99 1.00 1.00 491
100 1.00 1.09 1.28 1.02 1.02 541 100 1.00 0.80 1.01 1.00 1.00 481
200 1.00 1.02 111 1.01 1.01 5.5 200 1.00 0.58 0.97 0.99 1.00 454
400 1.00 0.98 1.03 1.00 1.00 5.01 400 0.99 0.45 0.88 0.98 1.00 4.30

— The hydrological members’ selection presents its great-
est challenges in maintaining or improving reliability
and the consistency of the ensemble represented by the
§ ratio, as shown in Tabl8. Therefore, to define the
combined criterion, such as an error term in BGS, the
reliability term (RDysg) has more weight to guide the

probabilities yielding a 45calibration function on a re-
liability diagram, unless either the ensemble size is rel-
atively large or the forecasts are reasonably skillful, or
both Wilks, 2011).

Finally, Table5 shows detailed results for each score in

optimization in this way. At this point it should be noted the selection process with BGS for the basin H36. It shows
that consistency has a direct relationship with reliabil- that in the BGS methodology, with the combined criterion
ity, although ensemble consistency does not necessams error function, is not detrimental to any of the scores.
ily imply that probability forecasts constructed from the Instead, gains in the balance scores (normalized sum) are
ensemble are reliable in the sense of conditional out-mainly due to optimization of system reliability while pre-
come relative frequencies being equal to the forecasserving the quality of the other scores.

www.hydrol-earth-syst-sci.net/15/3307/2011/
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4.2 Scores interaction in the selection

Table 6 summarizes results for more catchments and opti-
mization criteria. The 30-member comparison is based on
a normalized sum (SecR.7). In this way, a value of NS
lower than 5 indicates an overall improved performance. Per-
formance for all criteria are also given in TalBefor com-
pleteness, and the best optimization criterion for each catch-
ment is identified in bold letters.

Overall, the combined criterion (CC) offers an effective
and direct rule, finding balance between features offered by
each of the criteria. However, it is important to point out the
two cases for which thé criterion provides a slightly better
optimum. This reflects the limitations of the BGS technique
or the effects of the combination of results, because if the
objective function (CC) is equal to the criterion used to com-
pare results obtained with different objectives, the CC should
obviously always find the best solution within the vision of
a global optimization tool.

The$ ratio criterion, based on a rank histogram which is
the most common approach for evaluating whether a collec-
tion of ensemble forecasts for a scalar predictand satisfies the
consistency conditionWilks, 2009, comes to a close sec-
ond. Itled to the best performance for two catchments and to
the second best performance for five other catchments. This
is particularly interesting considering the simplicity of this
approach with respect to the combined approach. In addition,
the § criterion favoured the highest average participation of
hydrological models.

The CRPS and IGNS led to a poorer selection, to the point
that they were not considered further after experimenting
with the first four catchments allowing an economy in com-
putational time. The CRPS showed low variability, so it is
not very sensitive to changes in the selection of hydrologi-
cal members, as was shown in Tableand5. The IGNS
demonstrated a negative relationship with reliability, leading
to poor performance in terms of the reliability diagram (RD)
ands ratio. They are also correlated, optimizing one criterion
often favouring the improvement of the other one.

Specifically the behaviour of the optimization of each
score could also be described from the following relation-
ships observed in Tabk

— Optimization based on CRPS is detrimental to the reli-
ability. For example, it had the effect of increasing RD
by a factor of 10, for catchment Q25. The CRPS also
decreases diversity of the members (MDCV), except for
catchment B31 where it remained stable.

D. Brochero et al.: Simplifying a hydrological ensemble prediction system, Part 1

most cases maintained or improved. The IGNS perfor-
mance is often slightly decreased. In conclusion, the
CC promotes overall good performance, increasing the
reliability of the system (decrease of the REx score)
and ensuring the stability in the other scores.

Selection based on the RD score is detrimental to the
CRPS. As for reliability, there are some cases for which
the error increases. This condition is surprising given
that the combined criterion always achieved reductions
of this error, but it could not last under the assumption
of a greater weight of this score in the combination be-
cause the relationship is constant, which highlights the
interaction between the scores as a mechanism implicit
in the reduction of error reliability (Rlasg). Thes ra-

tio is never improved, while diversity (MDCV) is lost
except in three cases (B31, Q25, and U25) where inter-
estingly the MDCYV increased (theoretically consistent
effect). Finally, the IGNS shows a negative trend to the
minimization of the RD.

— By definition, thes ratio focuses on the reliability and

the consistency of the ensemble. In fact, it leads to bet-
ter reliability performance in terms of RD, than when
the selection is optimized with RD itself. Theratio

also preserves the resolution of the forecast, as shown
by the CRPS and IGNS results. All of this is accompa-
nied by a slight loss in performance in termssafatio,
which can be explained by the direct relationship of this
score with the number of members. However, this de-
pendency rather than becoming an obstacle in the selec-
tion stands as a logical consequence of the system, since
statistically a better performance is expected from a sys-
tem that combines a larger number of membgatpdy-

din, 2010. Finally, with respect to MDCYV, it is shown
once again that diversity, hypothetically represented by
MDCV, fluctuates between values that indicate the ex-
tent to which such diversity needs to be maintained in
the ensemble.

When the selection process focuses on the maximiza-
tion of MDCV, the relationship with CRPS, the IGNS
ands ratio is always negative. However, there are four
cases in which the reliability is improved by increasing
the diversity index, from which it follows that while re-
liability improves the resolution drops.

In summary, the interaction of different scores, as seen

from the 30-member selection, shows that the optimization
— The combined criterion (CC) leads to stable CRPS val-focused on scores that mainly define the resolution of the
ues. The most remarkable gains come in terms of RD.ensemble (CRPS, IGNS) has a negative impact on the reli-

as provided in the weights definition of the E@).(With

ability, consistency, and ensemble diversity. It also reveals

reference td ratio, evaluations reveal the difficulty in that if the selection is based only on a reliability view, the
maintaining the stability of this criterion, but the dif- ensemble loses resolution and consistency. Maximization of
ferences between the selection and the reference set athe MDCYV is in general detrimental to the other criteria, but
not pronounced. As for the MDCYV, the diversity is in sometimes improves reliability, a condition that can easily

Hydrol. Earth Syst. Sci., 15, 3303325 2011
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Table 6. Selection of 30 hydrological members based on different scores in all the basins or the lead time 9. NHM indicates the number of
hydrological models participating in the solution.

Basin OPUMIZation ~ppe pRee 8§ MDCV IGNS NS NHM
criterion
CRPS 0.24 7.0 4.3 0.34 0.41 5.7 8
cC 0.26 1.8 34 0.40 0.38 4.4 10
RD 0.26 2.8 4.6 0.40 0.49 5.0 7
A79 § 0.27 5.1 3.7 0.40 0.48 5.2 13
MDCV 0.28 111 5.0 0.46 0.65 6.8 7
IGNS 0.24 9.6 4.8 0.31 0.38 6.5 6
800 members 0.26 5.0 3.3 0.41 0.44 5.0 16
CRPS 0.21 4.0 4.5 0.49 —0.48 6.7 8
CcC 0.23 1.3 2.6 0.63 —-0.16 4.7 13
RD 0.23 2.5 3.9 0.53 -0.33 5.9 8
B21 § 0.23 2.1 3.0 0.56 —0.27 5.2 14
MDCV 0.24 5.2 3.7 0.61 -0.26 6.8 8
IGNS 0.22 23.2 8.0 0.39 -0.33 16.7 7
800 members 0.23 2.4 2.2 0.57-0.29 5.0 16
CRPS 0.18 5.9 4.6 0.22 —-0.97 59 7
CcC 0.13 0.9 2.0 0.23 -0.85 4.0 10
RD 0.15 3.5 5.2 0.24 —0.62 6.2 8
B31 § 0.13 2.9 3.3 0.23 —-0.86 4.9 12
MDCV 0.14 12.1 7.3 0.24 -0.70 8.7 7
IGNS 0.12 17.4 7.1 0.17 —-0.97 9.5 8
800 members 0.14 4.5 2.7 0.22-0.88 5.0 16
CRPS 0.14 21.9 5.9 0.25-0.96 17.2
CcC 0.16 0.7 1.8 0.37 -0.97 4.5 9
RD 0.17 1.7 3.1 0.38 -0.84 6.0 5
Q25 § 0.16 0.6 1.6 0.37 —-0.98 4.4 13
MDCV 0.18 3.9 3.5 0.45 -0.74 7.3 5
IGNS 0.15 320 125 0.18 —0.41 26.9 6
800 members 0.16 2.2 15 0.37-0.98 5.0 16
CcC 0.16 1.1 1.7 0.36 —0.97 4.5 11
RD 0.16 2.9 25 0.34 —-1.00 5.5 7
H36 § 0.16 2.4 1.9 0.36 —1.02 4.9 13
MDCV 0.17 2.5 3.8 0.44 -0.79 6.4 6
800 members 0.16 3.5 1.5 0.37-0.99 5.0 16
CcC 0.16 0.5 2.3 0.39 —-0.98 4.6 12
RD 0.17 2.3 3.1 0.35 -0.91 6.2 7
J85 § 0.16 1.3 1.6 0.36 —0.99 4.6 13
MDCV 0.18 1.6 2.5 0.44 -0.74 55 6
800 members 0.16 2.2 1.6 0.37-0.98 5.0 16
CcC 0.16 1.3 2.4 0.36 —0.96 4.6 9
RD 0.17 3.4 3.7 0.35 -0.89 6.1 7
K73 § 0.16 2.1 3.3 0.33 —-0.95 5.5 13
MDCV 0.17 2.5 4.2 0.43 -0.68 6.2 6
800 members 0.17 3.1 1.9 0.35-0.93 5.0 16
CcC 0.16 0.7 1.9 0.36 —0.99 4.5 12
RD 0.16 2.1 2.9 0.36 —0.92 6.3 6
M04 ) 0.16 1.1 1.3 0.35 —-1.01 4.4 13
MDCV 0.17 2.6 3.3 0.44 -0.75 7.0 5
800 members 0.16 1.7 1.5 0.37-0.99 5.0 16
CcC 0.17 0.9 1.3 0.36 —0.87 4.1 13
RD 0.17 2.5 4.2 0.36 —-0.67 6.6 5
034 § 0.17 1.9 1.8 0.37 -0.85 4.7 12
MDCV 0.19 57 4.9 0.44 -0.51 7.9 4
800 members 0.17 35 15 0.36-0.86 5.0 16
CcC 0.29 1.2 2.9 0.37 -0.34 4.4 12
RD 0.30 2.9 5.0 0.37 —-0.25 5.8 6
uz25 8 0.29 1.8 2.9 0.34 -0.32 4.7 15
MDCV 0.30 3.0 3.7 0.43 -0.10 5.4 5
800 members 0.29 3.4 2.6 0.35-0.36 5.0 16
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Reference values (800 members) — CRPS = 0.263, RD(e-3) = 5.06, 6 = 3.26, MDCV = 0.41, IGNS = 0.44

(a) opt. criterion = CRPS (b) opt. criterion = RD
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Fig. 5. Evolution of the gain index for each score under different optimization schemes in the basin A79 for the lead time 9. A logarithmic
scale is used on the x-axis. The chosen optimization criterion in the selection is shown at the top of each subfigure. The lower part of each
subfigure indicates the values of the normalized sum (NS) for the number of hydrological members shown on the x-axis.

be understood from a theoretical point of view. Theatio remarkable that the normalized sum for RD is equal to 4.96
improves reliability while maintaining resolution. The com- when the number of hydrological members is equal to 100.
bined approach stands out as the most balanced criterion. This is strictly because loss in consistency (negative gain in-
The above analysis focused exclusively on 30-member sedex in thes ratio of 40 %) and resolution (IGNS equivalent to
lections. However, a global vision requires the analysis of thelosses of 10 %) is balanced by a positive gain of about 50 %
evolution of the scores as the number of hydrological mem-in RD.
bers is reduced. Such an analysis is specific to each catch- The§ ratio (Fig.5c) displays a gradual overall improve-
ment, so as an example, Figshows evolution diagrams of ment of individual scores in a selection of about 70 hydro-
the various scores as a function of the number of memberdpgical members, when the various scores show a tendency
for the catchment A79. to decrease in performance. At this point it is important to
In order to assess the joint evolution of all scores the gainnote that the normalized sum (NS) reached 4.53.
index defined by Eq.9) was used. Figuréa andsSe clearly Figure 5d shows that criteria focusing on the resolution
show that an optimization based on resolution of the sys-and the consistency have a negative relationship with the
tem (CRPS or IGNS) is detrimental to the reliability. Fig- maximization of the diversity (MDCV), overall gains are
ure5 also highlights the correspondence of CRPS and IGNSachieved only when the number of hydrological members is

throughout the selection process, when the optimization iggreater than 400.
focused on one or the other. The combined criterion (Figbf) improves collective per-

RD optimization (Fig:5b) is surprisingly unfavourable to  formance of all scores in the selection, with an optimal num-
thes ratio (negative gain index), which is related to the indif- ber of hydrological members of 70 for this catchment, coin-
ference of the RD with respect to the location of the observa-Ciding with the interaction shown in the minimization of the
tion within the ensemble, while this location analysis creates’ ratio (Fig.5c). Scores tend to lose quality afterwards.

a solid indicator of the system consistency. Likewise, it is
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Table 7. Selection of 100 hydrological members based on the combined (CC) eritria. NHM indicates the number of hydrological
models participating in the solution.

Basin OPimization cpps R 5 MDCV  IGNS NS NHM
criterion
CcC 0.26 1.8 3.0 0.43 0.33 4.2 13
A79 ) 0.27 3.5 3.0 0.41 0.43 4.6 16
800 members  0.26 5.1 3.3 0.41 0.44 5.0 16
cC 0.23 1.0 2.3 0.63 -0.19 4.4 14
B21 ) 0.28 1.2 2.4 059 -0.28 45 16
800 members  0.23 2.4 2.2 0.57 -0.29 5.0 16
cC 0.13 1.0 2.4 0.25 -0.83 4.2 14
B31 ) 0.14 2.3 25 0.23 -0.85 45 16
800 members 0.14 45 2.7 0.22 -0.88 5.0 16
CcC 0.16 0.4 1.3 040 -0.98 4.0 16
Q25 1) 0.16 0.6 1.4 0.36 -1.05 4.2 16
800 members 0.16 2.2 1.5 0.37 -0.98 5.0 16
CcC 0.16 0.6 1.6 0.38 —-1.03 4.2 14
H36 ) 0.16 2.5 1.8 0.36 —-1.04 4.8 16
800 members 0.16 3.5 1.5 0.37 —-0.99 5.0 16
CccC 0.16 0.4 15 0.39 -0.98 4.0 15
Jss ) 0.16 1.3 1.7 0.38 —-1.00 4.6 16
800 members 0.16 2.2 1.6 0.37 -0.98 5.0 16
CcC 0.16 0.6 1.7 0.39 -091 4.0 14
K73 8 0.16 2.6 2.2 0.34 -0.95 5.0 16
800 members  0.17 3.1 1.9 0.35 —0.93 5.0 16
cC 0.16 0.3 1.7 0.37 —-1.00 4.2 15
M0O4 & 0.16 0.8 1.3 036 —-1.03 4.2 16
800 members 0.16 1.7 1.5 0.37 -0.99 5.0 16
CC 0.17 0.7 1.4 0.38 -0.87 4.1 16
034 8 0.17 2.2 2.1 0.37 -0.89 4.9 16
800 members 0.17 3.5 1.5 0.36 -0.86 5.0 16
CcC 0.29 0.9 2.2 0.39 -0.38 4.1 14
u2s ) 0.29 1.4 2.5 0.36 —-0.42 4.3 16

800 members  0.29 3.4 2.6 0.35 -0.36 5.0 16

Table 7 groups the 100-member scores following opti- makes use of the participation of all hydrological models in
mization with the combined score and theatio, the two  the formation of the solution, which is not the case for the
best ones. These values confirm the superiority of the comeptimization with the CC.
bined score, leading to the smallest NS for all catchments,
mainly because of the great influence on minimizing relia-4.3 Interchangeability of MEPS members as input of
bility. This also maximizes MDCYV to such an extent that it hydrological models
allows a proper balance between reliability, resolution, and
consistency. It is also remarkable that for 8 catchments outn order to illustrate the interchangeability of the members of
of 10, theé ratio is minimized even more than when the the ECMWF EPS and equiprobability of this system, Fég.
optimization is focused on th& ratio itself. Optimization  shows that a random selection oriented only with the hydro-
based on thé ratio also improved scores over the initial 800- logical models’ participation in the BGS has a chance to have
member values (N& 5) for 9 catchments out of 10. This even better performance than the 800-member HEPS upper
single criterion is thus also very appealing, especially be-90% (top of the box diagram). These box plots are con-
cause it makes use of all 16 models in its selection. structed by retaining the participation of hydrological mod-

Additionally, the § ratio can be highlighted as a simple els in the response but with a random selection of members
optimization criterion, which for 100 % of the catchments, of the MEPS. On the other hand, F&ip shows the same kind
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of results under different random selections but without con-  (a) 95
sidering the participation of hydrological models found with
BGS. 85r

Figure®6 highlights three main aspects: high-performance
solutions based on the proportion given by the BGS, low vari-
ability, and high performance of the BGS solutions.

The performance of selections based on the proportion of
members found in the BGS solution is evident in fég. So, + .
o - . g Npis R . g
it is demonstrated that the proportion of members for a hy- oL i AR =

. ; e o , x 88 &5 = 5 ==

drological model is generally a sufficient criterion to reduce * i T 7T % £ 4 L
the number of members while improving the balance of the P P S S
scores represented by the normalized sum. For comparison, A78 B21 B31 H36 J8S Ki3 MO4 O34 Q25 U25
Fig. 6b illustrates the system response to random selections

‘ * BGS = = = Normalized sum (800 members)‘

N
o

o
&)

+

Normalized sum
(]
[6;]

»
3

+

without any a priori guidance, showing that in all cases the ~ (®) ®% T % 885 = = = Nownalized sum (890 members]
normalized sum is greater than 5 and have recurring extremes a5l N N |
greater than 7. N 1

Regarding the variability of the normalized sum evaluated % 75¢ + + T i I 1
in random selections guided by the BGS solution, it can be g T LA S S
seen that the interquartile rang@4 — Q1) is at worst equal = 65 7 L g g b
to 0.3 (catchment H36), which is a much lower value than for § 55% g g S g ‘ g g g
the purely random selection, as shown in Fg.where the O N _L_ _£ _ _L_ Lo 1‘_ _ i
latter interquartile range is equal to 0.6. sl * L, . T T

The generalization of the BGS method is discussed in de- * * x O
tail in the companion paper, where the temporal and spatial 5 a9 B2 B W6 Je5 Kua Moi Os4 Q% U
generalization is evaluated for a nearby catchment. However, Catchments

Fig. 6a shows that the catchments H36 and J85 obtained com- 6. Backward Greedv Selecti BGS) and Box-plots i
binations with a normalized sum lower than those obtaineoF'g' - backwar reedy Selection ( ) and Box-plots in

. - 200 random experiments of 50 hydrological members for the lead
with the BGS method (see only cross points at the botto ime 9. On each box, the central mark is the median, the edges of

in Fig. 62), which can be associated with the integration of y,o 4y are the 25thd;) and 75th percentilests), the whiskers
experiments carried out in a subdivision database for eachy jimits to consider the outliers extend frogy — 1.5x (03 — 1)

catchment or the BGS algorithm structure — it is known thatto Q3 +1.5x (Q3 — Ql) points (but not necessar”y Correspond to
the classical BGS algorithm is unable to detect the collectiveobserved data), and the outliers are plotted individually as cross
influence of the variables. points. (a) Random selection oriented with the frequency observed
in the BGS to check the interchangeability in the 800 member-set,
(b) Random selection without any guidance to check the BGS per-
5 Conclusions formance.

Previous results on the number of hydrological members and
the HEPS conformationvelazquez et al2011) have shown, Results presented here support the idea that selecting
based on the database of the present paper, that the enseRlEPS members is viable. It is in general even possible to
ble predictions produced by a combination of several hydro-expect a better balance of scores in the subset of selected hy-
logical model structures and meteorological ensembles (800drological members than in the original much larger ensem-
member set) have higher skill and reliability than ensembleble, based on standard scores such as the CRPS, the IGNS,
predictions given either by a single hydrological model fed the reliability diagram, and th&ratio. The diversity, sought
by weather ensemble predictions (50-member set) or by sevin the multi-model approach with MEPS, may also be main-
eral hydrological models driven by a deterministic meteoro-tained in the final selection.
logical forecast (16-member set). So, our goal was focused The simplification of the HEPS can be addressed from two
on at least replicating the good quality of the 800-memberpoints of view: as a function of the maximum simplification
set with fewer hydrological members. of the number of hydrological members or as a function of
Hydrological member selection is justified by the com- the maximization of the balance of the scores. Simplification
putational cost to issue a hydrological forecast based orof the number of hydrological members involves the defini-
the combination of meteorological models and hydrologicaltion of a limit ensuring statistical consistency of the scores
models. In this line, the selection of hydrological membersassessed. A trade-off exists between the number of hydro-
without sacrificing the quality of a forecast stands out as anlogical members and the level of improvement in scores. For
operational option. example, in this study, the best balance of scores is achieved
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with a number of members fluctuating between 30 and 100Appendix A
maximizing the qualities of the system: reliability, consis-
tency, resolution, and diversity. So in the worst case thisNotations
corresponds to a 87.5% (700 members/800 members) com-;
pression level. The ultimate level of compression is in fact y
a compromise between the gain index and the complexity of
the system. The ultimate decision should be established ac-4
cording to the requirements and the operational capacity of
the hydrological probabilistic forecast system. M

The evaluation of five individual scores as criteria for op-
timizing the selection process revealed the complexity of the .
relationship between them. In many situations, improving
one score is achieved at the expense of another score. There-
fore, the design of a combined criterion (CC) led to an impor- ¢
tant methodological improvement that integrates many char-
acteristics of each score. Tleratio is the best single op- y!
timization criterion, not very distant to the achievements of y
the combined criterion (CC).

The CRPS is often the primary score used for evaluating o
HEPS performances. However, results here indicate that it f
is not a good choice for hydrological members’ selection in
this case of study. In fact, it was often possible to preserve ¢
or minimize the CRPS using other objective criteria. Like-
wise, the centralization of the selection process in the IGNS ¢
heavily penalized the reliability and the consistency of the
system. With respect to the MDCYV, the uncontrolled maxi- 5,
mization of this parameter, which describes diversity, leads
to a deterioration of the other sought qualities of the system.
There exists a threshold beyond which the system abruptly ;¢
loses reliability, resolution, and consistency. On the other
hand, experiments showed that both sheatio and the CC
improve the balance of the scores. S,

The proposed methodology is part of the so-called data-
driven models, so the design is independent of the database,
in this case the evolution of MEPS or hydrological models. w
Precisely this point stands out as one of the advantages of the’}”':eld
proposed methodology, since the selection of hydrological
members could be implemented in any desired combination ¢
between any MEPS (e.g. ECMWF EPS, MSC, US National
Centers for Environmental Prediction — NCEP) and hydro- %:
logical models.

The cross-validation, a vital part of the proposed method- Xt
ology, systematically deals with the issue of the short length Xv
of the series. However, it is widely applicable to any length Xp
of condition series. {x'ha

Finally, the encouraging results of this study will lead to .
an interest in testing other global search (non-greedy) tools ar%mm g(x|0)

such as evolutionary algorithms.
E@©@1x)
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Time-step

Number of pairs observations-
forecasts

Total number of hydrological mem-
bers in the forecast ensembles
Total number ofz intervals to anal-
yse the reliability diagram
Identification of the rank or class to
analyse the uniformity in the rank
histogram

Observed flow at the time
Ensemble flow forecast at the time
i-th flow forecast member ip’
Ensemble flow forecast from=1
toN

Observations vector from=1 to N
Cumulative distribution function
Probability density function
Normalized variables for probabil-
ity density function

Normalized variables for cumula-
tive distribution function
Conditional probability of the event
as a function of the interval,, as-
signed to the forecast— P (o'|1,,)
Binary indicator, 1 if the event oc-
curs for therth forecast-event pair,
0 if it does not

Number of elements of the-
th interval of the rank histogram
(c=1,...,d+1)

Median value evaluated from=1
toN

Mean ensemble flow forecasts at
the timer

Variance ensemble flow forecasts at
the timet

Training set

Validation set

Test or publication set

Set of x with indext ranging from
1toN

The argumené for which g has its
minimum value

Error function with parameterson
the sampley

Weights of the components of the
combined criterion (CC)

Iteration number at which was elim-
inated they; hydrological member
during the selection process in the
xp experiment
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R(y;) Mean rank of elimination of thg; Diamantidis, N., Karlis, D., and Giakoumakis, E.: Unsupervised
hydrological member stratification of cross-validation for accuracy estimation, Artif.

s Final selection of thexm best hy- Intell., 116, 1-16¢0i:10.1016/S0004-3702(99)000942800.
drological members in the selection Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-
process model ensemble hydrologic prediction using Bayesian

model averaging, Adv. Water Res., 30, 1371-1386,
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