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Abstract. The work aims at discussing the role of predictive data provided by the Civil Protection of the Emilia Romagna
uncertainty in flood forecasting and flood emergency man-region have been used to implement an operational exam-
agement, its relevance to improve the decision making prople, where the predicted variable is the observed water level.
cess and the techniques to be used for its assessment. In the Baron Fork River example, the data set provided by
Real time flood forecasting requires taking into accountthe NOAAs National Weather Service, within the DMIP 2
predictive uncertainty for a number of reasons. Determinis-Project, allowed two physically based models, the TOPKAPI
tic hydrological/hydraulic forecasts give useful information model and TETIS model, to be calibrated and a data driven
about real future events, but their predictions, as usually donénodel to be implemented using the Artificial Neural Net-
in practice, cannot be taken and used as real future occuwork. The three model forecasts have been combined with
rences but rather used as pseudo-measurements of future dbe aim of reducing the PU and improving the probabilistic
currences in order to reduce the uncertainty of decision makforecast taking advantage of the different capabilities of each
ers. Predictive Uncertainty (PU) is in fact defined as themodel approach.
probability of occurrence of a future value of a predictand
(such as water level, discharge or water volume) conditional
upon prior observations and knowledge as well as on all thel
information we can obtain on that specific future value from
model f(_)recasts. When dealing with commensu_rgble_ quantiq 1 pecision making under uncertainty
ties, as in the case of floods, PU must be quantified in terms
of a probability distribution function which will be used by |n the last decades, the interest in assessing uncertainty in
the emergency managers in their decision process in order thodels forecasts has grown exponentially within the scien-
improve the quality and reliability of their decisions. tific communities of meteorologists and hydrologists. In par-
After introducing the concept of PU, the presently avail- ticular, the introduction of the Hydrological Uncertainty Pro-
able processors are introduced and discussed in terms of thetessor Krzysztofowicz 1999 Krzysztofowicz and Kelly
benefits and limitations. In this work the Model Conditional 2000, aimed at assessing the predictive uncertainty in hy-
Processor (MCP) has been extended to the possibility of usdrological forecasts, has created the basis for the estimation
ing two joint Truncated Normal Distributions (TNDs), in of flood predictive uncertainty.
order to improve adaptation to low and high flows. Flood emergency management requires adopting opera-
The paper concludes by showing the results of the applitional decisions in real time that may lead to dramatic con-
cation of the MCP on two case studies, the Po river in Italy sequences (economical losses, casualties, etc.). The hardest
and the Baron Fork river, OK, USA. In the Po river case the obstacle the managers have to deal with is the uncertainty on
the future evolution of events. Decision theofye( Groot
1970 Raiffa and Schlaifer1961) studied this problem and

Correspondence td5. Coccia provided the most appropriate solutions for taking decisions
BY (gabriele.coccia@idrologiaeambiente.conghder uncertainty. This approach consists in minimizing the
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expected value of a utility functio® (y) representing the
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The probability distribution functionf (y|y:;,) represents

losses, or more in general the subjective manager perceptiotihe PU, hereafter denominatgdy|y) for sake of simplicity.

of them, as a function of a predictand that will occur at a fu-

In this paper some existing uncertainty processors will be

ture time (such as a future discharge or water stage in a crodsreafly discussed, focusing on the Model Conditional Pro-

section). This quantity is unknown at the time of the decision
(t0) and the aim of forecasting is to assess its probability of
occurrence, in terms of a predictive uncertainty probability
density function.

In the case of flood forecasting, predictive uncertainty can
be defined as the uncertainty that a decision maker has o
the future evolution of a predictand that he uses to ma
a specific decision.

In order to fully understand and to appreciate what is ac-
tually meant by predictive uncertainty, it is necessary to re-
alize that what will cause the flooding damages is the ac
tual future realization of the discharge and/or the water leve
that will occur, not the prediction generated by a forecasting
model; in other words the damages will occur when the ac
tual water levely, and certainly not if the predictiofy will
overtop the dyke leveyp (Todini, 2009. Therefore a util-
ity/damage function at any future timex{tp) must be ex-
pressed as a function of the actual level that will occur at
timer

{U(yl):O VYrEyD (1)
U(y)=g(:—yp) VYy:>)D

whereg(-) represents a generic function relating the cost of

damages and losses to the future, albeit unknown water stage
v¢. In this case the manager, according to the decision the-

ory (De Groot 197Q Raiffa and Schlaiferl961), must take
his decisions on the basis of the expected utiityy/ (y,)}.
This value can be estimated only if the probability density
function of the future event is known, and it can be written as

+00

E{U(yt)}:/U(Yt)f(yt)dYt
0

where f (y;) is the probability density expressing our incom-
plete knowledge (in other words our uncertainty) on the fu-
ture value that will occur. This density, which can be esti-
mated from historical data, is generally too broad because i
lacks the conditionality on the current events. This is why
it is essential to improve this historical probability distribu-
tion function by more realistically using one or more hydro-
logical models able to summarize all the available informa-
tion (like the rain forecast, the catchment geomorphology,

()

the state of the river at the moment of the forecast, etc...)

and to provide a more informative densityy; | :|,,), which

expresses our uncertainty on the future predictand value af- —

ter knowing the models’ forecasts issued at tigienamely
Yty = (1190 92110+ +> Iy ], Where M is the number of
forecasting models. Equatio)(can now be rewritten as

+00

E{U(yt|j’t|to)} = / U(}’t)f()’t|5’t\to)d)’t
0

®3)
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the observed value for the actual value is a common proce-

cessor Todini, 2009, with particual attention to the error
heteroscedasticity and the models combination, providing a
solution to tackle them.

1.2 Choice of the predictand

n
n important issue in PU assessment is the choice of the pre-

dictand. As mentioned in the previuos section, PU deals with

the actual value of the variable to be predicted. To this end, it

is well known that measurements are always affected by er-
rors that should be taken into account. However substituting

dure in PU assessment even if observations do not coincide

with reality. A discussion about the choice of the predictand

will be carried out in this section.

It is worth to take into account the following four remarks:

— Water level measurements are affected by relatively
small errors (with standard error of the order of 2—
3cm); although care should be taken to account for
possible non stationarities in the records, it is psycho-
logically fundamental to use them as measures unaf-
fected by measurement errors both because flood deci-
sions have always been essentially based on these mea-
sures and because their errors have very small effect on
the decisions compared to the larger effects of the other
sources of uncertainty.

— Discharge measurements are generally unavailable in
real time, although there is a recent tendency to use mi-
crowave surface velocity measurements in combination
with the water stage, which could improve discharge es-
timates in real time.

Classical discharge estimates, based on water level mea-
surements and steady state rating curves, are affected by
errors that may reach 30 9% Baldassare and Monta-
nari, 2009. One major source of errors is due to ex-
trapolation beyond the range of observations. A sec-
ond major source is due to the presence of loops in the
level-discharge relation, which are not represented by
the steady state rating curve, unless modified by using
correcting formulas, such as the Jones formula or others
(Dottori et al, 2009.

t

Rainfall-runoff model forecasts are essentially based on
discharges, while flood routing model forecasts can be
obtained both in terms of water levels and/or discharges.
In any case they are affected by a wide range of errors.

Therefore, when dealing with real time flood forecasting,
the filtered water level is in theory the most appropriate quan-
tity to be used as the predictand. Please note that we are
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here talking of a filtered quantity because the real occurthat all the water stage measures are affected by relatively
rence will never be known, but one can reduce the measmall errors (2—-3 cm), they can be, and have been, considered
surement errors by using filtering techniques aimed at re-as deterministic.

ducing measurement errors, such as for instance the classi- Unfortunately, the advent and the operational use of real
cal Kalman Filtering techniquek@lman 1960 Kalman and  time flood forecasting models, has not changed this ap-
Bucy, 1961). Nonetheless, in practice, the observed waterproach, which has been the cause of several unsatisfactory
levels can be considered the best operational quantity to beesults. Today, the flood managers compare forecasts, and
used as predictand: the errors are small and the decision makot the actual measurements, to the different threshold levels;
ers degree of belief is very high, while this is not so for this is obviously done in order to further anticipate decisions
the filtered quantities that are estimated and not measuredy taking advantage of the prediction time horizon. Unfortu-
Therefore, whenever possible, and in particular when dealnately, by doing so the forecasts are implicitly assumed to be
ing with flood warning, one should use the observed waterdeterministic, which is not the case since they represent vir-
levels as the predictand to be used in any flood predictiveual reality and are affected by prediction errors, which mag-
uncertainty processor. nitude is by far larger than that of the measurement errors.

In case that water levels are not available or when one More recently, the concept of predictive uncertainty has
needs to predict inflows to a reservoir or a water detentionchanged this approach. This uncertain nature of forecasts,
area, where the flood volumes are the best decision variopposed to the higher accuracy of measurements, requires
able, corrected and filtered discharges should be used. Ithe definition of probabilistic thresholds, defined in terms of
other words, prior to use discharges as predictands for théhe probability of flooding taken at different probability lev-
calibration of the hydrological uncertainty processors, theirels, instead of the definition of deterministic threshold val-
improved estimates must be produced both by accountingies. Using the probabilistic thresholds, the same predicted
for the shape of the cross section and by taking into acwater level may have different meaning owing to the reliabil-
count the loop formation in the rating curve. This will elim- ity of prediction. In other words, the same forecast may or
inate most of the water level dependent biases, while thegnay not trigger the decision of issuing a warning or evacuat-
elimination of the random errors must be approached bying an area, conditionally to its assessed level of uncertainty.
filtering techniques. More uncertain forecasts need necessarily to be treated more

In terms ofpredictors(i.e. the variables used to condition cautiously than more reliable ones; in fact, uncertain lower
the PU), when available from a flood routing model, the bestwater stage forecasts could then trigger a protective measure,
choice would be the forecasted water levels. Otherwise it igvhereas higher, albeit more accurate water stage forecasts,
possible either to convert the predicted discharges into prewould not. As can be seen from the Fify. for the same
dicted water levels using a corrected rating curve, as menexpected value (the horizontal dashed line) a better forecast
tioned above, or just to directly use the predicted discharges(Model A), characterised by a narrower predictive density,
since the effect of the conversion errors from discharge towill show a smaller probability of exceeding the flooding
levels, may affect the order of the predicted variables. Thislevel when compared to a worse one (Model B). This prop-
is what essentially dominates the Normal Quantile Trans-erty can be also looked at from an alternative perspective, as
form (NQT), which is the basis of most of the uncertainty shown in Fig.2 the same flooding probability corresponds to

processors\an der Waerder 952 1953ab). lower expected values as the spread of PU increases. This
implies that if a probabilistic threshold is defined instead of
1.3 The probabilistic threshold paradigm a deterministic threshold level, when the PU is larger the de-

cision maker must be more cautious and would be advised
Today, similarly to what was done for more than a century,to issue an alert even when, looking at the expected value of
in order to trigger their decisions, the majority of water au- the forecast, he would not think of issuing it, because he may
thorities involved in flood emergency management preparaegard it as being too low.
their plans on the basis of pre-determined water depths or
thresholds ranging from the warning water level to the flood- o
ing level. Decisions, and consequent actions, are then takefi EXiSting approaches
as soon as a real time measure of the water stage overto

one of these thresholds. This approach, which is correct an : )
. . ; essor Krzysztofowicz 1999, the Bayesian Model Averag-
sound in the absence of flood forecasting models, is a way o i )
S . -Ing (Raftery, 1993 Raftery et al.2005 Vrugt and Robinson
anticipating events on the basis of water level measures (i . ; .
: . . : 007 and the Quantile Regressiokdenker 2009 will be
the cross sections of interest or in upstream cross sectionsy, . . ) .
riefly discussed, but many other bayesian processors exist,

but can only be effective on very large rivers where the time . ,
lag between the overtopping of the warning and the floodingSUCh as the one introduced Kgnnedy and O’Haga2003).

levels is sufficiently large to allow for the implementation of
the planned flood relief strategies and interventions. Given

5:5 the following sections the Hydrological Uncertanty Pro-
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Model forecast

Model A Model B

Fig. 1. Probability of exceeding the dyke level for the same expected value, forecasted by models with different reliability.

Mode forecasts

\

Model A 'Model B

Fig. 2. Comparison between the expected value provided by models with different reliability when the probability of exceeding the dyke
level is the same for all the models.

2.1 Hydrological uncertainty processor The introduction of HUP generated a positive impact on
the hydrological community, in fad€rzysztofowicz(1999

was the first in hydrological forecasting who clarified the

concept of predictive uncertainty. Nonetheless, HUP has

T . ; . .. ~~ three major limitations. The first one relates to the fact that
timating the predictive uncertainty given a set of historical

. ) . only one model at a time can be used in HUP, which has not
Svgze;\éa\%?gse%ngr?ﬁzgrfhlg%csal‘ rcr:fo ggrl]s;?rg'ggithgsH;vpyet been extended to multi model forecasts. Moreover the
tions and model predictions into a normal space by meansl,J sed prior autoregressive (AR) model frequently tends to be

. . C inadequate to represent the predictand, as for instance in the
o ey, €252 1 oo 1o pobln wher he AR el e
gte distribution. In practice, as describedKrzysztofow- quate for representing the recession but not the rising limb of

icz (1999, after converting the observations and the modelth:ﬂgg;ig?}’;gi:glIﬁ;giﬁ;gg?ﬁ)erg%Leogp:;:rsivt::]e '?r(;?r;
forecasts available for the historical period into the normal’ g

space, the HUP combines the prior predictive uncertaintythe used prediction model, which is not guaranteed due to

(in thi’s case derived using an autoregressive model) Withthe fact t.hat bOth. mo_dels_ tend fo be highly correlated to_the
i L - . observations, which inevitably induces a level of correlation

a Likelihood function in order to obtain the posterior den- among them

sity of the predictand conditional to the model forecasts. '

From the normal space this conditional density is finally re-

converted into the real space in order to provide the predictive

probability density.

Krzysztofowicz(1999 introduced a Bayesian processor, the
Hydrological Uncertainty Processor (HUP) which aims at es-
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2.2 Bayesian model averaging forecast magnitude. This technique allows all the desired
guantiles of the PU to be assessed in the normal space and

Introduced byRaftery (1993, Bayesian Model Averaging then reconverted by means of the inverse NQT to the real

(BMA) has gained a certain popularity in the latest years.space. In the linear case, theth sample quantile is com-

The scope of Bayesian Model Averaging is correctly formu- puted solving the Eq4j, from which is possible to identify

lated in that it aims at assessing the mean and variance of artjie parameters, andb, which defines the linear regression

future value of the predictand conditional upon several modefor the z-th quantile.

forecasts. Differently from the HUP assumptions, in BMA ;

all th_e models (mcludl_ng the AR prior model) are similarly i sz(n—a—bz‘ﬁ) 4)

considered as alternative modefaftery et al(2009 devel-  a:.b: eRT—

oped the approach on the assumption that the predictand as

well as the model forecasts were approximately normally dis-Vhere

tributed, whileVrugt and Robinsor{2007) relaxed this hy- x(t—=1) if x<O

pothesis and showed how to apply the BMA to Log-normal Pt ()= {x T if x>0

and Gamma distributed variables. In practice the Bayesian

Inference problem, namely the need for estimating a poste- The problemis correctly formulated and allows each quan-

rior density for the parameterS, is overcome in the BMA by tile of the PU to be Computed, but it I'equires the estimation

estimating a number of weights via a constrained optimiza-of at least two parameters per quantile and the number of

tion problem. Once the weights have been estimated, BMAParameters to be estimated may become quite large. More-

allows to estimate the mean and the variance of the predicover, QR not always improves from assuming homoscedas-

tand Conditiona| upon Severa' mode|s at the same t|me t|C|ty th|S depends on the aCtUa.I diStribution Of the errors.
The original BMA, as introduced bRaftery (1993, has Figure3a and b shows tw_o situations in wh_ich th.e use of the

shown several problems. First of all, as pointed ouvbygt ~ in€ar QR leads to very different results. Figiis an op-

and Robinson(2007), the original assumption of approxi- timal situation for using linear QR because the variation of

mately normally distributed errors, is not appropriate for rep- €rror variance is linearly decreasing with the magnitude of

resenting highly skewed quantities such as water dischargel§'® forecasts and the resulting quantiles well represent the

or water levels in rivers. Therefore one must either relax thisr€@l distribution of the data. On the contrary, in Fap. it

hypothesis, as done Byrugt and Robinsorf2007) who ap- 1S not possible to |dent|fy_ a linear variation of the_ error vari-

plied the BMA to Log-normal and Gamma distributed vari- @nce and the use of the linear QR does not provide improved

ables or to convert the original in the normal space once agaifSsessments of PU, particularly for high forecast values.

using the NQT, as done ifodini (2008. Another problem,

which emerges from .th(_a application of BMA is the use of 3 Model conditional processor

the “expectation-maximization” (EM) algorithnDémpster

et al, 1977) proposed byRaftery et al.(2009, which was  The Model Conditional Processor (MCP) is a Bayesian

not found to properly converge to the maximum of the likeli- methodology, proposed Bodini (2008, for estimating the

hood. To overcome this problem, one can either use sophispredictive uncertainty. The derivation of the predictive dis-

ticated, complex optimization tools such as the SCEM-UA tripution is essentially based on the estimation of a joint

(Vrugt et al, 2003 or, as proposed byodini (2008, a sim-  predictand-prediction distribution, computed by taking ad-

ple and original constrained Newton-Raphson approachyantage of the model behaviour knowledge acquired through

which converges in a very limited number of iterations. the available historical series. Since the multivariate distribu-
. . tions can be formulated and effectively analytically treated in
2.3 Quantile regression a very limited number of casekrzysztofowicz(1999 sug-

. ested transforming the observations and model forecasts in
The latest uncertainty processors approaches tackle the proR-gzussian or Normal space via a non parametric transforma-

lem of the heterosqedasticity of the.errors ofteq present i'lion, the NQT Wan der Waerderl952 1953ab). The orig-
hydrological modelling. All the previously described tech- 5| variablesy andy, whose empirical cumulative distribu-
niques imply homoscedasticity of the error variance, whichyjon function has been computed using the Weibull plotting
is assumed to be independent from the magnitude of the obsgsition, are so converted to their transformed vatpasdi

served or forecasted values, but in real cases this assumptiqRgpectively, following a Normal Standard Distribution. The

leads to a Iapk of accuracy. _ _ Weibull plotting position refers to the expected value of the
Receqtly, in order to overcome this problem, the Quantlleprobability of theit, element of a ranked (smallest to largest)
RegressionKoenker 2009 was used\eerts et al.201]).  sample of size:, which is . Its use is recommended

: : . T
The Quantile Regression (QR) approach tries to represenfhen the form of the distrii)uti)on is unknown and when un-

the error heteroscedasticity identifying a linear or non-linearpiased exceedance probabilities are desired.
variation of the quantiles of the PU as a function of the model

www.hydrol-earth-syst-sci.net/15/3253/2011/ Hydrol. Earth Syst. Sci., 15, 32532011



3258 G. Coccia and E. Todini: Recent developments in predictive uncertainty assessment

data, in most applications of the MCP the following models
have been used, respectively for the lower and the upper tail:

} (6)

e 5,56 P(y):PIOW'|:

— 505

y
y(plow)

g w—O 53

Image of observed data

b
Ymax— Y

where piow and pyp are the lower and upper limits defin-

ing the probability values for which the tails will be

4 . used;y (piow) andy(pup) are the values of the variable

correspondent to the probability limitgynax is the maximum

value for which the probability is assumed to be equal to

1 and, although it can be derived through an extreme value

analysis, for the sake of simplicity, in the proposed case stud-

—50% ies it was assumed to be equal to twice the maximum value

ever observed; andb are the parameters to be estimated.

Concerning the lower tail it is assumed that the null proba-

bility is assigned to the null value of the variable that is

true when dealing with discharges, but notyifrepresents

(b) Image of forecasted data level values. In this case it is necessary to refer all the val-
ues to the bedstream level, so that the null level is the lowest

Fig. 3. (a) An optimal situation for using the QRb) Poor results  level possible. Moreover, using level values ajg@yx must

are obtained using QR in the situation represented here, which, bjye computed as the double of the maximum level observed

the way, is quite common in hydrological applications. referred to the bedstream level.

@

—

T
+a

Image of observed data

3.1 The multi-model case
In the Normal space the joint distribution pfindz can be
assumed as a Normal Bivariate(n,7), allowing the predic- ~ The previously described MCP methodology has generated
tive distribution to be easily computed according to the Bayesthe idea of generalizing the procedure using a multi-normal

theorem, as described ifiqdini, 2008. The moments of the ~ approachTodini, 2008. Often, a real time forecasting sys-
predictive distribution in the Normal space are: tem is composed by more than one model, or a chain of mod-

els, and the emergency manager has to take a decision on the

. basis of multiple forecasts of the same quantity that may also
iy = Pnﬁ'zn (5) be very different from each other. It is very difficult to find an

nn objective way to state that one model is better than another, or
to assign a correct weight to each forecast in order to extrap-
Therefore, after obtaining the conditional probability in the olate from all the available information a stochastic forecast
normal space, the results have to be converted into the redhat allows the emergency to be managed in the best way.
world in order to compute the predictive probability y|7). In order to combine several model forecasts, the MCP can
To do so the predictive density has to be sampled in the Norbe improved by generalizing the bivariate normal approach
mal space and then the obtained quantiles have to be recote a multivariate normal approacMérdia et al, 1979. In
verted into the real space by a reverse process. This is duiis case the Multivariate space is composedby1 vari-
to the fact that the transformation is highly non linear, and,ables, that are the observed discharges (or water leyels)
for instance, the mean value in the Normal space does naand theM predictionsyy, k=1,..., M. Using the NQT, all
correspond to the mean value in the real world, in fact it cor-the variables are converted to their transformed valyesd
responds to the median (50 % probabilitypdini, 2009. In Nk, k=1,..., M, in the multi-normal space.
this process the use of the Weibull plotting position implies  All the variables in the normal space have a standard nor-
the need of using an additional model to fit to the tails of all mal distribution and the predictive uncertainty, defined now
the variables, namely the observations and the model foreas the distribution of the future event conditioned on the fore-
cast, in the real space, in order to accommodate probabilitgasts of theM models, can be expressed @$y1, ..., ym),
quantiles larger thag’; or lower thann—il. The choice of  for simplicity abbreviated tof (y|yx) for the original vari-
the best tail model depends on the actual distribution of theable andf (1|9%) in the normal space.

Hydrol. Earth Syst. Sci., 15, 3253274 2011 www.hydrol-earth-syst-sci.net/15/3253/2011/
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The joint distribution is a multi-normal distribution with
mean and variance

0 5
o
’Lnsflk = . (8) .g
L0 !
o
-1 R ) A 5-
Ppiy Pniz " P &
Pin Pz : Pifim
Yo = .. . : (9)
1,1 A fioh . . : -4
k Piizn Piizi Image ofﬁforecasted data
Phy—1iim ) S o
L Pivn Pimin  Pimima 1 ] Fig. 4. .Trgncgted. normal joint dlstrlbu.tlons. Thg d|y|S|on of the
o Joint Distribution in the normal space into two bivariate truncated
Defining normal distributions is shown. The red line represents the modal
5 1 value, while the grey lines represent the 5 % and the 95 % quantiles.
nm = The light blue line represents the threshold used in order to identify

the two TNDs.
Zpi = [Puin Loy~ Poii |
1 o . 10 the NQT tends to increase the variance of the lower values.
Piviiz Piviin (10) Moreover, the number of observed and predicted low and
’ ' : medium flows is much larger than that of high flows with the

e — | Phom . o o

Lijj = . consequence of a higher weight in the determination of the
Piy-1iim regression or the correlation coefficients used by the different
Piwin " Piwiua 1 approaches. As a consequence the estimation of high flows in

and substituting Eq10) in Eq. (), the cross correlation ma- the Normal Space will be affected by a distortion in the mean

trix can also be written as as well as an overestimation of the variance, which will in-
evitably increase when returning into the real space. To face

Em Ty his probl lternati h has been introduced |
Y. = (11) this problem an alternative approach has been introduced in

G ):,,ﬁT P the MCP formulation. Namely, within the MCP framework

the entire Normal domain is divided into two (or more) sub-
domains where Truncated Normal Distributions (TNDs) can
be used. In this case, the MCP can be applied assuming that
the joint distribution in the Normal Space is not unique, but
can be divided into two (or more) TNDs. A threshold sepa-
rating low flows from high flows, in the forecast domain, is
relatively easy to be identified. Figudeshows the two TNDs

Then the predictive uncertainty can be expressed as
— f(n!ﬁl?"‘!ﬁM)
f@n,....m)

The solution of Eq.12) is easily obtained and leads to a nor-
mal distribution with moments derived from Ed.1) as

f (i) (12)

N1 that can be used in that case.
JTRPRNS NS SIS B I The identification of the two TNDs is not immediate, but
i e N can be obtained by the following procedure that depends on
M (13) : )
the number of available forecasting models.
anlﬁk =1-%,5-Z5 1y 3.2.1 TNDs with only one forecasting model

Please note that EqLg) does not differ from the classical  afier converting the original variablesands to their trans-

multiple regression results. - _ formed values; and#, a thresholda is chosen among the
As done for the univariate case, the predictive uncertainty, 5| es off in order to split the data in two samples, which
in the real world.f (y| ), is obtained by converting (i) are assumed to belong to two unknown normal distributions
by means of the inverse NQT. truncated ovefj by a. If more than one threshold are iden-
tified, it is possible to consider more than two TNDs, but in
order to avoid the processor to excessively adapt to the cali-
bration data, with the risk of losing generalization ability, it is
As mentioned in Sec®.3, the assumption of homoscedastic- 2dvisable to use as few TNDs as possible. Usually two TNDs
ity of the error variance leads to a lack of accuracy in repre-2'€ enough to well represent the distribution of the data in the

senting the PU, especially at reproducing high flows, becaus&lormal Space.

3.2 Truncated normal joint distributions to account for
the error heteroscedasticity
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The thresholda can be identified as the value ffthat Here i, uy andoy,, o, are respectively the sample means
minimizes the predictive variance of the upper sample (theand standard deviations gf5; > a and#|n > a. These mo-
one representing the high flows) and its search must be lowements are obviously computed considering only the data
and upper limited in order to count with significant samplesincluded in the upper sample.
for computing the moments of the truncated distributions. Considering now the lower sample and a relaziatio#),of
In fact, the moments of these truncated distributions must}* < a, Egs. (14) and (L6) become, respectively
be estimated by equating them to the sampling moments, as

i A ) (1)
described below. . il <a)= — / D _ f@ 21)
Taking into account only the sample that includes the high [Lfdn  Fya)
flows, the Truncated Normal distribution for> a is
. F&) () s f(n.0) RAUR)D
— = 14y  faln<a)= — = (22)
(> a) [T f@yd - Fy@ 14) XU o fdndn Fy@
with f (7)) defined as If the same procedure carried out for the upper sample is
. 1 1(H—mj 2 applied to the lower sample, the predictive uncertainty is ob-
f@= Nz exp —§< o ) (15)  tained with the following equation
A Ul
wherem ands are thg mean and t_he.stapdard deviation of theﬂn|ﬁ=r}*,ﬁ* o=yt gi’;(ﬁ* — 1t5)
non truncated, albeit unknown distribution. i
Therefore, the joint distribution is the following truncated 2. (23)
normal bivariate distribution o2, ... —g2__"M
fn.i) ) s oy
F Ol > @) = e = 2 S (16)
[ [fa f(ﬁyfl)dn]dn U Please note that E@3is equal to Eq18, but in this case.,,

W4, 0y ando; are computed taking into account only the data

Where f(n, 7) is defined as of the lower sample.

exp{—%[n—m,,ﬁ—mﬁ]S—l[’z_m”“ . .
n—ms (17) 3.2.2 TNDs with more than one forecasting model

fm.n)=

NZZAN]
) When dealing with more than one model, the procedure be-
wheres=| "7 "M comes a bit more difficult. The threshold should be identi-
Sy S5 fied for each model and the joint distribution would be rep-

In Egs. (L5) and (L7), the values ofn;, s, m,), s, ands, ; resented by ¥ Multivariate Truncated Normal Distributions
are unknown but can be derived fromnthé?sampling moments(MTNDS) (whereM is the number of models) that include all

Applying the Bayes theorem to the TNDs, the predictive un_the possible simultaneous combinations of each model over-
certainty becomes: topping or not its respective threshold. The moments of each

A . MTNDs should be obtained by means of the sampling mo-
_Saln>a) _ f@.m0) y pling

fh>a)= s = . (18) ments computation, but unfortunately in real cases often the
Fin=>a) Fan available data are not enough to identify representative sam-
Itis normally distributed and its mean and variance are func-ples and the MTNDs cannot be well assessed.
tional on the realization of, 7* > a In order to avoid this situation the problem can be tackled
Spi with a different approach. The MCP can be applied in three

A%
M= i >a = My + =5 (7" —mj)

4 phases. Firstly, each model is processed separately using the

(19) TNDs as described above. In this phase, for each model

) 52, its threshold is identified. In the second phase, the series
G;ﬁﬁ:ﬁ*,ﬁ*>a =5, = LG of expected values of each model simulation (previously ob-

tained) are combined again using two MTNDs. The split of

According to the truncated multi-normal distribution theory the multi-variate Normal Space in two parts is obtained iden-

(Tallis, 1961), the previous equations allow the PU to be de- tifying the hyperplane that includes the polii =0,7; =

fined in the Normal Space as a Normal Distribution with @),Vi = 1..M] and is perpendicular to the straight line that

mean and variance: links the origin to that point. This hyperplane is identified by

Wi poa = oy + %(ﬁ* —up) the following equation:
| (20)

M

o, R

2 _ 2 _Ym E i=M-a 24

O pi=r* 7*>a = On — . ni (24)
O’,] i=1
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Fig. 5. The River Po catchment in Italy and the location of the gauging station of Pontelagoscuro.

The value ofa is again identified as the one that mini- 4 Examples of application
mizes the predictive variance of the upper sample. Finally,
in the third phase the series of expected values computed ifiwo application examples will be shown in this paper in or-
the second phase is processed using the TNDs as describedr to illustrate the benefits of using the proposed method-
in Sect.3.2.1 ology. The first example is an operational one, where the

Concerning the second phase, when the valigidenti- predictand is the observed water level. It refers to a flood
fied the data are split in two samples, one containing the datforecasting system on the Po river in Italy and shows that the
below the truncation hyperplane and the other above it. AftetMCP approach is well justified for both the full or truncated
computing the sampling moments for each sample, defininghormal approaches. The second example is set up in order to
H,= Zf‘ilﬁi and following the truncated multi-normal dis- illustrate the benefits of using both the truncated normal ap-
tribution theory Tallis, 1961), it can be demonstrated that proach as well as the multi model approach. In this case, con-
the PU in the normal space, for the sample above the truneerning a recent comparison of distributed hydrological mod-
cation hyperplane, is defined as a normal distribution withels, the discharges were the only available data, while the wa-
mean and variance ter level data were not available. Therefore, bearing in mind

the observations made in Seti2 about the predictand to be

(25) chosen, the illustration of the MCP approach and the relevant
=X Zhs -1 ):,,ﬁT benefits is based on the solely available discharge records.

1
My |h=4* Hip>Ma= /’L+Erm Erm (7’ _M')
2
Tnli=i*, Hy>Ma X

Here u and i are, respectively the sample means of 4.1 The Po river example

nlHy>M -a and j|H,>M -a and X, X,;, 55 are the

components of the covariance matrixmof| H,>M -a. 4.1.1 Case study and available data

Considering now the sample below the truncation hyper-

plane, the mean and variance of PU in normal space are  The River Po is the largest Italian river with length 650 km
and a catchment area of approximately 70 008 krovering

Honlj=i* Hy<M-a =H+Zy5 Ehy LT - most of Northern ltaly (Fig5). The river originates in the

==Xy gﬁﬁfl.z”ﬁ (26) North-West of Italy, near the bordgr with Fraqcca_ at an alti-

tude of 2000 m and flows Easterly into the Adriatic Sea after

Please note that ER) is equal to Eq.Z5), but in this case  crossing four of the most industrialized and populated Ital-

Wy by oy, X,; and X, are computed taking into account ian regions. Flood risks are steadily growing with increas-

only the data of the lower sample. ing urbanization, the expansion of inhabited areas close to
the river bed and the consequent increased number of peo-
ple directly affected by severe floods. The need for effective

2
Tnli=i* Hy<M-a
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real time flood forecasting and emergency management be- BIAS [m]
came extremely clear during the 2000 Po flood, as well as
in the inundation of Torino in 2001. Currently a flood fore- 0.14
casting system, based on the PAB hydraulic mod@edni ' \
and Bossi1986 combined with the Kalman Filter based al- 0.12
gorithm MISP {odini, 1978 is operational with forecast- 0.10 ‘
ing horizons up to 36 h in advance. There are several river ‘ =

. : : 0.08 2]
sections where flood forecasts are issued, but the most im- | =
portant one is the ending section of the river prior to its 0.06 - E
delta where the level gauging station of Pontelagoscuro is 0.04 ‘ =
located (Fig.5). Flood forecasting in Pontelagoscuro is an : ‘ a N
extremely important issue because the river is here charac- 0.02 —— — 9
terized by a suspended bed over a flat plain only protected (2)0.00 | =
by high earthen dykes, whose failure could cause dramatic Standard Error[m]
consequences.

The data used as predictands in this work are the mea- 0.30

sured water levels at Pontelagoscuro, which have been auto-
matically collected in real time since 1993 by a network of 0.25 +—
telemetering gauges, while the predictors are the water level
forecasts produced by the operational flood forecasting sys- 0.20 B
tem corrected by the Kalman Filter. Nine full years of hourly 0.15 g -
data were used in this experiment, from January 2000 to De- = .
cember 2008, in order to assess the properties of the differ- 0.10 é == E
ent uncertainty processors. The complete data set has been a
divided in two parts, four years to calibrate the MCP and five Lot B

years to validate it. All the analysis and results presented in (b)0.00

the following sections are based on validation data. .
Nash Coefficient

4.1.2 Predictive uncertainty assessment

1.00
In the case of the Po river, the assessment of predictive un- 0.98 -
certainty is made for a forecasting horizon of 36 h at Ponte-
lagoscuro. Although the hydraulic model performances are 0.96 ‘
quite adequate, the use of the MCP processor to provide the 0.94 I L
expected value of the predictand given the model forecasts, 0.92 |

|
MCP

produces a substantial improvement by practically eliminat-
ing all the bias and by reducing the standard error (seeig. 0.90 -
On the contrary, in this case the use of the TNDs, instead of 0.88 -
the standard ND, produces a rather small reduction of the un-

certainty band, due to the fact that both the hypotheses on the (c)0.86 -
linearity of the relation between observed and modeled nor-_ _ o

mal transformed variables, and on the homoschedasticity Orfwl%'se,itl'c?&i?;igﬂhboe;gﬁE?a'tggdef\r/gkEﬁ:gnPISdee);)eesctfgé ﬂ;el ‘le;?g
errors, are certainly appropriate, as can be see from7gig. "ot ined from t expected vaue pro-
which shows that tr):e sp?re:d of the data is rather narrowgan 'genc:j :ﬁ:j tgrero'\r/l(cc)PN;Zrhfgitecﬂ#;ec\ézgf?;gﬁ? perioga) Bias; (b)
more or less constant over the entire field. Nonetheless the '

use of the TNDs slightly reduces the standard error of high

water levels as can be seen in Fg.

DETERMINISTIC
I

actually overtopped the threshold (a warning threshold in this
4.1.3 Probability of exceeding an alert threshold case). The lower section of Fi§shows the observed values
assessment (continuous line), the deterministic forecast (dotted line) and
the expected value conditioned to the model forecast (dashed
As can be seen from Fi§, a rather effective operational de- line), as well as the 90 % uncertainty band (grey area) and the
cision supporting tool can be set up by setting the probabilityalarm threshold set to 0 m (horizontal dashed line). The up-
threshold at 0.5. Fig@ shows an example of 36 h in advance per section represents the probability of exceeding the alarm
prediction, during the validation period, when the water level threshold, the observed binary response (continuous line) and
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Fig. 7. Representation of the Normal Space obtained applying the MCP to the Po river. The full red lines represent the 5 % and 95 % quantiles
and the dashed red line the 50 % quantile obtained without using the TNDs methodology. The blue lines represent the quantiles obtained
using the TNDs methodology.
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Fig. 8. Zoom of the high values shown in Fig. The full red lines represent the 5% and 95 % quantiles and the dashed red line the 50 %
quantile obtained without using the TNDs methodology. The blue lines represent the quantiles obtained using the TNDs methodology.

www.hydrol-earth-syst-sci.net/15/3253/2011/ Hydrol. Earth Syst. Sci., 15, 32532011



3264 G. Coccia and E. Todini: Recent developments in predictive uncertainty assessment

=
o

od
=]

o
@

Observed
= = =Ply=0ly=y*)

2
s
=

Probability of
exceedance

00 ’ P T

20% Uncertainty Band

Observed

Level [m]

b S CLELELLE Deterministic Model

| = = =Expected Value

—--— Threshold

-5.0 T

10/12/08 12/12/08 14/12/08 16/12/08 18/12/08 20/12/08 22/12/08

Fig. 9. Flood event for the validation period predicted 36 h in advance. The lower panel represents the level forecast; observed values
(continuous line); deterministic forecast (dotted line); expected value conditioned to the model forecast (dashed line); 90 % uncertainty band
(grey area); and alarm threshold of 0 m (horizontal dashed line). The upper panel represents the probability of exceeding the alarm threshold.
observed binary response (continuous line) and probability of exceeding the threshold computed by the MCP (dashed line).
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ANN: CALIBRATION VERIFIC. VALIDATION
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L
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N |
TETIS:  [WARM UP VALIDATION CALIBRATION
31/05/1997 01/05/2000

MCP: VALIDATION CALIBRATION

Fig. 10. Schematization of the available data division for calibrating and validating the models and the MCP.
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Fig. 11. Representation of the Normal Space obtained using the MCP with the TORKARETIS (b) and ANN(c) forecasts.
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12.0 1 October 1995 and 30 September 2002. During the same
i — period, also the observed discharges at the measurement sta-
: — tion of Eldon were available. Concerning the available data,
3.0 . it is worth mentioning that no water level or rating curve ob-
I T servations were available to the participants involved in the
£ 00 S H il 151 [1zla DMIP2 Project. For this reason, the discharge has been used
& i é_E_g_E_E_E_E_ as predictand.
= + + Q ) ]
2.0 1 O H L E = E i E - 4.2.2 The real time flood forecasting models
(@ 00 — The TOPKAPI model has been developed at the University
1.00 of Bologna {Todini and Ciarapica200% Liu and Todinij
0.95 2002, it is composed of six components that take into ac-
- o count the surface, sub-surface and deep flows, the channel

routing, the snow accumulation/melt and the evapotranspi-

0:83 1 1. ration processes. The application domain is divided in cells
0.80 — — 11 % — % — g where the mass and momentum balance are solved at every
0.75 E HoH=zHEHSTH $H o time step. The model has been calibrated by a trial and error
0.70 <l|l=ELIZ2L MBI AR procedure considering the period between 1 October 1996
ol |- = =1 N ks 1" and 30 September 2002; the year included between 1 Octo-
06 B i 1 11 11 I ber 1995 and 30 September 1996 has been used as “warm up”

(b)0.60 period, allowing the model to reach a reasonable initial state.
In the TETIS model, developed by the Polytechnic Uni-

versity of Valencia Fran&s et al, 2007, Velez et al, 2009,

the conceptual scheme, at each cell, consists of a series of
5 connected tanks, each one of them representing different
water storages in the soil column. The vertical connections
between tanks describe the precipitation, evapotranspiration,
the probability of exceeding the threshold computed usinginfiltration and percolation processes, whereas, the hor-
the MCP approach (dashed line). It can be seen that all thézontal flows represent the main hydrological processes
forecasts are quite adequate in this example while the probaas: snowmelt, overland runoff, interflow and base flow. The
bility of exceeding the threshold takes values larger than 0.5routing along the channel network couples its geomorpho-

Fig. 12. Evaluation indexes for TOPKAPIi model (TPK), TETIS
model (TET), ANN model and their combinations during the entire
validation period of the MCRa) Standard Error(b) Nash-Sutcliffe
coefficient.

closely matching the observed binary response. logic characteristics with the kinematic wave approach. The
TETIS model has an automatic calibration procedure that has

4.2 The Baron Fork river example been used to calibrate the model considering the hydrological
year included between October 2000 and September 2001.

4.2.1 Case study and available data Also for the TETIS model, the first year of data has been

used as “warm up” period and with the remaining data the

The NOAA's National Weather Service, has provided a longmodel has been validated.
series of observed discharge and precipitation data for the The Artificial Neural Network model includes two main
Baron Fork River, OK (USA) within the frame of the DMIP phases. Firstly the data were divided in three groups by
2 Project. Using this data set three models were imple-means of a Self Organizing Map (SOM) network that allows
mented: two physically based hydrological models, the TOP-the data to be automatically classifie&koponen 199Q Pu-
KAPI model (Todini and Ciarapica2001, Liu and Todini  jol, 2009. If the time at which the prediction is done is called
2002 and TETIS modelKran@s et al. 2007 Velez et al,  #;, the input data to the SOM network are the accumulated
2009, and a data driven model based on Artificial Neu- precipitation of 2 days beforg, the discharge observedrat
ral Networks. The catchment has a drainage area of abouind the gradient of the discharge during 2 h befgreThe
800 kn? at the measurement station of Eldon with a concen-SOM network has been calibrated using the data included
tration time of approximately 10 h and a mean slope aroundbetween 1 October 1995 and 31 May 1997, the remaining
0.25%. Some kilometers downstream Eldon the river flowsdata until 30 September 2002 have been used for the valida-
into the lllinois river. The simulations provided by the three tion. The three sets of data obtained by the automatic classi-
models have been processed using the MCP, firstly eacfication have been used separately in order to calibrate three
model separately and then combining them. different Multi Layer Perceptron (MLP) networkserbos

The available meteorological data consisted in hourly1974 1988 199Q Parker 1987 Pujol, 2009, whose input
rain and temperature grids with a 4 km resolution betweendata are the observed precipitation during 13 h befpeand
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Fig. 13. Comparison between the PU computed with one or two models on a flood event for the calibration period. Observed discharges
(black line); expected value conditioned only to the TOPKAPI forecast (dashed line); expected value conditioned to the TOPKAPI and TETIS
forecasts (dotted line); 90 % uncertainty band conditioned to the TOPKAPI forecast (light grey band); 90 % uncertainty band conditioned to
the TOPKAPI and TETIS forecasts (grey band).
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Fig. 14. Comparison between the PU computed combining, two or three models on a flood event for the calibration period. Observed
discharges (black line); expected value conditioned only to the TOPKAPI and TETIS forecasts (dotted line); expected value conditioned to
the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band conditioned to the TOPKAPI and TETIS forecasts (light grey

band); 90 % uncertainty band conditioned to the TOPKAPI, TETIS and ANN forecasts (grey band).
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Fig. 15. Comparison between the PU computed with one or two models on a flood event for the validation period. Observed discharges
(black line); expected value conditioned only to the TOPKAPI forecast (dashed line); expected value conditioned to the TOPKAPI and TETIS

forecasts (dotted line); 90 % uncertainty band conditioned to the TOPKAPI forecast (light grey band); 90 % uncertainty band conditioned to
the TOPKAPI and TETIS forecasts (grey band).
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Fig. 16. Comparison between the PU computed combining, two or three models on a flood event for the validation period. Observed
discharges (black line); expected value conditioned only to the TOPKAPI and TETIS forecasts (dotted line); expected value conditioned to
the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band conditioned to the TOPKAPI and TETIS forecasts (light grey
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band); 90 % uncertainty band conditioned to the TOPKAPI, TETIS and ANN forecasts (grey band).
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well represented by just a single bi-variate normal dis-
tribution. The TNDs have been used for the other two
models and both of them provide a lower uncertainty for
the upper sample.

Table 1. Probability that the true value exceeds the 35&m
threshold when the expected value of prediction equals 255
computed for each model and their Bayesian combination.

P(y>350ms 1|$=250nPs 1) 2. In the second step, the series of the expected values
TOPKAPI TETIS ANN 3 MODELS of the predictand conditional on each model forecast is
0.25 034 0.16 0.15 processed with the MCP multivariate approach and the

combined expected value of the predictand conditional
to all the models is computed at each time step from the

predictive distribution.
the observed discharges during 3 h befgreThe output of

the networks is the discharge 6 h after the Summarizing, 3. Inthe third step, the series of expected values of the pre-
the data have been divided in three groups using the SOM, dictand conditional to all the models is finally processed
in order to identify three different hydrological states of the in order to properly estimate the predictive density. This
system, and each group has been calibrated with a Feed For- last step is required, as it will be discussed in the next
ward Network in order to forecast the discharge 6h in ad-  Section, due to the non perfect agreement between the
vance. Moreover, to avoid the risk of overfitting the calibra- empirical density of residual and the assumed Normal

tion data, an early stopping procedure has been used intro- ~ distribution.
ducing a verification data set, included between 1 June 1997:igure 12a and b summarizes the obtained results with re-

and 31 January 1998. This procedure stops the Neural Negard to the models combination computed from the expected
work calibration as soon as the evaluation indexes computed,iue of the predictive distribution. Figurta represents

on the verification data set starts to decrease. Finally, the dar{ﬁe standard error and Fig2b represents the Nash-Sutcliffe
included between 1 February 1998 and 30 September 2002, o fficient.

have been used for validating the model. In Figs.13, 14 and15, 16 two examples of models com-

In order to make coherent the forecasts of each model als@jnation are shown, one during the calibration period and the

the TETIS and TOPKAPI models have been used t0 préxiher one during the validation period. In both events the

dict the discharge 6 h in advance, assuming, as done with thgcertainty band gets narrower as the number of models in-
ANN, that the precipitation is null during the forecast time.  ¢raa5es and in the calibration event the expected value com-
In Fig. 10a schematic summary of the division of the data , ;teq with the combination of all the models well matches
used for calibrating and validating each model is depicted. ihe observed series. In the validation event, the pick flow
_The two physically based models are conceptually quitejs quite better represented when only the TOPKAPI model
similar; it can be highlighted that the TOPKAPI model tends js ysed, probably due to its better forecast in this specific
to underestimate the highest flood events, to overestimate th@ase, but also in this event the uncertainty band is reduced
smallest ones and to reproduce the flood events of me‘diUVEombining all the models.
magnitude quite well. The TETIS model also generally un-  The combination of the three models’ predictions, ob-
derestimates the highest events and often underestimates thg,eq by assigning different weights to each model accord-
small events too. The ANN model, due to its nature of datajng o the Bayesian theory, allows the forecast quality to be
driven model, is not able to well reproduce the peak ﬂC’WS’improved as shown by the evaluation indexes in Figa
which are oftep underestimated and predicted with a delayyng p. The two physically based model structures are very
of 1 or 2h, butit perfectly reproduces the low flows. similar, so this leads to a little gain in terms of forecast im-
provement, represented by the standard deviation of the er-
rors and the Nash-Sutcliffe efficiency index (FitRa and
The MCP is applied in three phases and Joint TNDs haveb)' On th_e contrary, the_ combination of one physica!ly based
been used in each phase. model with the data driven model leads to greater improve-
ments in forecast and, in particular, the combination of all the
1. In the first step, each model is processed separately. Alfhree models gives the best values of the analyzed indexes
the historical data are being processed and the expecteldig. 12a and b).
value of the predictand conditional to a single model is The knowledge of the uncertainty distribution also allows
computed at each time step from the predictive distribu-the probability of exceeding an alert threshold to be esti-
tion. Figurella, b and c, schematically represents the mated, that is a stochastic way to predict the flooding risk.
predictive distribution computed separately with each The threshold has been set at 350sm'. In Figs. 17 and
model. For the ANN model it was not necessary to di- 18, the comparison between the deterministic and stochas-
vide the data in two samples because the joint distribu-tic discharge forecasts and the correspondent probability of
tion of observed and forecasted transformed values wagxceeding the threshold is shown.

4.2.3 Predictive uncertainty assessment
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Fig. 17. Flood event for the calibration period. The lower panel represents the discharge forecast; observed values (continuous line); ex-
pected value conditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band (grey area); alarm threshold
of 350 rr?’sfl(small dashed line). The upper panel represents the probability of exceeding the alarm threshold; observed binary response
(continuous line) and Probability of exceeding the threshold computed by the MCP (dashed line).

It has been a.lso shown that t_he combination Of_ SeV(:"rall'able 2. Expected value of prediction corresponding to the proba-
models leads to improved estimation of such exceeding prObbiIity of 20 % that the true value will exceed the 356 a1 thresh-

ability. Tablesl and 2 exemplify the improvements ob- |4, computed for each model and their Bayesian combination.
tainable by the Bayesian combination of the different mod-

els. Tablel concurs with the behaviour represented in
Fig. 1 showing the probability that the true value exceeds
the 350 n3 s~ ! threshold when the expected value of predic- ~ TOPKAPI  TETIS ANN 3 MODELS
tion equals 250 rhs~1, computed for each model and their 217nPs™t 138nPst 270nPst  284nPst
Bayesian combination. One can see the reduction of ex-
ceedance probability as a function of the quality of the fore-
cast. Finally, the effect of the introduction of the probabilis- eye| while worse models require earlier action correspond-
tic forecast approach can be appreciated in Tableshows,  hq 1o lower levels on the basis of the principle of precau-

similarly to what is qualitatively displayed in Fig, the ex- o \which corresponds to the fact that the decision maker is
pected value of the prediction corresponding to the probabily,5re uncertain.

ity of 20% to exceed the 350%s~! threshold; this value

is computed for each model and for their Bayesian com-
bination. As can be seen better models allow to wait un-
til the expected value of prediction is closer to the flooding

E[y|$I[P(y>350n?s1[$)=0.2]
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Fig. 18. Flood event for the validation period. The lower panel represents the discharge forecast; observed values (continuous line); ex-
pected value conditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band (grey area); alarm threshold
of 350 P st (small dashed line). The upper panel represents the probability of exceeding the alarm threshold; observed binary response
(continuous line) and Probability of exceeding the threshold computed by the MCP (dashed line).

4.2.4 Quantiles assessment of the Baron Fork river example where the three forecast-
ing models were not extremely accurate. Figlieshows
As mentioned in the previous section, in order to obtain athe results for the Baron Fork river example in the Normal
more adherent representation of the predictive density, whictspace in terms of probability densities of residuals and of the
is essential for decision making, a third step was deemed ne@ssumed Normal predictive density, for the calibration and
essary in the procedure after analyzing the residuals of théhe verification periods. Please note that the empirical den-
second step. The probability distribution of these residualssities of residuals displayed in Fif9 are obtained with all
although appearing reasonably well represented by a Northe observations, not limited to the reduced set used in the
mal distribution in the central portion, showed high kurtosis estimation phase. It can be noted that apart from the upper
values due to fatter tails, which induced overestimating theand lower tails the probability density is correctly reproduced
predictive variance under the Normal Distribution assump-both for the calibration (left) and verification (right) periods.
tion. Due to the fact that decisions in flood management argrigure20is the mostimportant verification tool for establish-
essentially based on probabilities in the range 0.1-0.9 (onéng the correctness of the approach; it shows the comparison
must realize that 0.9 probability of overtopping a threshold for the Baron Fork river example between the predicted prob-
is already extremely high when taking decisions) it was de-ability of being in a range around the expected value (10 %,
cided that the estimation of the full predictive density would 20 %, .., 90 %) and the corresponding empirical probability
be based on a reduced set of data: namely all the couples @stimated from the observations both for the calibration (left)
observation-expected value of the predictand conditional teand verification (right) periods. Again it is possible to note
all the models, that would generate a residual falling into thethat the approach seems to correctly estimate the predictive
probability range 0.1-0.9. Therefore, in the third step, thedensity.
application of MCP was based on this reduced set of data
only, and the results were quite rewarding even in the case
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Fig. 19. Comparison between the empirical distribution of residuals band at various probability levels defined with a 10 % interval. The
and the assumed Normal distributian=£ 0.072). The results were

obtained considering the entire calibrati@) and verification(b)
periods for the bayesian combination of the three models.

red line represents the perfect behaviour. The results were obtained
considering the entire calibratiga) and verificatior(b) periods for
the bayesian combination of the three models.

5 Conclusions

by construction the marginal distributions assume a Standard
This paper is focused on the Model Conditional Proces-Normalshape and the joint distribution can be reasonably ap-
sor (Todini, 2008 development for assessing predictive un- Proximated by a Multivariate Normal distribution. Nonethe-
certainty. Two applications, the first one to the Po River le€ss, this approach has some disadvantages. First of all, it
(Italy) and the second one to the Baron Fork River (OK, implies to identify additional models to adjust the quantiles

USA), allowed to draw some important conclusions, which outside the range of the historical available data. The pro-
are summarized below. posed technique is quite sensitive to the shape and to the pa-

The predictive uncertainty assessment starts with the ident@meters of these models and some precautions in the choice
tification of the marginal distributions of the observed and of the subset of observations used for calibrating the tails data
predicted data as well as their joint distribution. Such Must be taken. They must contain a large variety of cases, as
marginal distributions are often unknown in the untrans-équired by any Bayesian approach, and in order to reduce
formed observation space, and moreover it is extremely dif-the uncertamty’on the marg'lnal distribution tails the calibra-
ficult to make hypotheses on the shape of their joint distripy-tion data must include the highest number of extreme cases.
tion. Several works in the literatur&(zysztofowicz 1999 The assumption of a Normal Multivariate joint distribu-
Montanari and Brathi2004 Todini, 2008 suggested to use a tion in the transformed space implies unavoidable approxi-
non-parametric approach based on order statistics, namely tmations and it does not account for the error heteroscedas-
use the Weibull Plotting Position as an estimate of the prob+icity. In order to reduce it a non-linear regression model
ability of an ordered vector. Accordingly, a nonlinear trans- could be used. In this paper a piecewise linear approach has
formation, the Normal Quantile Transform, is used to movebeen preferred to a fully non-linear model. The piecewise
from the original observation space to the Normal one, wherdinear approach allows for the use of Truncated Multivariate
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Normal joint distributions. This technique can be easily de-way. The results presented in SetR.4show the good per-
veloped and applied obtaining good results such as for théormance of the methodology at correctly assessing the quan-
study cases where it has been used. The results shown tiles up to 80-90 % around the expected value of the predic-
Fig. 20 demonstrate that the joint distribution is well rep- tand, which then allows a decision maker to correctly infer
resented with this technique, even if some unavoidable apthe probability of exceeding an alarm threshold or a dyke.
proximations are still present. Nevertheless, the methodol-
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