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Abstract. An urban inundation model was developed and
coupled with 1-D drainage network model (EPA-SWMM5).
The objective was to achieve a 1-D/2-D coupled model that
is simple and fast enough to be consistently used in plan-
ning stages of urban drainage projects. The 2-D inundation
model is based on a non-standard simplification of the shal-
low water equation, lays between diffusion-wave and full dy-
namic models. Simplifications were made in the process rep-
resentation and numerical solving mechanisms and a depth
scaled Manning coefficient was introduced to achieve sta-
bility in the cell wetting-drying process. The 2-D model is
coupled with SWMM for simulation of both network flow
and surcharge induced inundation. The coupling is archived
by mass transfer from the network system to the 2-D system.
A damage calculation block is integrated within the model
code for assessing flood damage costs in optimal planning
of urban drainage networks. The model is stable in deal-
ing with complex flow conditions, and cell wetting/drying
processes, as demonstrated by a number of idealised exper-
iments. The model application is demonstrated by applying
to a case study in Brazil.
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1 Introduction

Considering the large spatial variability and dynamic nature
of urban floods due to sewer overflow, reliable assessment of
their impacts demand spatially distributed inundation mod-
els. There are numerous modelling products that can be used
for the purpose. However, most of the available models tend
to be complex both in terms of setting up and data prepa-
ration and are computationally expensive. Probably due to
these facts, employment of inundation models for optimal
planning of urban drainage systems by balancing costs and
benefits, is not widely practiced by the professional commu-
nity. For this purpose, arguably, a simple and quick predic-
tion of flood within an acceptable limit of accuracy is much
more important than going for an accurate but complex and
time consuming hydrodynamic simulation.

This work presents the development of a simple 2-D inun-
dation model for quick prediction of flood plain hydraulics
in urban area. The main focus in the model development was
to archive simplicity and speed, within an acceptable level
of accuracy. The inundation model was then coupled with
a drainage network model, US EPA’s Storm Water Manage-
ment Model (SWMM 5.0) (Rossman, 2004). The coupled
model result can be used for the assessment of flood damage
costs in optimal planning of urban drainage networks.

The next section describes the 2-D model algorithm and
its numerical implementation. Then the coupling of the 2-D
model with SWMM is explained. The performance of the
coupled model is examined for several hypothetic conditions
and its application is demonstrated using a simplified case
study in Brazil.
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2 2-D inundation model code development

The inundation model is based on shallow water equations
(SWE) that describe depth averaged 2-D flow. The assump-
tion of a 2-D flow over inundated plain as slow, shallow
phenomena can reduce the reproduction of flood plain hy-
draulics to the minimum necessary level to achieve accept-
able predictions. This may lead to local inaccuracies but it
has been shown that the uncertainties of data (e.g. the spec-
ification of topography and boundary roughness) are dom-
inant and thus influence the model results to a greater ex-
tent than those incurred through simplified (depth-averaged)
mathematics (Hunter et al., 2007).

2.1 Model formulation

Simplified inundation models relay on the kinematics wave
approximation which neglect the local acceleration, convec-
tive acceleration and pressure term in the shallow water equa-
tion. The non-inertia or diffusion wave model neglects the lo-
cal and convective acceleration but considers the back water
effect. However in this paper, based on the assumption that
the velocity of the water flow in urban flood plains is small
compared the other terms, the convective acceleration term
in the momentum equation is ignored from the full dynamic
wave equation. So the flood flow representation is somewhat
unique as it lays between diffusion wave and full dynamic
equation. The simplified shallow water flow governing equa-
tions shown below are derived from the original equations
(Chow, 1964).

Continuity equation............∂h
∂t

+d
(

∂u
∂x +

∂v
∂y

)
= q (1)

Momentum along x-dir........∂u
∂t

+g ∂h
∂x +gSf x = 0 (2)

Momentum along y-dir.......∂v
∂t

+g ∂h
∂y +gSf y = 0 (3)

where h is water stage over the datum,d is the depth
of flow, q is source or sink per unit area,t is flow
time, u and v are velocities along x- and y-direction,
respectively, Sf x and Sf y are friction slopes along x-
and y-direction, respectively. The friction terms are es-
timated by using the empirical resistance relationship in
Manning’s equation:Sf x = (n2u

√
u2+v2)/d4/3; andSf y =

(n2v
√

u2+v2)/d4/3. wheren is the Manning’s roughness
coefficient.

2.1.1 Numerical model

Finite difference (FD) method is employed for solving the
flow equations. The following equation is obtained using
temporal and spatial discretisation of simplified continuity
equation (Eq. 1) for depth averaged shallow water.
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where1t is finite difference time step,1x and1y are regu-

lar grid spacings in the x- and y-directions, respectively,n is
time step counter and(i,j) is grid counter.

Using Eqs. (2) and (3) rate of change of velocities in x-
and y-directions are written as follows:

∂ui,j
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= −g

∂hi,j
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(
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−gSf x (5)
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)
−gSf y (6)

Further simplification of Eq. (5) and (6) is done by repre-
sentingg1tSf in term of the dependent variable- velocity
component (letg1tSf x = uSx). The velocities at time step
n+1 in x and y directions are then written as:
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whereSx=g1tn2
√

u2+v2

d4/3 ; Sy=
g1tn2

√
u2+v2

d4/3 .

Equations (4), (7) and (8) can be combined to determine
the water stage above the datum.
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A simplified form of the above equation is as follows:
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This equation leads to a set of tridiagonal system of linear
algebraic equations which can be solved by forward sweep
and a backward substitution. (See Sect. 2.1.2)

2.1.2 Alternating direction implicit (ADI) finite
difference method

Implicit solving of shallow water equations leads to solving
large sets of partial differential equations which is computa-
tionally expensive. In the case of fluvial flooding, the com-
putational load of the implicit solutions is justified due to the
possible offsetting by longer time steps. However, in case
of small scale urban flooding (the subject of this paper), the
modeller needs information at relatively finer time-resolution
(due to the swift nature of urban floods), and therefore ex-
plicit approaches could often be more beneficial. In this pa-
per, an alternating direction implicit finite difference (ADI)
procedure is used to solve the governing equations. In spite
of the postfix ‘implicit’ the ADI method behaves largely as
an explicit method (due to implicit formulation only along
one dimension at a time in the 2-D flood plain) and provide
all the said advantages of the explicit approach. Of course
this comes with the usual drawback of explicit approach as
well, namely the limitation of time-step size imposed by a
CFL condition (Caviglia and Dragani, 1996). According to
Peaceman and Rachford (1955) ADI method provides high
computational efficiency which requires less computing time
because it involves a tridiagonal matrix. The method is based
on splitting the differential equation in two parts and solves
them sequentially in x- and y-directions within two half-time
stepstn+1/2 and tn+1, respectively. Simple diagrammatical
representation of ADI routing procedure for one full time
step is shown in Fig. 1.

Along the x-direction

From time stepn to n + 1/2 the solution for water stage
hn+1/2 along the x-axis is determined implicitly within a row
while the value of other terms are expressed explicitly.

Thus, the values forhn+1
i,j+1 andhn+1

i,j−1 are approximated
from the previous time step valueshn

i,j+1 andhn
i,j−1 respec-

tively. Then Eq. (9) can be further simplified to a linear alge-
braic equation shown below:

aah
n+1/2
i−1,j +bbh

n+1/2
i,j +cch

n+1/2
i+1,j = dd (10)
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Fig. 1. An alternating direction flood routing during each half time
step.
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Along the y-direction

From time stepn+1/2 to n+1 the procedure is reversed so
that the value ofh along y-direction is determined implic-
itly while the other terms are expressed explicitly and then
the water depths are updated from the calculatedh values.
Analogues to the x-direction, in case of the y-direction the
values forhn+1

i+1,j andhn+1
i−1,j are approximated from the previ-

ous half time step valueshn+1/2
i+1,j andh

n+1/2
i−1,j , respectively and

Eq. (9) can be converted to linear algebraic equation shown
below:
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Once the value ofh is determined, the velocity components
along the x- and y-directions will be updated by implement-
ing Eqs. (7) and (8), respectively.

2.2 Courant condition

According to Caviglia and Dragani (1996) the ADI numeri-
cal scheme is not unconditionally stable when applied to the
complete set of governing equations in an area with real to-
pography and irregular boundaries. The instability arises be-
cause the routing method uses implicit values along one di-
rection while the values in the orthogonal direction are deter-
mined explicitly from the previous time step. Thus courant
limitation in time step1t is implemented to ensure the nec-
essary stability during simulation.(

|u|+
√

gd

1x
+

|v|+
√

gd

1y

)
1t ≤ 1 (12)

where1t is finite difference time step,1x and1y are regu-
lar grid spacings in the x- and y-directions, respectively, and
d is the water depth.

In this inundation model the time step is defined as an in-
put parameter and it has to be less than the courant1t for
each routing step. During each step of routing the minimum
courant1t of all cells in the 2-D domain, is calculated using
Eq. (12) and used for verifying the input1t value.

2.3 Process representation for wetting/drying cells

In this model the hydraulic parameters are represented for
the mid-point of each square cell. However partially wet-
ted cells i.e. cells without enough water to submerge all cor-
ners of the cell, the average depth are badly represented by
depth at the centroid (Begnudelli and Sanders, 2006). Espe-
cially for a cell having very small water depth, the incidence
of dry/wet condition will be very high and would frequently
lead to model instability. In order to avoid this problem, we
suggest a boundary depth value to classify wet and dry cells
and depth factored Manning’s coefficient for sudden drying
wet cells.

Due to the fact that friction terms are factored by water
depth, cells with very small depth value possibly create nu-
merical instability of the model. Thus, threshold value of
depthdmin=0.0001 m is proposed for classifying submerged
cells and updating hydraulic parameters. During each full
time step the water depth is checked and the velocity and
friction terms of those cells with depth less thandmin are set
to zero value to avoid instability. In addition to the above

boundary condition, depth scaled factor for the Manning’s
coefficient,nmodified=n(dmin/d) is used to represent the real-
ity of drying process in flood flow by slowing sudden drying
of wet cells. The modification of Manning’s coefficient is
done for wet-cells with water depth belowdmin and suddenly
dries within a time step. The proposed wetting/drying pro-
cess representations avoid frequent instability in model sim-
ulation.

2.4 Process representation for flow barrier

Features like roads, buildings and dykes have great effect on
flow dynamics and flood propagation. These barriers cause
numerical instability in most of the hydrodynamic models. In
this model algorithm, the flow interaction near topographic
obstacles (barriers) is treated in such a way that an obsta-
cle cell will not contribute to the velocity calculation of the
nearest lower cell till it acquires a threshold depth of water
d=0.01 m.

In addition, a realistic representation of flow near high bar-
riers is achieved by modifying coefficients of the linear al-
gebraic equations (Eqs. 10 and 11) for the cells under con-
sideration. The water stage of high barrier neighbouring is
replaced with water stage value of itself ( cell under consid-
eration) to avoid the numerical instability of the model, and
to avoid spurious flows from barriers cells to any neighbour-
ing cells.

2.5 Flood damage analysis block

Inundation models could help decision makers to have a good
perception about the flood extent and to identify the effec-
tive flood mitigation measures through flood risk assessment.
Providing an elementary means of estimating the loss due to
flood is important for this purpose. A simple damage calcu-
lation block is integrated within the inundation model code.
The maximum flood depth at each grid cell is used for the
calculation of the damage in urban areas. The velocity of the
water flow in urban flood plains is very small and its contri-
bution is neglected in the calculation of flood damages. A
regression equation for the possible flood damage curves is
implemented in the model code. This equation is shown be-
low.

Damage= A+B ln(d)+Cd +Dd2
+Ed3

whered is the flood depth andA to E are consecutive coef-
ficients for the possible flood damage curves. Typical stage-
damage curves can be represented by the input of suitable
values for the coefficients. The damage analysis is performed
if an input for the damage calculation block is provided, if
not, the model skips the damage calculation part.
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3 Model coupling

Coupling which supports bi-directional interactions between
sewer flow and 2-D inundation models is optimal to simulate
sewer flooding. However, we assumed that the implementa-
tion of back flow into the sewer system is not essential, par-
ticularly for urban flood damage estimation work, where the
prime concern is the maximum flood depth (not the duration
as in the case, for example agricultural land). In swift urban
floods, the maximum flood height is not heavily influenced
by the ability of sewer network to receive return flow. Thus,
coupling is achieved by mass transfer from the drainage net-
work system to 2-D system.

There are different frameworks that can be used for model
coupling. According to Bulatewicz Jr. (2006), they can
be organised into four different categories of coupling ap-
proaches: monolithic, scheduled, communication, and com-
ponent. In this paper, a unidirectional communication is used
for coupling the 2-D-Inundation model with 1-D-SWMM.
The unique features of this approach are:

– Model codes remain independently executing programs
that interact only by exchanging data via message pass-
ing during execution.

– It allows communication libraries that support direct
model-to-model communication as well as model-to-
coupler communication.

– It supports existing models to be coupled with minimal
changes to the model source codes.

3.1 Creating a coupled model

The sewer overflow is the main interacting physical process
between the two selected models. This physical process usu-
ally occurs at the point where outfall and surcharged man-
holes are located. The features which are integrated in the in-
teracting physical process between 1-D and 2-D system are:

– Routing and reporting time step length

– Duration of simulation

– Overflow volume at each time step

– Time of occurrence and duration of flooding

The following functions are devised for developing a rela-
tionship between variables and incorporated in the main sim-
ulating engine of the 2-D model.

– The initialisation of both models takes place at the
start of simulation. The inundation model starts rout-
ing when the manholes begin overflowing. Delaying
the flood routing process increases the efficiency of this
coupled model.
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– One of the coupling functions receives overflow infor-
mation and transforms it into a flow rate per unit grid
cell area within the computational domain.

– Because of the coarser time step in SWMM, the inunda-
tion model steps a number of times for a single SWMM
report time step.

3.2 Coupled model algorithm

The model algorithm, which is used for surface flow routing
and flood damage calculation, is written in C/C++ program-
ming language, the choice of language largely influenced by
the fact that SWMM code is available in C language. The
simplified algorithm is shown in Fig. 3.

3.3 Initial and boundary conditions

The 2-D model allows setting up of several different bound-
ary conditions (e.g. Free flow, wall, specified velocities) and
initial condition (initially dry, specified flood level). How-
ever, most common initial condition for sewer overflow situ-
ation is that of initially dry condition.

4 Idealised experiments

The model was subjected to a number of tests using idealized
situations. The flow process representations and simplifica-
tions used in this model are checked against mass conserva-
tion, stability and stationary of the result.

Several idealised test problems were utilised to examine
the hydrodynamic behaviour, such as boundary conditions,
2-D flood wave diffusion, cell drying and wetting, and flow
interaction with topographic obstacles. Hypothetical exam-
ples are used for quick visual inspection of the model’s sen-
sitivity and its performance against the simplifications made
in the model code.
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Several hypothetical tests were conducted for checking the
boundary condition and the model result confirms that the
numerical representation works properly by preserving the
continuity and stability at boundaries.

4.1 Model performance against mass balance error

The presence of mass-balance errors in flood flow is a known
problem in non-conservative numerical schemes (as opposed
to conservative methods like Finite Volume approach) and
improving the accuracy and mass-balance properties of fluid
flow in general is an active area of research (Kippe et al.,
2007). In this model the percentage of mass balance error is
checked at different instants of simulation.

massbal=
[(

Twdepth−Tsource
)
/Tsource

]
×100

where massbal is the mass balance error in percentage ,
Tsourceis the total input volume andTwdepth is the total vol-
ume on 2-D grids at same time of simulation.

The mass-balance check for different hypothetical terrains
is done at different flood routing times and model outputs
for flat, sloping and complex topographies are illustrated in
Fig. 4, 5 and 6. The result shows the error increase with
increasing complexity of the terrain (range up to 3.35 % for
a very irregular topography). Inaccuracies associated with
mass balance error are inevitable and the model accuracy is
expected to decrease with increasing simplification in model
formulation and numerical solving mechanism, with increas-
ing time step of model integration and with increasing grid
size.

4.2 Model performance in wetting and drying problems

The model was examined over hypothetical topography with
the various flow conditions that may occur in actual flood-
plains and shown to be capable to simulate wetting and dry-
ing processes that will occur as the flood flows over an ur-
ban area. This is achieved by using a threshold value for
water depth and depth scaled Manning’s coefficient for wet-
ting/drying process representation (see Sect. 2.3 ). This rep-
resentation has the following advantages:

– Avoids possible numerical instabilities due to very small
water depth values.

– An implicit representation of the reality of high fric-
tion at very small water depths (boundary layer, laminar
flow).

– Avoid sudden drying of wet cells.

4.3 Model performance in uneven topography
including flow barriers

Flow barriers are often challenges for numerical stability.
The inundation maps for a hypothetical terrain involving flow

barriers are presented in Fig. 8 and 9. The model perfor-
mance is checked on hypothetical irregular topographies. For
problems involving large flow barriers, the flood wave diffu-
sion is visually inspected for synthetic terrains (e.g. the one
shown in Fig. 7) and the probable mass balanced errors were
examined at cell level. Close attention is paid for the be-
haviour of flood wave near barriers and other sudden changes
of topography (e.g. falls, walls) and hydraulics (e.g. wet-
ting/drying). The model works properly with global mass
balance error for irregular topography (Fig. 6) of less than
3.4 percent. The result shows that the model performs well
on complex topographies and frequent wetting and drying.
Frequent numerical instabilities are avoided by the simplified
flood flow representations discussed in Sects. 2.3 and 2.4.

5 Case Study in Porto Alegre, Brazil

Porto Alegre is the capital city of Brazil’s southernmost state,
Rio Grande do Sul. Porto Alegre itself has a population of
1.3 million inhabitants. It covers an area of 470 square kilo-
metres, 40 per cent of which is urban and 60 per cent rural.
The Areia basin is located in the north of the city. It covers
an area of 21 km2, of which approximately half corresponds
to the basin of Arroio da Areia and the rest belongs to the
Airport polder.

The main drainage network runs below the street grid,
except for a small part that intersects a housing block and
passes under the foundations. The drainage system in the
basin of Arroio da Areia can be divided into two distinct sys-
tems: one drained by gravity and the other by the pumping
station Silvio Brum. The areas with a level above 8,13 m are
drained by closed conduits, while the pumping station drains
an area of 139,2 ha that is below the level of 8,13 m. In the
end the drainage from the upstream basin flows inside a pres-
sured pipe.

The actual capacity of the urban drainage in some parts
of the Areia basin is not enough to discharge the upstream
increase in flood peak and volume as a result of the urban-
isation process. The heaviest inundations happen on the in-
tersection of the roads “Nilo Peanha” and “Texeira”. On this
point that is the lowest of the region the drainage system,
which transports the water to the “Arroio the Areia”, over-
flows and inundation levels can reach one metre. Previous
floods had resulted in damage to property and even in the loss
of life. It is this general area that was used for the demonstra-
tion here. (Fig. 10)

5.1 Input data for the coupled model

Delineation of the model domain for 2-D computation can be
challenging because the modeller doesn’t know the region of
inundation before execution (Begnudelli and Sanders, 2007).
The approach adopted here was to delineate a boundary sig-
nificantly far from the flooded manholes. Standard Shuttle

Hydrol. Earth Syst. Sci., 15, 2747–2761, 2011 www.hydrol-earth-syst-sci.net/15/2747/2011/
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 The initialization of both models takes place at the start of simulation. The 

inundation model routing starts when the manholes begin overflowing. Delaying the 

flood routing process increases the efficiency of this coupled model. 

 One of the coupling functions receives overflow information and transforms it into 

a flow rate per unit grid cell area within the computational domain. 

 Because of the coarser time step in SWMM, the inundation model steps a number 

of times for a single SWMM report step. 

3.2 Coupled Model Algorithm 

The model algorithm, which is used for surface flow routing and flood damage calculation, 

is written in C++ computer programming language. The simplified algorithm is shown in 

Figure 3:2: 
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 12

Fig. 3. Algorithm showing computation sequences of the 1-D–2-D coupled model (Where t2−D
is inundation model time step, tr and ts are the SWMM reporting and routing step).
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Fig. 3. Algorithm showing computation sequences of the 1-D/2-D coupled model (wheret2D is inundation model time step,tr andts are the
SWMM reporting and routing step, respectively).
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Fig. 4. Illustration of mass balance error for flat terrain at different time of simulation.
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Fig. 4. Idealized case of flat terrain with single source. The mass balance error is shown below each figure.
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Fig. 5. Illustration of mass balance error for sloping terrain.
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Fig. 5. A sloping terrain wit a single source.
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Fig. 6. Illustration of mass balance error for complex topography.
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Fig. 6. Inundation performance in a complex topography.
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Table 1. Location of nodes in 2-D grid domain.

Node ID 2 3 4 6 7 8 9 10 11 12 13 14 48

Location
i 47 47 45 42 33 34 41 41 42 58 55 45 41
j 69 64 60 65 64 58 58 50 58 55 26 29 30
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Fig. 7. A The synthetic terrain with a cylindrical notched flow barrier used to test the mode.

Radar Topographic Mission (SRTM) elevation data (Farr and
Kobrick, 2000) is used as the primary digital elevation model
(DEM) for the area. The google-earth aerial photography
was used together with site-visit experience to digitize the
buildings and roads. These were superimposed on the DEM
(buildings as flow barriers, roads as having a slightly lower
elevation than the surrounding topography). Therefore, the
buildings and roads were explicitly considered (Fig. 11) in
the 2-D flow space to represent urban topography appropri-
ately (An important requirement for small-scale urban flood
modeling). Addition of buildings and roads to the eleva-
tion model introduced flow barriers and sharply bending flow
paths in the topography which could lead to instabilities in
the model.

Thirteen nodes (physically these are man-holes) in the
drainage network were connected with the inundation model.
The locations based on grid counters(i,j) along x- and y-
direction are shown in Table 1. (See also Fig. 14) The model
was simulated with 50 yr–2 h design rainfall event (Fig. 13).

5.1.1 Flood damage data

Damage data, which relate flood damage to flood inundation
parameters, are different for different classes of land use and
properties. This is an essential component is flood damage
estimation. In most cities the central agencies have data and
experience in making damage estimates but often no compre-
hensive guides are available at the local level. In this study

residential class damage curve developed by Nascimento et
al. (2006) using a survey data in the city of Itajubá, a town lo-
cated in the South-eastern region of Brazil, during the year of
2002 was used as an input for completing the damage analy-
sis (see Fig. 12).D = 130.9+56.3ln(d) whereD is damage
cost in Brazilian Real currency per sq. m andd is depth of
inundation in m.

5.2 Simulation results

The 1-D pipe flow simulation results of the existing urban
drainage network, show that flooding occurs at a number of
nodes (shown in Fig. 14). The flood hydrographs for some
of the manholes is shown in Fig. 13. There was no data for
proper calibration and validation of the inundation mode, so
this part was not done. Reliable inundation data are excep-
tionally scarce for most cities in the world, in terms of both
events and spatial and temporal coverage during an event.

The coupled model simulation is performed to see the spa-
tial and temporal variation of flood flows. Two hours of
1-D/2-D coupled simulation was done at 2-D model time step
of 1 s and grid size of 20 m. The inundation model generates
flood map based on maximum water depth (Fig. 15).

In addition to the flood depth, the model estimates mone-
tary value of the damage associated with flooding, which is
one of the fundamental pieces of information upon which
expenditure decisions are based. For this case study the
stage-damage curve developed in 2002 was used and the

Hydrol. Earth Syst. Sci., 15, 2747–2761, 2011 www.hydrol-earth-syst-sci.net/15/2747/2011/
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Figure 4:4 A 3D image of the hypothetical terrain data 
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Figure 4:5 Inundation maps at different time of simulation 
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(e) Flood Map (simulation time 120min)     (f) Flood Map (simulation time 140min) 

Figure 4:6  Inundation maps at different time of simulation 

In the above hypothetic test, flood wave diffusion is visually inspected for irregular terrain 

shown in Figure 4:4. The flood maps at different times of simulation demonstrate how the 

flood propagates over the chosen hypothetical topography. The other hypothetical terrains 

which are used for testing the model are shown in fig below. 

 18

Fig. 8. Inundation maps at different time of simulation.
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Fig. 8. Inundation maps at different time of simulation.
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(a)                         (b)  
Time(∆t) 1sec Time(∆t) 1 sec 
∆x & ∆y 30m ∆x & ∆y 20m 
Time elapsed 100 min 

Figure 4:7 Inundation map for a single source cell (a) surrounded by small flow obstacle 

i.e. map after water fill up and overtop the obstacle (b) in a narrow cannels 

(c) Bounded by an ideal straight barrier (d) near large flow barrier. 

For problems involving large flow barriers, the flood wave diffusion is visually inspected 

for several synthetic terrains and the numerical model works properly. However, analogous 

to wetting/drying process, the flow barrier representations implemented in our model incur 

some mass balance error as shown in Figure 4:7. For the same reason mention in 

wetting/drying process it is reasonable to accept the inaccuracies.  

 

 

 

 

Mass bal. err 1.295% 

 (c)                        (d)  

Time elapsed 120 min 
Mass bal. err 2.081% 

Time(∆t) 1 sec Time(∆t) 1 sec 
∆x & ∆y 30m ∆x & ∆y 30m 
Time elapsed 120 min Time elapsed 100 min 

Mass bal. err -0.748% Mass bal. err -1.1281% 
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Fig. 9. Inundation map for a single source cell (a) surrounded by small flow obstacle i.e. map
after water fill up and overtop the obstacle (b) in a narrow cannels; (c) bounded by an ideal
straight barrier; (d) near large flow barrier.
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Fig. 9. Inundation map for a single source cell(a) surrounded by small flow obstacle i.e. map after water fill up and overtop the obstacle
(b) in a narrow cannels;(c) bounded by an ideal straight barrier;(d) near large flow barrier.

model output showed the extent of flooding is 19 ha and
the associated damage is about 297 000 BRL (Brazilian Real
currency).

6 Conclusions

A new 2-D inundation model was developed and was then
coupled with 1-D SWMM model to simulate surcharge in-
duced inundation in urban areas. Due to the high computa-
tional efficiency of ADI numerical scheme, the model is fast,
while maintaining stability and an acceptable level of numer-
ical accuracy.

The 1-D/2-D coupled model was examined with a number
of numerical experiments involving idealised topography, in-
cluding large flow barriers, sloping terrains and irregular to-
pography. It was found that the model performs well against
stability. It has also been shown to be capable of dealing
with the various flow conditions that may occur in actual ur-
ban floodplains (e.g. flowing over barriers, sharp turns), as

well as being able to simulate wetting and drying processes
that will occur as the flood flows over an urban area.

The model was applied for a case study to determine the
detail inundation zones, depths and velocities due to sur-
charged water. It was also examined for some of the im-
portant hydrodynamic features, such as handling of various
boundary conditions, 2-D flood wave propagation, cell dry-
ing and wetting, and flow interaction with topographic obsta-
cles. Since the inundation model is based on detailed spatial
information i.e. land use and topography, its output will be
more realistic to determine flood damage. A flood damage
calculation block is integrated within the inundation model
code. This tool can help the planner to make quick, informed
decisions on flood damages control measures on cost-benefit
basis.

In planning of urban drainage a simple and fast tool for
prediction of flood within an acceptable level of accuracy
is often useful for the practitioner as an gentle introduction
to the (currently uncommon) use of inundation models in
optimal planning of drainage infrastructure. In the current
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5 Semi-Hypothetical application for case in Brazil, Porto Algere 

5.1 Input Data’s For The Coupled Model 

Rainfall data 

In this case study a 50 year return period, 2hr design rainfall event shown in Figure 5:4 is 

considered for analysis of flooding in the area. 

Topography  

Delineation of the model domain for 2D computation can be challenging because the 

modeler doesn’t know the region of inundation before execution (Begnudelli and Sanders, 

2007). The approach adopted here was to delineate a boundary significantly far from the 

flooded manholes. 

 

i 

j 

Figure 5:1 selected flood plain area 

ASCII topographic date for the selected flood plain was downloaded from online site 

Shuttle Radar Topographic Mission (SRTM) and converted to Raster and geo referenced 

using GIS. Street, building and other flow barrier information’s are added to the terrain to 

represent urban topography precisely.  

 20

Fig. 10. Selected flood plain area.
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Fig. 10. Selected flood plain area.
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Figure 5:2 Digitized buildings and street for part of selected area 

Node locations with in 2D calculation domain 

There are only 13 nodes with in the domain of the selected flood plain area. The locations 

based on grid counters (i, j) along x and y direction are shown below. 

Table 5:1. Location of nodes in 2D grid domain  

Node ID 2 3 4 6 7 8 9 10 11 12 13 14 48
 i 47 47 45 42 33 34 41 41 42 58 55 45 41 

Location  j 69 64 60 65 64 58 58 50 58 55 26 29 30
Flood damage data 

The input data to be used for the damage analysis was provided by N.Nascimento et al. 

(2006).  

D = 130.9 + 56.3 ln(d)  where D is damage cost in Brazilian real currency per m2and d is 

depth of inundation in m. 

Flood damage curve 

y = 56.3Ln(x) + 130.9

0

50

100

150

200

250

0 1 2 3
depth(m)

da
m

ag
e(

R
$/

m
2)

4

 
Figure 5:3  Flood damage (stage –damage) curve 

j 
Legend

Boundary cells
Buildings
Streets
Green Area
Terrain

 21

Fig. 11. Digitized buildings and street for part of selected area.
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Fig. 11. Digitised buildings and street for part of selected area.
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Fig. 12. Flood damage (stage damage) curve ( adapted from Nasci-
mento et al. (2006).
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The input required for damage calculation block of the coupled model is the coefficients 

associated with the possible stage-damage function .Therefore A=130.9, B=56.3 and the 

other coefficients will be zero. 

5.2 Simulation Result  

As per the simulation result of the existing system, the overflow occurs at the number of 

manholes. The distribution of flood volume in some of the manholes is shown in Figure 

5:4. 
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Figure 5:4 Showing flood distribution in some of the manholes 
 

 
 

Figure 5:5 Location bottlenecks in the selected drainage network 
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Fig. 13. Showing flood distribution in some of the manholes.
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Fig. 13. Flood hydrographs of some 1-D model nodes (Manholes). See Fig. 14 for the locations on these on the network.
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The input required for damage calculation block of the coupled model is the coefficients 

associated with the possible stage-damage function .Therefore A=130.9, B=56.3 and the 

other coefficients will be zero. 

5.2 Simulation Result  

As per the simulation result of the existing system, the overflow occurs at the number of 

manholes. The distribution of flood volume in some of the manholes is shown in Figure 

5:4. 
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Fig. 14. Location bottlenecks in the selected drainage network.
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Fig. 14. Bottlenecks in the drainage network indicated by nodal
flooding during 1-D analysis. Time: 1 h after start of simulation.
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The coupled model simulation is performed to see the spatial and temporal variation of 

flood flows. A time step of 1 sec and grid size of 20 m are used for this case study. The 

inundation model generates flood map based on water depth. The flood map at the end of 

simulation is shown in Figure 5:6. 
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Figure 5:6. Flood Inundation Map at the end of simulation 

In addition to the flood map, the coupled model prints the velocities in each direction, the 

flood depths for each grid cells, the flood extent and monetary value of the flood damage 

on a text file. From the output, it is observed that the model performs well on an irregular 

topography containing large flow barriers i.e. buildings and it is also examined that it 

performs well against stability.  

6 Conclusions 

In this study, development of a new 2D inundation model code is carried out in C++ 

computer programming language. The model is then coupled with 1D-SWMM to simulate 

surcharge induced inundation in urban areas and to relate the spatial information’s in 

design of urban drainage network. Due to the high computational efficiency of ADI 

numerical scheme, the model also achieves an advantage in required hydrodynamic 

simulation time.  

The 1D-2D coupled model was examined over several hypothetical terrain conditions, 

including large flow barriers, sloppy terrains and irregular topography. It is found that the 

model performs well against stability and stationary result. The model has also been shown 

to be capable of dealing with the various flow conditions that may occur in actual 
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Fig. 15. Flood inundation map at the end of simulation.
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Fig. 15. Maximum flood depth at each grid cell during the 2h sim-
ulation.

state-of-the-art of urban storm drainage planning, there is a
large polarisation of models in terms of complexity and pre-
cision. On one extreme there are simple 1-D models that do
not provide any inundation information and on the other there
are sophisticated 1-D/2-D (often commercial) models that
sacrifice speed/simplicity to precision. There is not much
middle ground! Our objective was to contribute filling this
void. Sacrificing some of the precision for accessibility for a
wider audience (in terms of simplicity, speed) can indeed im-
prove current situation of under-employing inundation mod-
elling in urban drainage planning among practitioners, par-
ticularly in the developing world.
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Cost benefit analysis and optimisation of drainage in-
frastructure design could make significant savings and
increase the reliability of drainage projects. However,
optimisation problems demand large number (thousands) of
simulations runs and many existing inundation models are
too numerically heavy to employ for that purpose. There-
fore, often these studies are done based on the volumetric
flooding (as overflow from sewers), without considering the
inundation effects explicitly. In the process the large errors
are introduced in damage estimation. However, the current
model is a good candidate for optimisation problems due to
its numerically light implementation.
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