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Abstract. This paper presents a detailed performance and
sensitivity analysis of a recently developed hydrological
landscape classification method based on dominant runoff
mechanisms. Three landscape classes are distinguished:
wetland, hillslope and plateau, corresponding to three dom-
inant hydrological regimes: saturation excess overland flow,
storage excess sub-surface flow, and deep percolation. To-
pography, geology and land use hold the key to identify-
ing these landscapes. The height above the nearest drainage
(HAND) and the surface slope, which can be easily obtained
from a digital elevation model, appear to be the dominant to-
pographical controls for hydrological classification. In this
paper several indicators for classification are tested as well
as their sensitivity to scale and resolution of observed points
(sample size). The best results are obtained by the simple
use of HAND and slope. The results obtained compared
well with the topographical wetness index. The HAND based
landscape classification appears to be an efficient method to
“read the landscape” on the basis of which conceptual mod-
els can be developed.

1 Introduction

Large scale hydrological behavior is still poorly understood,
mainly as a result of the lack of realistically observable
variables on the one hand and the complexity of catch-
ment processes on the other. Catchment topography, read-
ily available as digital elevation models (DEM), has the po-
tential to provide important additional information on catch-
ment processes, particularly due to its inherent co-evolution
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and diverse feedback processes with hydrology and ecol-
ogy (Savenije, 2010). A number of previous studies inves-
tigated the relationships between topography and hydrolog-
ical behavior in the attempt to identify hydrologically dif-
ferent functional landscape units and to better characterize
model structure, parameter sets as well as metrics of catch-
ment similarity. For example,Winter (2001) classified the
catchment into hydrological landscape units (upland, valley
side and lowland) exploiting the combination of topographic,
geological and climatic conditions. Based on this concept
Wolock et al.(2004) classified hydrological units for the en-
tire United States of America using GIS data. Topography,
land use and geology have also been used to directly infer
dominant runoff processes within a catchment (Flügel, 1995;
Naef et al., 2002; Schmocker-Fackel et al., 2007; Hellebrand
and van den Bos, 2008; Müller et al., 2009).

Another widely used indicator is the topographical wet-
ness index (Beven and Kirkby, 1979) which is the basis of
TOPMODEL and characterizes hydrological behavior based
on upslope contributing area and local slope. The topo-
graphical wetness index was further modified byHjerdt et al.
(2004), who took into account downstream conditions con-
sidering how far a water particle needs to move to lose a cer-
tain amount of potential energy. Topography was also used
to investigate the relationship of catchment transit times with
numerous catchment characteristics such as flow path length,
gradient and connectivity (McGuire et al., 2005; Jencso et al.,
2009, 2010) or drainage density (Hrachowitz et al., 2009,
2010) using tracer techniques. Other tracer studies directly
linked topography and hydrological behavior (Uhlenbrook
et al., 2004; Tetzlaff et al., 2007). A wide range of addi-
tional topographical indices have been suggested, describing,
among other aspects, the shape, age and stability of a catch-
ment, such as the hypsometric integral (Ritter et al., 2002)
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and its correlation with catchment processes (Singh et al.,
2008). Other studies correlated topographical indices with
soil type and hydrological behavior (Park and van de Giesen,
2004; Lin and Zhou, 2008; Pelletier and Rasmussen, 2009;
Behrens et al., 2010; Detty and McGuire, 2010).

In spite of the rich information content of topography, its
general usefulness for hydrology is controversial. It has been
argued that climate and geology exert stronger influence on
the rainfall runoff behavior of a catchment than topography
(Devito et al., 2005). Furthermore, it was shown that flow
patterns may be dominated by bedrock- rather than surface
topography (McDonnell et al., 1996; Tromp-van Meerveld
and McDonnell, 2006). According toMcDonnell (2003)
the “catchment hydrologist will need to develop hypotheses
from non-linear theory that are testable on the basis of ob-
servations in nature. This will not come about via model
intercomparison studies or DEM analysis”. These comments
highlight the perception that DEM analysis alone may be of
limited value for gaining deeper understanding of catchment
processes and that this needs to be brought into a wider con-
text, accounting for the subtle interplay of topography, geol-
ogy, climate, ecology and hydrology.

In spite of the complexity of catchment processes and
due to the frequent lack of data for bottom-up modeling ap-
proaches, relatively simple, lumped conceptual models can,
due to the self-organizing nature of catchments, be efficient
in identifying dominant flow generation processes and mod-
eling stream flow (cf.Sivapalan et al., 2003; Savenije, 2010).
However, even for these top-down models additional data,
other than precipitation and stream flow, are desirable for en-
hancing physical significance of model parameters and eval-
uation (Nalbantis et al., 2011).

Recently,Renńo et al.(2008) formalized the Height Above
the Nearest Drainage (HAND) metric and employed it for
landscape classification. This metric may be more adequate
to identify hydrologically different landscape units than the
traditionally used elevation above mean sea level. HAND
calculates the elevation of each point in the catchment above
the nearest stream it drains to, following the flow direc-
tion. It thus extracts from the relatively uninformative topo-
graphic elevation the far more informative “hydrologic” ele-
vation, thereby increasing the hydrologic information con-
tent of elevation data (Nobre et al., 2011). Nobre et al.
(2011) showed that HAND is a stronger topographical de-
scriptor than height above sea level by analyzing long term
piezometer data (groundwater behavior). Based on hydro-
logically meaningful landscape analysis (Nobre et al., 2011),
Savenije(2010) suggested that as topographical features are
frequently linked to distinct hydrological functioning, they
can be used to construct a conceptual catchment model per-
ceived of hydrological units within a catchment.

Landscape classification based on HAND is potentially
sensitive to different aspects, such as the definition of the
threshold for channel initiation when deriving streams from
a DEM, the seasonal fluctuations of the channel initiation,

and the resolution of the DEM. Furthermore, it is unknown
to what extent local landscape features can introduce a bias
and how robust HAND is to the resolution of observed points
(sample size) and the locations of the observed calibration
points. Hence, the application of HAND is still subject
to considerable uncertainties. In addition, it is not well-
understood how HAND relates to other landscape descrip-
tors, such as the topographical wetness index.

The objectives of this paper are thus to (1) assess differ-
ent hydrologically meaningful landscape classification tools
based on the HAND metric and further parameters such
as slope and the distance to the nearest drainage, (2) test
the sensitivity of HAND-based landscape classification to
small scale landscape features and resolutions of the DEM,
(3) evaluate the effect of the sample size of the calibration
data set on the robustness of HAND-based landscape clas-
sification and to (4) analyze the relation of HAND to the
topographical wetness index in a mesoscale catchment in a
temperate climate.

2 Study catchment

The study catchemnt is the Wark Catchment in the Grand
Duchy of Luxembourg (Fig. 1); the catchment has an area
of 82 km2 with the catchment outlet (49.85◦ N, 6.10◦ E) lo-
cated downstream of the town of Ettelbrück at the conflu-
ence with the Alzette River. With average annual precip-
itation of 850 mm yr−1 and average annual potential evap-
oration of 650 mm yr−1 the annual runoff is approximately
250 mm yr−1. The geology in the northern part is domi-
nated by schist while the southern part of the catchment is
mostly underlain by sandstone and conglomerate. The dom-
inant land uses are forest on hillslopes, agricultural land
on plateaus and pastures in the valley bottoms. The el-
evation varies between 195 to 532 m with an average of
380 m a.s.l. (above sea level). The slope of the catchment
varies between 0–200 %, with an average value of 17 %.

3 Methods

3.1 Terms

The HAND-based hydrologic landscape classification in this
paper distinguishes three hydrologically, ecologically and
morphologically different landscape units, which, in the fol-
lowing, will be referred to as wetland, hillslope and plateau
(cf. Renńo et al., 2008; Nobre et al., 2011). The use of these
terms might seem inconsistent as they originate from dif-
ferent disciplines – ecology (wetland), hydrology (hillslope)
and morphology (plateau) – where they do have clear defi-
nitions. These terms were nevertheless deliberately chosen
as they highlight distinct hydrological landscapes with dif-
ferent rainfall-runoff behavior (cf.Savenije, 2010). Note that
in other physio-climatic regions more or different landscape
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Fig. 1. (a)Location of the Wark Catchment in the Grand Duchy of Luxembourg,(b) digital elevation model (DEM) of the Wark Catchment
with cell size of 5 m× 5 m (m),(c) slope of the Wark Catchment with DEM resolution of 5 m× 5 m (%).

categories may be necessary to adequately describe the land-
scape. The classification with proposed dominant runoff pro-
cess in this paper is limited to the Wark catchment and may
not be valid for other catchments. The terminology used in
this paper is defined as follows:

Wetlands (W ), are areas in which the groundwater level
is expected to be high relative to the other two landscapes
entities. In classical ecological terms they refer to the land
where saturation with water is a dominant factor influencing
the animal and plant species of that area (Cowardin et al.,
1979). From a hydrological point of view, wetlands com-
prise a broader type of landscape units than the commonly
used terms: riparian zones or valley bottom areas. They can
be seen as areas which, due to the shallow depth of the wa-
ter table, have limited residual storage capacity and there-
fore demonstrate a fast response to precipitation, indepen-
dent from their location in the catchment. The term shallow
in this regard means that in a normal wet season the ground-
water table reaches the surface during heavy rainfall events.
The predominant locations of wetlands, however, require a
subdivision of this class into (a) flat wetlands (Wf), which are
characterized by modest slopes, such as stream source areas
and valley bottoms (b) sloped wetlands (Ws) in hollows close
to streams where hillslopes end in valley bottoms or steep
headwater regions, but which can nevertheless be character-
ized by considerably sloped terrain along the flow direction
of the stream. Thus, while both wetland types exhibit rela-
tively low HAND, they are distinguished by different slope
angles. The dominant flow generation process for wetlands
is saturation overland flow.

Hillslopes (H ) are areas which connect concave and con-
vex landscapes (Chorley et al., 1984). The widespread per-
ception that floods are mainly generated on hillslopes (cf.

Beven, 2010) makes them a crucial element in landscape
analysis. The co-evolution of ecology and hydrology, and
thus the presence of preferential flow paths (Weiler and Mc-
Donnell, 2004), such as root canals, animal burrows, fissures
and cracks, makes rapid subsurface flow the most effective
and dominant runoff process of hillslopes as it fulfills the two
functions essential for developing and maintaining their to-
pographical appearance, i.e. drainage and moisture retention
(Savenije, 2010).

Plateaus (P ) are flat or undulating landscape units rela-
tively high above streams. Due to the low gradients and com-
parably deep groundwater levels, plateaus mainly fulfill stor-
age (both soil and surface) and evaporation functions, with
mainly vertical flow processes, in particular deep percolation
(Savenije, 2010).

3.2 Data

Landscape classification in the Wark catchment is based on a
5 m× 5 m DEM with a vertical resolution of 0.01 m (Fig. 1).
The flow direction network has been derived from the DEM
using a D8 algorithm (O’Callaghan and Mark, 1984; Jenson
and Domingue, 1988). Although HAND is critically sensi-
tive to the stream initiation threshold, the threshold upslope
contributing area has been fixed at a value of 10 ha. This
value has been selected to maintain a close correspondence
between the derived stream network and the mapped stream
network. The value is also in the range of stream initiation
thresholds reported by others (e.g.Montgomery and Diet-
rich, 1988). The relative height, i.e. HAND, was then cal-
culated from the elevation of each raster cell above nearest
grid cell flagged as stream cell following the flow direction.
Similarly, distance to the nearest drainage was also computed
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Fig. 2. Observation points in the Wark Catchment and their corre-
sponding landscape classes.

along the flow path to the nearest stream cell. The slope of
each grid cell was calculated using the average maximum
technique (Burrough and McDonnell, 1998).

During a field campaign (16–20 November 2010),
5611 points in the catchment, hereafter referred to as sam-
pling points, were mapped using GPS waypoints along vari-
ous paths throughout the catchment and in-situ visually clas-
sified into the three landscape units – wetland, hillslope
and plateau – in order to establish a “ground truth” accord-
ing to expert knowledge of hydrological dominant behavior
(Fig. 2). The resolution of the observed points is 5 m along
the walking paths. The points were collected walking along
downhill to uphill transects. The reason for this strategy was
to have continuous HAND values from the lowest, near river,
to the highest on the plateau. Transects were selected in dif-
ferent parts of the catchment: in the headwaters, in steep
valley bottoms and subtle sloped areas in the southern part.
Vegetation was also helpful to indicate each class, for ex-
ample in the Wark catchment the valley bottoms are covered
with grass, hillslopes are covered with forest and plateaus are
mostly used for agriculture.

3.3 HAND-based landscape classification

The landscape units have been classified according to
HAND (H ), slope (S) and distance to the nearest
drainage (D). A cell with a steep slope was classified as hill-
slope or sloped wetland and a cell with a low slope was clas-
sified either as flat wetland or plateau, depending on HAND
or distance to the nearest drainage (Table 1). To separate
HAND, slope and distance to the nearest drainage into high
or low categories, thresholds had to be introduced. The

Table 1. Criteria for land classification using HAND and slope.

Low HAND High HAND

Low Slope Wetland (flat) Plateau
High Slope Wetland (sloped) hillslope

Fig. 3. An example of fuzzy classification for high and low slope.
In the central part of the graph the classification is uncertain while
at the extremes the uncertainty is low.

thresholds were adjusted in a way that the modeled land-
scape classes corresponded sufficiently well with the land-
scape classes of the observed sampling points.

In reality, the boundary between the different landscape
units may not be sharply defined. The transition from one
landscape category to another may have to be determined
by fuzzy thresholds. The fact that transition is not sudden,
reflects, similar to fuzzy set theory, the modeler’s and ob-
server’s “degree of belief” (cf.Bárdossy et al., 1990) that a
point belongs to a certain landscape unit, as shown in the il-
lustrative example in Fig. 3. In the present case this results
in three different percentages for one cell indicating to what
extent a cell belongs to a landscape unit. Here, the fuzzy na-
ture of the parameters is considered by using a two parameter
cumulative Gaussian distribution function (F ):

F(x|µ, σ) =
1

2

[
1 + erf

(
x − µ
√

2 σ 2

)]
(1)

whereµ is the mean (i.e. HAND, slope, distance to the near-
est drainage) andσ is standard deviation. Both parametersµ

and σ are introduced as free calibration parameters in the
landscape classification model. Note, that for very small
standard deviations the model can be considered as “crisp”
or deterministic.
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Three landscape classification models have been tested us-
ing HAND, slope, distance to the nearest drainage and a com-
bination of them:

1. The first classification model, based on HAND and
slope (Model ID:MSH (Renńo et al., 2008)) uses the
four fuzzy threshold parametersµH, σH, µS andσS. The
classification rules for the models are as below:

The probability (Q) of having high values of slope:

Q = F (S|µS, σS). (2)

The probability (R) of having high values of HAND:

R = F (H |µH, σH). (3)

Thus, the probability (PH) of being hillslope is the same
as the probability of high slope values and high HAND
values:

PH = QR. (4)

Likewise, the probability (PP) of being a plateau is de-
fined as the probability of high HAND values and low
values for slope:

PP = (1 − Q)R. (5)

Similarly the probability (PW) of being wetland is de-
fined as the probability of low HAND values and high
(sloped wetland) or low (flat wetland) slope values.

PW = Q(1 − R) + (1 − Q) (1 − R) = (1 − R) (6)

where the first term reflects the probability of being
sloped wetlandPWs and the second the probability of
flat wetlandPWf .

2. The second model definesQ and R based on slope
(µS, σS) and distance (µD, σD) to the nearest drainage
(Model ID: MSD) to classify the landscape:

The probability (Q) of having high values of slope:

Q = F (S|µS, σS). (7)

The probability (R) of having high distance to the near-
est drainage:

R = F (D|µD, σD). (8)

3. For the third landscape classification model a combi-
nation of HAND and distance to the nearest drainage is
used. HAND is normalized (H ∗) to range from 0 to 1 by
dividing the HAND value of each grid cell by the maxi-
mum HAND value. The same is done for distance to the
nearest drainage (D∗). The multiplication of these two

matrices results in a third matrix, theIHD index (Model
ID: MSHD). The values for this new matrix are low and
the distribution is highly skewed with more than 86 %
of the raster cell showing a value below 0.1. In order
to normalize this raster it has been power transformed
with an exponent between 0 and 1. The procedure is as
below briefly:

H ∗
=

H

Hmax
(9)

D∗
=

D

Dmax
(10)

(
H ∗ D∗

)0<t<1
= IHD. (11)

The power of the matrix has been chosen by manual cal-
ibration and kept constant att = 0.1. IHD is a new ma-
trix and its value is multipication of normalized HAND
values (H ∗) and distance values (D∗) which was power
transformed.

The probability (Q) of having high values of slope is
thus:

Q = F (S|µS, σS). (12)

The probability (R) of having highIHD can be written
as:

R = F
(
IHD|µIHD , σIHD

)
. (13)

3.4 Model calibration

The model calibration procedure has been designed to mini-
mize a set of objective functions, set-up as an objective ma-
trix. The objective matrix is divided into two parts. The
first part consists of the coordinates and landscape classes of
the observed sample points and the second part of the mod-
eled landscape classes for the respective points. The objec-
tive function allows to evaluate the goodness of fit based on
the probability that a modeled point belongs to the same class
as the respective observed point and is defined as:

O =

[
1 −

∑NH
i=1 PH,i

NH

]
+

[
1 −

∑NP
i=1 PP,i

NP

]
(14)

+

[
1 −

∑NW
i=1 PW,i

NW

]

wherePHi , PPi and PWi are the probabilities of observed
hillslope, plateau and wetland grid cellsi, to be classified by
the model as hillslope, plateau or wetland respectivly.NH,
NP andNW are the numbers of observed grid cells for the
hillslope, plateau and wetland classes.
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For crisp models the probability of a certain point is 1 for
one class and 0 for the two other classes. For fuzzy mod-
els the probability of a modeled point is divided into three
classes summing up to unity, while leaving the observed sam-
ple points crisp, i.e. the observed points are clearly defined as
wetland, hillslope or plateau. The idea behind this approach
is to let the model decide about the hydrological behavior
of a cell which may not be unique given the large number
of crisp observed points. The fact that the objective func-
tion is made up of three parts helps to calibrate the model
based on a normalized value where all the classes participate
equally; even when the proportion of one landscape class is
large compared to others, and the in-situ observed points are
not the same number for all classes. Note, that although the
maximum value of the objective function can be 3, in practice
it will not exceed 2 because with an extremely unrealistic set
of parameters the entire basin will be classified as one unit.
As a result, the objective function for that unit will be zero
and for the remaining classes will each sum up to unity.

Calibration of the models in this paper has been done us-
ing Monte-Carlo sampling, i.e. the parameters were sampled,
in absence of further prior information, from uniform distri-
butions, within predefined threshold ranges (S(−) ∈ [0, 0.2],
H (m)∈ [0, 20], D(m)∈ [0, 100], IHD(−) ∈ [0, 1]) in
20 000 Monte-Carlo realizations. Similar to the idea behind
the Generalized Likelihood Uncertainty Estimation (GLUE;
Beven and Binley, 1992), it has been assumed that there is,
due to equifinality, no single best model parameter set. A
range of acceptable (i.e. behavioral) sample rates (ASR;Li
et al., 2010) is tested in sensitivity analysis. The parameters
are reported based on the best performance and their likeli-
hood weighted 95 % (2.5–97.5 %) uncertainty interval (UI)
for an ASR of 5 %, whereby the value of the objective func-
tion is used as likelihood measure. For sensitivity analysis
ASR between 1–10 % was used.

3.5 Optimal effective DEM window size and resolution

The 5 m× 5 m resolution of the DEM allowed a relatively
accurate representation of the catchment topography in de-
tail. However, high resolution DEMs can introduce a bias in
the results as hydrologically negligible local landscape fea-
tures, such as steep, small scale rock outcrops, can cause
certain grid cells to be inappropriately classified. To reduce
this problem the DEM has been smoothed using a Gaus-
sian filter with meanµSM and standard deviationσSM (here-
after referred to as characteristic smoothing scale). Applied
as a moving window withµSM = 0 and different values of
σSM = 0.5, 1, 1.5, 2, 5, 10 grid cells (equivalent to 2.5, 5, 7.5,
10, 25, 50 m) this allowed the removal of “noise” in the land-
scape while keeping the high DEM resolution by assigning
each grid cell the Gaussian weighed elevation of the neigh-
boring cells (truncated at a radius of 3σSM) (cf. Hrachowitz
and Weiler, 2011). The optimal effective window size, which

is two times the radius of 3σSM, is the one minimizing the
objective function.

Furthermore the effect of lower DEM resolutions (10, 20,
50 or 100 m) on the model parameters and performances has
been investigated, to test which DEM resolution is necessary
to provide acceptable model results. For model runs with
lower resolution no filter was used as it was assumed that
local landscape features would automatically average out in
the process of resampling the DEM at lower resolutions.

3.6 Sensitivity to calibration point sample size

The effect of different calibration point sample sizes on the
robustness and predictive power of the models was assessed
by cross-validation. More specifically, repeated random sub-
sampling validation (Vapnik, 1998) was used to investigate
how best fit parameter sets change for calibration point sam-
ple sizes of 2806 (s1), 1122 (s2), 561 (s3), 281 (s4), 112 (s5),
56 (s6) and 28 (s7) points (i.e. 50, 20, 10, 5, 2, 1 and 0.5 % of
the complete of 5611 calibration points which consisted of
1501 (26.8 %), 1385 (24.6 %), 2725 (48.6 %) points for wet-
land, hillslopes and plateau respectively). 100 random sub-
samples for each of the sample sizess1–s7 were drawn from
the complete set of 5611 calibration points. The best param-
eter set for each of the 100 sub-samples was then estimated
by 500 Monte-Carlo realizations. Thus, a central parameter
estimate together with a spread around that central value was
obtained from the 100 sub-samples for each of the samples
sizess1–s7. The objective function for the remaining 5611-
s1-7 points not used for calibration (validation points) was
then predicted using the 100 individual parameter sets. The
mean and spread of the deviation of the validation point ob-
jective function from the calibration point objective function
was used as an indicator for the predictive power of models
with different calibration point sample sizes, i.e. the closer
the validation objective function is to the calibration objec-
tive function the higher is the predictive power of the models
at a given calibration sample size. Likewise, the robustness
of the models was further assessed by relating the 100 cen-
tral parameter estimates and their spreads to the respective
sample sizes, i.e. the higher the spread in the parameter esti-
mates, the less robust or the more sensitive the model is to the
chosen calibration points, indicating a too small calibration
point sample size.

3.7 Sensitivity to the location of calibration points

As the topography of the Wark catchment sharply changes
from undulating hills in the western part to plateaus above
steep, incised valleys in the eastern part (Fig. 1), this allowed
assessing the robustness of the landscape classification mod-
els to changing landscape structures. That is, the ability of
the model to correctly predict landscape classes when it was
calibrated in a structurally different landscape. Here this was
done by splitting the Wark Catchment into four zones; North,
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East, West and South, by using mean latitude and longitude
(the mean of maximum and minimum of latitude within the
catchment and the same procedure for longitude). While the
eastern part of the catchment has very pronounced landscape
features with sharp hillslopes and narrow valleys, the western
part is characterized by a comparably subdued profile with
wider valleys. The models were subsequently calibrated us-
ing observed points from one zone, while the observed points
in the remaining zones were predicted. The changes in objec-
tive functions and parameter sets were then used as indicators
of the model sensitivity to changing landscapes.

3.8 Comparison between the topographical wetness
index and different landscape classes

As mentioned above the land classification aims at categoriz-
ing the catchment into hydrologically similar zones. For this
study the land classification was based on visual observation.
In reality it is expected that the position of the groundwater
table can provide a more objective selection criterion as the
groundwater for wetlands can be assumed to be shallower
than the groundwater for plateaus and hillslopes. To see how
well the model predicts the likely position of the groundwater
table, hereafter referred to as indicator of “wetness” of each
landscape, the models and their result were compared to the
Topographical Wetness Index (ITW), which is the base for
TOPMODEL (Beven and Kirkby, 1979). TheITW is defined
as follows:

ITW = ln(A/tanβ) (15)

whereA is the upstream contributing area andβ is local
slope. The principle behind TOPMODEL is that locations
with similar wetness indices are considered to have similar
hydrological behavior.

4 Results and discussion

4.1 Comparing the performance of different models for
the original DEM

In order to identify the most adequate landscape classifica-
tion model, the three models (MSH, MSD, MSHD) were run
with the original 5 m× 5 m DEM. Model MSH, which is
equivalent to the original HAND-based model (Renńo et al.,
2008), is found to be the most adequate model with an objec-
tive function (Eq. 14) value ofO = 0.527, while the objective
function values for theMSD andMSHD models are moder-
ately higher with values of 0.702 and 0.584, respectively.
For the modelMSH the best fit threshold values for slope
(S) and HAND (H ) are found to beµS = 0.129 (95 % UI:
0.096–0.166) withσS = 0.002 (95 % UI: 0.001–0.039) and
µH = 5.9 m (95 % UI: 3.2–8.9 m) withσH = 0.23 m (95 % UI:
0.05–2.9 m). Correspondingly, for modelMSD the threshold
values for slope (S) and distance to the nearest drainage (D)

areµS = 0.127 (95 % UI: 0.102–0.150) withσS = 0.001 (95 %
UI: 0–0.026) andµD = 62.6 m (95 % UI: 42.6–84.5 m) with
σD = 2.80 (95 % UI: 0.3–22.5 m). While forMSHD, the slope
and the normalized metric of combinedH andD (IHD) are,
µS = 0.135 (95 % UI: 0.092–0.183) withσS = 0.004 (95 %
UI: 0–0.044) andµIHD = 0.512 (95 % UI: 0.454–0.585) with
σIHD = 0 (95 % UI: 0.001–0.075). Since inMSH theσ values
for the Gaussian distribution are very low, these results sug-
gest that all grid cells withS < 0.129 andH < 5.9 m are to
be classified as flat wetlands, while grid cells withS > 0.129
andH < 5.9 m are classified as sloped wetlands. Grid cells
with S > 0.129 andH > 5.9 m are defined as hillslopes while
those withS < 0.129 andH > 5.9 m represent plateaus.

The classified landscapes are illustrated in Fig. 4. The
worst performance was obtained with modelMSD. This
model cannot mimic flat wetland and especially headwater,
narrow valley bottoms and wide valleys simultaneously. For
headwaters and wide valleys the model needs to use a high
distance from the stream to correctly model the observed
point, however for narrow valley bottoms the distance should
be as little as possible not to overlap with neighboring hill-
slopes. This causes a poor performance ofMSD. The model
which used HAND performs the best; it can predict the head-
water as well as wide and narrow valley bottoms better than
MSD.

One problem which is obvious in Fig. 4 is the noise within
a specific landscape. Some raster cells with very high res-
olution have completely different characteristic from their
neighboring cells. For example a cell (which may be a road
or other human interference) may have a zero slope and be
classified as plateau while its neighboring cells having steep
slopes are classified as hillslope.

The relatively low spread for both parameters, HAND and
slope, in theMSH highlights that the landscape units can
be classified with a surprisingly low fuzziness, i.e. there is
only limited uncertainty if a landscape element belongs to
one class or to another and it shows that a crisp model with
σslope=σHAND = 0 (Model ID: MSHcrisp) would produce re-
sults very close, in terms of model performance and parame-
ter estimates, to those from the fuzzy approach.

The results ofMSH furthermore suggest that HAND is a
better indicator for landscape classification than distance to
the nearest drainage or than a combination of distance and
HAND, as used inMSD andMSHD models. It shows that
additional or similar parameters do not necessarily lead to
equally good representations of landscape units as shown in
Fig. 4, where several areas of obvious landscape misclassifi-
cation can be seen, especially forMSD. This underlines the
potential of HAND to meaningfully characterize landscapes
as it originates, other than elevation, directly from the feed-
back processes between water and topography and as it is,
other than distance to the nearest drainage, directly linked to
the dominant driver of storage-discharge relationships, which
has co-evolved with the landscape: the hydraulic head.
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Fig. 4. Comparison between different models for land classification in a headwater of one of the tributaries of the Wark.(a) The location of
the headwater in the Wark Catchment;(b) model using HAND and slope (MSH); (c) model using distance to the nearest drainage and slope
(MSD); (d) model using HAND, distance to the nearest drainage and slope (MSHD). White areas represent areas which are classified in more
than one class with high uncertainty.

4.2 Effect of smoothing on model performance and
parameters

Relatively prominent, though small scale, landscape features,
such as rock outcrops or hollows, can be present in land-
scapes of any type. However, up to a certain size they do
not significantly change the appearance of the overall land-
scape or the associated dominant runoff process. Thus they
should be smoothed out in order to reduce noise in the result-
ing landscape classification. Here it is found that, with in-
creasing characteristic smoothing scale fromµSM = 0 (origi-
nal 5 m× 5 m DEM) toσSM = 10–25 m, equivalent to an ac-
tual window size of 60–150 m (truncating the normal dis-
tribution at cumulative probabilities of 0.005 and 0.995 or
3σ ) the model performance of all three modelsMSH, MSD
andMSHD significantly increased and sharply declined there-
after (Fig. 5). With an objective function value ofO = 0.491,
the crisp (i.e.σslope=σHAND = 0) MSHcrisp with σSM = 10 m,
H = 4.7 m (95 % UI: 3.5–7.1 m) andS = 0.113 (95 % UI:
0.103–0.140) clearly outperformed all other models. The pa-
rametersH andS developed contrarily with increasing size
of the smoothing window. WhileH did not show any con-
sistent relationship and a rapid increase for window size of
300 m,S decreased generally with increasing characteristic
smoothing scale (Fig. 6a and b). The improved model per-
formance with smoothed landscapes, however, comes at the
price of a considerable trade-off with parameter identifiabil-
ity. As the smoothing implies an assimilation of landscape

Fig. 5. Performance of different classification models for different
effective smoothing window sizes.

features, clear distinctions between them are lost and a wider
range of parameter combinations can lead to the same model
results. This is shown using the parameter range for different
ASR. As the smoothing window size increases the parame-
ter identifiability forH decreases and for the largest window
size of 300 m as the ranges decrease for lower value of ASR
(Fig. 6c). As the smoothing window size increases,S shows
a general decrease up to window size of 150 m before it in-
creases for the largest window size of 300 m (Fig. 6d).
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Fig. 6. (a) Likelihood weighted mean values of HAND for the modeling results retained as behavioral vs. different effective smoothing
window sizes for acceptable sample rate (ASR) of 1–10 %;(b) likelihood weighted mean values of slope for the modeling results retained as
behavioral vs. different effective smoothing window sizes for acceptable sample rate (ASR) of 1–10 %;(c) parameter range for 95 % (2.5–
97.5 %) uncertainty interval of HAND(d) parameter range for 95 % (2.5–97.5 %) uncertainty interval for slope. Note that for comparative
reasons and due to the inherent subjectivity in the choice of a threshold for defining behavioral parameter sets, the sensitivity of the parameter
uncertainty ranges to varying thresholds here is illustrated by showing the parameter ranges for best 1–10 % of the acceptable sample rate
(ASR).

Using the best model,MSH, and comparing the re-
sulting landscape classes derived from a smoothed DEM
(σSM = 10 m, Fig. 7c), to the map obtained from the raw, high
resolution DEM (σSM = 0 m, Fig. 7b) it can be seen that much
of the scattered small scale noise and obvious misclassifica-
tions disappeared in favor of a more consistent and smooth
representation of hydrologically dominant landscape classes.
Hillslope and plateau are the two landscapes which are clas-
sified more uniformly with less scatter for the larger smooth-
ing window. On the other hand by increasing the size of
smoothing window (σSM = 50 m, Fig. 7d), the small valley
bottoms are smoothed out and classified as plateau.

From these results it can be inferred that the characteristic
scale of landscape features that determine landscape classes
is in the order of approximately 50 m in this study area and
landscape features larger than that do significantly change
the appearance of the landscape and its associated domi-
nant runoff processes based on visual observation. However,
note that this characteristic landscape feature size should be
treated as site specific as it can potentially vary in other re-
gions, where different or additional landscape classes are
present.

4.3 Effect of DEM resolution on model performance
and parameters

Frequently, only DEMs with resolutions coarser than
5 m× 5 m are available. Therefore the robustness and sen-
sitivity of the landscape classification modelsMSH, MSD and
MSHD was assessed with several re-sampled, coarser DEMs,
similar to what was done earlier byZhang and Montgomery
(1994), who tested the effect of DEM resolution on topo-
graphic wetness index and slope. Again, the crisp model
MSHcrisp (i.e. σslope=σHAND = 0) is generally the best per-
forming one (Fig. 8) with objective function values between
0.515< O < 0.993, depending on the DEM resolution. It is
found that the performance first slightly improves up to a
resolution of 10 m and deteriorating thereafter, implying that
DEMs with resolutions higher than 20 m show sufficient de-
tail to effectively produce results close to those obtained from
a 5 m× 5 m DEM. DEMs with resolutions lower than 20 m,
on the other hand, gradually loose important detail, causing
a relatively sharp increase in the objective function. Such
low resolutions do not contain sufficient fine detail of the
landscape and in particular fail to correctly represent narrow
but incised, deep valleys or small head waters, thus introduc-
ing considerable error in the HAND as well as in the slope
threshold values. For coarse resolution DEMs an additional
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Fig. 7. Smoothing window effect on the land classification for the modelMSHopt. (a) Location of selected area in the Wark catchment;
(b) classified landscapes for original DEM with resolution of 5 m× 5 m without using a smoothing window;(c) classified landscapes using
a smoothing window of 60 m (σ = 10 m);(d) classified landscapes using smoothing window of 300 m (σ = 50 m).

Fig. 8. Performance of different classification models for different
DEM resolutions.

source of error was identified. The models were calibrated
to observed, clustered sample points, which were, within
the clusters, generally located at distances<10 m from each
other. It was thus possible that observed points next to each
other represent different landscape classes. For coarse DEM

resolutions, several classes could thus be contained within
a single DEM cell (e.g. 100 m× 100 m). For this reason it
was possible that one cell could represent all three observed
classes at the same time which clearly increases the objective
function. The parametersH andS developed differently with
decreasing DEM resolution. WhileH shows a slight convex
relation to resolution with minimum values for resolution of
10 m, slope shows a strong convex behavior, decreasing to
resolution of 50 m and increasing for resolution of 100 m
(Fig. 9a and b). The parameter identifiability, however, de-
creased with decreasing DEM resolution forH , which was
not true for parameterS (Fig. 9c and d).

From the analysis in the previous three sections it was
found that the most adequate landscape classification in this
study could be obtained by the use of the highest reso-
lution DEM (5 m× 5 m), smoothed with a Gaussian filter
with a characteristic smoothing scaleσSM = 10 m, which is
equivalent to an effective window size of 60 m, and a crisp
(i.e. σS = 0, σHAND = 0) model set-upMSHcrisp, with land-
scape classification threshold parametersH = 4.7 m (95 %
UI: 3.5–7.1 m) andS = 0.113 (95 % UI: 0.102–0.140), which
resulted in an objective function value ofO = 0.491. This
model set-up has been used for comparative analysis in
the remainder of this study and is hereafter referred to as
MSHopt. A summary of the different landscape classes and
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Fig. 9. (a)Likelihood weighted mean values of HAND for the modeling results retained as behavioral vs. different DEM resolutions for an
acceptable sample rate (ASR) of 1–10 %;(b) likelihood weighted mean values of slope for the modeling results retained as behavioral vs.
different DEM resolutions for an acceptable sample rate (ASR) of 1–10 %;(c) parameter range for 95 % (2.5–97.5 %) uncertainty interval of
HAND for different resolutions(d) parameter range for 95 % (2.5–97.5 %) uncertainty interval for slope for different resolutions. Note that
for comparative reasons and due to the inherent subjectivity in the choice of a threshold for defining behavioral parameter sets, the sensitivity
of the parameter uncertainty ranges to varying thresholds is illustrated by showing the parameter ranges for best 1–10 % of the acceptable
sample rate (ASR).

their topographical indicators (slope, HAND and distance to
the nearest drainage) for modelMSHopt is presented in Ta-
ble 2. The classified map of the Wark Catchment resulting
from MSHopt is illustrated in Fig. 10.

4.4 Sensitivity to calibration point sample size

The landscape classification obtained from the above sug-
gested that model results depend strongly on how the model
was calibrated and on the robustness of the parameter es-
timates. Inadequate calibration strategies could thus cause
considerable bias and inaccuracies in the results. The sen-
sitivity of MSHopt model results and threshold parameters to
the sample size of calibration points was estimated by com-
paring the results obtained from different sub-sample sizes
(s1–s7).

The results are summarized in Fig. 11. While clearly
the objective function can occasionally take low values for
small sets of calibration points, its mean value decreases with
smaller sample size (Fig. 11c). This is, however, largely
an effect of the reduced constraints to the model, as can be
seen in the pattern of the objective function for the validation
points (Fig. 11d). As the calibration sample set is reduced,
the performance of the models in validation deteriorates.
This is also illustrated in Fig. 11e, where the deviations from

Table 2. Mean and standard deviation values for HAND, slope
and distance to the nearest drainage for each landscape class of
the best model performanceMSHopt (threshold valuesH = 4.7 m,
S = 0.113).

HAND (m) slope (−) distance to the
nearest drainage

(m)

µ σ µ σ µ σ

wetland 2.44 1.83 0.091 0.087 74.99 78.31
wetland 2.05 1.76 0.047 0.030 88.53 86.13
(flat)

wetland 3.45 1.60 0.206 0.083 39.35 31.54
(sloped)

hillslope 40.96 28.07 0.262 0.144 233.49 152.31
plateau 39.81 26.69 0.066 0.028 410.51 185.00

the line of perfect agreement of the relationship between cal-
ibration and validation objective functions are shown, i.e. the
higher the deviation the more the objective functions in cali-
bration and validation modes differ. For very robust models
with high predictive power only small deviations in valida-
tion would be expected. It can also be seen that as the sample
size of the calibration points increases, the range of the two
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Fig. 10. Classified map of the Wark catchment resulting from the
best model performanceMSHopt.

landscape classification threshold parametersH and S de-
creases exponentially (Fig. 11a and b). Hence, as additional
calibration data are introduced, model parameters show less
uncertainty. The smaller the calibration sample set the less
representative it is for the landscape, resulting in consider-
ably different parameter sets for each realization of each dif-
ferent sub-sample of sizen (see wider range for parameters
as well as objective functions of calibration and validation
in Fig. 11a–d). This also implies better parameter identifia-
bility for larger calibration sample sets. In general it can be
said that the model stabilizes and remains relatively robust
with calibration sample sets of at leastn = 560 points (in this
study approximately 10 % of the available sample size), or
more specifically with an average calibration sample density
of 7 points per km2.

4.5 Sensitivity to the location of the calibration points

Subsequently we tested how well the calibration sample set
represents the landscape features of the overall catchment in
order to produce good and robust model performance. This
is considered helpful, as it can potentially give modelers the
possibility to a priori assess if there are landscape features
with a higher, landscape classification relevant information
content than others. This type of information can help to
identify areas where it is most useful to collect calibration
sample points.

The results of the four analyzed sub-sets of calibration
points taken from four parts of the catchment have been com-
pared forMSHopt. These four parts of the catchment are sum-
marized in Table 3 and it can be seen that using calibration
points only from the northern and eastern parts results in the

Table 3. Objective function values (O) for calibration and vali-
dation in different parts of the Wark Catchment; N, S, W and E
represents northern, southern, western and eastern part respectively.

Calibration Validation

0.407 (N) 0.902 (S)
0.502 (S) 0.607 (N)
0.402 (E) 0.669 (W)
0.565 (W) 0.506 (E)

best model performances in the calibration mode (O = 0.407
and 0.402). These two parts are characterized by a very
pronounced landscape profile, dominated by steep, incised
valleys and narrow valley bottoms. In the remaining two
parts, South and West, which are dominated by a more sub-
dued landscape with undulating hills and wide valley bot-
toms the model performance in calibration mode is less good
(O = 0.520 and 0.565). Clearly, the distinction between land-
scape units is more ambiguous in areas with subdued profile,
as the transition between different landscape classes, such
as wetland and hillslope, is much more subtle, which re-
duces a two-criterion classification to a single-criterion one.
This consequently leads to uncertainties, misclassifications
and thus a reduced model performance. However, the results
are different in the validation mode. Calibration point sub-
sets from the northern and eastern parts, characterized by a
very pronounced profile, do not serve very well for predict-
ing landscape classes in areas with gentle slopes and wide
valley bottoms like southern and western parts respectively
(O = 0.902 and 0.669). This is caused by the models inabil-
ity to recognize subtle landscape transitions as these were
not available for model conditioning. On the other hand,
models calibrated to low profile landscapes like the southern
and western parts, in spite of a less good calibration perfor-
mance, show a significantly better performance in predicting
landscape classes in areas with different topographical char-
acteristics northern and eastern part respectively (O = 0.607
and 0.506). This is not entirely surprising as it may be as-
sumed that a model conditioned to recognize subtle land-
scape differences will also recognize much clearer differ-
ences in the profile. Based on these findings an efficient
strategy to choose calibration points would include a few
points characterizing pronounced landscape features, such as
incised valleys. The majority of sampling points, however,
should cover parts of the catchment with subdued topogra-
phy and rather subtle landscape features, where classification
can be most ambiguous.
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Fig. 11. Behaviour of parameters and objective functions depending on different calibration sample sizes; different sample sizes are shown
based on resolution (sample/m) along the walking path(a) the behavior of HAND for different sample sizes(b) behavior of slope for different
sample sizes(c) behavior of calibration objective function (O) and(d) behavior of validation objective function (O) (e)distance of validation
points to the line of perfect agreement. The distance is positive for points above the line and negative for the points below the line. Whiskers
represent the 1.5 times the interquartile range (IQR) and the red crosses show outliers.

4.6 Comparison between the topographical wetness
index and different landscape classes

As mentioned earlier the relation with different classified
landscapes were compared with the topographical wetness
index.To investigate how the wetness index differs for differ-
ent landscapes, theITW was calculated for the entire catch-
ment using the smoothed DEM withσSM = 10 m in order to
allow comparison with the best performing modelMSHopt.
Nobre et al.(2011) reported a relatively weak, inverse rela-
tion between HAND andITW in the Amazon region, showing
that with increasing HAND the wetness index decreases. The
scatter in the relationship (cf.Nobre et al., 2011) was reduced
by classifyingITW values of all cells in the study catchment
into different bins, in order to facilitate clearer interpretation.
Different bins or class sizes (5, 10 and 20 classes) show sim-
ilar behavior regarding the proportions and changes of each
landscape for each class.

As the wetness index for each class increases the propor-
tion of plateau and wetland increases and the proportion of
hillslope decreases; for the class with highest wetness index
the proportion of plateau also decreases and proportion of
wetland shows a rapid increase. From Fig. 12 (10 classes) it
is clear that by increasing the wetness index the proportion
of wetland in each class gradually increases and the propor-
tion of hillslope is gradually less. It can be inferred from
Fig. 12 that the locations which were defined as hillslope and

Fig. 12. The analysis for 10 classes of the topographical wetness
index (ITW) and landscape component of each class.

wetland are the driest and wettest areas respectively in the
Wark catchment according toITW. The mean value for each
class shows that wetland areas have the highest wetness in-
dex values (Table 4). Within the wetland class, flat wetlands
have a higher wetness index than sloped wetlands.

Hillslopes are the driest classified landscape based on the
ITW. Although the aim of the land classification is not to
predict the exact depth and behavior of the water table, since
many factors play a role in the position of the groundwater
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Fig. 13. (a)Location of a selected headwater of the Wark(b) aerial photo of the headwater(c) categorized landscapes using the best model,
MSHopt (d) topographical wetness index (ITW). For better orientation, shapes (4, ©, �) indicate identical positions on the maps(b), (c)
and(d).

Table 4. Mean and standard deviation of the topographical wetness
index (ITW) for each landscape class

ITW

µ σ

Wetland 9.9 2.5
Wetland (flat) 10.5 3.6
Wetland (sloped) 8.5 1.6
Plateau 8.3 1.2
Hillslope 7.6 1.2

table such as the recharge, boundary conditions (e.g.Hait-
jema and Mitchell-Bruker, 2005) and bedrock topography,
the classified landscape can potentially give a good estimate
of groundwater depth.

One aspect regarding theITW is that in a GIS a stream in
general has a width of one cell size. Adjacent cells with steep
slopes and small contributing areas may be much drier than
stream cells while in reality it is expected that the wetness
of most of the cells close to a stream change gradually and

uniformly (Burrough and McDonnell, 1998). For example,
a raster cell with the steepest slope in the catchment area,
which is located near a cell flagged as stream and drains to it
with a contributing area of one cell (the lowest contributing
area possible) will exhibit the lowestITW compared to the
rest of the cells. For the HAND based method this cell, how-
ever, will, arguably more realistically, be classified as sloped
wetland because of low HAND index and steep slope. A
visual comparison between theITW and classified map and
aerial picture is presented in Fig. 13.

5 Conclusions

In this study we tested and assessed the applicability and sen-
sitivity of a HAND based landscape classification framework
in a meso-scale headwater catchment in Luxembourg, char-
acterized by a temperate, humid climate. With this approach
it was possible to classify landscape units into flat wetland,
sloped wetland, hillslopes and plateaus, which are perceived
to exhibit distinct dominant runoff generation processes.
Three different model types, using different topographical
variable combinations, such as HAND, slope, distance to the
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nearest drainage and a combined HAND-distance parameter,
were investigated. Best landscape classification results were
obtained from the model based merely on HAND and slope.
This implies that HAND is a stronger indicator for different
dominant runoff processes than for example the distance to
the nearest drainage or absolute elevation, as HAND links
more directly to the hydraulic gradient, arguably the most
dominant factor for any type of runoff generation. Based
on experiments on sample size and observation density, it
was furthermore shown that landscape classes and thus domi-
nant runoff processes are determined by a characteristic land-
scape feature scale of approximately 50–100 m. Local land-
scape features smaller than that generally do not influence
the overall landscape classification and thereby the dominant
runoff processes. Landscape classification based on DEMs
with resolutions of 20 m× 20 m and above can give suffi-
ciently accurate results, whereas lower resolution DEMs lack
the fine detail necessary to identify critical features, such as
narrow valleys. As the landscape classification model needs
to be calibrated to observed points, the sensitivity of the cal-
ibration point set was analyzed and it was found that sam-
ple density of 50 m along walking path can be assumed to
be representative in this study, giving robust model results
with high predictive power. It was also shown that calibra-
tion sample points from subdued landscapes, with subtle and
frequently ambiguous transitions between landscape classes
contain more information for model calibration than calibra-
tion points in clearly defined landscape classes. The classifi-
cation model was compared with the topographical wetness
index and a clear relation between classified landscape and
groundwater table based on binned values of the topographi-
cal wetness index values was found.

The landscape classification results could in future work
be refined by using additional information such as dis-
tributed soil moisture or groundwater data, for establishing
a yet stronger link between landscape classes and runoff
processes.

The resulting maps show a relatively realistic, high accu-
racy landscape classification presumably associated closely
to the dominant runoff generation processes in the individual
parts of the study catchment. Such results can in the future
serve as basis for the development of conceptual hydrolog-
ical models by assigning different model structures to the
individual landscape classes, thereby potentially improving
model realism without the need for further parameters.
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