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Abstract. This paper presents a detailed performance andand diverse feedback processes with hydrology and ecol-
sensitivity analysis of a recently developed hydrological ogy (Savenije 2010. A number of previous studies inves-
landscape classification method based on dominant runoffigated the relationships between topography and hydrolog-
mechanisms. Three landscape classes are distinguisheital behavior in the attempt to identify hydrologically dif-
wetland, hillslope and plateau, corresponding to three domferent functional landscape units and to better characterize
inant hydrological regimes: saturation excess overland flowmodel structure, parameter sets as well as metrics of catch-
storage excess sub-surface flow, and deep percolation. Tanent similarity. For exampléyinter (200]) classified the
pography, geology and land use hold the key to identify-catchment into hydrological landscape units (upland, valley
ing these landscapes. The height above the nearest drainagile and lowland) exploiting the combination of topographic,
(HAND) and the surface slope, which can be easily obtainedyeological and climatic conditions. Based on this concept
from a digital elevation model, appear to be the dominant to-Wolock et al.(2004) classified hydrological units for the en-
pographical controls for hydrological classification. In this tire United States of America using GIS data. Topography,
paper several indicators for classification are tested as weland use and geology have also been used to directly infer
as their sensitivity to scale and resolution of observed pointslominant runoff processes within a catchméttigel 1995
(sample size). The best results are obtained by the simpl&laef et al, 2002 Schmocker-Fackel et ak007 Hellebrand
use of HAND and slope. The results obtained comparedand van den Bq2008 Milller et al, 2009.
well with the topographical wetness index. The HAND based
landscape classification appears to be an efficient method to Another widely used indicator is the topographical wet-
“read the landscape” on the basis of which conceptual modhess indexBeven and Kirkby 1979 which is the basis of
els can be developed. TOPMODEL and characterizes hydrological behavior based
on upslope contributing area and local slope. The topo-
graphical wetness index was further modifiedHjgrdt et al.
(2004, who took into account downstream conditions con-
sidering how far a water particle needs to move to lose a cer-
Large scale hydrological behavior is still poorly understood, {&in @mount of potential energy. Topography was also used
to investigate the relationship of catchment transit times with

mainly as a result of the lack of realistically observable C
variables on the one hand and the complexity of catch-"Umerous catchment characteristics such as flow path length,

ment processes on the other. Catchment topography, readradientand connectivitcGuire etal, 2005 Jencso et al.
ily available as digital elevation models (DEM), has the po- 2008 2010 or drainage densityHrachowitz et al. 2009
tential to provide important additional information on catch- 2010 using tracer techniques. Other tracer studies directly

ment processes, particularly due to its inherent co-evolutiorl"ked topography and hydrological behavidshenbrook
et al, 2004 Tetzlaff et al, 2007). A wide range of addi-

tional topographical indices have been suggested, describing,

Correspondence tdS. Gharari among other aspects, the shape, age and stability of a catch-
BY (s.gharari@tudelft.nl) ment, such as the hypsometric integraitier et al, 2002
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and its correlation with catchment process8mgh et al. and the resolution of the DEM. Furthermore, it is unknown
2008. Other studies correlated topographical indices withto what extent local landscape features can introduce a bias
soil type and hydrological behavidPérk and van de Giesen and how robust HAND is to the resolution of observed points
2004 Lin and Zhoy 2008 Pelletier and Rasmusse2009 (sample size) and the locations of the observed calibration
Behrens et al201Q Detty and McGuirge2010. points. Hence, the application of HAND is still subject
In spite of the rich information content of topography, its to considerable uncertainties. In addition, it is not well-
general usefulness for hydrology is controversial. It has beemunderstood how HAND relates to other landscape descrip-
argued that climate and geology exert stronger influence onors, such as the topographical wetness index.
the rainfall runoff behavior of a catchment than topography The objectives of this paper are thus to (1) assess differ-
(Devito et al, 2005. Furthermore, it was shown that flow ent hydrologically meaningful landscape classification tools
patterns may be dominated by bedrock- rather than surfacbased on the HAND metric and further parameters such
topography KcDonnell et al, 1996 Tromp-van Meerveld as slope and the distance to the nearest drainage, (2) test
and McDonnell 200§. According to McDonnell (2003 the sensitivity of HAND-based landscape classification to
the “catchment hydrologist will need to develop hypothesessmall scale landscape features and resolutions of the DEM,
from non-linear theory that are testable on the basis of ob{3) evaluate the effect of the sample size of the calibration
servations in nature. This will not come about via model data set on the robustness of HAND-based landscape clas-
intercomparison studies or DEM analysis”. These commentsification and to (4) analyze the relation of HAND to the
highlight the perception that DEM analysis alone may be oftopographical wetness index in a mesoscale catchment in a
limited value for gaining deeper understanding of catchmentemperate climate.
processes and that this needs to be brought into a wider con-
text, accounting for the subtle interplay of topography, geol-
ogy, climate, ecology and hydrology. 2 Study catchment

In spite of the complexity of catchment processes an . .
- he study catchemnt is the Wark Catchment in the Grand

due to the frequent lack of data for bottom-up modeling ap- X
d P gap Duchy of Luxembourg (Fig. 1); the catchment has an area

h latively simple, | | |
proaches, relatively simple, lumped conceptual models can, "oy o i ihe catchment outlet (49.881, 6.10 E) lo-

due to the self-organizing nature of catchments, be efficient -
in identifying dominant flow generation processes and mod-Cated d_(t)gv r;stre:lm t(t)f tg_e towr\1N(_1fh Ettaliok at the c<|)nflu-_
eling stream flow (cfSivapalan et a] 2003 Savenije2010. ence wi e Alzetie River. With averageé annual precip-

However, even for these top-down models additional data,itatit(.)n off865500mm yrll ?Ed averagl;e anr;fu_al potential etv?p—
other than precipitation and stream flow, are desirable for enoration o mmyr~ the annual runoir IS approximately

1 - . .-
hancing physical significance of model parameters and evai220 mMmyr-. . The _geology in the northern part is domi .
uation Nalbantis et a].2011). nated by schist while the southern part of the catchment is

RecentlyRenrd et al.(2008 formalized the Height Above mostly underlain by sandstone and conglomerate. The dom-

the Nearest Drainage (HAND) metric and employed it for inant land uses are forest on hillslopes, agricultural land

landscape classification. This metric may be more adequat8n plateaug and pastures in the valley pottoms. The el-

to identify hydrologically different landscape units than the evation varies between 195 to 532m with an average of

traditionally used elevation above mean sea level. HAND38Qma.s.I. (above se? Iev_el). The slope of the Cat((:)hment

calculates the elevation of each point in the catchment abov&@Mes between 0-200 %, with an average value of 17 %.

the nearest stream it drains to, following the flow direc-

tion. Ift thus ex_tracts from the rglatively.uninformativg topo- 3 Methods

graphic elevation the far more informative “hydrologic” ele-

vation, thereby increasing the hydrologic information con-3.1 Terms

tent of elevation dataNobre et al. 2011). Nobre et al.

(2011 showed that HAND is a stronger topographical de- The HAND-based hydrologic landscape classification in this

scriptor than height above sea level by analyzing long termpaper distinguishes three hydrologically, ecologically and

piezometer data (groundwater behavior). Based on hydromorphologically different landscape units, which, in the fol-

logically meaningful landscape analysiédbre et al.2011), lowing, will be referred to as wetland, hillslope and plateau

Savenije(2010 suggested that as topographical features ardcf. Renro et al, 2008 Nobre et al.2011). The use of these

frequently linked to distinct hydrological functioning, they terms might seem inconsistent as they originate from dif-

can be used to construct a conceptual catchment model peferent disciplines — ecology (wetland), hydrology (hillslope)

ceived of hydrological units within a catchment. and morphology (plateau) — where they do have clear defi-
Landscape classification based on HAND is potentially nitions. These terms were nevertheless deliberately chosen

sensitive to different aspects, such as the definition of theas they highlight distinct hydrological landscapes with dif-

threshold for channel initiation when deriving streams from ferent rainfall-runoff behavior (cSavenije 2010. Note that

a DEM, the seasonal fluctuations of the channel initiation,in other physio-climatic regions more or different landscape
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Fig. 1. (a)Location of the Wark Catchment in the Grand Duchy of Luxembo(bpdigital elevation model (DEM) of the Wark Catchment
with cell size of 5mx 5m (m),(c) slope of the Wark Catchment with DEM resolution of 5% m (%).

categories may be necessary to adequately describe the lanBeven 2010 makes them a crucial element in landscape

scape. The classification with proposed dominant runoff pro-analysis. The co-evolution of ecology and hydrology, and

cess in this paper is limited to the Wark catchment and mayhus the presence of preferential flow patiAe{ler and Mc-

not be valid for other catchments. The terminology used inDonnell 2004, such as root canals, animal burrows, fissures

this paper is defined as follows: and cracks, makes rapid subsurface flow the most effective
Wetlands V), are areas in which the groundwater level and dominant runoff process of hillslopes as it fulfills the two

is expected to be high relative to the other two landscapegunctions essential for developing and maintaining their to-

entities. In classical ecological terms they refer to the landpographical appearance, i.e. drainage and moisture retention

where saturation with water is a dominant factor influencing (Savenije 2010.

the animal and plant species of that ar€owardin et al. Plateaus @) are flat or undulating landscape units rela-

1979. From a hydrological point of view, wetlands com- tively high above streams. Due to the low gradients and com-

prise a broader type of landscape units than the commonlyparably deep groundwater levels, plateaus mainly fulfill stor-

used terms: riparian zones or valley bottom areas. They caage (both soil and surface) and evaporation functions, with

be seen as areas which, due to the shallow depth of the wanainly vertical flow processes, in particular deep percolation

ter table, have limited residual storage capacity and there{Savenije 2010.

fore demonstrate a fast response to precipitation, indepen-

dent from their location in the catchment. The term shallow3.2 Data

in this regard means that in a normal wet season the ground-

water table reaches the surface during heavy rainfall eventd.andscape classification in the Wark catchment is based on a

The predominant locations of wetlands, however, require & mx 5m DEM with a vertical resolution of 0.01 m (Fig. 1).

subdivision of this class into (a) flat wetland&(), which are  The flow direction network has been derived from the DEM

characterized by modest slopes, such as stream source araasing a D8 algorithm@’Callaghan and Mark1984 Jenson

and valley bottoms (b) sloped wetlandgd] in hollows close  and Domingue1988. Although HAND is critically sensi-

to streams where hillslopes end in valley bottoms or steeptive to the stream initiation threshold, the threshold upslope

headwater regions, but which can nevertheless be charactegontributing area has been fixed at a value of 10ha. This

ized by considerably sloped terrain along the flow directionvalue has been selected to maintain a close correspondence

of the stream. Thus, while both wetland types exhibit rela-between the derived stream network and the mapped stream

tively low HAND, they are distinguished by different slope network. The value is also in the range of stream initiation

angles. The dominant flow generation process for wetlandshresholds reported by others (eNontgomery and Diet-

is saturation overland flow. rich, 1988. The relative height, i.e. HAND, was then cal-
Hillslopes (H) are areas which connect concave and con-culated from the elevation of each raster cell above nearest

vex landscapesdhorley et al. 1984. The widespread per- grid cell flagged as stream cell following the flow direction.

ception that floods are mainly generated on hillslopes (cf.Similarly, distance to the nearest drainage was also computed

www.hydrol-earth-syst-sci.net/15/3275/2011/ Hydrol. Earth Syst. Sci., 15, 32832011
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Table 1. Criteria for land classification using HAND and slope.

N
A Low HAND High HAND

Low Slope  Wetland (flat) Plateau
High Slope  Wetland (sloped) hillslope
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along the flow path to the nearest stream cell. The slope of

each grid cell was calculated using the average maximunfFig. 3. An example of fuzzy classification for high and low slope.

technigue Burrough and McDonnell1998. In the central part of the graph the classification is uncertain while
During a field campaign (16-20 November 2010), atthe extremes the uncertainty is low.

5611 points in the catchment, hereafter referred to as sam-

pling points, were mapped using GPS waypoints along vari- . .
ous paths throughout the catchment and in-situ visually claszhrEShOIdS were adjusted in a way that the modeled land-

sified into the three landscape units — wetland, hiIISIOpescape classes corresponded sufficiently well with the land-

and plateau — in order to establish a “ground truth” accord—scilee cI?tsseti ofghe odbser\t/Je(il samp:ir?g dp_oﬁints. t land
ing to expert knowledge of hydrological dominant behavior n reaiity, the boundary between the difierent landscape

(Fig. 2). The resolution of the observed points is 5m alongunits may not be sharply defined. The transition from one
the walking paths. The points were collected walking alongl"’mdsc""pe category to another may have to be determined

downhill to uphill transects. The reason for this strategy Wasby fuzzy thresholds. The fact that transition is not sudden,

to have continuous HAND values from the lowest, near river, reflects, similar to fuzzy set theory, the modeler's and ob-

to the highest on the plateau. Transects were selected in difervers degree of be"?f (cBardossy ?t al.1990 thf_it a
oint belongs to a certain landscape unit, as shown in the il-

ferent parts of the catchment: in the headwaters, in stee . g .
valley bottoms and subtle sloped areas in the southern par ustrative example in Fig. 3. In the present case this results

Vegetation was also helpful to indicate each class, for ex N three different percentages for one qell indicating to what
ample in the Wark catchment the valley bottoms are coverec?Xtent a cell belongs to a landscape unit. Here, the fuzzy na-

with grass, hillslopes are covered with forest and plateaus argire of the parame_ters IS cpns!dered bY using a two parameter
mostly used for agriculture. cumulative Gaussian distribution functiofR Y

1 X — U
3.3 HAND-based landscape classification Fxlu, o) = 2 [1 + erf ( /_202>] @

The landscape units have been classified according t¥/heréu isthe mean (i.e. HAND, slope, distance to the near-
HAND (H), slope 6) and distance to the nearest est dramag_e) and is standard dev!atlor_l. Both paramet;-_zrs
drainage D). A cell with a steep slope was classified as hill- ando are mtrodg_ced_ as free calibration parameters in the
slope or sloped wetland and a cell with a low slope was clasia@ndscape classification model. Note, that for very small
sified either as flat wetland or plateau, depending on HANDStandard deviations the model can be considered as “crisp”
or distance to the nearest drainage (Table 1). To separaf@’ deterministic.

HAND, slope and distance to the nearest drainage into high

or low categories, thresholds had to be introduced. The
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Three landscape classification models have been tested us- matrices results in a third matrix, tHgp index (Model
ing HAND, slope, distance to the nearestdrainage andacom-  ID: Msyp). The values for this new matrix are low and
bination of them: the distribution is highly skewed with more than 86 %
of the raster cell showing a value below 0.1. In order
to normalize this raster it has been power transformed
with an exponent between 0 and 1. The procedure is as

1. The first classification model, based on HAND and
slope (Model ID: Msy (Renrd et al, 2008) uses the
four fuzzy threshold parameteuns;, oy, us andos. The

below briefly:
classification rules for the models are as below: WOnety
The probability () of having high values of slope: o — H ©)
Hmax
Q = F(Slus, 09). (2)
« D
The probability ®) of having high values of HAND: D" = Dt (10)
R =F(H . <t<
(H|pn, on) 3) (H* D*)O <1 e 1)
Thus, the probability #4) of being hillslope is the same )
as the probability of high slope values and high HAND The power of the matrix has been chosen by manual cal-
values: ibration and kept constant at0.1. Iyp is a hew ma-
trix and its value is multipication of normalized HAND
Py = QR (4) values {*) and distance value®(*) which was power
transformed.
Likewise, the probability £p) of being a plateau is de- The probability ) of having high values of slope is

fined as the probability of high HAND values and low thus:
values for slope:

Q = F(Slus, 0s). (12)
Pp=(1- O)R. (5)

The probabili of having highIyp can be written
Similarly the probability Pw) of being wetland is de- s v ® 9 Mghiho
fined as the probability of low HAND values and high
(sloped wetland) or low (flat wetland) slope values. R — F(IHDIMHD GIHD)- (13)

Av=001-R+1-0A-R=00-R) (6) 34 Modelcalibration

where the first term reflects the probability of being The model calibration procedure has been designed to mini-
sloped wetlandPw, and the second the probability of 1jze a set of objective functions, set-up as an objective ma-
flat wetlandPyy; trix. The objective matrix is divided into two parts. The
first part consists of the coordinates and landscape classes of
the observed sample points and the second part of the mod-
eled landscape classes for the respective points. The objec-
tive function allows to evaluate the goodness of fit based on

2. The second model define@ and R based on slope
(us, os) and distanceyp, op) to the nearest drainage
(Model ID: Msp) to classify the landscape:

The probability Q) of having high values of slope: the probability that a modeled point belongs to the same class
as the respective observed point and is defined as:

Q = F(Slus, 0s). (7

i=Hl PH,i ,'=Pl P,i
The probability ®) of having high distance to the near- O = |1 — I 1- “Ne (14)
est drainage:

Nw )
R = F(D|up, op). 8) o 2in1 Pw.i

Nw

3. For the third landscape classification model a combi-
nation of HAND and distance to the nearest drainage iswhere Pn;, Pp; and Py; are the probabilities of observed
used. HAND is normalizedH{*) to range from 0to 1 by hillslope, plateau and wetland grid ceilsto be classified by
dividing the HAND value of each grid cell by the maxi- the model as hillslope, plateau or wetland respectiWy,
mum HAND value. The same is done for distance to the Np and Ny are the numbers of observed grid cells for the
nearest drainageX*). The multiplication of these two hillslope, plateau and wetland classes.

www.hydrol-earth-syst-sci.net/15/3275/2011/ Hydrol. Earth Syst. Sci., 15, 32832011



3280 S. Gharari et al.: Hydrological land classification

For crisp models the probability of a certain point is 1 for is two times the radius of &y, is the one minimizing the
one class and 0 for the two other classes. For fuzzy modebjective function.
els the probability of a modeled point is divided into three  Furthermore the effect of lower DEM resolutions (10, 20,
classes summing up to unity, while leaving the observed sam50 or 100 m) on the model parameters and performances has
ple points crisp, i.e. the observed points are clearly defined abeen investigated, to test which DEM resolution is necessary
wetland, hillslope or plateau. The idea behind this approactto provide acceptable model results. For model runs with
is to let the model decide about the hydrological behaviorlower resolution no filter was used as it was assumed that
of a cell which may not be unique given the large numberlocal landscape features would automatically average out in
of crisp observed points. The fact that the objective func-the process of resampling the DEM at lower resolutions.
tion is made up of three parts helps to calibrate the model
based on a normalized value where all the classes participat®.6 Sensitivity to calibration point sample size
equally; even when the proportion of one landscape class is
large compared to others, and the in-situ observed points ar€he effect of different calibration point sample sizes on the
not the same number for all classes. Note, that although theobustness and predictive power of the models was assessed
maximum value of the objective function can be 3, in practiceby cross-validation. More specifically, repeated random sub-
it will not exceed 2 because with an extremely unrealistic setsampling validation {apnik, 1998 was used to investigate
of parameters the entire basin will be classified as one unithow best fit parameter sets change for calibration point sam-
As a result, the objective function for that unit will be zero ple sizes of 2806sf), 1122 §2), 561 (3), 281 (4), 112 (s5),
and for the remaining classes will each sum up to unity. 56 (ss) and 28 £7) points (i.e. 50, 20, 10, 5, 2, 1 and 0.5 % of

Calibration of the models in this paper has been done usthe complete of 5611 calibration points which consisted of
ing Monte-Carlo sampling, i.e. the parameters were sampled1 501 (26.8 %), 1385 (24.6 %), 2725 (48.6 %) points for wet-
in absence of further prior information, from uniform distri- 1and, hillslopes and plateau respectively). 100 random sub-
butions, within predefined threshold rangss<) € [0, 0.2], ~ Samples for each of the sample sizgss; were drawn from
H(m)e[0, 20], D(m)e[0, 100], Iup(—)<[0, 1]) in the complete set of 5611 calibration points. The best param-
20000 Monte-Carlo realizations. Similar to the idea behindeter set for each of the 100 sub-samples was then estimated
the Generalized Likelihood Uncertainty Estimation (GLUE; by 500 Monte-Carlo realizations. Thus, a central parameter
Beven and Binley1992, it has been assumed that there is, estimate together with a spread around that central value was
due to equifinality, no single best model parameter set. Aobtained from the 100 sub-samples for each of the samples
range of acceptab|e (|e behavioraJ) Samp|e rates (A$R’ SiZESSl-S?. The Objective function for the remaining 5611-
et al, 2010 is tested in sensitivity analysis. The parameterss1-7 Points not used for calibration (validation points) was
are reported based on the best performance and their likelithen predicted using the 100 individual parameter sets. The
hood weighted 95 % (2.5-97.5%) uncertainty interval (Ul) mean and spread of the deviation of the validation point ob-
for an ASR of 5%, whereby the value of the objective func- jective function from the calibration point objective function

tion is used as likelihood measure. For sensitivity analysisvas used as an indicator for the predictive power of models
ASR between 1-10 % was used. with different calibration point sample sizes, i.e. the closer

the validation objective function is to the calibration objec-
tive function the higher is the predictive power of the models
at a given calibration sample size. Likewise, the robustness
of the models was further assessed by relating the 100 cen-
The 5mx 5m resolution of the DEM allowed a relatively tral parameter estimates and their spreads to the respective
accurate representation of the catchment topography in desample sizes, i.e. the higher the spread in the parameter esti-
tail. However, high resolution DEMs can introduce a bias in mates, the less robust or the more sensitive the model is to the
the results as hydrologically negligible local landscape fea-chosen calibration points, indicating a too small calibration
tures, such as steep, small scale rock outcrops, can caugint sample size.

certain grid cells to be inappropriately classified. To reduce

this problem the DEM has been smoothed using a Gaus3.7 Sensitivity to the location of calibration points

sian filter with meanusu and standard deviatiorsy (here-

after referred to as characteristic smoothing scale). AppliedAs the topography of the Wark catchment sharply changes
as a moving window withusy =0 and different values of from undulating hills in the western part to plateaus above
osm=0.5,1, 1.5, 2, 5, 10 grid cells (equivalent to 2.5, 5, 7.5, steep, incised valleys in the eastern part (Fig. 1), this allowed
10, 25, 50 m) this allowed the removal of “noise” in the land- assessing the robustness of the landscape classification mod-
scape while keeping the high DEM resolution by assigningels to changing landscape structures. That is, the ability of
each grid cell the Gaussian weighed elevation of the neighthe model to correctly predict landscape classes when it was
boring cells (truncated at a radius 063y) (cf. Hrachowitz ~ calibrated in a structurally different landscape. Here this was
and Weiler2011). The optimal effective window size, which done by splitting the Wark Catchment into four zones; North,

3.5 Optimal effective DEM window size and resolution

Hydrol. Earth Syst. Sci., 15, 3278291, 2011 www.hydrol-earth-syst-sci.net/15/3275/2011/
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East, West and South, by using mean latitude and longitudareus=0.127 (95 % Ul: 0.102-0.150) wids =0.001 (95 %
(the mean of maximum and minimum of latitude within the Ul: 0—-0.026) andup =62.6 m (95 % Ul: 42.6—84.5 m) with
catchment and the same procedure for longitude). While thesp =2.80 (95 % Ul: 0.3-22.5m). While fa¥/syp, the slope
eastern part of the catchment has very pronounced landscaad the normalized metric of combinétiand D (Iyp) are,
features with sharp hillslopes and narrow valleys, the westernts=0.135 (95% Ul: 0.092-0.183) withs=0.004 (95 %
part is characterized by a comparably subdued profile withUl: 0—-0.044) andu,,, =0.512 (95 % Ul: 0.454—0.585) with
wider valleys. The models were subsequently calibrated usey,, =0 (95 % Ul: 0.001-0.075). Since MsH theo values

ing observed points from one zone, while the observed pointfor the Gaussian distribution are very low, these results sug-
in the remaining zones were predicted. The changes in objeagest that all grid cells witt§ < 0.129 andH <5.9m are to
tive functions and parameter sets were then used as indicatols classified as flat wetlands, while grid cells witls 0.129

of the model sensitivity to changing landscapes. and H <5.9m are classified as sloped wetlands. Grid cells
with § > 0.129 andH > 5.9 m are defined as hillslopes while
3.8 Comparison between the topographical wetness those withS < 0.129 andH > 5.9 m represent plateaus.
index and different landscape classes The classified landscapes are illustrated in Fig. 4. The

_ S ~worst performance was obtained with modékp. This
As mentioned above the land classification aims at categorizmodel cannot mimic flat wetland and especially headwater,
ing the catchment into hydrologically similar zones. For this narrow valley bottoms and wide valleys simultaneously. For
study the land classification was based on visual observatiomeadwaters and wide valleys the model needs to use a high
In reality it is expected that the position of the groundwater gistance from the stream to correctly model the observed
table can provide a more objective selection criterion as theyoint, however for narrow valley bottoms the distance should
groundwater for wetlands can be assumed to be shallowege as little as possible not to overlap with neighboring hill-
than the groundwater for plateaus and hillslopes. To see hovg|0pesl This causes a poor performancéfgp. The model
well the model predicts the likely position of the groundwater \which used HAND performs the best; it can predict the head-
table, hereafter referred to as indicator of “wetness” of eachyater as well as wide and narrow valley bottoms better than
landscape, the models and their result were compared to thgyo .
Topographical Wetness Indexr(v), which is the base for  One problem which is obvious in Fig. 4 is the noise within
TOPMODEL @Beven and Kirkby1979. TheItw is defined 3 specific landscape. Some raster cells with very high res-
as follows: olution have completely different characteristic from their
neighboring cells. For example a cell (which may be a road
or other human interference) may have a zero slope and be

where A is the upstream contributing area afidis local classified as plateau while its neighboring cells having steep

slope. The principle behind TOPMODEL is that locations slopes are (_:Iassiﬁed as hillslope.
with similar wetness indices are considered to have similar 1€ relatively low spread for both parameters, HAND and
hydrological behavior. slope, in theMsy highlights that the landscape units can

be classified with a surprisingly low fuzziness, i.e. there is

only limited uncertainty if a landscape element belongs to
4 Results and discussion one class or to another and it shows that a crisp model with

oslope=0HAND =0 (Model ID: Mspcrisp would produce re-
4.1 Comparing the performance of different models for ~ sults very close, in terms of model performance and parame-

the original DEM ter estimates, to those from the fuzzy approach.
The results of\/sy furthermore suggest that HAND is a

In order to identify the most adequate landscape classificabetter indicator for landscape classification than distance to
tion model, the three modeld4sy, Msp, Msyp) were run  the nearest drainage or than a combination of distance and
with the original 5mx 5m DEM. Model Msy, which is HAND, as used inMsp and Msyp models. It shows that
equivalent to the original HAND-based mod&enro et al, additional or similar parameters do not necessarily lead to
2008, is found to be the most adequate model with an objec-equally good representations of landscape units as shown in
tive function (Eg. 14) value o =0.527, while the objective  Fig. 4, where several areas of obvious landscape misclassifi-
function values for thelsp and Msyp models are moder- cation can be seen, especially ffisp. This underlines the
ately higher with values of 0.702 and 0.584, respectively.potential of HAND to meaningfully characterize landscapes
For the modelMsy the best fit threshold values for slope as it originates, other than elevation, directly from the feed-
(S) and HAND (H) are found to beus=0.129 (95% Ul:  back processes between water and topography and as it is,
0.096-0.166) withos=0.002 (95% UIl: 0.001-0.039) and other than distance to the nearest drainage, directly linked to
wH=5.9m (95% Ul: 3.2-8.9m) withy =0.23m (95% UIl:  the dominant driver of storage-discharge relationships, which
0.05-2.9 m). Correspondingly, for mod#lsp the threshold  has co-evolved with the landscape: the hydraulic head.
values for slopeS) and distance to the nearest drainaf@ (

Itw = In(A/tanB) (15)

www.hydrol-earth-syst-sci.net/15/3275/2011/ Hydrol. Earth Syst. Sci., 15, 32832011



3282 S. Gharari et al.: Hydrological land classification

(@)

Elevation (m) B Vvetiand-fiat
evation (m
532 - Wetland-sloped
s Kilometers N 00 ‘B Hisiope
4 195

Fig. 4. Comparison between different models for land classification in a headwater of one of the tributaries of th@)\ldr&.location of
the headwater in the Wark Catchmefiit) model using HAND and slope{sy); (c) model using distance to the nearest drainage and slope

(Msp); (d) model using HAND, distance to the nearest drainage and sldggb). White areas represent areas which are classified in more
than one class with high uncertainty.

4.2 Effect of smoothing on model performance and
parameters

0.75- I MSHcrisp
—-Mg,

0.7 - MSD

Relatively prominent, though small scale, landscape features, M
such as rock outcrops or hollows, can be present in land-
scapes of any type. However, up to a certain size they do
not significantly change the appearance of the overall land-
scape or the associated dominant runoff process. Thus they
should be smoothed out in order to reduce noise in the result-
ing landscape classification. Here it is found that, with in-
creasing characteristic smoothing scale fregy =0 (origi- 08
nal 5mx 5m DEM) toogy =10-25m, equivalent to an ac-
tual window size of 60-150m (truncating the normal dis- 0 N R I B

) ) i . ective smoothing window size (m)
tribution at cumulative probabilities of 0.005 and 0.995 or
30) the model performance of all three modéigH, Msp Fig. 5. Performance of different classification models for different
andMsp significantly increased and sharply declined there-gffective smoothing window sizes.
after (Fig. 5). With an objective function value 6f=0.491,
the crisp (i.eas|0pe= opanD =0) MSHcrispWith osm=10m,
H=4.7m (95% Ul: 3.5-7.1m) and =0.113 (95% Ul:  features, clear distinctions between them are lost and a wider
0.103-0.140) clearly outperformed all other models. The pa+range of parameter combinations can lead to the same model
rametersH and S developed contrarily with increasing size results. This is shown using the parameter range for different
of the smoothing window. Whilé{ did not show any con- ASR. As the smoothing window size increases the parame-
sistent relationship and a rapid increase for window size ofter identifiability for H decreases and for the largest window
300m, S decreased generally with increasing characteristicsize of 300 m as the ranges decrease for lower value of ASR
smoothing scale (Fig. 6a and b). The improved model per{Fig. 6¢c). As the smoothing window size increasgshows
formance with smoothed landscapes, however, comes at th& general decrease up to window size of 150 m before it in-
price of a considerable trade-off with parameter identifiabil- creases for the largest window size of 300 m (Fig. 6d).
ity. As the smoothing implies an assimilation of landscape

SHD

=4

=4 =)

o 3]
T T

Objective Function ( O)
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Fig. 6. (a)Likelihood weighted mean values of HAND for the modeling results retained as behavioral vs. different effective smoothing
window sizes for acceptable sample rate (ASR) of 1-1Qflikelihood weighted mean values of slope for the modeling results retained as
behavioral vs. different effective smoothing window sizes for acceptable sample rate (ASR) of L()@&ameter range for 95 % (2.5—

97.5 %) uncertainty interval of HANRd) parameter range for 95 % (2.5-97.5 %) uncertainty interval for slope. Note that for comparative
reasons and due to the inherent subjectivity in the choice of a threshold for defining behavioral parameter sets, the sensitivity of the parametet
uncertainty ranges to varying thresholds here is illustrated by showing the parameter ranges for best 1-10 % of the acceptable sample rat
(ASR).

Using the best modelMsy, and comparing the re- 4.3 Effect of DEM resolution on model performance
sulting landscape classes derived from a smoothed DEM and parameters
(osm=10m, Fig. 7c), to the map obtained from the raw, high
resolution DEM g5y =0m, Fig. 7b) it can be seen that much . .
of the scattered small scale noise and obvious misclassifica- requently, onIy. DEMs with resolutions coarser than
tions disappeared in favor of a more consistent and smoot mx 5m are available. The'r.efor.e the robustness and sen-
representation of hydrologically dominant landscape classes VY of the Iandscapg classification modefsy, Msp and
Hillslope and plateau are the two landscapes which are clag¥sHp was assessed with several re-sampled, coarser DEMs,

sified more uniformly with less scatter for the larger smooth- similar to what was done earlier hang and Montgomery

ing window. On the other hand by increasing the size of(1994)_' who teStefj the effect of DEM rgsolution on topo-
smoothing window ¢sy=50m, Fig. 7d), the small valley graphic wetness index and slope. Again, the crisp model

bottoms are smoothed out and classified as plateau. Mskiciisp (1-€. osiope=oranp =0) is generally the best per-
From these results it can be inferred that the characteristiéormIng one (Fig. 8) with ol_ajectlve function values _betwegn
scale of landscape features that determine landscape class%‘§15< 0 <0.993, dependmg_on th_e DEM resolution. ltis
is in the order of approximately 50 m in this study area andound t.hat the performance. f'rSF slightly Improves up to a
landscape features larger than that do significantly changéeSOIUt'on of 10 m and deteriorating thereafter, implying that

the appearance of the landscape and its associated domiPEMs with resolutions higher than 20 m show sufficient de-

nant runoff processes based on visual observation. Howevef',a” to effectively produce results close to those obtained from

note that this characteristic landscape feature size should b%S rrr:x 5rr]n D:MGDEMCIS Wl'lth Iresolu_nons Iowe(; thaln 20 m,
treated as site specific as it can potentially vary in other reONn e.ot er hand, gradually loose '”?por.‘a”t eta}| » causing
relatively sharp increase in the objective function. Such

gions, where different or additional landscape classes ar?l ) . e . .
present. ow resolutions do not contain sufficient fine detail of the

landscape and in particular fail to correctly represent narrow
but incised, deep valleys or small head waters, thus introduc-
ing considerable error in the HAND as well as in the slope

threshold values. For coarse resolution DEMs an additional
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Fig. 7. Smoothing window effect on the land classification for the madelopt: (a) Location of selected area in the Wark catchment;
(b) classified landscapes for original DEM with resolution of 5r& m without using a smoothing windoyg) classified landscapes using
a smoothing window of 60 mo(= 10 m);(d) classified landscapes using smoothing window of 306 m %0 m).
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resolutions, several classes could thus be contained within
a single DEM cell (e.g. 100m 100 m). For this reason it
was possible that one cell could represent all three observed
classes at the same time which clearly increases the objective
function. The parameteig andsS developed differently with
decreasing DEM resolution. Whil# shows a slight convex
relation to resolution with minimum values for resolution of
10 m, slope shows a strong convex behavior, decreasing to
resolution of 50m and increasing for resolution of 100 m
(Fig. 9a and b). The parameter identifiability, however, de-
creased with decreasing DEM resolution ¢ which was

not true for parametes§ (Fig. 9c and d).

From the analysis in the previous three sections it was
found that the most adequate landscape classification in this
study could be obtained by the use of the highest reso-
lution DEM (5mx 5m), smoothed with a Gaussian filter

Fig. 8. Performance of different classification models for different with a characteristic smoothing scateys =10 m, which is

DEM resolutions.

equivalent to an effective window size of 60 m, and a crisp
(i.e. 0s=0, opanp =0) model set-upMscrisp With land-
scape classification threshold parametéfs 4.7 m (95%

source of error was identified. The models were calibratedJl: 3.5-7.1 m) ands =0.113 (95 % Ul: 0.102—0.140), which
to observed, clustered sample points, which were, withinresulted in an objective function value 6f=0.491. This

the clusters, generally located at distaned®) m from each

model set-up has been used for comparative analysis in

other. It was thus possible that observed points next to eacthe remainder of this study and is hereafter referred to as
other represent different landscape classes. For coarse DEW/sHopt A summary of the different landscape classes and

Hydrol. Earth Syst. Sci., 15, 3278291, 2011

www.hydrol-earth-syst-sci.net/15/3275/2011/



S. Gharari et al.: Hydrological land classification 3285

(a) (b)

nr 014 ASR (%]

Weighted mean of
slope (-)

Weighted mean of
HAND (m)

0.12

5 10 20 50 100
Resolution (m)
(c)

0.04 -

5
=
@

Range of 95% uncertainty
interval of HAND (m)
Range of 95% uncertainty
interval of slope (-)
}g/é |

IS

o

0021

v - 0.015 L L
5 10 20 50 100 5 10 20 50 100

Resolution (m) Resolution (m)

Fig. 9. (a) Likelihood weighted mean values of HAND for the modeling results retained as behavioral vs. different DEM resolutions for an
acceptable sample rate (ASR) of 1-10@4) likelihood weighted mean values of slope for the modeling results retained as behavioral vs.
different DEM resolutions for an acceptable sample rate (ASR) of 1-X@¥parameter range for 95 % (2.5-97.5 %) uncertainty interval of

HAND for different resolutiongd) parameter range for 95 % (2.5-97.5 %) uncertainty interval for slope for different resolutions. Note that

for comparative reasons and due to the inherent subjectivity in the choice of a threshold for defining behavioral parameter sets, the sensitivity
of the parameter uncertainty ranges to varying thresholds is illustrated by showing the parameter ranges for best 1-10 % of the acceptable
sample rate (ASR).

their topographical indicators (slope, HAND and distance toTable 2. Mean and standard deviation values for HAND, slope

the nearest drainage) for mod@lspiopt is presented in Ta-  ang distance to the nearest drainage for each landscape class of
ble 2. The classified map of the Wark Catchment resultingihe pest model performanddsyiopt (threshold valuesd =4.7m,

from Mspoptis illustrated in Fig. 10. §=0.113).
4.4 Sensitivity to calibration point sample size HAND (m) slope ) distance to the
nearest drainage

I : (m)

The landscape classification obtained from the above sug-

gested that model results depend strongly on how the model 544 ‘7183 (’)*091 ‘(’)087 “74 %9 e 28.31

was calibrated and on the robustness of the parameter es-,ciand 205 176 0047 0030 8853 8613

timates. Inadequate calibration strategies could thus cause (flat)

considerable bias and inaccuracies in the results. The sen-wetland 345 1.60 0.206 0.083 39.35 31.54

sitivity of Mspoptmodel results and threshold parameters to  (sloped)
the sample size of calibration points was estimated by com- hillslope  40.96  28.07 0.262 0.144 233.49 15231
paring the results obtained from different sub-sample sizes Plateau  39.81 26.69  0.066 0028 41051 185.00
(s1-57).

The results are summarized in Fig. 11. While clearly
the objective function can occasionally take low values for
small sets of calibration points, its mean value decreases witthe line of perfect agreement of the relationship between cal-
smaller sample size (Fig. 11c¢). This is, however, largelyibration and validation objective functions are shown, i.e. the
an effect of the reduced constraints to the model, as can bhigher the deviation the more the objective functions in cali-
seen in the pattern of the objective function for the validationbration and validation modes differ. For very robust models
points (Fig. 11d). As the calibration sample set is reducedwith high predictive power only small deviations in valida-
the performance of the models in validation deterioratestion would be expected. It can also be seen that as the sample
This is also illustrated in Fig. 11e, where the deviations fromsize of the calibration points increases, the range of the two
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N Table 3. Objective function values@) for calibration and vali-
dation in different parts of the Wark Catchment; N, S, W and E
represents northern, southern, western and eastern part respectively.

Calibration  Validation

0.407 (N)  0.902(S)
0.502(S)  0.607 (N)
0.402 (E)  0.669 (W)
0.565 (W)  0.506 (E)

Legend

- Plateau
- Hillslope
- Wetland-sloped
- wetland-flat

e best model performances in the calibration mofle=(0.407

and 0.402). These two parts are characterized by a very
pronounced landscape profile, dominated by steep, incised
valleys and narrow valley bottoms. In the remaining two

parts, South and West, which are dominated by a more sub-

landscape classification threshold parameférand S de- dued landscape with undulating hills and wide valley bot-

creases exponentially (Fig. 11a and b). Hence, as addition4P™MS the model performance in calibration mode is less good

calibration data are introduced, model parameters show les§’ = 0-520 and 0.565). Clearly, the distinction between land-

uncertainty. The smaller the calibration sample set the lesSCaP€ Units is more ambiguous in areas with subdued profile,

representative it is for the landscape, resulting in consider@S the transition between different landscape classes, such
is much more subtle, which re-

ably different parameter sets for each realization of each dif-2S Wetland and hilislope, is mL : » W
ferent sub-sample of size (see wider range for parameters duces a two-criterion classification to a single-criterion one.

as well as objective functions of calibration and validation This consequently leads to uncertainties, misclassifications
in Fig. 11a—d). This also implies better parameter identifia-2nd thus a reduced model performance. However, the results

bility for larger calibration sample sets. In general it can be @€ different in the validation mode. Calibration point sub-

said that the model stabilizes and remains relatively robusF€tS from the northermn and eastern parts, characterized by a
with calibration sample sets of at least 560 points (in this ~ VeTy pronounced profile, do not serve very well for predict-
study approximately 10 % of the available sample size), o9 landscape classes in areas with gentle slopes and wide

more specifically with an average calibration sample density’@ley bottoms like southern and western parts respectively
of 7 points per krf. (0 =0.902 and 0.669). This is caused by the models inabil-

ity to recognize subtle landscape transitions as these were
4.5 Sensitivity to the location of the calibration points not available for model conditioning. On the other hand,

models calibrated to low profile landscapes like the southern
Subsequently we tested how well the calibration sample seand western parts, in spite of a less good calibration perfor-
represents the landscape features of the overall catchment imance, show a significantly better performance in predicting
order to produce good and robust model performance. Thisandscape classes in areas with different topographical char-
is considered helpful, as it can potentially give modelers theacteristics northern and eastern part respectively 0.607
possibility to a priori assess if there are landscape featureand 0.506). This is not entirely surprising as it may be as-
with a higher, landscape classification relevant informationsumed that a model conditioned to recognize subtle land-
content than others. This type of information can help toscape differences will also recognize much clearer differ-
identify areas where it is most useful to collect calibration ences in the profile. Based on these findings an efficient
sample points. strategy to choose calibration points would include a few

The results of the four analyzed sub-sets of calibrationpoints characterizing pronounced landscape features, such as

points taken from four parts of the catchment have been comincised valleys. The majority of sampling points, however,
pared forMsHopt These four parts of the catchment are sum-should cover parts of the catchment with subdued topogra-
marized in Table 3 and it can be seen that using calibratiorphy and rather subtle landscape features, where classification
points only from the northern and eastern parts results in the&ean be most ambiguous.

Fig. 10. Classified map of the Wark catchment resulting from the
best model performand¥esyopt
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Fig. 11. Behaviour of parameters and objective functions depending on different calibration sample sizes; different sample sizes are shown
based on resolution (sample/m) along the walking fa&tthe behavior of HAND for different sample sizés behavior of slope for different

sample sizec) behavior of calibration objective functio®( and(d) behavior of validation objective functior)) (e) distance of validation

points to the line of perfect agreement. The distance is positive for points above the line and negative for the points below the line. Whiskers
represent the 1.5 times the interquartile range (IQR) and the red crosses show outliers.

4.6 Comparison between the topographical wetness

. . [Plateau
index and different landscape classes

Il Hillslope
Il Wetland

13.37

9.58

As mentioned earlier the relation with different classified z
landscapes were compared with the topographical wetnes:
index.To investigate how the wetness index differs for differ-
ent landscapes, thiw was calculated for the entire catch-
ment using the smoothed DEM witlgp =10 m in order to
allow comparison with the best performing modékpopt
Nobre et al.(2017) reported a relatively weak, inverse rela- 6.96
tion between HAND andry in the Amazon region, showing 6.10
that with increasing HAND the wetness index decreases. The O ©: 02 03 01 o o8 or os o8 1

scatter in the relationship (dflobre et al.2011) was reduced Percent of each Landscape

by classifying/Tw values of all cells in the study catchment _ ) ,

into different bins, in order to facilitate clearer interpretation. F'g 121' The ag?lysgs for 10 classes ?f tfhe tohpolgrapmcal wetness
Different bins or class sizes (5, 10 and 20 classes) show sim- o (rw) and landscape component of each class.
ilar behavior regarding the proportions and changes of each

landscape for each class.

As the wetness index for each class increases the propowetland are the driest and wettest areas reSpeCtively in the
tion of plateau and wetland increases and the proportion ofVark catchment according tw. The mean value for each
hillslope decreases; for the class with highest wetness indeglass shows that wetland areas have the highest wetness in-
the proportion of p|ateau also decreases and proportion Odex values (Table 4) Within the wetland CIaSS, flat wetlands
wetland shows a rapid increase. From Fig. 12 (10 classes) f#ave a higher wetness index than sloped wetlands.
is clear that by increasing the wetness index the proportion Hillslopes are the driest classified landscape based on the
of wetland in each class gradually increases and the proporiry. Although the aim of the land classification is not to
tion of hillslope is gradually less. It can be inferred from predict the exact depth and behavior of the water table, since
Fig. 12 that the locations which were defined as hillslope andnany factors play a role in the position of the groundwater

9.07

8.72

8.40

8.10

Mean Value o

7.78

Index for each Class

7.42
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Fig. 13. (a)Location of a selected headwater of the Wgbykaerial photo of the headwatfr) categorized landscapes using the best model,
MsHopt (d) topographical wetness indekr{y). For better orientation, shapes,(O, ) indicate identical positions on the mafts, (c)
and(d).

Table 4. Mean and standard deviation of the topographical wetness“niformIy (Burr,OUQh and McDonneII19_98. For example,
index (Frw) for each landscape class a raster cell with the steepest slope in the catchment area,

which is located near a cell flagged as stream and drains to it
with a contributing area of one cell (the lowest contributing

I
w area possible) will exhibit the lowegiyw compared to the

Hoo rest of the cells. For the HAND based method this cell, how-
Wetland 99 25 ever, will, arguably more realistically, be classified as sloped
Wetland (flat) 105 3.6 wetland because of low HAND index and steep slope. A
Wetland (sloped) 8.5 1.6 visual comparison between thgy and classified map and
Plateau 83 12 aerial picture is presented in Fig. 13.
Hillslope 76 1.2

5 Conclusions
table such as the recharge, boundary conditions ttag-  |n this study we tested and assessed the applicability and sen-

jema and Mitchell-Bruker2005 and bedrock topography, sitivity of a HAND based landscape classification framework
the classified landscape can potentially give a good estimatg a meso-scale headwater catchment in Luxembourg, char-
of groundwater depth. acterized by a temperate, humid climate. With this approach
One aspect regarding they is that in a GIS a stream in it was possible to classify landscape units into flat wetland,
general has a width of one cell size. Adjacent cells with steepsloped wetland, hillslopes and plateaus, which are perceived
slopes and small contributing areas may be much drier thamo exhibit distinct dominant runoff generation processes.
stream cells while in reality it is expected that the wetnessThree different model types, using different topographical
of most of the cells close to a stream change gradually andariable combinations, such as HAND, slope, distance to the
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This implies that HAND is a stronger indicator for different _
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