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Abstract. For many environmental variables, measurementsl Introduction

cannot deliver exact observation values as their concentra-

tion is below the sensitivity of the measuring device (detec- There are many different chemicals which enter the ground-
tion limit). These observations provide useful information Waterwater system through different mechanisms. Many of
but cannot be treated in the same manner as the other meese compounds are known or suspected to have adverse ef-
surements. In this paper a methodology for the spatial interfects on health and environment. Recent advances in labo-
polation of these values is described. The method is based oftory techniques are providing improved capabilities for de-
spatial copulas. Here two copula models — the Gaussian anécting large numbers of new and potentially harmful con-
a non-Gaussian v-copula are used. First a mixed maximuni@minants. The concentrations of different chemicals usu-
likelihood approach is used to estimate the marginal distri-ally have strongly skewed distributions with a few very high
butions of the parameters. After removal of the marginalvalues and a large number of low ones. Some of the low
distributions the next step is the maximum likelihood esti- values are reported as non-detects due to the limited sen-
mation of the parameters of the spatial dependence includingitivity of the laboratory instruments. The high skew and
taking those values below the detection limit into account.the occurrence of non-detects interpreted as values below a
Interpolation using copulas yields full conditional distribu- given threshold make the statistical and geostatistical anal-
tions for the unobserved sites and can be used to estimaf¢sis of these data unpleasant and complicated. The statisti-
confidence intervals, and provides a good basis for spatiafal treatment of censored data has a long history. Already
simulation. The methodology is demonstrated on three dif-Cohen(1959 had published a paper for the estimation of the
ferent groundwater quality parameters, i.e. arsenic, chloridéiormal distribution from censored data. Later work was per-
and deethylatrazin, measured at more than 2000 locationf®rmed for other distributions such as the 3 parameter log-
in South-West Germany. The chloride values are artificiallynormal distribution Cohen 197§. The first papers concen-
censored at different levels in order to evaluate the proceirated mainly on right censored (survival) data. Helsel
dures on a complete dataset by progressive decimation. Inand Cohn(1988 left censored water quality data were ana-
terpolation results are evaluated using a cross validation aplyzed. Despite recent works on the subject sucBasmway
proach. The method is compared with ordinary kriging andet al.(2003 the statistical treatment of censored environmen-
indicator kriging. The uncertainty measures of the differenttal data is far less frequently applied as it could and should

approaches are also compared. beHelsel(2005.
While the treatment of censored environmental data from

the classical statistical viewpoint is reasonably well devel-
oped this is not the case in spatial statistics. Spatial mapping
of variables with censored data is also of great interest and
practical importance.
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2764 A. Bardossy: Interpolation of groundwater quality parameters with values below the detection limit

RecentlySedda et al(2010 presented a methodology to ~ Assume that there arg; measurements with values below
reflect censored data using a simulation approactSdito  the detection limitd; (note that the detection limits might
and Goovaert$2000 the authors addressed the problem of differ from place to place, possibly due to different labora-
censored and highly skewed variables, and showed that thiory equippment used), and far observations a measure-
indicator approach outperforms other geostatistical methodsnent valuez; is given. The empirical distribution function
of interpolation. of such observations can only be calculated for values above

Variables with non-detects are usually highly skewedthe largest detection limit. Due to the censoring the mean
which makes their interpolation even more difficult. The high and the standard deviation cannot be calculated directly, thus
skew of the distributions often leads to problems with the var-the estimation of the parametetrf a selected parametric
iogram or covariance function estimation. A few large val- distribution via method of moments is not possible. Instead
ues dominate the experimental curve, and outliers can lead maximum likelihood method is required. Here one has two
to useless variograms. This problem is partly overcome bychoices:
the use of indicator variables. However this approach suffers
from other deficiencies as demonstrated in this paper.

The purpose of this paper is to develop a methodology to
estimate spatial dependence structure from a mixed dataset
containing differently censored data. The approach requires 2. To assume a mixed distribution: for values below a
as a first step the estimation of the univariate distribution threshold a parametric form is assumed and for those
function of the variable under consideration. For this purpose observations above the threshold, an empirical or a non
a maximum likelihood method is used. In the next step the parametric distribution is considered.
spatial dependence is described with the help of copulas, and | . ' , . ,
the copula parameters are estimated using a maximum IikeIiWhlle the first apprqach IS more or Ie;s stralghtfprwarq, I
hood method. After this, the estimated dependence structurgas a few shortcommgs. One of them is that outliers mlght
is used for the interpolation. Copulas are used in hydrolog ave avery |mporta_nt influence on the_ para_me_ters_ ofthe dis-
mainly for the analysis of extremes. Keef et al.(2009 tribution; the other is that the underlying distribution could

. : . o : e bimodal.
an interesting approach for treating missing data in a Copulé) ; T .
approach was presented. In the first case the distribution parametérsan be esti-

The methodology is demonstrated using different watermated using the likelihood function:

1. To assume a parametric distribution function stationary
over the whole domain, and to assess the parameters via
maximum likelihood

quality parameters obtained from large scale measurement g 1z
campaigns in South-West Germany. Two highly censored paliow(..-di.....zi-..10) = [ [F@10) [ ] f z;16) (1)
rameters, namely arsenic and deethylatrazin are considered. i=1 j=1

In order to test the methodology a parameter with no cenwhereF (.|6) is the distribution function applied to those val-
sored data (chloride) is selected and subsequently artificiallyies below the local detection limit arfd.|6) the correspond-
censored. The methodology is compared to ordinary and ining density with paramete.

dicator kriging using different performance measures. In the case of the mixed approach we assume that the val-
ues below a given threshatgh, (greater or equal than alls)
follow a parametric distribution, while abovg, the empir-

ical distribution should be considered. Thus the estimation is
restricted to those which are belayy, . If a random variable
with distribution functionF(z) is restricted to the interval

The neagtive effects of highly skewed data on interpolation(—20,b) than the distribution function of the restricted vari-
can be reduced by data transformations. Most frequentlyable isFr(z) = F(z)/F(b). This fact is used by estimating
logariithmic or normal score transoformations are applied.the restricted variable via maximum likelihood.

However in the case of data below the detection limit these 1 e

transormations cannot be used in a straightforward mannefiow(- -2 10) = F(Z”mw)nF(diW) l_[ fGile) (2)
The logarithm of the values below the detection limit requires = o

an arbitrary choice. The normal score transformation sufferdiere a parametric distribution is fit to the observations below
from the incomplete order of the data. For example if one hasiim- This enables an extrapolation of the distribution func-
observations of 1.5mgt 3mg! andbelow2mgiand  tioninto the low value domain. By selecting an upper bound
belowl mg ! then even the rank of thexactvalues cannot  the negative effect of outliers is eliminated. In both cases
be determined. To treat this problem the distribution functionthe logarithm of the likelihood function can be maximized.

2 Methodology

2.1 Marginal distribution

of the studied variablé (z) is estimated first. Above thezjim value a distributiorFiim (2) is assumed:
1 ng+n;
Fim(2) = Loy <<z 3
lim (2) iim + 1 ; Zlim <Z<Zj ®3)
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wheren|iy is the number of; greater thanjim. by calculating indicator variograms for a large number of
The overall distribution function is: cutoffs.
_ dim : , In this paper a copula based approach is taken as described
Fiml0) ) F(Zl@) if Z = Zlim . , .
(2)= o Z""lr(l i) Fim (2) if 2 > 21 (4) in Bardossy(2006. Two copula models, the Gaussian and
lim lim) Flim2) 1 < = Zlim the v-transformed normal copula are considered. The model
where n is described in detail iBardossy and L{2008.
Aim = _ Mlim Following Eg. 6) we assume that the random functidiis
n,+ng+1

_ ' _ - such that for each locatione Q the corresponding random
The introduction otyim enables a continuous transition from variableZ (x) has the same distribution functidf, for each

the theoretical to the empirical part of the distribution. locationx. The joint distribution can be written with the help
Note that the limitzjim is not estimated, but selected as of the copula:

a reasonable limit which is certainly below possible outlier
observations. In order to obtain an estimatedalue it is ~ Frire W1 i) = Cay oy (Fz(w1), ..., Fz(wi))  (6)
important to have a sufficient number of exact observatlonqmth C,
belowzjim. Possible candidates for the parametric part of thelocauon
distribution are the Gamma (including exponential) and the
Weibull distributions. Information criteria can be used for
the choice of the appropriate distribution.

,,,,, x, being the spatial copula corresponding to the
Sx1,...,xx. This approach allows us to investi-
gate the new variabl® (x) = F(Z(x)) which has a uniform
marginal distribution.

Two copula models, the Gaussian (normal) and the v-
transformed normal copula, are considered. The Gaussian
2.2 Spatial structure identification copula is described by its correlation matfix

The v-transformed normal copula is parametrized by the
The identification of the spatial structure from data with transformation parametens, k and the correlation matrik
many non-detects is a difficult problem. Non detects andwhich is likely to differ from the Gaussian one.
exactvalues carry very different information. An arbitrary  The v-transformed copula is defined usivigoeing ann
setting of the non-detects leads to a reduction of the vari-dimensional normal random variat#&0, T"). All marginals
ance and to a false strong dependence between the low vahre supposed to have unit variance. Kdie defined for each
ues. Neglecting them for the spatial variability estimation oncoordinatej =1,...,n as:
the other hand usually leads to an overestimation of the vari- k(Y —m) i Y >
ance and to an underestimation of the strength of the spatiak ; = { / 'm it /= " @)
dependence. m—Yj W Yj<m

In order to deal with this problem a stochastic model is \Wherek is a positive constants and is an arbitrary real
required. We assume that the variable of interest correspondsumber. Wherk = 1 this transformation leads to the multi-
to the realization of a random function. For our study we variate non centereg-square distribution. All one dimen-
restrict the random functiofd (x) to a spatial domai®. As  sjonal marginals oK are identical and have the same distri-
only a single realization is observed on a limited number ofpution function.
points, further assumptions on the random function have to The parameters of the spatial copula are estimated using
be made. the maximum likelihood method.

The spatial stationarity assumption is that for each set of Forthe Gaussian copula, as a consequence of the stationar-
points{xs, ..., x} C Q and vector: such thafxy +h, ..., x; + ity assumption, the correlations between any two points can

h} C 2 and for each set of possible values, ..., wy: be written as a function of the separating vec¢toThen for
any set of observations, ..., x, the correlation matrix' can
P(Z(x1) <w1,..., Z(xp) < wi) (5)  be written as:
=P(Z(x1+h) <wi,...,Z(xp+h) <wg) )
g : = ((/Oi j);l'ln) (8)

The spatial variability of a field is usually determined from
exact observations. Variograms and covariance functions caWherep;, ; only depends on the vectbrseparating the points
be calculated from measured values directly, but even dif-¥i andx;:
ferent measurement methods with different accuracies cause = R( N o

Xi — -xj)_R(hl,]) (9)
problems in the structure identification. Measurements W|th
higher error variances lead to higher nugget values. The deFor the estimation, the observed values are transformed to
tection limit problem makes the assessment of the spatiathe standard normal distribution using:
structure extremely difficult. Setting the values below the

—_ -1 —
detection limitd; to either 0 ord; leads to a false marginal ¢ =®17 (G k=1....n, (10)
distribution and to a false spatial dependence structure. The
indicator approach provides a reasonable alternative solutiory;? = <I>1‘1(G(d(x.,~))) j=1,....,nq4 (12)
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Here®1(.) is the distribution function of the standard normal  The setsl1,I> and I3 are defined as for the Gaussian

distribution N(0,1). case. Ho(.,.) is the distribution function of the bivariate v-
The variabley is now a censored normal with data below transformed distribution:

the detection limits denoted hy’. The correlation function

R(.,B) is assumed to have a parametric form with the pa-

rameter vectop. The likelihood function in this case can be H;(yq,y,8) = ®; (<ﬂ> +m, (E) +m, R(hl’z,'B))

written as: k k

+@ m-—yi,m-—y 7R(h', 7ﬁ)
L= [] 20 0RNwp) J] @1 2(m—y1.m—yz, R(hjx. )

1
(ken kel —©2<(%> +m,m—yz, R(h1,2»,3))
d
( j j ) 560 P (m yl,( . )+m,R(h1,2»/3)> (18)
V1=RM;,B)
y The corresponding density function is:
[T @2(v 3 R 9) (12) )
j 1 2
Ghels = _ _ haGry2. ) = 02( () +m. (32) +m.R(h1.2.8))
Here ®»(x, y,r) is the distribution function of the 2 dimen-
sional normal distribution with correlation and standard +2(m —y1.m —y2, R(h1.2, 8))
normal marginal distributions N(0,1) angb(x,y,r) is its 1 i B
density function. The calculation @ (x, y,r) requires the +E¢2((?) +m,m y2,R(h1’2’ﬁ)>
numerical integration of the bivariate normal density. The 1 y2
likelihood function could also be written using multipoint +%¢2<m—y1, (7)+m,R(h1’2,ﬂ)> (29)
configurations, but this would also lead to an increase of the . ) . ]
complexity of the calculations. The sgt contains pairs of HereR(hy 2, p) is the correlation function of the Gaussian

locations with both variables being measured exactlyl,In  VariableY andhx(., ) is the density function corresponding

pairs are listed which consist of an exact observation and 40 Hz- The mixed bivariate functiod/,(.,.) is obtained via

below detection limit value. Finallyz contains pairs with ~ Intégration of the density:

values below the detection limit. The logarithm of the likeli- 1

hood function is maximized numerically. H.(y1,y2,8) :/ ha(y,y2)dy (20)
The above procedure might require a lot of computation o

effort if the number of observations is large. Instead one camg described in Eq.10) the densityk; is a weighted sum
reduce the number of pairs considered in B@) by select-  of normal densities, the corresponding integral can be calcu-

ing different distance classes and taking each observation eXated for each term separately, which is similar to the normal
actly M times as a member of a pair. This way one can avoidcgge.

clustering effects. _ Due to the complicated form of the overall likelihood func-
A similar but slightly more complicated procedure has 10 i 3 numerical optimization of the log-likelihood function
be used for the estimation of the parameters of the v-copulag performed.

In this case the variabl is first transformed to: Different forms of the correlation function can be consid-

Vi = H{l(G(Z(xk))) k=1,...,n, (13) ered — such as the exponential witk= (A, B):
d_pg-1 ‘ P — 0 iflh| =0
¥i=H; (G@d(x;)) j=1...na (14) R(h’A’B):{Bex (_m) ih =0 (21)
Here Hi(.) is the univariate distribution function of the v- P\~
transformed nSrmaI distribution. This can be written as: where 0< B <1 andA > 0.
H(y) = 01( (%) +m) = @10m—y) (15)
The corresponding density is: 3 Interpolation
hi(y) = %‘pl((%) +m> Tr(m—y) (16)  once the parameters of the correlation functioh, B)

and for the v-transformed copula the parameters of the v-
transformation(m, k) are estimated the interpolation can be

The likelihood function in this case is:

L(B)= H h2(yj.yi.8)) H H, (y?,yz,ﬁ>h1(yz) carried out. In order to reduce the complexity of the prob-
(.hel (U.Delz lem, interpolation will be done using a limited number of

1—[ Hy y;_i,yld’ﬁ)> (17) nelghbon_ng obsgr_vatlons. Due_ to amk_JreIIaeff(_act simi-

(ihels lar to ordinary kriging, observations which arehindother
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observations have a minor influence on the conditional dis- Thus the conditional probability in the numerator in
tribution. Further, this restriction to local neighborhoods re- Eq. 22) can be calculated as:
laxes the assumption of stationarity to a kind of local station- o _ L _
arity. An example irBardossy and L{2008 demonstrates P<Z(xi)<di” =Ll..nZ() =220 =z;3j=1..., ”Z>
that this assumption does not significantly alter the results of = ®,0 10 (¥, V150 Yn.) (26)
interpolation.

The goal of interpolation is to find the density of the ran- where® o o is the distribution function oV (12, T9). Val-
dom variableZ (x) conditioned on the available censored and ues of the multivariate normal distribution function can be
uncensored observations. The conditional density) for ~ calculated by numerical integration, for example usBenz

locationx can be written as: and Bretz(2002. The denumerator in Eq2p) requires the
same type of calculation.
8x(2)=P(Z(x)=z|Z(xi) <d; .i;: Z(xj) =2, ) The denumerator is independent of the vajiand can be
P(Z(x)=2,Z(xi) <d;i,Z(x;)=2;.]) calculated exactly as the numerator. Note that the point for
= P(Z0m) <di 1,20 =2, ) = which the interpolation has to be carried out is considered as

P (2e) < 120 = 2, 700e7) m 23 ) P(ZG) =2 2 =25 ) apseudambservation with the observed vaIueThus_the nu-
= T i L o merator has to be evaluated for a number of possiliues
P(Z(xi) <di,i=1,...,nq4|Z(x})=2z.j)P(Z(x))=2z;.]) . . -
) . to estimate the conditional density.
_ P(Z(xi) <di i1Z(x) =2,Z(x)) =2, J) For the v-transformed copula the interpolation procedure
P(Z(xi)<di,i=1,...n4|Z(xj) =2}, ) is slightly more difficult, but as the-dimensional density of
P(Z(x)=2|1Z(x))=2; J) =2%(2)g¢(2) (22) the v-transformed variable is a weighted sum &frdrmal
densities the calculation procedure is similar. However, we
The above equation shows that the final conditional den-will not go into further details here.
sity is composed of two terms. The figgl(z) is related to the
non-detects the second multiplicative tegf(z) is the iter- o
polation (conditional density) obtained from the exact values.4 Application and results

This term is the traditional interpolator itself as if there were The ab d ibed methodol lied t ional
no values below the detection limit. If there are no exact mea- ¢ 200V€ described methodology was applied to a regiona

surememnts in the neighborhood.othen the second term groundwater pollution investigation. Two censored variables
equals to the marginal density of the variable, which is mog-2nd an artificially censored variable were used o 'demo.n-
ified by the non-detects in the neighborhood throg) strate the methods, and to compare them to traditional in-
Both the numerator and the denumerator of the first part Oiterpolatmns.

the expression are conditional multivariate distribution func- 41
tion values which require integration of the corresponding

Investigation area

multivariate densities in; dimensions. An extensive dataset consisting of more than 2500 measure-
For the normal copula case, EQ2| can be written with  ments of groundwater quality parameters of the near surface
the help of the transformed variabifefor z = G~1(®(y)): groundwater layer in Baden-tttemberg were used to il-
d . . lustrate the methodology. Three quality parameters namely
()= PYaa) <yl iY@ =y ¥ ()= .J) deethylatrazine — degradation product of atrazine — arsenic
P(Y(xi) <yl ilY(xp)=y;.]) and chloride were selected for this study. The measurements
PY)=yY(x)=y;,j) (23)  were carried out in the time period between 2007 and 2010.

N o o . While the first two parameters are heavily censored the
The conditional distribution of a multivariate normal dis- chloride concentrations exceed the detection limit in 99.9 %
tribution is itself multivariate normal with expectatiglf and  of the cases. This variable is artificially censored using dif-

covariance matrix'? with: ferent thresholds in order to show the effectiveness of the
0 T method.
I'¢=Too—T01l'11 "T'o1 (24) Table 1 shows the basic statistics for the selected data.

Note the high positive skewness for all variables. This alone
would lead to substantial difficulties in estimating spatial cor-
,ug: o1ty (25) relation functions, even in the case where most values had
been above the detection limit.

The expected value of the conditional is:

Yy = y1 s )

The matricesI'gg I'g1 and I'11 are the correlation ma-
trices corresponding to the pairs of observations with cen-
sored and uncensored data, calculated with the correlation
function R (h).

www.hydrol-earth-syst-sci.net/15/2763/2011/ Hydrol. Earth Syst. Sci., 15, 27652011
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Table 1. Basic statistics of the investigated variables mean, standard deviation and skewness are calculated from values above the detectiol
limit.

Statistics of values- Detection limit

Number of  Number of Mean Standard Skewness Maximum
observations above DL deviation
Arsenic 2234 979 0.002733 0.007392 13.4 0.1618
deethylatrazine 2848 403 0.064243 0.068316 45 0.68
Chloride 2805 2801 39.9 165.8 30.3 6940.0

1 =
Observations
- | == e--. ML fitted exponential -
Mixed ML fit f All data
0.8 — 0.8 — ——————— 25 % censored
i 45 % censored
T > 65 % censored
-
= 0.6 —
2 06 — =
= S |
. 5
3 © 04—
a 0.4 — o ]
) 0.2 —
0.2 — ]
] max{d} ' Zim 0 — LRI | LI RN | LR
0 — T ||||I'IT| T ||||I'IT| T ||||m] 0.1 1 10 100 1000
1E-006  1E-005 0.0001 0001  0.01 0.1 1 Concentration (mg/l)

Concentration
Fig. 2. The distribution of chloride concentrations and the estimated
Fig. 1. The empiricel distribution of the observed arsenic concen- distributions corresponding to different degrees of censoring.
trations (crosses) for the values above the highest detection limit
and the distributions obtained fitted via maximum likelihood for the
whole dataset (dashed line) and with settifg, to 0.005mgt?

e In order to investigate the quality of the extension of the
(solid line).

distribution to censored values the observed chloride con-
centration values were artificially censored. Detection limits
o were set to the 15, 25, 35, 45, 55, 65, 75 and 85 % quan-
4.2 Parameter estimation tiles of the distribution. Figur@ shows distribution functions

, . S . corresponding to different detection limits for chloride. Note
As a first step the marginal distributions were estimated us-

. g X . that in order to see any differences the x-axis is shown on a
Ig.gtt%e ?pprfoack':. desc;rlbed n Séz;ﬂ{_hFlgurtgl SPOWS thteh q logarithmic scale. All distribution functions are very similar,

istribution Tunctions for-arsenic. “he estimation metno showing that the upper middle part of the distribution can be
was compared to the full maximum likelihood (Egwhich

I d tar i—1. Jin Eq. 2 well used to extend it to low values.
would correspond Qiim > maX(Z”’._ ooeo 11N EQ. )- The parameters of the spatial structure were estimated both
The empirical distribution function is only defined for val-

b the hiahest detection limit The traditional . for a normal and a v-transformed normal copula. An ex-
ues above the highest detection imit. 1he traditiona rjnax"ponential spatial correlation function was assumed. Table
mum likelihood estimation is strongly influenced by outliers,

. o shows the parameters of the spatial copulas for the selected
leading to unrealistic, and unacceptable results. In contras{, . i-rles. The copula fits are very different. While for ar-
settingzjim Such thatjm > max(d;,j=1,..../)andbearing o the correlation function of the normal copula has a

in mind that there are at least a few (30 or more in our Case)nigh B value indicating a strong spatial structure, for the
exact measurement valuess) belowzim, leads to a good = | 4o otomed copula th& is much lower. For deethyla-

fit of the observed values, but one can see a slight break ity o ;ine the situation is inverted: the v-transformed copula

the distribution function &jim. shows a strong spatial link and the normal nearly no spatial
correlations.
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Table 2. Parameters of the fitted copulas.

Gauss copula V-transformed copula

B A B A m k
Arsenic 0.750 1325 0.810 49000 1.78 0.376
deethylatrazine  0.030 669 0.579 35000 0.29 2.469
Chloride 0.620 11539 0.449 27500 1.98 0.147
4.3 Interpolation 25 —
Configuration 1
] — = = == = Configuration 2
In order to illustrate the properties of the interpolation 2 — RN — — = = Configuration 3

Configuration 4

method illustrative examples are first considered. Assume o
that the value at the center of a square is to be estimated 2
with observations at the four corners. Four different configu-
rations are considered:

Density v

1. Assume two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution.

2. Assume two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two 0 02 04 06 08 1
other corners have censored values with the same de Quantile
tection limit which is equal to the 0.5 quantile of the
distribution. Fig. 3. Conditional densities obtained for the center of a square

using different data at the corners.

3. All corners have exact values equal to the 0.5 quantile  _ configuration 1 two comers on a diagonal have exact values
of the distribution. equal to the 0.5 quantile of the distribution.

4. Assume two corners on a diagonal have exact values ~ Configuration 2 two corners on a diagonal have exact values

equal to the 0.5 quantile of the distribution and the two other
corners have censored values with the same detection limit
which is equal to the 0.5 quantile of the distribution.

equal to the 0.5 quantile of the distribution and the two
other corners have censored values one with a detection
limit equal to the 0.5 quantile the other equal to the 0.1

quantile of the distribution.

The spatial dependence structures of deethylatrazin were _
used for these examples. Figishows the conditional den-

sities in the quantile space for the center of the square. Con-
figuration one corresponds to the case if censored values are

Configuration 3 all corners have exact values equal to the 0.5
guantile of the distribution.

Configuration 4 two corners on a diagonal have exact values
equal to the 0.5 quantile of the distribution and the two other
corners have censored values one with a detection limit equal
to the 0.5 quantile the other equal to the 0.1 quantile of the

not considered correspondingdf(z) in Eq. 22). This den- distribution

sity is modified in configuration 2 — the two values below the
0.5 quantile lead to a higher density for lower values. Config-
uration 3 corresponds to the case when non-detects are setéwound 0.95 up to 65%, and diminishes afterwards rapidly
the detection limit. This leads to an estimator with less un-thereatfter, reaching nearly 0 at 85 % censoring.
certainty and with higher expectation than in configuration An advantage of the copula based approach is that it pro-
2. Configuration 4 shows that a constraint corresponding to aides the full conditional distribution for each location. Thus
low detection limit can substantially modify the density ob- confidence intervals can be calculated, which are more real-
tained by the interpolatioin. istic than those obtained by kriging.

Figure 4 shows the interpolated maps for chloride using
all observations and three different maps using 25%, 45%#%.4 Comparison with other interpolation methods
and 65 % censoring. Note the high similarity between the
maps. The pointwise correlation between the map based oAs an alternative ordinary kriging (OK) was used for inter-
all observations and the maps obtained after censoring wagolation. Three different treatments of the values below the
calculated and is shown on Fig. The correlation is constant detection limit were considered:
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45 % 65 %

Fig. 4. Interpolated chloride concentrations for different grades of censoring.

1. All values below the detection limit were set to zero.  The datasets with replaced values show a much lower vari-
ability and the replacement with zeros increases the variabil-
ity only very slightly. These variograms do not show a spatial
structure. Only after the removal of a few extremes, which
3. All values below the detection limit were set to the cor- were considered as outliers one could obtain a reasonable
responding detection limit. variogram. This example gives a good idea about the diffi-
Empirical variograms were calculated for each case. Ad—CLrj]Itles involved 'g the assessrr_]egt of?reason'c_lble \(/jarlholgr%m.
ditionally the empirical variogram was calculated from the The same procedure was carried out for arsenic and chioride.

exact values only. Figuré shows the graph of these vari- In the later case the variograms were calculated for different

ograms for deethylatrazine. The exact values lead to a varl-eveIS of censoring. A cross validation using OK was per-

iogram without any structure and with the highest variance.formecj for each parameter and each censoring.

2. All values below the detection limit were set to half of
the corresponding detection limit.
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Fig. 5. Correlation between the interpolated map of Chloride and Fig. 6. Empirical variograms calculated for deethylatrasine, using
the maps interpolated from censored data. exact data only (black solid), using nondetects replaced by zero
(blue dashed) or by the detection limit (blue solid) and using non-
detects replaced by zero and removal of outliers (red dashed).
Another popular method to treat highly skewed variables
is indicator kriging (IK). The indicator corresponding to a 0.2 5
cutoff valuew is defined as: .

0if z
1a(Z(x)) = { it e (27)

0.16 —

Indicator variograms are calculated for a seteofalues. 012 4

These do not suffer from the problem of outliers. A subse-
quent IK leads for each and«x to an estimated value which

is usually interpreted as a probability of non-exceedance.
The estimators corresponding to differenvalues are then
assembled to a distribution function. The expected value can
then be calculated for each location. Censored data can b
treated with indicators, namely farvalues below the detec- L L

tion limit the indicator remains undefined, while for above 0 10000 2°,§?:ta,,ce (f,(,’;m 40000 80000

the indicator is 1. This is a correct treatment of the data,

but leads to the problem that for eaehbelow the lowest  Fig. 7. Empirical indicator variograms calculated for deethylatra-
detection limit all indicator values equal zero. This meanssine for the 85 % and 90 % values of the distribution.

that the procedure is practically filling in the data with the

detection limit, leading to similar biased estimators as OK. 55 the values below the detection limit are practically set to
Figure7 shows the graph of empirical indicator variograms the detection limit. The copula based interpolation allows in-
for deethylatrazine. Note that in contrast to the empiricaltemmated values below the detection limit and, in doing so,
variograms of Fig6 these curves show a clear spatial depen-jgads to a plausible result.
dence even without removing the outliers. The spatial means calculated chloride concentrations of
Lognormal kriging was not considered for this compar- the interpolated maps using different degrees of censoring
ison, as it was reporeted the back transformation is veryzre shown on Fig9. For IK and for OK using detection
sensitive and might lead to problems with the estimatorjimit for censored values censoring leads to an increase of
Roth(1998. Further the replacement of the non-detectsthe spatial mean. Using zero for the censored data in OK
would play a major role in the variogram estimation for this yegyits a decrease of the mean, while setting 50 % of the de-
method. tection limit brings an increase only at high degrees of cen-
Figure 8 shows the interpolated maps for deethylatrazinesormg_ In contrast the copula approach shows only a slight
using the v-copula, IK and OK by setting all censored datagecrease in the spatial mean. Note that the spatial mean is
equal to the corresponding detection limit. The OK mapspelow the 55 % value of the distribution. Thus for the high

show the typical problem the method has with skewed dis-evels of censoring the interpolated mean is below the lowest
tributions. The high values have a large influence, and leadyeasured value.

to an overestimation. The map obtained by IK is more re-
alistic. However the overestimation is still a problem here,

0.08 —

Indicator variogram value
1

0.04 —
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Fig. 8. Interpolated deethylatrazine concentrations using different interpolation methods. For OK the values were set to the detection limit.

Table 3. Cross validation results for Arsenic.

Measure V-copula Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit
MSQE 3.7x10°6 1.0x10° 5.3x107° 1.0x 1075
Rank correlation 0.32 0.32 0.33 0.33
LEPS Score 0.142 0.154 0.142 0.159
Mean probability for< DTL 0.610 0.559 0.042 0.437
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Table 4. Cross validation results for deethylatrazin.

Measure V-copula  Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit
MSQE 5.1x 1074 3.0x103 50x10°3 1.7x10°3
Rank correlation 0.44 0.31 0.40 0.48
LEPS Score 0.168 0.311 0.100 0.110
Mean probability for< DTL 0.869 0.888 0.560 0.650
80 1 100 —
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Fig. 9. Mean of the interpolated maps of Chloride for different
degrees of censoring and different interpolations. Fig. 10. Frequency of observations in the 80 % confidence interval
for V-copula based interpolation (long dashes) and Gauss-copula

. . based interpolation (short dashes) and indicator kriging (dashed dot-
As a next step for all three variables and all interpola- o4 line) for different grades of censoring of Chloride.

tion methods a cross validation was carried out. The eval-

uation of the cross validation results is not straightforward

due to the censoring. The usual squared error is, even for thequared error, the rank correlation and the LEPS score were
exact values, not appropriate as the distributions are highlyll calculated for the exact measurements only. From the two
skewed and some extreme outliers would dominate this meacopula models the v-copula allowing a non-symmetrical de-

sure. Instead this measure was calculated by leaving ousendence is slightly better than the Gaussian.

the upper 1% of the measured values, ensuring that outliers For the artificially censored mean squared error, rank cor-

were not considered for the calculation. Further the rankrelation and LEPS score were calculated using all data with-

correlation for the exact values was calculated. Addition-out considering the artificial censoring. Thus these measures
ally the LEPS score (linear error in probability spa@égrd  represent a realistic measure of interpolation quality. The re-
and Folland(1991) was calculated to evaluate the fit in the sults are shown in Tablg. Note that ordinary kriging has

probability space. a very high mean squared error. This is caused by the high
1 skewness of the marginal distribution which had much less

LEPS= —Z |G, (z(X) — G,(z*(Xi))] (28) influence on the indicator and copula approaches. The eval-
i3 uation of the procedures for values below the detection limit

Here z*(x;) is the expected value of the iterpolation calcu- IS rather difficult. The first three measures cannot be used
lated from the density obtained in Eq. (22). for these observations. As all interpolation methods provide
For the measurements below the detection limit the averProbability distributions a possible quality measure is to cal-

age of the probabilities to be below the detection limit was culate the for each point the probability that the value is be-
calculated. low the detection limit. Optimally this probability should be

Results for the two censored variables and for an artifi-1- For all three parameters the copula based approaches de-
cially censored case (chloride) are displayed in TaBlasd ~ !Iver the highest values. Indicator kriging is by far the weak-
4. As one can see the copula based approaches outperforfi§t I this measure.
the ordinary and the indicator kriging. Note that the mean
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Table 5. Cross validation results for Chloride with 45 % artificial censoring.

Measure V-copula Gauss-copula Indicator Ordinary Kriging
Kriging 50 % of Detection limit
MSQE 273.1 251.8 298.6 2922.5
Rank correlation 0.61 0.61 0.58 0.45
LEPS Score 0.186 0.174 0.191 0.150
Mean probability for< DTL 0.593 0.555 0.000 0.390

V-copula OK

Fig. 11. Uncertainty maps for deethylatrazin: left the length of the 80 % confidence interval obtained via v-copula based interpolation, right
the kriging standard deviation obtained by OK.

For interpolation and for possible random simulation of sumption of a normally distributed error for deethylatrazin.
the fields a good measure of uncertainty is of great impor-One can see that the estimation quality of the copula based
tance. As the kriging variance is only a good measure ofinterpolation is very heterogeneous over the whole domain.
uncertainty when the data follow a multivariate normal dis- Regions with high observed values the confidence intervals
tribution. Else it is only a measure of data configuration, are wide, in low areas narrow. For ordinary kriging the esti-
not data value dependent (especially for skewed distributionsnation error (kriging standard deviation) is small close to
c.f.Journe] 1989 and it is not a good measure of uncertainty. points with measured values, irrespective of the observed
The indicator approach provides estimates of the local convalues.
ditional distribution functions. As it is not directly consid- In order to validate the confidence intervals the frequency
ering the estimation uncertainty (all indicator values are in-of observations within the 80 % confidence interval (obtained
terpolated values with no uncertainty associated) it does nofrom cross validation) was calculated. Figu@ shows the
provide a good uncertainty measure. The copula approacpercentage of chloride values falling into the 80% confi-
yields full probability distributions for each location, thus ar- dence interval for different censoring levels obtained using
bitrary confidence intervals can be derived. Figuteshows  the v-copula and the Gauss copula. As one can see for the v-
the width of the 80 % confidence interval obtained using v-copula the frequency is close to the target 80 % for all censor-
copula based interpolation and the width of the 80 % confi-ing levels while for the Gauss copula the confidence intervals
dence interval obtained using ordinary kriging under the as-become meaningless above 35 % censoring.
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The suggested approach can be extended to handle any
kind of inequality constraints both for spatial structure as-
sessment and for interpolation.
The model can serve as a basis for conditional spatial
simulation. It would be possible to extend the model to a
Bayesian approach where prior distributions are assigned to
individual locations.
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