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Abstract. The work aims at discussing the role of predictive
uncertainty in flood forecasting and flood emergency man-
agement, its relevance to improve the decision making pro-
cess and the techniques to be used for its assessment.

Real time flood forecasting requires taking into account
predictive uncertainty for a number of reasons. Determinis-
tic hydrological/hydraulic forecasts give useful information
about real future events, but their predictions, as usually done
in practice, cannot be taken and used as real future occur-
rences but rather used as pseudo-measurements of future oc-
currences in order to reduce the uncertainty of decision mak-
ers. Predictive Uncertainty (PU) is in fact defined as the
probability of occurrence of a future value of a predictand
(such as water level, discharge or water volume) conditional
upon prior observations and knowledge as well as on all the
information we can obtain on that specific future value from
model forecasts. When dealing with commensurable quanti-
ties, as in the case of floods, PU must be quantified in terms
of a probability distribution function which will be used by
the emergency managers in their decision process in order to
improve the quality and reliability of their decisions.

After introducing the concept of PU, the presently avail-
able processors are introduced and discussed in terms of their
benefits and limitations. In this work the Model Conditional
Processor (MCP) has been extended to the possibility of us-
ing two joint Truncated Normal Distributions (TNDs), in
order to improve adaptation to low and high flows.

The paper concludes by showing the results of the appli-
cation of the MCP on two case studies, the Po river in Italy
and the Baron Fork river, OK, USA. In the Po river case the
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data provided by the Civil Protection of the Emilia Romagna
region have been used to implement an operational exam-
ple, where the predicted variable is the observed water level.
In the Baron Fork River example, the data set provided by
the NOAA’s National Weather Service, within the DMIP 2
Project, allowed two physically based models, the TOPKAPI
model and TETIS model, to be calibrated and a data driven
model to be implemented using the Artificial Neural Net-
work. The three model forecasts have been combined with
the aim of reducing the PU and improving the probabilistic
forecast taking advantage of the different capabilities of each
model approach.

1 Introduction

1.1 Decision making under uncertainty

In the last decades, the interest in assessing uncertainty in
models forecasts has grown exponentially within the scien-
tific communities of meteorologists and hydrologists. In par-
ticular, the introduction of the Hydrological Uncertainty Pro-
cessor (Krzysztofowicz, 1999; Krzysztofowicz and Kelly,
2000), aimed at assessing the predictive uncertainty in hy-
drological forecasts, has created the basis for the estimation
of flood predictive uncertainty.

Flood emergency management requires adopting opera-
tional decisions in real time that may lead to dramatic con-
sequences (economical losses, casualties, etc.). The hardest
obstacle the managers have to deal with is the uncertainty on
the future evolution of events. Decision theory (De Groot,
1970; Raiffa and Schlaifer, 1961) studied this problem and
provided the most appropriate solutions for taking decisions
under uncertainty. This approach consists in minimizing the
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expected value of a utility functionU(y) representing the
losses, or more in general the subjective manager perception
of them, as a function of a predictand that will occur at a fu-
ture time (such as a future discharge or water stage in a cross
section). This quantity is unknown at the time of the decision
(t0) and the aim of forecasting is to assess its probability of
occurrence, in terms of a predictive uncertainty probability
density function.

In the case of flood forecasting, predictive uncertainty can
be defined as the uncertainty that a decision maker has on
the future evolution of a predictand that he uses to make
a specific decision.

In order to fully understand and to appreciate what is ac-
tually meant by predictive uncertainty, it is necessary to re-
alize that what will cause the flooding damages is the ac-
tual future realization of the discharge and/or the water level
that will occur, not the prediction generated by a forecasting
model; in other words the damages will occur when the ac-
tual water levelyt and certainly not if the prediction̂yt will
overtop the dyke levelyD (Todini, 2009). Therefore a util-
ity/damage function at any future time (t>t0) must be ex-
pressed as a function of the actual level that will occur at
time t{

U(yt ) = 0 ∀yt ≤ yD
U(yt ) = g(yt −yD) ∀yt > yD

(1)

whereg(·) represents a generic function relating the cost of
damages and losses to the future, albeit unknown water stage
yt . In this case the manager, according to the decision the-
ory (De Groot, 1970; Raiffa and Schlaifer, 1961), must take
his decisions on the basis of the expected utilityE{U(yt )}.
This value can be estimated only if the probability density
function of the future event is known, and it can be written as

E{U(yt )} =

+∞∫
0

U(yt )f (yt )dyt (2)

wheref (yt ) is the probability density expressing our incom-
plete knowledge (in other words our uncertainty) on the fu-
ture value that will occur. This density, which can be esti-
mated from historical data, is generally too broad because it
lacks the conditionality on the current events. This is why
it is essential to improve this historical probability distribu-
tion function by more realistically using one or more hydro-
logical models able to summarize all the available informa-
tion (like the rain forecast, the catchment geomorphology,
the state of the river at the moment of the forecast, etc. . . )
and to provide a more informative densityf (yt |ŷt|t0), which
expresses our uncertainty on the future predictand value af-
ter knowing the models’ forecasts issued at timet0, namely
ŷt|t0 = [ŷ1t |t0

,ŷ2t |t0
,...,ŷMt |t0

], where M is the number of
forecasting models. Equation (2) can now be rewritten as

E
{
U

(
yt |ŷt |t0

)}
=

+∞∫
0

U(yt )f
(
yt |ŷt |t0

)
dyt (3)

The probability distribution functionf (yt |ŷt |t0) represents
the PU, hereafter denominatedf (y|ŷ) for sake of simplicity.

In this paper some existing uncertainty processors will be
breafly discussed, focusing on the Model Conditional Pro-
cessor (Todini, 2008), with particual attention to the error
heteroscedasticity and the models combination, providing a
solution to tackle them.

1.2 Choice of the predictand

An important issue in PU assessment is the choice of the pre-
dictand. As mentioned in the previuos section, PU deals with
the actual value of the variable to be predicted. To this end, it
is well known that measurements are always affected by er-
rors that should be taken into account. However substituting
the observed value for the actual value is a common proce-
dure in PU assessment even if observations do not coincide
with reality. A discussion about the choice of the predictand
will be carried out in this section.

It is worth to take into account the following four remarks:

– Water level measurements are affected by relatively
small errors (with standard error of the order of 2–
3 cm); although care should be taken to account for
possible non stationarities in the records, it is psycho-
logically fundamental to use them as measures unaf-
fected by measurement errors both because flood deci-
sions have always been essentially based on these mea-
sures and because their errors have very small effect on
the decisions compared to the larger effects of the other
sources of uncertainty.

– Discharge measurements are generally unavailable in
real time, although there is a recent tendency to use mi-
crowave surface velocity measurements in combination
with the water stage, which could improve discharge es-
timates in real time.

– Classical discharge estimates, based on water level mea-
surements and steady state rating curves, are affected by
errors that may reach 30 % (Di Baldassare and Monta-
nari, 2009). One major source of errors is due to ex-
trapolation beyond the range of observations. A sec-
ond major source is due to the presence of loops in the
level-discharge relation, which are not represented by
the steady state rating curve, unless modified by using
correcting formulas, such as the Jones formula or others
(Dottori et al., 2009).

– Rainfall-runoff model forecasts are essentially based on
discharges, while flood routing model forecasts can be
obtained both in terms of water levels and/or discharges.
In any case they are affected by a wide range of errors.

Therefore, when dealing with real time flood forecasting,
the filtered water level is in theory the most appropriate quan-
tity to be used as the predictand. Please note that we are
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here talking of a filtered quantity because the real occur-
rence will never be known, but one can reduce the mea-
surement errors by using filtering techniques aimed at re-
ducing measurement errors, such as for instance the classi-
cal Kalman Filtering technique (Kalman, 1960; Kalman and
Bucy, 1961). Nonetheless, in practice, the observed water
levels can be considered the best operational quantity to be
used as predictand: the errors are small and the decision mak-
ers degree of belief is very high, while this is not so for
the filtered quantities that are estimated and not measured.
Therefore, whenever possible, and in particular when deal-
ing with flood warning, one should use the observed water
levels as the predictand to be used in any flood predictive
uncertainty processor.

In case that water levels are not available or when one
needs to predict inflows to a reservoir or a water detention
area, where the flood volumes are the best decision vari-
able, corrected and filtered discharges should be used. In
other words, prior to use discharges as predictands for the
calibration of the hydrological uncertainty processors, their
improved estimates must be produced both by accounting
for the shape of the cross section and by taking into ac-
count the loop formation in the rating curve. This will elim-
inate most of the water level dependent biases, while the
elimination of the random errors must be approached by
filtering techniques.

In terms ofpredictors(i.e. the variables used to condition
the PU), when available from a flood routing model, the best
choice would be the forecasted water levels. Otherwise it is
possible either to convert the predicted discharges into pre-
dicted water levels using a corrected rating curve, as men-
tioned above, or just to directly use the predicted discharges,
since the effect of the conversion errors from discharge to
levels, may affect the order of the predicted variables. This
is what essentially dominates the Normal Quantile Trans-
form (NQT), which is the basis of most of the uncertainty
processors (Van der Waerden, 1952, 1953a,b).

1.3 The probabilistic threshold paradigm

Today, similarly to what was done for more than a century,
in order to trigger their decisions, the majority of water au-
thorities involved in flood emergency management prepare
their plans on the basis of pre-determined water depths or
thresholds ranging from the warning water level to the flood-
ing level. Decisions, and consequent actions, are then taken
as soon as a real time measure of the water stage overtops
one of these thresholds. This approach, which is correct and
sound in the absence of flood forecasting models, is a way of
anticipating events on the basis of water level measures (in
the cross sections of interest or in upstream cross sections),
but can only be effective on very large rivers where the time
lag between the overtopping of the warning and the flooding
levels is sufficiently large to allow for the implementation of
the planned flood relief strategies and interventions. Given

that all the water stage measures are affected by relatively
small errors (2–3 cm), they can be, and have been, considered
as deterministic.

Unfortunately, the advent and the operational use of real
time flood forecasting models, has not changed this ap-
proach, which has been the cause of several unsatisfactory
results. Today, the flood managers compare forecasts, and
not the actual measurements, to the different threshold levels;
this is obviously done in order to further anticipate decisions
by taking advantage of the prediction time horizon. Unfortu-
nately, by doing so the forecasts are implicitly assumed to be
deterministic, which is not the case since they represent vir-
tual reality and are affected by prediction errors, which mag-
nitude is by far larger than that of the measurement errors.

More recently, the concept of predictive uncertainty has
changed this approach. This uncertain nature of forecasts,
opposed to the higher accuracy of measurements, requires
the definition of probabilistic thresholds, defined in terms of
the probability of flooding taken at different probability lev-
els, instead of the definition of deterministic threshold val-
ues. Using the probabilistic thresholds, the same predicted
water level may have different meaning owing to the reliabil-
ity of prediction. In other words, the same forecast may or
may not trigger the decision of issuing a warning or evacuat-
ing an area, conditionally to its assessed level of uncertainty.
More uncertain forecasts need necessarily to be treated more
cautiously than more reliable ones; in fact, uncertain lower
water stage forecasts could then trigger a protective measure,
whereas higher, albeit more accurate water stage forecasts,
would not. As can be seen from the Fig.1, for the same
expected value (the horizontal dashed line) a better forecast
(Model A), characterised by a narrower predictive density,
will show a smaller probability of exceeding the flooding
level when compared to a worse one (Model B). This prop-
erty can be also looked at from an alternative perspective, as
shown in Fig.2 the same flooding probability corresponds to
lower expected values as the spread of PU increases. This
implies that if a probabilistic threshold is defined instead of
a deterministic threshold level, when the PU is larger the de-
cision maker must be more cautious and would be advised
to issue an alert even when, looking at the expected value of
the forecast, he would not think of issuing it, because he may
regard it as being too low.

2 Existing approaches

In the following sections the Hydrological Uncertanty Pro-
cessor (Krzysztofowicz, 1999), the Bayesian Model Averag-
ing (Raftery, 1993; Raftery et al., 2005; Vrugt and Robinson,
2007) and the Quantile Regression (Koenker, 2005) will be
briefly discussed, but many other bayesian processors exist,
such as the one introduced byKennedy and O’Hagan(2001).
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Fig. 1. Probability of exceeding the dyke level for the same expected value, forecasted by models with different reliability.

Fig. 2. Comparison between the expected value provided by models with different reliability when the probability of exceeding the dyke
level is the same for all the models.

2.1 Hydrological uncertainty processor

Krzysztofowicz(1999) introduced a Bayesian processor, the
Hydrological Uncertainty Processor (HUP) which aims at es-
timating the predictive uncertainty given a set of historical
observations and a hydrological model prediction. The HUP
was developed around the idea of converting both observa-
tions and model predictions into a normal space by means
of the NQT in order to derive the joint distribution and the
predictive conditional distribution from a treatable multivari-
ate distribution. In practice, as described inKrzysztofow-
icz (1999), after converting the observations and the model
forecasts available for the historical period into the normal
space, the HUP combines the prior predictive uncertainty
(in this case derived using an autoregressive model) with
a Likelihood function in order to obtain the posterior den-
sity of the predictand conditional to the model forecasts.
From the normal space this conditional density is finally re-
converted into the real space in order to provide the predictive
probability density.

The introduction of HUP generated a positive impact on
the hydrological community, in factKrzysztofowicz(1999)
was the first in hydrological forecasting who clarified the
concept of predictive uncertainty. Nonetheless, HUP has
three major limitations. The first one relates to the fact that
only one model at a time can be used in HUP, which has not
yet been extended to multi model forecasts. Moreover the
used prior autoregressive (AR) model frequently tends to be
inadequate to represent the predictand, as for instance in the
case of a flood routing problem where the AR model is ade-
quate for representing the recession but not the rising limb of
the flood wave. Finally, the HUP procedure implies the inde-
pendence of the AR model errors from those deriving from
the used prediction model, which is not guaranteed due to
the fact that both models tend to be highly correlated to the
observations, which inevitably induces a level of correlation
among them.
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2.2 Bayesian model averaging

Introduced byRaftery (1993), Bayesian Model Averaging
(BMA) has gained a certain popularity in the latest years.
The scope of Bayesian Model Averaging is correctly formu-
lated in that it aims at assessing the mean and variance of any
future value of the predictand conditional upon several model
forecasts. Differently from the HUP assumptions, in BMA
all the models (including the AR prior model) are similarly
considered as alternative models.Raftery et al.(2005) devel-
oped the approach on the assumption that the predictand as
well as the model forecasts were approximately normally dis-
tributed, whileVrugt and Robinson(2007) relaxed this hy-
pothesis and showed how to apply the BMA to Log-normal
and Gamma distributed variables. In practice the Bayesian
Inference problem, namely the need for estimating a poste-
rior density for the parameters, is overcome in the BMA by
estimating a number of weights via a constrained optimiza-
tion problem. Once the weights have been estimated, BMA
allows to estimate the mean and the variance of the predic-
tand conditional upon several models at the same time.

The original BMA, as introduced byRaftery(1993), has
shown several problems. First of all, as pointed out byVrugt
and Robinson(2007), the original assumption of approxi-
mately normally distributed errors, is not appropriate for rep-
resenting highly skewed quantities such as water discharges
or water levels in rivers. Therefore one must either relax this
hypothesis, as done byVrugt and Robinson(2007) who ap-
plied the BMA to Log-normal and Gamma distributed vari-
ables or to convert the original in the normal space once again
using the NQT, as done inTodini (2008). Another problem,
which emerges from the application of BMA is the use of
the “expectation-maximization” (EM) algorithm (Dempster
et al., 1977) proposed byRaftery et al.(2005), which was
not found to properly converge to the maximum of the likeli-
hood. To overcome this problem, one can either use sophis-
ticated, complex optimization tools such as the SCEM-UA
(Vrugt et al., 2003) or, as proposed byTodini (2008), a sim-
ple and original constrained Newton-Raphson approach,
which converges in a very limited number of iterations.

2.3 Quantile regression

The latest uncertainty processors approaches tackle the prob-
lem of the heteroscedasticity of the errors often present in
hydrological modelling. All the previously described tech-
niques imply homoscedasticity of the error variance, which
is assumed to be independent from the magnitude of the ob-
served or forecasted values, but in real cases this assumption
leads to a lack of accuracy.

Recently, in order to overcome this problem, the Quantile
Regression (Koenker, 2005) was used (Weerts et al., 2011).
The Quantile Regression (QR) approach tries to represent
the error heteroscedasticity identifying a linear or non-linear
variation of the quantiles of the PU as a function of the model

forecast magnitude. This technique allows all the desired
quantiles of the PU to be assessed in the normal space and
then reconverted by means of the inverse NQT to the real
space. In the linear case, theτ -th sample quantile is com-
puted solving the Eq. (4), from which is possible to identify
the parametersaτ andbτ which defines the linear regression
for theτ -th quantile.

min
aτ ,bτ ∈R

n∑
i=1

ρτ (η−a−bτ · η̂) (4)

where

ρτ (x) =

{
x ·(τ −1) if x < 0
x ·τ if x ≥ 0

The problem is correctly formulated and allows each quan-
tile of the PU to be computed, but it requires the estimation
of at least two parameters per quantile and the number of
parameters to be estimated may become quite large. More-
over, QR not always improves from assuming homoscedas-
ticity: this depends on the actual distribution of the errors.
Figure3a and b shows two situations in which the use of the
linear QR leads to very different results. Figure3a is an op-
timal situation for using linear QR because the variation of
error variance is linearly decreasing with the magnitude of
the forecasts and the resulting quantiles well represent the
real distribution of the data. On the contrary, in Fig.3b it
is not possible to identify a linear variation of the error vari-
ance and the use of the linear QR does not provide improved
assessments of PU, particularly for high forecast values.

3 Model conditional processor

The Model Conditional Processor (MCP) is a Bayesian
methodology, proposed byTodini (2008), for estimating the
predictive uncertainty. The derivation of the predictive dis-
tribution is essentially based on the estimation of a joint
predictand-prediction distribution, computed by taking ad-
vantage of the model behaviour knowledge acquired through
the available historical series. Since the multivariate distribu-
tions can be formulated and effectively analytically treated in
a very limited number of cases,Krzysztofowicz(1999) sug-
gested transforming the observations and model forecasts in
a Gaussian or Normal space via a non parametric transforma-
tion, the NQT (Van der Waerden, 1952, 1953a,b). The orig-
inal variablesy andŷ, whose empirical cumulative distribu-
tion function has been computed using the Weibull plotting
position, are so converted to their transformed valuesη andη̂

respectively, following a Normal Standard Distribution. The
Weibull plotting position refers to the expected value of the
probability of theith element of a ranked (smallest to largest)
sample of sizen, which is i

(n+1)
. Its use is recommended

when the form of the distribution is unknown and when un-
biased exceedance probabilities are desired.

www.hydrol-earth-syst-sci.net/15/3253/2011/ Hydrol. Earth Syst. Sci., 15, 3253–3274, 2011



3258 G. Coccia and E. Todini: Recent developments in predictive uncertainty assessment

(a)

(b)

Fig. 3. (a)An optimal situation for using the QR.(b) Poor results
are obtained using QR in the situation represented here, which, by
the way, is quite common in hydrological applications.

In the Normal space the joint distribution ofη andη̂ can be
assumed as a Normal Bivariate,f (η,η̂), allowing the predic-
tive distribution to be easily computed according to the Bayes
theorem, as described in (Todini, 2008). The moments of the
predictive distribution in the Normal space are:

µη|̂η = ρηη̂ · η̂

σ 2
η|̂η = 1−ρ2

ηη̂

(5)

Therefore, after obtaining the conditional probability in the
normal space, the results have to be converted into the real
world in order to compute the predictive probabilityf (y|ŷ).
To do so the predictive density has to be sampled in the Nor-
mal space and then the obtained quantiles have to be recon-
verted into the real space by a reverse process. This is due
to the fact that the transformation is highly non linear, and,
for instance, the mean value in the Normal space does not
correspond to the mean value in the real world, in fact it cor-
responds to the median (50 % probability) (Todini, 2009). In
this process the use of the Weibull plotting position implies
the need of using an additional model to fit to the tails of all
the variables, namely the observations and the model fore-
cast, in the real space, in order to accommodate probability
quantiles larger thann

n+1 or lower than 1
n+1. The choice of

the best tail model depends on the actual distribution of the

data, in most applications of the MCP the following models
have been used, respectively for the lower and the upper tail:

p(y) = plow ·

[
y

y(plow)

]a

(6)

p(y) = 1−
(
1−pup

)
·

[
ymax−y

ymax−y
(
pup

)]b

(7)

whereplow and pup are the lower and upper limits defin-
ing the probability values for which the tails will be
used;y(plow) and y

(
pup

)
are the values of the variabley

correspondent to the probability limits;ymax is the maximum
value for which the probability is assumed to be equal to
1 and, although it can be derived through an extreme value
analysis, for the sake of simplicity, in the proposed case stud-
ies it was assumed to be equal to twice the maximum value
ever observed;a andb are the parameters to be estimated.
Concerning the lower tail it is assumed that the null proba-
bility is assigned to the null value of the variabley, that is
true when dealing with discharges, but not ify represents
level values. In this case it is necessary to refer all the val-
ues to the bedstream level, so that the null level is the lowest
level possible. Moreover, using level values alsoymax must
be computed as the double of the maximum level observed
referred to the bedstream level.

3.1 The multi-model case

The previously described MCP methodology has generated
the idea of generalizing the procedure using a multi-normal
approach (Todini, 2008). Often, a real time forecasting sys-
tem is composed by more than one model, or a chain of mod-
els, and the emergency manager has to take a decision on the
basis of multiple forecasts of the same quantity that may also
be very different from each other. It is very difficult to find an
objective way to state that one model is better than another, or
to assign a correct weight to each forecast in order to extrap-
olate from all the available information a stochastic forecast
that allows the emergency to be managed in the best way.

In order to combine several model forecasts, the MCP can
be improved by generalizing the bivariate normal approach
to a multivariate normal approach (Mardia et al., 1979). In
this case the Multivariate space is composed byM+1 vari-
ables, that are the observed discharges (or water levels)y

and theM predictionsŷk, k=1,...,M. Using the NQT, all
the variables are converted to their transformed values,η and
η̂k, k=1,...,M, in the multi-normal space.

All the variables in the normal space have a standard nor-
mal distribution and the predictive uncertainty, defined now
as the distribution of the future event conditioned on the fore-
casts of theM models, can be expressed as(y|ŷ1,...,ŷM),
for simplicity abbreviated tof (y|ŷk) for the original vari-
able andf (η|η̂k) in the normal space.
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The joint distribution is a multi-normal distribution with
mean and variance

µη,η̂k
=

0
...

0

 (8)

6η,η̂k =



1 ρηη̂1 ρηη̂2 ··· ρηη̂M

ρη̂1η 1 ρη̂1η̂2

. . . ρη̂1η̂M

ρη̂2η ρη̂2η̂1

. . .
. . .

...
...

. . .
. . .

. . . ρη̂M−1η̂M

ρη̂Mη ρη̂M η̂1 ··· ρη̂M η̂M−1 1


(9)

Defining

6ηη = 1

6ηη̂ =
[
ρηη̂1 ρηη̂2 ··· ρηη̂M

]

6η̂η̂ =


1 ρη̂1η̂2 ··· ρη̂1η̂M

ρη̂2η̂1

. . .
. . .

...
...

. . .
. . . ρη̂M−1η̂M

ρη̂M η̂1 ··· ρη̂M η̂M−1 1


(10)

and substituting Eq. (10) in Eq. (9), the cross correlation ma-
trix can also be written as

6η,η̂k =

[
6ηη 6ηη̂

6ηη̂
T 6η̂η̂

]
(11)

Then the predictive uncertainty can be expressed as

f (η|η̂k) =
f (η,η̂1,...,η̂M)

f (η̂1,...,η̂M)
(12)

The solution of Eq. (12) is easily obtained and leads to a nor-
mal distribution with moments derived from Eq. (11) as

µη|η̂k
= 6ηη̂ ·6η̂η̂

−1
·

 η̂1
...

η̂M


σ 2

η|η̂k
= 1−6ηη̂ ·6η̂η̂

−1
·6ηη̂

T

(13)

Please note that Eq. (13) does not differ from the classical
multiple regression results.

As done for the univariate case, the predictive uncertainty
in the real world,f (y|ŷk), is obtained by convertingf (η|η̂k)

by means of the inverse NQT.

3.2 Truncated normal joint distributions to account for
the error heteroscedasticity

As mentioned in Sect.2.3, the assumption of homoscedastic-
ity of the error variance leads to a lack of accuracy in repre-
senting the PU, especially at reproducing high flows, because

Fig. 4. Truncated normal joint distributions. The division of the
Joint Distribution in the normal space into two bivariate truncated
normal distributions is shown. The red line represents the modal
value, while the grey lines represent the 5 % and the 95 % quantiles.
The light blue line represents the threshold used in order to identify
the two TNDs.

the NQT tends to increase the variance of the lower values.
Moreover, the number of observed and predicted low and
medium flows is much larger than that of high flows with the
consequence of a higher weight in the determination of the
regression or the correlation coefficients used by the different
approaches. As a consequence the estimation of high flows in
the Normal Space will be affected by a distortion in the mean
as well as an overestimation of the variance, which will in-
evitably increase when returning into the real space. To face
this problem an alternative approach has been introduced in
the MCP formulation. Namely, within the MCP framework
the entire Normal domain is divided into two (or more) sub-
domains where Truncated Normal Distributions (TNDs) can
be used. In this case, the MCP can be applied assuming that
the joint distribution in the Normal Space is not unique, but
can be divided into two (or more) TNDs. A threshold sepa-
rating low flows from high flows, in the forecast domain, is
relatively easy to be identified. Figure4 shows the two TNDs
that can be used in that case.

The identification of the two TNDs is not immediate, but
can be obtained by the following procedure that depends on
the number of available forecasting models.

3.2.1 TNDs with only one forecasting model

After converting the original variablesy andŷ to their trans-
formed valuesη and η̂, a thresholda is chosen among the
values ofη̂ in order to split the data in two samples, which
are assumed to belong to two unknown normal distributions
truncated over̂η by a. If more than one threshold are iden-
tified, it is possible to consider more than two TNDs, but in
order to avoid the processor to excessively adapt to the cali-
bration data, with the risk of losing generalization ability, it is
advisable to use as few TNDs as possible. Usually two TNDs
are enough to well represent the distribution of the data in the
Normal Space.
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The thresholda can be identified as the value ofη̂ that
minimizes the predictive variance of the upper sample (the
one representing the high flows) and its search must be lower
and upper limited in order to count with significant samples
for computing the moments of the truncated distributions.
In fact, the moments of these truncated distributions must
be estimated by equating them to the sampling moments, as
described below.

Taking into account only the sample that includes the high
flows, the Truncated Normal distribution forη̂ > a is

f (η̂|η̂ > a) =
f (η̂)∫

+∞

a
f (η̂)dη̂

=
f (η̂)

1−Fη̂(a)
(14)

with f (η̂) defined as

f (η̂) =
1

√
2πsη̂

exp

{
−

1

2

(
η̂−mη̂

sη̂

)2
}

(15)

wherem̂ andŝ are the mean and the standard deviation of the
non truncated, albeit unknown distribution.

Therefore, the joint distribution is the following truncated
normal bivariate distribution

f (η,η̂|η̂ > a) =
f (η,η̂)∫

+∞

−∞

[∫
+∞

a
f (η,η̂)dη̂

]
dη

=
f (η,η̂)

1−Fη̂(a)
(16)

Wheref (η,η̂) is defined as

f (η,η̂) =

exp

{
−

1
2

[
η−mη η̂−mη̂

]
S−1

[
η−mη

η̂−mη̂

]}
√

2π |S|
(17)

whereS=

[
s2
η sηη̂

sηη̂ s2
η̂

]
.

In Eqs. (15) and (17), the values ofmη̂, sη̂, mη, sη andsηη̂

are unknown but can be derived from the sampling moments.
Applying the Bayes theorem to the TNDs, the predictive un-
certainty becomes:

f (η|η̂ > a) =
f (η,η̂|η̂ > a)

f (η̂|η̂ > a)
=

f (η,η̂)

f (η̂)
(18)

It is normally distributed and its mean and variance are func-
tional on the realization of̂η, η̂∗ > a

µη|η̂=η̂∗,η̂∗>a = mη +
sηη̂

sη̂
2
(η̂∗

−mη̂)

σ 2
η|η̂=η̂∗,η̂∗>a

= s2
η −

s2
ηη̂

s2
η̂

(19)

According to the truncated multi-normal distribution theory
(Tallis, 1961), the previous equations allow the PU to be de-
fined in the Normal Space as a Normal Distribution with
mean and variance:

µη|η̂=η̂∗ ,̂η∗>a = µη +
σηη̂

ση̂
2
(η̂∗

−µη̂)

σ 2
η|̂η=η̂∗ ,̂η∗>a = σ 2

η −
σηη̂

2

ση̂
2

(20)

Hereµη, µη̂ andση, ση̂ are respectively the sample means
and standard deviations ofη|η̂ > a and η̂|η̂ > a. These mo-
ments are obviously computed considering only the data
included in the upper sample.

Considering now the lower sample and a relaziation ofη̂,
η̂∗ < a, Eqs. (14) and (16) become, respectively

f (η̂|η̂ < a) =
f (η̂)∫ a

−∞
f (η̂)dη̂

=
f (η̂)

Fη̂(a)
(21)

f (η,η̂|η̂ < a) =
f (η,η̂)∫

+∞

−∞
[
∫ a

−∞
f (η,η̂)dη̂]dη

=
f (η,η̂)

Fη̂(a)
(22)

If the same procedure carried out for the upper sample is
applied to the lower sample, the predictive uncertainty is ob-
tained with the following equation

µη|η̂=η̂∗,η̂∗<a = µη +
σηη̂

ση̂
2
(η̂∗

−µη̂)

σ 2
η|η̂=η̂∗,η̂∗<a

= σ 2
η −

σ 2
ηη̂

σ 2
η̂

(23)

Please note that Eq.23 is equal to Eq.18, but in this caseµη,
µη̂, ση andση̂ are computed taking into account only the data
of the lower sample.

3.2.2 TNDs with more than one forecasting model

When dealing with more than one model, the procedure be-
comes a bit more difficult. The threshold should be identi-
fied for each model and the joint distribution would be rep-
resented by 2M Multivariate Truncated Normal Distributions
(MTNDs) (whereM is the number of models) that include all
the possible simultaneous combinations of each model over-
topping or not its respective threshold. The moments of each
MTNDs should be obtained by means of the sampling mo-
ments computation, but unfortunately in real cases often the
available data are not enough to identify representative sam-
ples and the MTNDs cannot be well assessed.

In order to avoid this situation the problem can be tackled
with a different approach. The MCP can be applied in three
phases. Firstly, each model is processed separately using the
TNDs as described above. In this phase, for each model
its threshold is identified. In the second phase, the series
of expected values of each model simulation (previously ob-
tained) are combined again using two MTNDs. The split of
the multi-variate Normal Space in two parts is obtained iden-
tifying the hyperplane that includes the point[(η = 0,η̂i =

a),∀i = 1..M] and is perpendicular to the straight line that
links the origin to that point. This hyperplane is identified by
the following equation:

M∑
i=1

η̂i = M ·a (24)
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Fig. 5. The River Po catchment in Italy and the location of the gauging station of Pontelagoscuro.

The value ofa is again identified as the one that mini-
mizes the predictive variance of the upper sample. Finally,
in the third phase the series of expected values computed in
the second phase is processed using the TNDs as described
in Sect.3.2.1.

Concerning the second phase, when the valuea is identi-
fied the data are split in two samples, one containing the data
below the truncation hyperplane and the other above it. After
computing the sampling moments for each sample, defining
Hp =

∑M
i=1η̂i and following the truncated multi-normal dis-

tribution theory (Tallis, 1961), it can be demonstrated that
the PU in the normal space, for the sample above the trun-
cation hyperplane, is defined as a normal distribution with
mean and variance

µη|η̂=η̂∗,H ∗
p>M·a = µ+6ηη̂ ·6η̂η̂

−1
·(η̂

∗
− µ̂)

σ 2
η|η̂=η̂∗,H ∗

p>M·a
= 6ηη −6ηη̂ ·6η̂η̂

−1
·6ηη̂

T
(25)

Here µ and µ̂ are, respectively the sample means of
η|Hp>M · a and η̂|Hp>M · a and 6ηη, 6ηη̂, 6η̂η̂ are the
components of the covariance matrix ofη,η̂|Hp>M ·a.

Considering now the sample below the truncation hyper-
plane, the mean and variance of PU in normal space are

µη|η̂=η̂∗,H ∗
p<M·a = µ+6ηη̂ ·6η̂η̂

−1
·(η̂

∗
− µ̂)

σ 2
η|η̂=η̂∗,H ∗

p<M·a
= 6ηη −6ηη̂ ·6η̂η̂

−1
·6ηη̂

T
(26)

Please note that Eq. (26) is equal to Eq. (25), but in this case
µ, µ̂, 6ηη, 6ηη̂ and6η̂η̂ are computed taking into account
only the data of the lower sample.

4 Examples of application

Two application examples will be shown in this paper in or-
der to illustrate the benefits of using the proposed method-
ology. The first example is an operational one, where the
predictand is the observed water level. It refers to a flood
forecasting system on the Po river in Italy and shows that the
MCP approach is well justified for both the full or truncated
normal approaches. The second example is set up in order to
illustrate the benefits of using both the truncated normal ap-
proach as well as the multi model approach. In this case, con-
cerning a recent comparison of distributed hydrological mod-
els, the discharges were the only available data, while the wa-
ter level data were not available. Therefore, bearing in mind
the observations made in Sect.1.2about the predictand to be
chosen, the illustration of the MCP approach and the relevant
benefits is based on the solely available discharge records.

4.1 The Po river example

4.1.1 Case study and available data

The River Po is the largest Italian river with length 650 km
and a catchment area of approximately 70 000 km2, covering
most of Northern Italy (Fig.5). The river originates in the
North-West of Italy, near the border with France at an alti-
tude of 2000 m and flows Easterly into the Adriatic Sea after
crossing four of the most industrialized and populated Ital-
ian regions. Flood risks are steadily growing with increas-
ing urbanization, the expansion of inhabited areas close to
the river bed and the consequent increased number of peo-
ple directly affected by severe floods. The need for effective
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real time flood forecasting and emergency management be-
came extremely clear during the 2000 Po flood, as well as
in the inundation of Torino in 2001. Currently a flood fore-
casting system, based on the PAB hydraulic model (Todini
and Bossi, 1986) combined with the Kalman Filter based al-
gorithm MISP (Todini, 1978) is operational with forecast-
ing horizons up to 36 h in advance. There are several river
sections where flood forecasts are issued, but the most im-
portant one is the ending section of the river prior to its
delta where the level gauging station of Pontelagoscuro is
located (Fig.5). Flood forecasting in Pontelagoscuro is an
extremely important issue because the river is here charac-
terized by a suspended bed over a flat plain only protected
by high earthen dykes, whose failure could cause dramatic
consequences.

The data used as predictands in this work are the mea-
sured water levels at Pontelagoscuro, which have been auto-
matically collected in real time since 1993 by a network of
telemetering gauges, while the predictors are the water level
forecasts produced by the operational flood forecasting sys-
tem corrected by the Kalman Filter. Nine full years of hourly
data were used in this experiment, from January 2000 to De-
cember 2008, in order to assess the properties of the differ-
ent uncertainty processors. The complete data set has been
divided in two parts, four years to calibrate the MCP and five
years to validate it. All the analysis and results presented in
the following sections are based on validation data.

4.1.2 Predictive uncertainty assessment

In the case of the Po river, the assessment of predictive un-
certainty is made for a forecasting horizon of 36 h at Ponte-
lagoscuro. Although the hydraulic model performances are
quite adequate, the use of the MCP processor to provide the
expected value of the predictand given the model forecasts,
produces a substantial improvement by practically eliminat-
ing all the bias and by reducing the standard error (see Fig.6).
On the contrary, in this case the use of the TNDs, instead of
the standard ND, produces a rather small reduction of the un-
certainty band, due to the fact that both the hypotheses on the
linearity of the relation between observed and modeled nor-
mal transformed variables, and on the homoschedasticity of
errors, are certainly appropriate, as can be see from Fig.7,
which shows that the spread of the data is rather narrow and
more or less constant over the entire field. Nonetheless the
use of the TNDs slightly reduces the standard error of high
water levels as can be seen in Fig.8.

4.1.3 Probability of exceeding an alert threshold
assessment

As can be seen from Fig.9, a rather effective operational de-
cision supporting tool can be set up by setting the probability
threshold at 0.5. Fig.9 shows an example of 36 h in advance
prediction, during the validation period, when the water level

(a)

(b)

(c)

Fig. 6. Comparison between the evaluation indexes for the deter-
ministic model and those obtained from the PU expected value pro-
vided by the MCP for the entire validation period.(a) Bias; (b)
Standard Error;(c) Nash-Sutcliffe coefficient.

actually overtopped the threshold (a warning threshold in this
case). The lower section of Fig.9 shows the observed values
(continuous line), the deterministic forecast (dotted line) and
the expected value conditioned to the model forecast (dashed
line), as well as the 90 % uncertainty band (grey area) and the
alarm threshold set to 0 m (horizontal dashed line). The up-
per section represents the probability of exceeding the alarm
threshold, the observed binary response (continuous line) and
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Fig. 7. Representation of the Normal Space obtained applying the MCP to the Po river. The full red lines represent the 5 % and 95 % quantiles
and the dashed red line the 50 % quantile obtained without using the TNDs methodology. The blue lines represent the quantiles obtained
using the TNDs methodology.

Fig. 8. Zoom of the high values shown in Fig.7. The full red lines represent the 5 % and 95 % quantiles and the dashed red line the 50 %
quantile obtained without using the TNDs methodology. The blue lines represent the quantiles obtained using the TNDs methodology.
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Fig. 9. Flood event for the validation period predicted 36 h in advance. The lower panel represents the level forecast; observed values
(continuous line); deterministic forecast (dotted line); expected value conditioned to the model forecast (dashed line); 90 % uncertainty band
(grey area); and alarm threshold of 0 m (horizontal dashed line). The upper panel represents the probability of exceeding the alarm threshold;
observed binary response (continuous line) and probability of exceeding the threshold computed by the MCP (dashed line).

Fig. 10. Schematization of the available data division for calibrating and validating the models and the MCP.
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(a)

(b)

(c)

Fig. 11. Representation of the Normal Space obtained using the MCP with the TOPKAPI(a), TETIS (b) and ANN(c) forecasts.
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(a)

(b)

Fig. 12. Evaluation indexes for TOPKAPIi model (TPK), TETIS
model (TET), ANN model and their combinations during the entire
validation period of the MCP.(a) Standard Error;(b) Nash-Sutcliffe
coefficient.

the probability of exceeding the threshold computed using
the MCP approach (dashed line). It can be seen that all the
forecasts are quite adequate in this example while the proba-
bility of exceeding the threshold takes values larger than 0.5,
closely matching the observed binary response.

4.2 The Baron Fork river example

4.2.1 Case study and available data

The NOAA’s National Weather Service, has provided a long
series of observed discharge and precipitation data for the
Baron Fork River, OK (USA) within the frame of the DMIP
2 Project. Using this data set three models were imple-
mented: two physically based hydrological models, the TOP-
KAPI model (Todini and Ciarapica, 2001; Liu and Todini,
2002) and TETIS model (Franćes et al., 2007; Velez et al.,
2009), and a data driven model based on Artificial Neu-
ral Networks. The catchment has a drainage area of about
800 km2 at the measurement station of Eldon with a concen-
tration time of approximately 10 h and a mean slope around
0.25 %. Some kilometers downstream Eldon the river flows
into the Illinois river. The simulations provided by the three
models have been processed using the MCP, firstly each
model separately and then combining them.

The available meteorological data consisted in hourly
rain and temperature grids with a 4 km resolution between

1 October 1995 and 30 September 2002. During the same
period, also the observed discharges at the measurement sta-
tion of Eldon were available. Concerning the available data,
it is worth mentioning that no water level or rating curve ob-
servations were available to the participants involved in the
DMIP2 Project. For this reason, the discharge has been used
as predictand.

4.2.2 The real time flood forecasting models

The TOPKAPI model has been developed at the University
of Bologna (Todini and Ciarapica, 2001; Liu and Todini,
2002), it is composed of six components that take into ac-
count the surface, sub-surface and deep flows, the channel
routing, the snow accumulation/melt and the evapotranspi-
ration processes. The application domain is divided in cells
where the mass and momentum balance are solved at every
time step. The model has been calibrated by a trial and error
procedure considering the period between 1 October 1996
and 30 September 2002; the year included between 1 Octo-
ber 1995 and 30 September 1996 has been used as “warm up”
period, allowing the model to reach a reasonable initial state.

In the TETIS model, developed by the Polytechnic Uni-
versity of Valencia (Franćes et al., 2007; Velez et al., 2009),
the conceptual scheme, at each cell, consists of a series of
5 connected tanks, each one of them representing different
water storages in the soil column. The vertical connections
between tanks describe the precipitation, evapotranspiration,
infiltration and percolation processes, whereas, the hor-
izontal flows represent the main hydrological processes
as: snowmelt, overland runoff, interflow and base flow. The
routing along the channel network couples its geomorpho-
logic characteristics with the kinematic wave approach. The
TETIS model has an automatic calibration procedure that has
been used to calibrate the model considering the hydrological
year included between October 2000 and September 2001.
Also for the TETIS model, the first year of data has been
used as “warm up” period and with the remaining data the
model has been validated.

The Artificial Neural Network model includes two main
phases. Firstly the data were divided in three groups by
means of a Self Organizing Map (SOM) network that allows
the data to be automatically classified. (Kohonen, 1990; Pu-
jol, 2009). If the time at which the prediction is done is called
t0, the input data to the SOM network are the accumulated
precipitation of 2 days beforet0, the discharge observed att0
and the gradient of the discharge during 2 h beforet0. The
SOM network has been calibrated using the data included
between 1 October 1995 and 31 May 1997, the remaining
data until 30 September 2002 have been used for the valida-
tion. The three sets of data obtained by the automatic classi-
fication have been used separately in order to calibrate three
different Multi Layer Perceptron (MLP) networks (Werbos,
1974, 1988, 1990; Parker, 1987; Pujol, 2009), whose input
data are the observed precipitation during 13 h beforet0 and
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Fig. 13. Comparison between the PU computed with one or two models on a flood event for the calibration period. Observed discharges
(black line); expected value conditioned only to the TOPKAPI forecast (dashed line); expected value conditioned to the TOPKAPI and TETIS
forecasts (dotted line); 90 % uncertainty band conditioned to the TOPKAPI forecast (light grey band); 90 % uncertainty band conditioned to
the TOPKAPI and TETIS forecasts (grey band).

Fig. 14. Comparison between the PU computed combining, two or three models on a flood event for the calibration period. Observed
discharges (black line); expected value conditioned only to the TOPKAPI and TETIS forecasts (dotted line); expected value conditioned to
the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band conditioned to the TOPKAPI and TETIS forecasts (light grey
band); 90 % uncertainty band conditioned to the TOPKAPI, TETIS and ANN forecasts (grey band).
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Fig. 15. Comparison between the PU computed with one or two models on a flood event for the validation period. Observed discharges
(black line); expected value conditioned only to the TOPKAPI forecast (dashed line); expected value conditioned to the TOPKAPI and TETIS
forecasts (dotted line); 90 % uncertainty band conditioned to the TOPKAPI forecast (light grey band); 90 % uncertainty band conditioned to
the TOPKAPI and TETIS forecasts (grey band).

Fig. 16. Comparison between the PU computed combining, two or three models on a flood event for the validation period. Observed
discharges (black line); expected value conditioned only to the TOPKAPI and TETIS forecasts (dotted line); expected value conditioned to
the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band conditioned to the TOPKAPI and TETIS forecasts (light grey
band); 90 % uncertainty band conditioned to the TOPKAPI, TETIS and ANN forecasts (grey band).
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Table 1. Probability that the true value exceeds the 350 m3 s−1

threshold when the expected value of prediction equals 250 m3 s−1,
computed for each model and their Bayesian combination.

P(y>350 m3 s−1
|ŷ=250 m3 s−1)

TOPKAPI TETIS ANN 3 MODELS
0.25 0.34 0.16 0.15

the observed discharges during 3 h beforet0. The output of
the networks is the discharge 6 h after thet0. Summarizing,
the data have been divided in three groups using the SOM,
in order to identify three different hydrological states of the
system, and each group has been calibrated with a Feed For-
ward Network in order to forecast the discharge 6 h in ad-
vance. Moreover, to avoid the risk of overfitting the calibra-
tion data, an early stopping procedure has been used intro-
ducing a verification data set, included between 1 June 1997
and 31 January 1998. This procedure stops the Neural Net-
work calibration as soon as the evaluation indexes computed
on the verification data set starts to decrease. Finally, the data
included between 1 February 1998 and 30 September 2002
have been used for validating the model.

In order to make coherent the forecasts of each model also
the TETIS and TOPKAPI models have been used to pre-
dict the discharge 6 h in advance, assuming, as done with the
ANN, that the precipitation is null during the forecast time.

In Fig. 10a schematic summary of the division of the data
used for calibrating and validating each model is depicted.

The two physically based models are conceptually quite
similar; it can be highlighted that the TOPKAPI model tends
to underestimate the highest flood events, to overestimate the
smallest ones and to reproduce the flood events of medium
magnitude quite well. The TETIS model also generally un-
derestimates the highest events and often underestimates the
small events too. The ANN model, due to its nature of data
driven model, is not able to well reproduce the peak flows,
which are often underestimated and predicted with a delay
of 1 or 2 h, but it perfectly reproduces the low flows.

4.2.3 Predictive uncertainty assessment

The MCP is applied in three phases and Joint TNDs have
been used in each phase.

1. In the first step, each model is processed separately. All
the historical data are being processed and the expected
value of the predictand conditional to a single model is
computed at each time step from the predictive distribu-
tion. Figure11a, b and c, schematically represents the
predictive distribution computed separately with each
model. For the ANN model it was not necessary to di-
vide the data in two samples because the joint distribu-
tion of observed and forecasted transformed values was

well represented by just a single bi-variate normal dis-
tribution. The TNDs have been used for the other two
models and both of them provide a lower uncertainty for
the upper sample.

2. In the second step, the series of the expected values
of the predictand conditional on each model forecast is
processed with the MCP multivariate approach and the
combined expected value of the predictand conditional
to all the models is computed at each time step from the
predictive distribution.

3. In the third step, the series of expected values of the pre-
dictand conditional to all the models is finally processed
in order to properly estimate the predictive density. This
last step is required, as it will be discussed in the next
section, due to the non perfect agreement between the
empirical density of residual and the assumed Normal
distribution.

Figure12a and b summarizes the obtained results with re-
gard to the models combination computed from the expected
value of the predictive distribution. Figure12a represents
the standard error and Fig.12b represents the Nash-Sutcliffe
coefficient.

In Figs.13, 14 and15, 16 two examples of models com-
bination are shown, one during the calibration period and the
other one during the validation period. In both events the
uncertainty band gets narrower as the number of models in-
creases and in the calibration event the expected value com-
puted with the combination of all the models well matches
the observed series. In the validation event, the pick flow
is quite better represented when only the TOPKAPI model
is used, probably due to its better forecast in this specific
case, but also in this event the uncertainty band is reduced
combining all the models.

The combination of the three models’ predictions, ob-
tained by assigning different weights to each model accord-
ing to the Bayesian theory, allows the forecast quality to be
improved as shown by the evaluation indexes in Fig.12a
and b. The two physically based model structures are very
similar, so this leads to a little gain in terms of forecast im-
provement, represented by the standard deviation of the er-
rors and the Nash-Sutcliffe efficiency index (Fig.12a and
b). On the contrary, the combination of one physically based
model with the data driven model leads to greater improve-
ments in forecast and, in particular, the combination of all the
three models gives the best values of the analyzed indexes
(Fig. 12a and b).

The knowledge of the uncertainty distribution also allows
the probability of exceeding an alert threshold to be esti-
mated, that is a stochastic way to predict the flooding risk.
The threshold has been set at 350 m3 s−1. In Figs.17 and
18, the comparison between the deterministic and stochas-
tic discharge forecasts and the correspondent probability of
exceeding the threshold is shown.
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Fig. 17. Flood event for the calibration period. The lower panel represents the discharge forecast; observed values (continuous line); ex-
pected value conditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band (grey area); alarm threshold
of 350 m3 s−1(small dashed line). The upper panel represents the probability of exceeding the alarm threshold; observed binary response
(continuous line) and Probability of exceeding the threshold computed by the MCP (dashed line).

It has been also shown that the combination of several
models leads to improved estimation of such exceeding prob-
ability. Tables1 and 2 exemplify the improvements ob-
tainable by the Bayesian combination of the different mod-
els. Table1 concurs with the behaviour represented in
Fig. 1 showing the probability that the true value exceeds
the 350 m3 s−1 threshold when the expected value of predic-
tion equals 250 m3 s−1, computed for each model and their
Bayesian combination. One can see the reduction of ex-
ceedance probability as a function of the quality of the fore-
cast. Finally, the effect of the introduction of the probabilis-
tic forecast approach can be appreciated in Table2. It shows,
similarly to what is qualitatively displayed in Fig.2, the ex-
pected value of the prediction corresponding to the probabil-
ity of 20 % to exceed the 350 m3 s−1 threshold; this value
is computed for each model and for their Bayesian com-
bination. As can be seen better models allow to wait un-
til the expected value of prediction is closer to the flooding

Table 2. Expected value of prediction corresponding to the proba-
bility of 20 % that the true value will exceed the 350 m3 s−1 thresh-
old, computed for each model and their Bayesian combination.

E[y|ŷ]|[P(y>350 m3 s−1
|ŷ)=0.2]

TOPKAPI TETIS ANN 3 MODELS
217 m3 s−1 138 m3 s−1 270 m3 s−1 284 m3 s−1

level, while worse models require earlier action correspond-
ing to lower levels on the basis of the principle of precau-
tion, which corresponds to the fact that the decision maker is
more uncertain.
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Fig. 18. Flood event for the validation period. The lower panel represents the discharge forecast; observed values (continuous line); ex-
pected value conditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90 % uncertainty band (grey area); alarm threshold
of 350 m3 s−1 (small dashed line). The upper panel represents the probability of exceeding the alarm threshold; observed binary response
(continuous line) and Probability of exceeding the threshold computed by the MCP (dashed line).

4.2.4 Quantiles assessment

As mentioned in the previous section, in order to obtain a
more adherent representation of the predictive density, which
is essential for decision making, a third step was deemed nec-
essary in the procedure after analyzing the residuals of the
second step. The probability distribution of these residuals,
although appearing reasonably well represented by a Nor-
mal distribution in the central portion, showed high kurtosis
values due to fatter tails, which induced overestimating the
predictive variance under the Normal Distribution assump-
tion. Due to the fact that decisions in flood management are
essentially based on probabilities in the range 0.1–0.9 (one
must realize that 0.9 probability of overtopping a threshold
is already extremely high when taking decisions) it was de-
cided that the estimation of the full predictive density would
be based on a reduced set of data: namely all the couples of
observation-expected value of the predictand conditional to
all the models, that would generate a residual falling into the
probability range 0.1–0.9. Therefore, in the third step, the
application of MCP was based on this reduced set of data
only, and the results were quite rewarding even in the case

of the Baron Fork river example where the three forecast-
ing models were not extremely accurate. Figure19 shows
the results for the Baron Fork river example in the Normal
space in terms of probability densities of residuals and of the
assumed Normal predictive density, for the calibration and
the verification periods. Please note that the empirical den-
sities of residuals displayed in Fig.19 are obtained with all
the observations, not limited to the reduced set used in the
estimation phase. It can be noted that apart from the upper
and lower tails the probability density is correctly reproduced
both for the calibration (left) and verification (right) periods.
Figure20is the most important verification tool for establish-
ing the correctness of the approach; it shows the comparison
for the Baron Fork river example between the predicted prob-
ability of being in a range around the expected value (10 %,
20 %, .., 90 %) and the corresponding empirical probability
estimated from the observations both for the calibration (left)
and verification (right) periods. Again it is possible to note
that the approach seems to correctly estimate the predictive
density.
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(a)

(b)

Fig. 19.Comparison between the empirical distribution of residuals
and the assumed Normal distribution (σ = 0.072). The results were
obtained considering the entire calibration(a) and verification(b)
periods for the bayesian combination of the three models.

5 Conclusions

This paper is focused on the Model Conditional Proces-
sor (Todini, 2008) development for assessing predictive un-
certainty. Two applications, the first one to the Po River
(Italy) and the second one to the Baron Fork River (OK,
USA), allowed to draw some important conclusions, which
are summarized below.

The predictive uncertainty assessment starts with the iden-
tification of the marginal distributions of the observed and
predicted data as well as their joint distribution. Such
marginal distributions are often unknown in the untrans-
formed observation space, and moreover it is extremely dif-
ficult to make hypotheses on the shape of their joint distribu-
tion. Several works in the literature (Krzysztofowicz, 1999;
Montanari and Brath, 2004; Todini, 2008) suggested to use a
non-parametric approach based on order statistics, namely to
use the Weibull Plotting Position as an estimate of the prob-
ability of an ordered vector. Accordingly, a nonlinear trans-
formation, the Normal Quantile Transform, is used to move
from the original observation space to the Normal one, where

(a)

(b)

Fig. 20. Percentage of observed data that fall inside the uncertainty
band at various probability levels defined with a 10 % interval. The
red line represents the perfect behaviour. The results were obtained
considering the entire calibration(a) and verification(b) periods for
the bayesian combination of the three models.

by construction the marginal distributions assume a Standard
Normal shape and the joint distribution can be reasonably ap-
proximated by a Multivariate Normal distribution. Nonethe-
less, this approach has some disadvantages. First of all, it
implies to identify additional models to adjust the quantiles
outside the range of the historical available data. The pro-
posed technique is quite sensitive to the shape and to the pa-
rameters of these models and some precautions in the choice
of the subset of observations used for calibrating the tails data
must be taken. They must contain a large variety of cases, as
required by any Bayesian approach, and in order to reduce
the uncertainty on the marginal distribution tails the calibra-
tion data must include the highest number of extreme cases.

The assumption of a Normal Multivariate joint distribu-
tion in the transformed space implies unavoidable approxi-
mations and it does not account for the error heteroscedas-
ticity. In order to reduce it a non-linear regression model
could be used. In this paper a piecewise linear approach has
been preferred to a fully non-linear model. The piecewise
linear approach allows for the use of Truncated Multivariate
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Normal joint distributions. This technique can be easily de-
veloped and applied obtaining good results such as for the
study cases where it has been used. The results shown in
Fig. 20 demonstrate that the joint distribution is well rep-
resented with this technique, even if some unavoidable ap-
proximations are still present. Nevertheless, the methodol-
ogy should be tested considering other catchments with dif-
ferent features and for each specific application the correct-
ness of the joint distribution representation must be verified.
However, it must be noted that the use of the TNDs does not
affect those cases when the data are homoscedastically dis-
tributed, as shown in Figs.8 and11c, but it helps to take into
account the heteroscedasticity when it is present, as shown in
Fig. 11a and b.

Nevertheless, the TND assumption for the joint distribu-
tion showed to be not fully correct; in fact, under the hypoth-
esis of Normality, the residuals should be distributed accord-
ing to a Normal distribution. In the case of the Baron Fork
river, they showed to be Normally distributed in the central
portion, but also to have a high kurtosis due to their fat tails.
This problem can be reasonably solved in the last phase of
the MCP application taking into account just the data that
provide residuals inside the 0.1–0.9 probability band. Fig-
ures19 and20 confirmed the correctness of PU assessment,
at least for probability values included inside the 80–90 %
around the expected value of the predictand.

Multiple predictions originated by several models, as dis-
cussed in the introduction, is of difficult understanding and
interpretation by the decision makers. The application of the
MCP to the Baron Fork river has shown that this technique
allows the correct combination of different forecasts into an
unique probability of the event, which is of much easier inter-
pretation and use in the decision making process. Moreover,
the obtained results show that the combination of models of
different nature allows the probabilistic forecast to improve
the deterministic forecast of each model, taking advantage of
the benefits of different hydrological approaches.

With this work, a discussion about the convenience of us-
ing a probabilistic threshold instead of a deterministic one in
order to estimate the flooding risk and help the decision mak-
ing process about giving or not a flood alarm, has been ini-
tiated. When hydrological forecasts can be defined in terms
of a binary response (i.e. being below or above a threshold
or giving or not a flood alarm) the probabilistic threshold
concept allows the reliability and the information provided
by different models to be taken into account in a combined
and unique probability level. Therefore, the emergency man-
ager can express his/her propensity to the risk in terms of
probability of flooding and not just comparing a pre-fixed
real threshold with the model forecast (which is nothing else
than virtual reality), as usually done with the deterministic
approach. In this respect, the paper also highlighted the need
for a change in flood forecasting and warning approaches
with the definition ofprobabilistic thresholdswhich aim at
taking advantage of probabilistic forecasts in a more effective

way. The results presented in Sect.4.2.4show the good per-
formance of the methodology at correctly assessing the quan-
tiles up to 80–90 % around the expected value of the predic-
tand, which then allows a decision maker to correctly infer
the probability of exceeding an alarm threshold or a dyke.
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