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Abstract. For many environmental variables, measurements
cannot deliver exact observation values as their concentra-
tion is below the sensitivity of the measuring device (detec-
tion limit). These observations provide useful information
but cannot be treated in the same manner as the other mea-
surements. In this paper a methodology for the spatial inter-
polation of these values is described. The method is based on
spatial copulas. Here two copula models – the Gaussian and
a non-Gaussian v-copula are used. First a mixed maximum
likelihood approach is used to estimate the marginal distri-
butions of the parameters. After removal of the marginal
distributions the next step is the maximum likelihood esti-
mation of the parameters of the spatial dependence including
taking those values below the detection limit into account.
Interpolation using copulas yields full conditional distribu-
tions for the unobserved sites and can be used to estimate
confidence intervals, and provides a good basis for spatial
simulation. The methodology is demonstrated on three dif-
ferent groundwater quality parameters, i.e. arsenic, chloride
and deethylatrazin, measured at more than 2000 locations
in South-West Germany. The chloride values are artificially
censored at different levels in order to evaluate the proce-
dures on a complete dataset by progressive decimation. In-
terpolation results are evaluated using a cross validation ap-
proach. The method is compared with ordinary kriging and
indicator kriging. The uncertainty measures of the different
approaches are also compared.
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1 Introduction

There are many different chemicals which enter the ground-
waterwater system through different mechanisms. Many of
these compounds are known or suspected to have adverse ef-
fects on health and environment. Recent advances in labo-
ratory techniques are providing improved capabilities for de-
tecting large numbers of new and potentially harmful con-
taminants. The concentrations of different chemicals usu-
ally have strongly skewed distributions with a few very high
values and a large number of low ones. Some of the low
values are reported as non-detects due to the limited sen-
sitivity of the laboratory instruments. The high skew and
the occurrence of non-detects interpreted as values below a
given threshold make the statistical and geostatistical anal-
ysis of these data unpleasant and complicated. The statisti-
cal treatment of censored data has a long history. Already
Cohen(1959) had published a paper for the estimation of the
normal distribution from censored data. Later work was per-
formed for other distributions such as the 3 parameter log-
normal distribution (Cohen, 1976). The first papers concen-
trated mainly on right censored (survival) data. InHelsel
and Cohn(1988) left censored water quality data were ana-
lyzed. Despite recent works on the subject such asShumway
et al.(2002) the statistical treatment of censored environmen-
tal data is far less frequently applied as it could and should
beHelsel(2005).

While the treatment of censored environmental data from
the classical statistical viewpoint is reasonably well devel-
oped this is not the case in spatial statistics. Spatial mapping
of variables with censored data is also of great interest and
practical importance.
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RecentlySedda et al.(2010) presented a methodology to
reflect censored data using a simulation approach. InSaito
and Goovaerts(2000) the authors addressed the problem of
censored and highly skewed variables, and showed that the
indicator approach outperforms other geostatistical methods
of interpolation.

Variables with non-detects are usually highly skewed
which makes their interpolation even more difficult. The high
skew of the distributions often leads to problems with the var-
iogram or covariance function estimation. A few large val-
ues dominate the experimental curve, and outliers can lead
to useless variograms. This problem is partly overcome by
the use of indicator variables. However this approach suffers
from other deficiencies as demonstrated in this paper.

The purpose of this paper is to develop a methodology to
estimate spatial dependence structure from a mixed dataset
containing differently censored data. The approach requires
as a first step the estimation of the univariate distribution
function of the variable under consideration. For this purpose
a maximum likelihood method is used. In the next step the
spatial dependence is described with the help of copulas, and
the copula parameters are estimated using a maximum likeli-
hood method. After this, the estimated dependence structure
is used for the interpolation. Copulas are used in hydrology
mainly for the analysis of extremes. InKeef et al.(2009)
an interesting approach for treating missing data in a copula
approach was presented.

The methodology is demonstrated using different water
quality parameters obtained from large scale measurement
campaigns in South-West Germany. Two highly censored pa-
rameters, namely arsenic and deethylatrazin are considered.
In order to test the methodology a parameter with no cen-
sored data (chloride) is selected and subsequently artificially
censored. The methodology is compared to ordinary and in-
dicator kriging using different performance measures.

2 Methodology

2.1 Marginal distribution

The neagtive effects of highly skewed data on interpolation
can be reduced by data transformations. Most frequently
logariithmic or normal score transoformations are applied.
However in the case of data below the detection limit these
transormations cannot be used in a straightforward manner.
The logarithm of the values below the detection limit requires
an arbitrary choice. The normal score transformation suffers
from the incomplete order of the data. For example if one has
observations of 1.5 mg l−1 3 mg l−1 andbelow2 mg l−1 and
below1 mg l−1 then even the rank of theexactvalues cannot
be determined. To treat this problem the distribution function
of the studied variableG(z) is estimated first.

Assume that there arend measurements with values below
the detection limitdi (note that the detection limits might
differ from place to place, possibly due to different labora-
tory equippment used), and fornz observations a measure-
ment valuezj is given. The empirical distribution function
of such observations can only be calculated for values above
the largest detection limit. Due to the censoring the mean
and the standard deviation cannot be calculated directly, thus
the estimation of the parametersθ of a selected parametric
distribution via method of moments is not possible. Instead
a maximum likelihood method is required. Here one has two
choices:

1. To assume a parametric distribution function stationary
over the whole domain, and to assess the parameters via
maximum likelihood

2. To assume a mixed distribution: for values below a
threshold a parametric form is assumed and for those
observations above the threshold, an empirical or a non
parametric distribution is considered.

While the first approach is more or less straightforward, it
has a few shortcomings. One of them is that outliers might
have a very important influence on the parameters of the dis-
tribution; the other is that the underlying distribution could
be bimodal.

In the first case the distribution parametersθ can be esti-
mated using the likelihood function:

Llow(...,di,...,zi ...|θ) =

nd∏
i=1

F(di |θ)

nz∏
j=1

f (zj |θ) (1)

whereF(.|θ) is the distribution function applied to those val-
ues below the local detection limit andf (.|θ) the correspond-
ing density with parameterθ .

In the case of the mixed approach we assume that the val-
ues below a given thresholdzlim (greater or equal than alldis)
follow a parametric distribution, while abovezlim the empir-
ical distribution should be considered. Thus the estimation is
restricted to those which are belowzlim . If a random variable
with distribution functionF(z) is restricted to the interval
(−∞,b) than the distribution function of the restricted vari-
able isFR(z) = F(z)/F (b). This fact is used by estimating
the restricted variable via maximum likelihood.

Llow(...,di,...,zi ...|θ) =
1

F(zlim |θ)

nd∏
i=1

F(di |θ)
∏

zj <zlim

f (zj |θ) (2)

Here a parametric distribution is fit to the observations below
zlim . This enables an extrapolation of the distribution func-
tion into the low value domain. By selecting an upper bound
the negative effect of outliers is eliminated. In both cases
the logarithm of the likelihood function can be maximized.
Above thezlim value a distributionFlim(z) is assumed:

Flim(z) =
1

nlim +1

nd+nz∑
i=1

1zlim<z<zi
(3)
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wherenlim is the number ofzi greater thanzlim .
The overall distribution function is:

G(z) =

{ αlim
F(zlim |θ)

F(z|θ) if z ≤ zlim

αlim +(1−αlim)Flim(z) if z > zlim
(4)

where
αlim =

nlim

nz +nd +1

The introduction ofαlim enables a continuous transition from
the theoretical to the empirical part of the distribution.

Note that the limitzlim is not estimated, but selected as
a reasonable limit which is certainly below possible outlier
observations. In order to obtain an estimatedθ value it is
important to have a sufficient number of exact observations
belowzlim . Possible candidates for the parametric part of the
distribution are the Gamma (including exponential) and the
Weibull distributions. Information criteria can be used for
the choice of the appropriate distribution.

2.2 Spatial structure identification

The identification of the spatial structure from data with
many non-detects is a difficult problem. Non detects and
exactvalues carry very different information. An arbitrary
setting of the non-detects leads to a reduction of the vari-
ance and to a false strong dependence between the low val-
ues. Neglecting them for the spatial variability estimation on
the other hand usually leads to an overestimation of the vari-
ance and to an underestimation of the strength of the spatial
dependence.

In order to deal with this problem a stochastic model is
required. We assume that the variable of interest corresponds
to the realization of a random function. For our study we
restrict the random functionZ(x) to a spatial domain�. As
only a single realization is observed on a limited number of
points, further assumptions on the random function have to
be made.

The spatial stationarity assumption is that for each set of
points{x1,...,xk} ⊂� and vectorh such that{x1+h,...,xk+

h} ⊂� and for each set of possible valuesw1,...,wk:

P(Z(x1) <w1,...,Z(xn) <wk) (5)

= P(Z(x1+h) <w1,...,Z(xk +h) <wk)

The spatial variability of a field is usually determined from
exact observations. Variograms and covariance functions can
be calculated from measured values directly, but even dif-
ferent measurement methods with different accuracies cause
problems in the structure identification. Measurements with
higher error variances lead to higher nugget values. The de-
tection limit problem makes the assessment of the spatial
structure extremely difficult. Setting the values below the
detection limitdj to either 0 ordj leads to a false marginal
distribution and to a false spatial dependence structure. The
indicator approach provides a reasonable alternative solution,

by calculating indicator variograms for a large number of
cutoffs.

In this paper a copula based approach is taken as described
in Bárdossy(2006). Two copula models, the Gaussian and
the v-transformed normal copula are considered. The model
is described in detail inBárdossy and Li(2008).

Following Eq. (6) we assume that the random functionZ is
such that for each locationx ∈ � the corresponding random
variableZ(x) has the same distribution functionFZ for each
locationx. The joint distribution can be written with the help
of the copula:

Fx1,...,xk
(w1,...,wk) = Cx1,...,xk

((FZ(w1),...,FZ(wk)) (6)

with Cx1,...,xk
being the spatial copula corresponding to the

locations x1,...,xk. This approach allows us to investi-
gate the new variableU(x) = F(Z(x)) which has a uniform
marginal distribution.

Two copula models, the Gaussian (normal) and the v-
transformed normal copula, are considered. The Gaussian
copula is described by its correlation matrix0.

The v-transformed normal copula is parametrized by the
transformation parametersm, k and the correlation matrix0
which is likely to differ from the Gaussian one.

The v-transformed copula is defined usingY being ann

dimensional normal random variableN(0,0). All marginals
are supposed to have unit variance. LetX be defined for each
coordinatej = 1,...,n as:

Xj =

{
k(Yj −m) if Yj ≥ m

m−Yj if Yj < m
(7)

Wherek is a positive constants andm is an arbitrary real
number. Whenk = 1 this transformation leads to the multi-
variate non centeredχ -square distribution. All one dimen-
sional marginals ofX are identical and have the same distri-
bution function.

The parameters of the spatial copula are estimated using
the maximum likelihood method.

For the Gaussian copula, as a consequence of the stationar-
ity assumption, the correlations between any two points can
be written as a function of the separating vectorh. Then for
any set of observationsx1,...,xn the correlation matrix0 can
be written as:

0 =

(
(ρi,j )

n,n
l,l

)
(8)

whereρi,j only depends on the vectorh separating the points
xi andxj :

ρi,j = R(xi −xj ) = R(hi,j ) (9)

For the estimation, the observed values are transformed to
the standard normal distribution using:

yk = 8−1
1 (G(z(xk))) k = 1,...,nz (10)

yd
j = 8−1

1

(
G(d(xj ))

)
j = 1,...,nd (11)
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Here81(.) is the distribution function of the standard normal
distribution N(0,1).

The variabley is now a censored normal with data below
the detection limits denoted byyd

j . The correlation function
R(.,β) is assumed to have a parametric form with the pa-
rameter vectorβ. The likelihood function in this case can be
written as:

L(β) =

∏
(j,k)∈I1

φ2
(
yj ,yk,R(hj,k,β)

) ∏
(j,k)∈I2

81yd
j −ykR(hj,k,β),β)√

1−R(hj,k,β)2

φ(yk)

∏
(j,k)∈I3

82

(
yd
j ,yd

k ,R(hj,k,β)
)

(12)

Here82(x,y,r) is the distribution function of the 2 dimen-
sional normal distribution with correlationr and standard
normal marginal distributions N(0,1) andφ2(x,y,r) is its
density function. The calculation of82(x,y,r) requires the
numerical integration of the bivariate normal density. The
likelihood function could also be written using multipoint
configurations, but this would also lead to an increase of the
complexity of the calculations. The setI1 contains pairs of
locations with both variables being measured exactly. InI2
pairs are listed which consist of an exact observation and a
below detection limit value. Finally,I3 contains pairs with
values below the detection limit. The logarithm of the likeli-
hood function is maximized numerically.

The above procedure might require a lot of computation
effort if the number of observations is large. Instead one can
reduce the number of pairs considered in Eq. (12) by select-
ing different distance classes and taking each observation ex-
actlyM times as a member of a pair. This way one can avoid
clustering effects.

A similar but slightly more complicated procedure has to
be used for the estimation of the parameters of the v-copula.
In this case the variableZ is first transformed to:

yk = H−1
1 (G(z(xk))) k = 1,...,nz (13)

yd
j = H−1

1

(
G(d(xj ))

)
j = 1,...,nd (14)

HereH1(.) is the univariate distribution function of the v-
transformed normal distribution. This can be written as:

H1(y) = 81

((y

k

)
+m

)
−81(m−y) (15)

The corresponding density is:

h1(y) =
1

k
φ1

((y

k

)
+m

)
+φ1(m−y) (16)

The likelihood function in this case is:

L(β) =

∏
(j,l)∈I1

h2
(
yj ,yl,β)

) ∏
(j,l)∈I2

Hc

(
yd
j ,yl,β

)
h1(yl)

∏
(j,l)∈I3

H2

(
yd
j ,yd

l ,β)
)

(17)

The setsI1,I2 and I3 are defined as for the Gaussian
case.H2(.,.) is the distribution function of the bivariate v-
transformed distribution:

H2(y1,y2,β)= 82

((y1

k

)
+m,

(y2

k

)
+m,R(h1,2,β)

)
+82

(
m−y1,m−y2,R(hj,k,β)

)
−82

((y1

k

)
+m,m−y2,R(h1,2,β)

)
−82

(
m−y1,

(y2

k

)
+m,R(h1,2,β)

)
(18)

The corresponding density function is:

h2(y1,y2,β)=
1

k2
φ2

((y1

k

)
+m,

(y2

k

)
+m,R(h1,2,β)

)
+φ2

(
m−y1,m−y2,R(h1,2,β)

)
+

1

k
φ2

((y1

k

)
+m,m−y2,R(h1,2,β)

)
+

1

k
φ2

(
m−y1,

(y2

k

)
+m,R(h1,2,β)

)
(19)

HereR(h1,2,β) is the correlation function of the Gaussian
variableY andh2(.,.) is the density function corresponding
to H2. The mixed bivariate functionHc(.,.) is obtained via
integration of the density:

Hc(y1,y2,β) =

∫ y1

−∞

h2(y,y2) dy (20)

As described in Eq. (19) the densityh2 is a weighted sum
of normal densities, the corresponding integral can be calcu-
lated for each term separately, which is similar to the normal
case.

Due to the complicated form of the overall likelihood func-
tion, a numerical optimization of the log-likelihood function
is performed.

Different forms of the correlation function can be consid-
ered – such as the exponential withβ = (A,B):

R(h,A,B) =

{
0 if |h| = 0

Bexp
(
−

|h|

A

)
if |h| > 0

(21)

where 0≤ B ≤ 1 andA > 0.

3 Interpolation

Once the parameters of the correlation function(A,B)

and for the v-transformed copula the parameters of the v-
transformation(m,k) are estimated the interpolation can be
carried out. In order to reduce the complexity of the prob-
lem, interpolation will be done using a limited number of
neighboring observations. Due to anumbrellaeffect simi-
lar to ordinary kriging, observations which arebehindother

Hydrol. Earth Syst. Sci., 15, 2763–2775, 2011 www.hydrol-earth-syst-sci.net/15/2763/2011/
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observations have a minor influence on the conditional dis-
tribution. Further, this restriction to local neighborhoods re-
laxes the assumption of stationarity to a kind of local station-
arity. An example inBárdossy and Li(2008) demonstrates
that this assumption does not significantly alter the results of
interpolation.

The goal of interpolation is to find the density of the ran-
dom variableZ(x) conditioned on the available censored and
uncensored observations. The conditional densitygx(z) for
locationx can be written as:

gx(z) = P
(
Z(x) = z|Z(xi) < di ,i;Z(xj ) = zj ,j

)
=

P
(
Z(x) = z,Z(xi) < di i,Z(xj ) = zj ,j

)
P

(
Z(xi) < di i,Z(xj ) = zj ,j

) =

=
P

(
Z(xi) < di ,i|Z(x) = z ,Z(xj ) = zj j

)
P

(
Z(x) = z,Z(xj ) = zj j

)
P

(
Z(xi) < di ,i = 1,...,nd |Z(xj ) = zj ,j

)
P

(
Z(xj ) = zj ,j

) =

=
P

(
Z(xi) < di ,i|Z(x) = z ,Z(xj ) = zj j

)
P

(
Z(xi) < di ,i = 1,...,nd |Z(xj ) = zj ,j

)
·P

(
Z(x) = z|Z(xj ) = zj j

)
= gd

x (z)ge
x(z) (22)

The above equation shows that the final conditional den-
sity is composed of two terms. The firstgd

x (z) is related to the
non-detects the second multiplicative termge

x(z) is the iter-
polation (conditional density) obtained from the exact values.
This term is the traditional interpolator itself as if there were
no values below the detection limit. If there are no exact mea-
surememnts in the neighborhood ofx then the second term
equals to the marginal density of the variable, which is mod-
ified by the non-detects in the neighborhood throughgd

x (z)

Both the numerator and the denumerator of the first part of
the expression are conditional multivariate distribution func-
tion values which require integration of the corresponding
multivariate densities innd dimensions.

For the normal copula case, Eq. (22) can be written with
the help of the transformed variableY for z = G−1(8(y)):

gx(z) =
P

(
Y (xi) < yd

i ,i|Y (x) = y Y (xj ) = yj ,j
)

P
(
Y (xi) < yd

i ,i|Y (xj ) = yj ,j
)

·P
(
Y (x) = y|Y (xj ) = yj ,j

)
(23)

The conditional distribution of a multivariate normal dis-
tribution is itself multivariate normal with expectationµ0

c and
covariance matrix00

c with:

00
c = 000−001011

−1001
T (24)

The expected value of the conditional is:

µ0
c = 001011

−1y (25)

yT
= (y,y1,...,ynz).
The matrices000 001 and 011 are the correlation ma-

trices corresponding to the pairs of observations with cen-
sored and uncensored data, calculated with the correlation
functionR(h).

Thus the conditional probability in the numerator in
Eq. (22) can be calculated as:

P
(
Z(x0

i ) < di;i = 1,...,nd |Z(x) = z;Z(x1
j ) = zj ;j = 1,...,nz

)
= 8µ0

c,0
0
c

(
y,y1,...,ynz

)
(26)

where8µ0
c,0

0
c

is the distribution function ofN(µ0
c,0

0
c). Val-

ues of the multivariate normal distribution function can be
calculated by numerical integration, for example usingGenz
and Bretz(2002). The denumerator in Eq. (22) requires the
same type of calculation.

The denumerator is independent of the valuez and can be
calculated exactly as the numerator. Note that the point for
which the interpolation has to be carried out is considered as
apseudoobservation with the observed valuez. Thus the nu-
merator has to be evaluated for a number of possiblez values
to estimate the conditional density.

For the v-transformed copula the interpolation procedure
is slightly more difficult, but as then-dimensional density of
the v-transformed variable is a weighted sum of 2n normal
densities the calculation procedure is similar. However, we
will not go into further details here.

4 Application and results

The above described methodology was applied to a regional
groundwater pollution investigation. Two censored variables
and an artificially censored variable were used to demon-
strate the methods, and to compare them to traditional in-
terpolations.

4.1 Investigation area

An extensive dataset consisting of more than 2500 measure-
ments of groundwater quality parameters of the near surface
groundwater layer in Baden-Ẅurttemberg were used to il-
lustrate the methodology. Three quality parameters namely
deethylatrazine – degradation product of atrazine – arsenic
and chloride were selected for this study. The measurements
were carried out in the time period between 2007 and 2010.

While the first two parameters are heavily censored the
chloride concentrations exceed the detection limit in 99.9 %
of the cases. This variable is artificially censored using dif-
ferent thresholds in order to show the effectiveness of the
method.

Table 1 shows the basic statistics for the selected data.
Note the high positive skewness for all variables. This alone
would lead to substantial difficulties in estimating spatial cor-
relation functions, even in the case where most values had
been above the detection limit.
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Table 1. Basic statistics of the investigated variables mean, standard deviation and skewness are calculated from values above the detection
limit.

Statistics of values> Detection limit

Number of Number of Mean Standard Skewness Maximum
observations above DL deviation

Arsenic 2234 979 0.002733 0.007392 13.4 0.1618
deethylatrazine 2848 403 0.064243 0.068316 4.5 0.68
Chloride 2805 2801 39.9 165.8 30.3 6940.0

Fig. 1. The empiricel distribution of the observed arsenic concen-
trations (crosses) for the values above the highest detection limit
and the distributions obtained fitted via maximum likelihood for the
whole dataset (dashed line) and with settingzlim to 0.005 mg l−1

(solid line).

4.2 Parameter estimation

As a first step the marginal distributions were estimated us-
ing the approach described in Sect.2.1. Figure1 shows the
distribution functions for arsenic. The estimation method
was compared to the full maximum likelihood (Eq.1 which
would correspond tozlim > max(zi,i = 1,...,I in Eq. 2)).
The empirical distribution function is only defined for val-
ues above the highest detection limit.The traditional maxi-
mum likelihood estimation is strongly influenced by outliers,
leading to unrealistic, and unacceptable results. In contrast,
settingzlim such thatzlim > max(dj ,j = 1,...,J ) and bearing
in mind that there are at least a few (30 or more in our case)
exact measurement values (zis) belowzlim , leads to a good
fit of the observed values, but one can see a slight break in
the distribution function atzlim .

Fig. 2. The distribution of chloride concentrations and the estimated
distributions corresponding to different degrees of censoring.

In order to investigate the quality of the extension of the
distribution to censored values the observed chloride con-
centration values were artificially censored. Detection limits
were set to the 15, 25, 35, 45, 55, 65, 75 and 85 % quan-
tiles of the distribution. Figure2 shows distribution functions
corresponding to different detection limits for chloride. Note
that in order to see any differences the x-axis is shown on a
logarithmic scale. All distribution functions are very similar,
showing that the upper middle part of the distribution can be
well used to extend it to low values.

The parameters of the spatial structure were estimated both
for a normal and a v-transformed normal copula. An ex-
ponential spatial correlation function was assumed. Table2
shows the parameters of the spatial copulas for the selected
variables. The copula fits are very different. While for ar-
senic the correlation function of the normal copula has a
high B value indicating a strong spatial structure, for the
v-transformed copula theB is much lower. For deethyla-
trazine the situation is inverted: the v-transformed copula
shows a strong spatial link and the normal nearly no spatial
correlations.
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A. Bárdossy: Interpolation of groundwater quality parameters with values below the detection limit 2769

Table 2. Parameters of the fitted copulas.

Gauss copula V-transformed copula

B A B A m k

Arsenic 0.750 1325 0.810 49 000 1.78 0.376
deethylatrazine 0.030 669 0.579 35 000 0.29 2.469
Chloride 0.620 11 539 0.449 27 500 1.98 0.147

4.3 Interpolation

In order to illustrate the properties of the interpolation
method illustrative examples are first considered. Assume
that the value at the center of a square is to be estimated,
with observations at the four corners. Four different configu-
rations are considered:

1. Assume two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution.

2. Assume two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two
other corners have censored values with the same de-
tection limit which is equal to the 0.5 quantile of the
distribution.

3. All corners have exact values equal to the 0.5 quantile
of the distribution.

4. Assume two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two
other corners have censored values one with a detection
limit equal to the 0.5 quantile the other equal to the 0.1
quantile of the distribution.

The spatial dependence structures of deethylatrazin were
used for these examples. Figure3 shows the conditional den-
sities in the quantile space for the center of the square. Con-
figuration one corresponds to the case if censored values are
not considered corresponding toge

x(z) in Eq. (22). This den-
sity is modified in configuration 2 – the two values below the
0.5 quantile lead to a higher density for lower values. Config-
uration 3 corresponds to the case when non-detects are set to
the detection limit. This leads to an estimator with less un-
certainty and with higher expectation than in configuration
2. Configuration 4 shows that a constraint corresponding to a
low detection limit can substantially modify the density ob-
tained by the interpolatioin.

Figure4 shows the interpolated maps for chloride using
all observations and three different maps using 25 %, 45 %
and 65 % censoring. Note the high similarity between the
maps. The pointwise correlation between the map based on
all observations and the maps obtained after censoring was
calculated and is shown on Fig.5. The correlation is constant

Fig. 3. Conditional densities obtained for the center of a square
using different data at the corners.

– Configuration 1 two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution.

– Configuration 2 two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two other
corners have censored values with the same detection limit
which is equal to the 0.5 quantile of the distribution.

– Configuration 3 all corners have exact values equal to the 0.5
quantile of the distribution.

– Configuration 4 two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two other
corners have censored values one with a detection limit equal
to the 0.5 quantile the other equal to the 0.1 quantile of the
distribution

around 0.95 up to 65 %, and diminishes afterwards rapidly
thereafter, reaching nearly 0 at 85 % censoring.

An advantage of the copula based approach is that it pro-
vides the full conditional distribution for each location. Thus
confidence intervals can be calculated, which are more real-
istic than those obtained by kriging.

4.4 Comparison with other interpolation methods

As an alternative ordinary kriging (OK) was used for inter-
polation. Three different treatments of the values below the
detection limit were considered:

www.hydrol-earth-syst-sci.net/15/2763/2011/ Hydrol. Earth Syst. Sci., 15, 2763–2775, 2011



2770 A. B́ardossy: Interpolation of groundwater quality parameters with values below the detection limit

Fig. 4. Interpolated chloride concentrations for different grades of censoring.

1. All values below the detection limit were set to zero.

2. All values below the detection limit were set to half of
the corresponding detection limit.

3. All values below the detection limit were set to the cor-
responding detection limit.

Empirical variograms were calculated for each case. Ad-
ditionally the empirical variogram was calculated from the
exact values only. Figure6 shows the graph of these vari-
ograms for deethylatrazine. The exact values lead to a var-
iogram without any structure and with the highest variance.

The datasets with replaced values show a much lower vari-
ability and the replacement with zeros increases the variabil-
ity only very slightly. These variograms do not show a spatial
structure. Only after the removal of a few extremes, which
were considered as outliers one could obtain a reasonable
variogram. This example gives a good idea about the diffi-
culties involved in the assessment of a reasonable variogram.
The same procedure was carried out for arsenic and chloride.
In the later case the variograms were calculated for different
levels of censoring. A cross validation using OK was per-
formed for each parameter and each censoring.
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Fig. 5. Correlation between the interpolated map of Chloride and
the maps interpolated from censored data.

Another popular method to treat highly skewed variables
is indicator kriging (IK). The indicator corresponding to a
cutoff valueα is defined as:

Iα(Z(x)) =

{
0 if Z(x) >α

1 if Z(x) ≤ α
(27)

Indicator variograms are calculated for a set ofα values.
These do not suffer from the problem of outliers. A subse-
quent IK leads for eachx andα to an estimated value which
is usually interpreted as a probability of non-exceedance.
The estimators corresponding to differentα values are then
assembled to a distribution function. The expected value can
then be calculated for each location. Censored data can be
treated with indicators, namely forα values below the detec-
tion limit the indicator remains undefined, while for above
the indicator is 1. This is a correct treatment of the data,
but leads to the problem that for eachα below the lowest
detection limit all indicator values equal zero. This means
that the procedure is practically filling in the data with the
detection limit, leading to similar biased estimators as OK.
Figure7 shows the graph of empirical indicator variograms
for deethylatrazine. Note that in contrast to the empirical
variograms of Fig.6 these curves show a clear spatial depen-
dence even without removing the outliers.

Lognormal kriging was not considered for this compar-
ison, as it was reporeted the back transformation is very
sensitive and might lead to problems with the estimator
Roth(1998). Further the replacement of the non-detects
would play a major role in the variogram estimation for this
method.

Figure8 shows the interpolated maps for deethylatrazine
using the v-copula, IK and OK by setting all censored data
equal to the corresponding detection limit. The OK maps
show the typical problem the method has with skewed dis-
tributions. The high values have a large influence, and lead
to an overestimation. The map obtained by IK is more re-
alistic. However the overestimation is still a problem here,

Fig. 6. Empirical variograms calculated for deethylatrasine, using
exact data only (black solid), using nondetects replaced by zero
(blue dashed) or by the detection limit (blue solid) and using non-
detects replaced by zero and removal of outliers (red dashed).

Fig. 7. Empirical indicator variograms calculated for deethylatra-
sine for the 85 % and 90 % values of the distribution.

as the values below the detection limit are practically set to
the detection limit. The copula based interpolation allows in-
terpolated values below the detection limit and, in doing so,
leads to a plausible result.

The spatial means calculated chloride concentrations of
the interpolated maps using different degrees of censoring
are shown on Fig.9. For IK and for OK using detection
limit for censored values censoring leads to an increase of
the spatial mean. Using zero for the censored data in OK
results a decrease of the mean, while setting 50 % of the de-
tection limit brings an increase only at high degrees of cen-
soring. In contrast the copula approach shows only a slight
decrease in the spatial mean. Note that the spatial mean is
below the 55 % value of the distribution. Thus for the high
levels of censoring the interpolated mean is below the lowest
measured value.
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Fig. 8. Interpolated deethylatrazine concentrations using different interpolation methods. For OK the values were set to the detection limit.

Table 3. Cross validation results for Arsenic.

Measure V-copula Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit

MSQE 3.7× 10−6 1.0× 10−5 5.3× 10−5 1.0× 10−5

Rank correlation 0.32 0.32 0.33 0.33
LEPS Score 0.142 0.154 0.142 0.159
Mean probability for< DTL 0.610 0.559 0.042 0.437
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Table 4. Cross validation results for deethylatrazin.

Measure V-copula Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit

MSQE 5.1× 10−4 3.0× 10−3 5.0× 10−3 1.7× 10−3

Rank correlation 0.44 0.31 0.40 0.48
LEPS Score 0.168 0.311 0.100 0.110
Mean probability for< DTL 0.869 0.888 0.560 0.650

Fig. 9. Mean of the interpolated maps of Chloride for different degrees of censoring and different interpolations.
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Fig. 9. Mean of the interpolated maps of Chloride for different
degrees of censoring and different interpolations.

As a next step for all three variables and all interpola-
tion methods a cross validation was carried out. The eval-
uation of the cross validation results is not straightforward
due to the censoring. The usual squared error is, even for the
exact values, not appropriate as the distributions are highly
skewed and some extreme outliers would dominate this mea-
sure. Instead this measure was calculated by leaving out
the upper 1 % of the measured values, ensuring that outliers
were not considered for the calculation. Further the rank
correlation for the exact values was calculated. Addition-
ally the LEPS score (linear error in probability space)Ward
and Folland(1991) was calculated to evaluate the fit in the
probability space.

LEPS=
1

n

n∑
i=1

|Gz(z(xi))−Gz(z
∗(xi))| (28)

Herez∗(xi) is the expected value of the iterpolation calcu-
lated from the density obtained in Eq. (22).

For the measurements below the detection limit the aver-
age of the probabilities to be below the detection limit was
calculated.

Results for the two censored variables and for an artifi-
cially censored case (chloride) are displayed in Tables3 and
4. As one can see the copula based approaches outperform
the ordinary and the indicator kriging. Note that the mean

Fig. 10. Frequency of observations in the 80 % confidence interval for V-copula based interpolation (long

dashes) and Gauss-copula based interpolation (short dashes) and indicator kriging (dashed dotted line) for

different grades of censoring of Chloride.
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Fig. 10. Frequency of observations in the 80 % confidence interval
for V-copula based interpolation (long dashes) and Gauss-copula
based interpolation (short dashes) and indicator kriging (dashed dot-
ted line) for different grades of censoring of Chloride.

squared error, the rank correlation and the LEPS score were
all calculated for the exact measurements only. From the two
copula models the v-copula allowing a non-symmetrical de-
pendence is slightly better than the Gaussian.

For the artificially censored mean squared error, rank cor-
relation and LEPS score were calculated using all data with-
out considering the artificial censoring. Thus these measures
represent a realistic measure of interpolation quality. The re-
sults are shown in Table5. Note that ordinary kriging has
a very high mean squared error. This is caused by the high
skewness of the marginal distribution which had much less
influence on the indicator and copula approaches. The eval-
uation of the procedures for values below the detection limit
is rather difficult. The first three measures cannot be used
for these observations. As all interpolation methods provide
probability distributions a possible quality measure is to cal-
culate the for each point the probability that the value is be-
low the detection limit. Optimally this probability should be
1. For all three parameters the copula based approaches de-
liver the highest values. Indicator kriging is by far the weak-
est in this measure.
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Table 5. Cross validation results for Chloride with 45 % artificial censoring.

Measure V-copula Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit

MSQE 273.1 251.8 298.6 2922.5
Rank correlation 0.61 0.61 0.58 0.45
LEPS Score 0.186 0.174 0.191 0.150
Mean probability for< DTL 0.593 0.555 0.000 0.390

Fig. 11. Uncertainty maps for deethylatrazin: left the length of the 80 % confidence interval obtained via v-copula based interpolation, right
the kriging standard deviation obtained by OK.

For interpolation and for possible random simulation of
the fields a good measure of uncertainty is of great impor-
tance. As the kriging variance is only a good measure of
uncertainty when the data follow a multivariate normal dis-
tribution. Else it is only a measure of data configuration,
not data value dependent (especially for skewed distributions
c.f. Journel, 1988) and it is not a good measure of uncertainty.
The indicator approach provides estimates of the local con-
ditional distribution functions. As it is not directly consid-
ering the estimation uncertainty (all indicator values are in-
terpolated values with no uncertainty associated) it does not
provide a good uncertainty measure. The copula approach
yields full probability distributions for each location, thus ar-
bitrary confidence intervals can be derived. Figure11 shows
the width of the 80 % confidence interval obtained using v-
copula based interpolation and the width of the 80 % confi-
dence interval obtained using ordinary kriging under the as-

sumption of a normally distributed error for deethylatrazin.
One can see that the estimation quality of the copula based
interpolation is very heterogeneous over the whole domain.
Regions with high observed values the confidence intervals
are wide, in low areas narrow. For ordinary kriging the esti-
mation error (kriging standard deviation) is small close to
points with measured values, irrespective of the observed
values.

In order to validate the confidence intervals the frequency
of observations within the 80 % confidence interval (obtained
from cross validation) was calculated. Figure10 shows the
percentage of chloride values falling into the 80 % confi-
dence interval for different censoring levels obtained using
the v-copula and the Gauss copula. As one can see for the v-
copula the frequency is close to the target 80 % for all censor-
ing levels while for the Gauss copula the confidence intervals
become meaningless above 35 % censoring.
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5 Conclusions

In this paper a methodology for the interpolation of variables
with data below a detection limit was developed. As a first
step the marginal distributions were estimated using a mixed
approach which entailed a maximum likelihood method for
the lower values and the empirical distribution for the high
values. This procedure provides a robust estimator for the
low concentrations without the negative influence of possi-
ble outliers. Using the fitted distributions the variables were
transformed to the unit interval and their spatial copula was
assessed, assuming spatial stationarity. Values below the de-
tection limit are considered in a maximum likelihood estima-
tion of the spatial copula parameters. Interpolation was done
by calculating the conditional distributions for each location.
The conditions include both the measurements as exact val-
ues and the below detection limit observations as inequality
constraints.

The copula based interpolation is exact at the observation
locations; the interpolated value equals the observed value.
For locations with censored observations the method pro-
vides an updated distribution function which differs from
the constrained marginal. Other procedures such as indica-
tor kriging with inequality constraints do not update distribu-
tions at observation locations.

Investigations based on the artificially censored dataset
show that the copula-based approaches remain unbiased even
for large degrees of censoring. Among the kriging ap-
proaches only ordinary kriging with setting the censored val-
ues equal to the half of the corresponding detection limit did
not show a systematic error for higher detection limits. This
choice is clearly better than setting the values below the de-
tection limit equal to the detection limit, or setting them all
equal to zero, which both lead to systematic errors. Indica-
tor kriging also shows a systematic bias increasing with the
detection limit.

The copula-based approaches outperform ordinary and in-
dicator kriging in their interpolation accuracy. Indicator krig-
ing is only slightly worse than the copula based interpolation,
while ordinary kriging with all different considerations of the
values below detection limit are the poorest estimators.

The main advantage of the copula based approaches is in
the estimation of the interpolation uncertainty. While ordi-
nary kriging yields unrealistic estimation variances depend-
ing only on the configuration of the measurement locations,
the copula-based interpolation yields reasonable confidence
intervals. The v-copula based approach yields more realistic
confidence intervals than the Gaussian alternative.

The suggested approach can be extended to handle any
kind of inequality constraints both for spatial structure as-
sessment and for interpolation.

The model can serve as a basis for conditional spatial
simulation. It would be possible to extend the model to a
Bayesian approach where prior distributions are assigned to
individual locations.
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