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Abstract. Radar remote sensing has demonstrated its ap-
plicability to the retrieval of basin-scale soil moisture. The
mechanism of radar backscattering from soils is complicated
and strongly influenced by surface roughness. Additionally,
retrieval of soil moisture using AIEM (advanced integrated
equation model)-like models is a classic example of underde-
termined problem due to a lack of credible known soil rough-
ness distributions at a regional scale. Characterization of this
roughness is therefore crucial for an accurate derivation of
soil moisture based on backscattering models. This study
aims to simultaneously obtain surface roughness parame-
ters (standard deviation of surface heightσ and correlation
length cl) along with soil moisture from multi-angular ASAR
images by using a two-step retrieval scheme based on the
AIEM. The method firstly used a semi-empirical relationship
that relates the roughness slope,Zs (Zs=σ 2/cl) and the dif-
ference in backscattering coefficient (1σ ) from two ASAR
images acquired with different incidence angles. Meanwhile,
by using an experimental statistical relationship betweenσ

and cl, both these parameters can be estimated. Then, the
deduced roughness parameters were used for the retrieval of
soil moisture in association with the AIEM. An evaluation of
the proposed method was performed in an experimental area
in the middle stream of the Heihe River Basin, where the Wa-
tershed Allied Telemetry Experimental Research (WATER)
was taken place. It is demonstrated that the proposed method
is feasible to achieve reliable estimation of soil water content.
The key challenge is the presence of vegetation cover, which
significantly impacts the estimates of surface roughness and
soil moisture.
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1 Introduction

Surface soil moisture (mv) is important in agronomic, hydro-
logical, and meteorological processes at all spatial scales. It
plays a key role in water stress detection and irrigation man-
agement, especially for arid and semi-arid regions. The abil-
ity of inferring mvusing both active and passive microwave
techniques has been intensively demonstrated (Baghdadi et
al., 2008; Jackson et al., 1995, 2002; Kerr et al., 2001; Moran
et al., 2004; Njoku and Entekhabi, 1996; Njoku et al., 2003;
Parajka et al., 2009; Sinclair and Pegram, 2010; Su et al.,
1997; Ulaby et al., 1982, 1986; Wigneron et al., 2003, 2007).
It is well known that space-borne microwave radiometers and
scatterometers possess the advantage of high revisit capac-
ity but deficient in coarse spatial resolution (Brocca et al.,
2010; Wagner et al., 1999, 2007). On the contrary, synthetic
aperture radar (SAR) sensors have the capability to provide
finer spatial resolution, on the order of tens of meters, meet-
ing most spatial requirements for watershed management and
hydrological applications.

Radar systems emit pulses and receive echoes backscat-
tered from the illuminated areas. The intensity value of each
pixel is proportional to the radar backscattering coefficient
(σ 0), which depends on several factors, including the instru-
ment’s technical specifications (frequency and polarization),
terrain, dielectric characteristics (εr; strongly related to the
soil water content) and the geometrical structure (roughness)
of the target surface.

Three categories of methods were developed to investigate
the relationship between land surface properties and SAR ob-
served backscattering coefficient. The first kind is theoretical
scattering model, which was derived and employed to gain
insight into the interaction of microwave propagation with
natural surfaces based on physical laws, including the Kirch-
hoff approximation (KA), which consists of the geometrical
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optics model (GOM) and physical optics model (POM), the
small perturbation model (SPM) (Ulaby et al., 1982), and
the integral equation model (IEM) (Fung et al., 1992; Fung,
1994). The IEM unites the KA and the SPM and was verified
by laboratory measurements of bistatic scattering from sur-
faces with small, intermediate and large scale roughness. The
advanced IEM (AIEM) improves the calculation accuracy of
scattering coefficient by keeping the absolute phase term in
Greens function which was neglected by IEM (Chen et al.,
2003; Wu et al., 2001). In principle, the dielectric constant
of the soil surface and hence the soil water content can be
estimated from the mathematical inversion of these models
with the requirement of some restrictive assumptions. The
IEM and the AIEM were often used for bare or sparse vege-
tation soils.

In contrast, the second kind method is empirical approach,
with little physics behind it. Traditionally, some known in
situ soil moisture measurements and corresponding radar
backscattering coefficients were used to calibrate a simple
form to predict unknown soil moisture (Ulaby et al., 1986).
This type of connection was evolved with increasingly fruit-
ful datasets in recent years (Baghdadi et al., 2006a; Holah et
al., 2005). In addition, some sophisticated empirical methods
have been proposed as well, with varying degrees of success
(Baghdadi and Zribi, 2006). For example, Oh et al. (1992,
2002) separated the individual effects of roughness, vege-
tation, topography, and soil moisture on radar response us-
ing multi-frequency and multi-polarization measurements.
Dubois et al. (1995) delineated the contributions of all com-
binations of surface conditions (roughness and vegetation)
and radar configurations (frequency, polarization, and inci-
dence angle) to the co-polarized backscattering coefficients
σ 0

HH and σ 0
VV . However, these empirical relationships are

site-specific and may not be applicable to datasets other than
those used for development (Dubois et al., 1995).

To circumvent this problem, semi-empirical backscatter-
ing models may be more useful in determination of land sur-
face geophysical parameters including soil moisture which
represent a compromise between the complexity of the theo-
retical models and the simplicity of empirical models. They
are an improvement on empirical models as they start from
a physical background and then use simulated or experimen-
tal data sets to simplify the theoretical backscattering models
(D’Urso and Minacapilli, 2006; Loew et al., 2006; Shi et al.,
1997; Zribi et al., 2006).

In the IEM and AIEM, surface roughness is an essential
input, thus, if only a single configuration (e.g., one polar-
ization, one frequency) of radar data is available, roughness
parameters should be known as a priori information in order
to retrieve soil moisture using these models. Unfortunately,
field measuring surface roughness is very time-consuming
and almost impractical at the regional scale. Moreover, ap-
preciable inaccuracies may occur due to various deployments
of instrumentation, sampling strategy, and the ambiguous
scale effect during field campaigns and data post-processing

(Bryant et al., 2007; Davidson et al., 2000). Hence, it is crit-
ical to obtain appropriate physical model-dependent surface
roughness information at remote-sensing spatial scales in the
context of soil moisture inversion.

Generally speaking, surface roughness is statistically char-
acterized by three parameters: the standard deviation of sur-
face height (σ ), the correlation length (cl), and the auto-
correlation function type (ACF). From pixel to pixel, these
parameters vary remarkably, moreover, the significant influ-
ence of surface roughness on scattering properties still lim-
its the ability to correctly infermv values unless detailed
roughness measurements or estimates are available (Lievens
et al., 2009; Verhoest et al., 2008; Zribi et al., 2005). Su
et al. (1997) demonstrated that calibration of surface rough-
ness could reduce the number of unknowns in the IEM, re-
sulting in successful soil moisture retrievals. Baghdadi et
al. (2002, 2004, 2006b) empirically calibrated the cl values
based on the IEM, a large number of SAR images, and cor-
responding field measurements. Therefore, empirical rela-
tionships were obtained betweenσ and cl depending on fre-
quency, polarization, and incidence angle, thus reducing the
problem to the estimation of only one parameter (Baghdadi
et al., 2006b).Álvarez-Mozos et al. (2008) applied the ap-
proach developed by Baghdadi et al. (2006b) to Radarsat-1
data and obtained promising soil moisture retrieval results.
Through calibration of roughness parameters, two-step re-
trieval schemes (Lievens et al., 2011; Saleh et al., 2009) were
proposed to obtain reliable soil moisture estimates. Further-
more, Zribi and Dechambre (2002) revealed the merits of us-
ing multi-angular SAR observations for surface roughness
estimation and proposed aZs-index that integratesσ and
cl. It was demonstrated that the difference in backscatter-
ing coefficients between two incidence angles is very sensi-
tive to theZs-index. Rahman et al. (2007, 2008) also indi-
cated both roughness parameters andmvcan be inferred via
multi-angular radar images instead of using ancillary data.
Besides, dependent on time series SAR imagery, change de-
tection method is a simple and effective way to capture soil
moisture variations. In this method, a dry reference image is
subtracted from each individual SAR image in an attempt to
correct for roughness and vegetation effects (Mladenova et
al., 2010; Pathe et al., 2009; Wagner et al., 1999, 2007).

The objective of this paper is to develop and evaluate an
effective method that could acquire surface roughness based
solely on multi-angle SAR data, and the estimated rough-
ness can be further used in the backscatter models to re-
trieve soil water content. The strategy is a two-step retrieval
scheme. Firstly, a semi-empirical relationship was deduced
from AIEM simulations. Combined with a calibrated scheme
within σ and cl proposed by Baghdadi et al. (2006b), rough-
ness parameters for each grid cell can be estimated from
multi-angular ASAR images. Onceσ and cl were obtained,
soil moisture can then be retrieved by using the AIEM. This
paper is organized into four sections. In Sect. 2, which fol-
lows the introduction, the proposed methodology, the study
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site and datasets are described. Section 3 presents the de-
tailed application on estimating both surface roughness and
soil moisture over the study area. Then, the retrieved results
in terms of soil moisture are validated by in situ measure-
ments and the error sources are analyzed. Finally, Sect. 4
gathers our conclusions.

2 Method and data

2.1 Backscattering model for vegetated rough surface

For a given incidence angleθ , the backscattering coefficient
above canopy (σ 0

can(θ), m2 m−2) can be expressed as

σ 0
can(θ) = σ 0

veg(θ) + σ 0
veg+soil(θ) + γ 2(θ) σ 0

soil(θ) (1)

where, the first termσ 0
veg(θ) represents the backscattering

from the vegetation canopy, the second termσ 0
veg+soil(θ) rep-

resents the interaction between the vegetation layer and the
soil underneath and accounts for multiple scattering effects,
and the third termγ 2(θ)σ 0

soil(θ) represents the backscattering
from the soil layer that is attenuated by the canopy.γ 2(θ) is
the two-way vegetation transmissivity.

In this study, backscattering from vegetation canopy and
the vegetation transmissivity are calculated by the water
cloud model (Attema and Ulaby, 1978), since this model
is assumed that the vegetation-soil interactions can be ne-
glected, and, therefore,

σ 0
can(θ) = σ 0

veg(θ) + γ 2(θ) σ 0
soil(θ) (2)

with

σ 0
veg = Avwc cos(θ)

[
1 − γ 2(θ)

]
(3)

γ 2(θ) = exp [−2 bvwc/cos(θ)] (4)

where vwc represents the vegetation water content (kg m−2).
ParametersA andb depend on the vegetation type, growth
condition, and radar frequency.

The backscattering coefficient from the soil layer is cal-
culated by the AIEM which is a physically based radiative
transfer model and applicable to a wider range of land sur-
face conditions (Chen et al., 2003; Wu et al., 2001). The
AIEM essentially quantifies (or simulates) the backscatter-
ing coefficient as a function of the sensor configurations (i.e.,
radar frequency, polarization, and incidence angle) and land
surface parameters (e.g., soil dielectric constant and surface
roughness).

In AIEM, the single scattering term is given by

σS
pq =

k2

2
exp

[
−(σ )2

(
k2
z + k2

sz

)] ∞∑
n=1

(σ )2n
∣∣∣In

pq

∣∣∣2 (5)

W (n)
(
ksx − kx, ksy − ky

)
n!

In
pq = (ksz + kz)

n fpq exp
[
−(σ )2 kz ksz

]
(6)

+
(ksz)

n Fpq

(
−kx, −ky

)
+ (kz)

n Fpq

(
−ksx, −ksy

)
2

with

kx = k sin θ cosφ

ky = k sin θ sin φ

kz = k cosθ

ksx = k sin θs cosφs

ksy = k sin θs sin φs

ksz = k cosθs

wherek is the wave number,In
pq is a function ofθ , φ, σ and

εr (soil dielectric constant),Fpq denotes the complementary
field coefficient. W (n) is the Fourier transform of then-th
power of the surface correlation function. The subscriptsp

andq indicate polarization state.θ andφ are zenith angle and
azimuth angle of the sensor,θs andφs are zenith and azimuth
of scattering angle, respectively.

2.2 Inversion strategy for soil moisture

In SAR remote sensing applications, sensor configurations
are known, while surface roughness and dielectric constant
are unknown. Estimation of soil surface parameters was usu-
ally implemented by using theoretical models to convert the
measured backscatter coefficient into soil surface roughness
and moisture. In the current study, the first procedure of soil
moisture inversion is to remove the vegetation effect, which
can be achieved by using Eqs. (2) to (4). Soil texture and land
surface correlation function type can be measured in field and
assumed as a priori information. Thereby, the remained three
unknown surface parameters are soil moisturemv, standard
deviation of surface heightσ , and correlation length cl.

Therefore, for inversion of soil moisture, at least three in-
dependent backscattering observations are needed. Multi-
frequency configuration onboard aircraft platform (Bindlish
and Barros, 2000), multi-angular, or multi-polarization ob-
serving ability of current satellite-borne SAR such as ASAR
offer this possibility. However, multi-dimensionality obser-
vations are usually highly correlated between each other.
Therefore, to increase the robustness for the retrieval pro-
cess, a two-step inversion strategy is employed in this paper
since the multi-angular method is considered.

During the first step, roughness parametersσ and cl are re-
trieved from multi-angular observations. Zribi and Decham-
bre (2002) showed that, if all other parameters are kept con-
stant, the difference in backscattering coefficient (1σ , in dB)
between two distinct incidence angles is proportional to the
index of the roughness slope,Zs, which can be expressed as

Zs = σ 2/cl (7)
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Through IEM simulations, it was found thatZs is linked to
1σ via the following relationship (Zribe and Dechambre,
2002)

Zs = f
(
1σθ1−θ2

)
(8)

The specific function needs to be obtained through statistical
analysis.

Additionally, on the basis of various SAR instrumental
configurations and abundant in situ measurements, Baghdadi
et al. (2006b) has deduced the calibrated correlation length
from SAR images and found a statistical relationship be-
tweenσ and cl, which is

cl (σ, θ, pp) = δ(sinθ)µ σ (ηθ+ξ) (9)

The parametersδ andζ depend on the polarization, whileµ
andη were found to be independent of the polarization. All
of them are functions of incident angleθ .

Therefore, through Eq. (9) that relating cl andσ , one of
the unknown roughness parameters can be reduced. Once
the ACF was predefined, by combined using only one further
equation (Eq. 11) as described in Section 3.1, it is possible to
completely characterize the three roughness parameters and
subsequently use them in the AIEM to inverse soil moisture.

During the second step, soil dielectric constant is esti-
mated using an iterative least squares minimization algo-
rithm, which minimize the difference between observed and
AIEM computed backscattering coefficients. Dobson model
(Dobson et al., 1985) was used to convert soil dielectric con-
stant into soil moisture values. The cost function is defined
as

J =

[
σ 0

obs − σ 0
est(mv)

]2
(10)

whereσ 0
obs is the radar observation,σ 0

est (mv) represents the
estimation obtained from the AIEM simulations andmv is
the soil moisture that needs to be determined.

2.3 Study area

The study was carried out at one of the WATER foci ex-
perimental areas (FEAs). WATER is a simultaneous air-
borne, satellite-borne, and ground-based remote-sensing ex-
periment taking place in the Heihe River Basin, the second
largest inland river basin in an arid region of northwestern
China (Li et al., 2009). One of the most important compo-
nents of the WATER is the arid region hydrology experiment
(ARHE).

Linze grassland (LZG; 100◦04′ E, 39◦15′ N), which cov-
ers an area of 2× 2 km2, locates in Linze county, Zhangye
city in the middle stream of the Heihe River Basin (Fig. 1). It
was selected as one of the foci experimental areas in ARHE
and is the study area in this investigation. Land cover types
are diverse in this region, with wetland, grassland, and farm-
land distributed in the vicinity. During the field campaigns
conducted in the intensive observation period (IOP) from

Table 1. Ground truth measurements of soil moisture and surface
roughness.

In situ measurement

site

mv(cm3 cm−3) σ (cm)
(27 June 2008)

range mean standard range mean standard
deviation deviation

A 0.23∼ 0.54 0.39 0.08 1.11∼ 2.09 1.51 0.31
B 0.13∼ 0.42 0.28 0.05 0.68∼ 4.08 1.40 0.53
C N/A 0.58∼ 4.46 1.28 0.66

D 0.02∼ 0.20 0.09 0.05 N/A

E 0.08∼ 0.34 0.25 0.05 N/A

May to August 2008, five experimental sites (ESs), each
360× 360 m2 in size, were established (Fig. 2). Most of the
grassland areas (including ESs A, B, and C) were severely
encrusted with salt and alkali materials. Alfalfa and barley
were planted at sites D and E, both of them are irrigated farm-
land.

2.4 Ground truth measurements

Ground truths, including soil moisture, land surface temper-
ature (T ), and bulk density, were collected at all five ESs
concurrently with radar acquisitions. A three-level stratified
sampling strategy, illustrated in Fig. 2, was designed to col-
lect ground truths. The elementary sampling plots (ESP),
which is embedded within each ES, covering an area of ap-
proximately 120× 120 m2 in a grid pattern at 20 m spacing,
is assumed to be representative of entire ES in which 49 soil
samples were collected.

Concurrently with radar overpasses on 27 June 2008,
ground measurements were carried out from 10:00 a.m. to
01:00 p.m. (Beijing Time) (within±2 h of the satellite over-
pass) at every ESP. The moisture contents of sites D and E
were measured by time domain reflectometry (TDR). Gravi-
metric sampling method was used at sites A and B due to
strong salinization effect. At site C, soil moisture measure-
ment was not carried out. Soil moisture was sampled for
the topsoil layer (5 cm), which is assumed as the maximum
penetration depth by ASAR, at a frequency of 5.3 GHz. Soil
bulk density was measured in order to transform gravimet-
ric content into volumetric soil moisture content. Soil tex-
ture was analyzed in the laboratory. No rainfall and tillage
practice were recorded in the time windows of satellite ac-
quisitions, thus, surface roughness is assumed to be invariant
during these dates. Surface roughness measurements were
conducted at non-vegetated sites A, B, and C to deduce the
ACF as a prior roughness information. Detailed sampling of
soil moisture and roughness is summarized in Table 1 and
other soil properties are summarized in Table 2.
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Figure 1. Locations of the Linze grassland in the arid region hydrology experiment area (right) 

in the Heihe River Basin (bottom left). 5 

 

Fig. 1. Locations of the Linze grassland in the arid region hydrology experiment area (right) in the Heihe River Basin (bottom left).

Table 2. Summary of the parameter values used in the Dobson
dielectric mixing model and the AIEM.

Parameters Value

f (GHz) 5.3

θ (◦) 18.4, 28.5, 43.9

Initial value ofmv(cm3 cm−3) 0.2

Land surface temperatureT (◦) 27

Soil density specific density bulk density
(g cm−3) 2.70 1.31

Soil porosity 0.51

Soil texture (%) sand clay
20.5 8.5

σ (cm) min max increment
0.3 3.0 0.1

cl (cm) min max increment
3 35 2

Correlation function type Exponential

As for the parameters used in the water cloud model,
vegetation water content was measured only at site E on
18 June 2008. Due to limited resources, sufficient canopy
properties measurements were not obtained. Therefore, vwc
at site D was inferred on the basis of local growing status
and constantsA andb used in the water cloud model were

Table 3. Vegetation parameters used in the water cloud model.

site A b vwc (kg m−2) land cover

D 0.01 0.084 0.3 alfalfa after harvest
E 0.05 0.3 1.46 barley in mature stage

not able to be calibrated based on the ground truth measure-
ments. Thus, their estimates were referenced from Bindlish
and Barros (2001). Parameters used for vegetation effects
correction are shown in Table 3.

2.5 Radar imagery

ASAR operates at C-band (5.3 GHz) and was launched on-
board ENVISAT in 2002. ASAR features enhanced capa-
bility in terms of coverage, with selectable incidence angles,
polarizations, and operational mode configurations. In this
investigation, three contiguous ASAR images in alternating
polarization precision (APP) modes with different incidence
angles ranging from IS1 (18.4◦) to IS7 (43.9◦) were acquired.
The orbital information of the images is presented in Table 4.

Absolute calibration of the ASAR images was performed
to transform the radar signals (DN values) into backscat-
tering coefficients (σ 0). After radiometric calibration, the
speckle noise in the images was filtered by a 5× 5 enhanced
Lee filter. Changes in the local incidence angle were not
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Figure 2. The three-level soil moisture field sampling strategy. 

 5 

Fig. 2. The three-level soil moisture field sampling strategy.

considered because the topography is flat in the study area.
Geolocation was performed according to the UTM projec-
tion system using a Landsat ETM+ image as a reference.
The registration error was within one pixel. After image pro-
cesses, the resolution of the imagery used for the estimation
of roughness and soil moisture is 30 m. Figure 3 illustrates
the subsets of the processed images of the study area.

3 Results and discussion

3.1 Mapping surface roughness and soil moisture

As has been mentioned in Sect. 2.2, the specific function of
Eq. (8) needs to be obtained through statistical analysis. In
the current study, all of the three scenes of ASAR images
with HH polarization were involved in the pairwise calcu-
lation. A forward simulation was carried out based on the
AIEM, with σ ranging from 0.3 to 3.0 cm and cl from 3 to
35 cm, and soil moisture was set as 0.2 cm3 cm−3. From the
analysis of in situ roughness measurements, the correlation
function type is found to be fit for the exponential one.

Through statistical analysis, it was found the best re-
gressed relationship was generated from the pair of IS1 and
IS7 swaths. The simulated data were fitted by a cubic poly-
nomial function, which is expressed as

Table 4. List of ASAR images used in this study.

ASAR images

Date Polarization Swath Central lat/long (degree)

25 June 2008 HH/HV IS3, 28.5◦ 38.97/100.23
27 June 2008 HH/HV IS7, 43.9◦ 38.97/100.08
28 June 2008 HH/HV IS1, 18.4◦ 38.89/100.48

Zs = −0.0009(1σIS1−IS7)
3

+ 0.0142(1σIS1−IS7)
2 (11)

− 0.0813(1σIS1−IS7) + 0.3545

where,1σIS1−IS7 denotes the difference in backscattering
coefficient between two incidence angles (i.e., IS1 and IS7
swaths) at HH polarization. As shown in Fig. 4, this func-
tion fits the simulation data fairly good with a coefficient of
determination (R2) equal to 0.94. For the other two pairs,
1σIS1−IS3 and 1σIS3−IS7, the R2 values are equal to 0.85
and 0.89 respectively. From a temporal viewpoint, using
IS1–IS7 pair is also the optimal choice since the two scenes
were acquired on successive dates (Table 4). Accordingly,
distributedZs information can be obtained based on these
two images. Small values ofZscorrespond to smooth condi-
tions, due to small values ofσ and/or large values of cl. In
contrast, large values ofZsrepresent rough surfaces.
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    (a) 
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    (c) 

Figure 3. Segment scenes of the processed images in the regions of the study area, (a), (b), 

and (c) corresponding to the IS1, IS3, and IS7 swaths, respectively. 5 

Fig. 3. Segment scenes of the processed images in the regions of
the study area,(a), (b), and(c) corresponding to the IS1, IS3, and
IS7 swaths, respectively.

By specifying an incidence angle of 43.9◦ at HH polar-
ization, the values of those coefficients (i.e.,δ, ζ , µ, andη)
involved in Eq. (9) can be obtained based on Baghdadi et
al. (2006b). The relationship between cl andσ is

cl = 7.62σ 1.44 (12)

 39 

 

 

 

 

Figure 4. Sketch map of the relationship between Zs and 1 7IS IS 
 (incidence angles of 5 

18.4º and 43.9º) provided by Eq. (11). 

Fig. 4. Sketch map of the relationship betweenZsand1σIS1−IS7
(incidence angles of 18.4◦ and 43.9◦) provided by Eq. (11).
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Figure 5. Estimated results of the standard deviation of surface height from multi-angular 

ASAR images.  

 5 

Fig. 5. Estimated results of the standard deviation of surface height
from multi-angular ASAR images.

Substituting Eq. (12) into Eq. (11) with the combination of
Eq. (7), σ and cl can be calculated for every pixel. As an
example, the distribution of the standard deviation of surface
height is shown in Fig. 5. The results shown most of the
experimental area is characterized by high values ofσ .

After obtaining the roughness, soil moisture distribution
over the study area was estimated using the inversion proce-
dure described in Sect. 2.2. Results are illustrated in Fig. 6.
The dominant yellow colors in the map represent low lev-
els of soil moisture. In general, saline effect may lead to
an underestimate of soil moisture. Therefore, the low soil
moisture retrieval results distribution is coherent with salin-
ized sparse grass covered areas. Compared to the land use
map (Fig. 7), the blue colors correspond to higher soil wa-
ter content which appeared mainly in farmlands (west part)
and wetland (east part). Except for a small area in the lower
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Figure 6. Retrieved soil moisture based on the obtained surface roughness estimates. 

Fig. 6. Retrieved soil moisture based on the obtained surface rough-
ness estimates.
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Figure 7. Land use map of the study area. 

 

Fig. 7. Land use map of the study area.

part of the study area, the spatial pattern ofmv distribution
is reasonable, agreeing well with the local situation since an
irrigation event had taken place 5 days before, thus the veg-
etated areas were still wet but the sparse grass covered areas
had turned into dry condition due to considerably high evap-
oration in this arid region.

3.2 Validation

Due to strong salinization in the grassland sites A, B, and C,
roughness and soil moisture estimation were not performed
but for sites D and E. In addition, roughness results could not
be validated because in situ roughness measurements were
not conducted at sites D and E due to vegetation obstacles.

 43 

(a) 

(b) 

Figure 8. Comparison between soil moisture estimated from radar imagery and in situ 

measurements at (a) site D and (b) site E, before (◆) and after (△ ) the correction of 

vegetation effect. 5 
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As shown in Fig. 8, soil moisture estimates were compared
against the in situ TDR measurements. Two groups of scat-
ter points were plotted in each diagram, i.e., before and af-
ter the correction of canopy interference for each study site.
For each ES, 45 points of in situ measurements were used to
validate the estimates from SAR imagery while other 4 soil
samples were discarded for their obviously irrational val-
ues. The results demonstrate that, for site D, the root mean
square error (RMSE) and the mean error (ME) ofmv after
the correction of vegetation effect are 0.04 cm3 cm−3 and
−0.02 cm3 cm−3, respectively. For site E, the RMSE and
the ME of mv after the correction of vegetation effect are
0.06 cm3 cm−3 and −0.03 cm3 cm−3, manifesting that the
soil moisture is slightly underestimated in both sites. The
correlation coefficient (R) between observed and estimated
soil moisture values at sites D and E are 0.70 and 0.35, re-
spectively. Compared the RMSEs and the correlation coef-
ficients, it is shown that the results at site D are better than
those at site E. This might due to the fact that (1) canopy in
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site E is much thicker than D and (2) site D is more homoge-
neous than site E.

3.3 Vegetation effect

The results indicate that vegetation has a very signifi-
cant effect on soil moisture estimation. For site D, the
RMSE and the ME ofmv without correcting the vegeta-
tion effect are 0.06 cm3 cm−3 and−0.03 cm3 cm−3, respec-
tively. For site E, the two values are 0.14 cm3 cm−3 and
−0.12 cm3 cm−3. It is evident that thin canopy (alfalfa stub-
ble) at site D slightly impactmvestimations while the thicker
canopy presented at site E could yield more extinction and
result in a significant underestimation ofmv.

Undoubtedly, canopy effect should be minimized in order
to guarantee the applicability of the AIEM. The parameter
values ofA, b, and vwc, are all important for using the water
cloud model to correct the vegetation effect. Usually,A and
b can be calibrated from observations but these are not avail-
able in this study. A sampling of vwc did take place at site E,
but preceded the SAR data acquisition nearly 10 days. Thus,
the parameters used in vegetation correction are mainly de-
rived from literatures. It is suggested that although themv
estimates were improved after using the water cloud model,
more satisfied results could be expected by using some so-
phisticated vegetation models or adequate vegetation mea-
surements (Joseph et al., 2010).

3.4 Error analysis

It can be seen in Fig. 8 that at sites D and E, the estimated val-
ues ofmvare lower than those measured in situ, even after the
correction of vegetation effects. It is supposed that this is par-
tially caused by the difference of sensing depth for soil me-
dia between remote sensing and in situ measurements. Radar
signals in C band essentially perceives the dielectric proper-
ties of the superficial soil layer (usually around or less than
1 cm). On the contrary, for TDR measurements used for the
validation, the detectedmv is the integral value through the
entire sampling depth (∼5 cm) in the measured soil volume.
The uppermost soil layer is usually drier than deeper layers,
especially the case in arid regions. This probably could be
an explanation to the underestimation ofmv as reported in
previous investigations (Escorihuela et al., 2010; Wagner et
al., 2007).

Furthermore, we are quite aware that some biases in the
results can be attributed to the method used to acquire rough-
ness parameters. Equation (12), which is crucial to the
derivation ofσ and cl, inherently depends on the selection
of data acquisitions and study sites. In spite of the fact that a
large quantity of images and corresponding in situ measure-
ments were involved in the deduction of the coefficients used
in Eq. (9) presented by Baghdadi et al. (2006b), it is conceiv-
able that this empirical relationship could contribute more
or less errors when it is deployed in our study environment.

Uncertainties also arise from the definition of Eq. (11), pri-
marily in two aspects:

– The specific form of the function is greatly impacted by
the values of the input parameters used in the forward
simulations. For example, the expression of the Eq. (11)
evidently differs from the one proposed by Zribi and
Dechambre (2002). The difference can be attributed to
the dissimilar domains of the input roughness parame-
ters values.

– One of the basic hypotheses for using multi-
dimensionality method is the land surface properties are
assumed to be unchanged over the satellite data acqui-
sition period. Unfortunately, at present, no SAR sen-
sors onboard satellite platforms have been able to of-
fer multi-angular measurements simultaneously. Thus,
a variant of soil moisture is expected during data acqui-
sitions, especially when the radar scenes were collected
from different dates. Accordingly, some uncertainties
can be ascribed to this aspect although the temporal gap
of the images used in this study is very small (1 day) to
the revisit capabilities of existed space-borne SAR sys-
tems.

3.5 Discussion

The main purpose of this paper is to develop a method that
can reduce the impact of roughness on soil moisture retrieval.
In the past few years, some studies have addressed on this
issue, both for active and passive microwave remote sensing.
They shall be compared with the current study.

Lievens et al. (2011) proposed a statistical model to es-
timate roughness parameter based solely on a normalized
backscatter observation, subsequently, the deduced rough-
ness can be used in the inversion of soil moisture by the IEM.
Saleh et al. (2009) reported a two-step and two-parameter in-
version approach. Joseph et al. (2010) also estimated surface
roughness parameters by tuning known data sets. It can be
perceived that these investigations adopted similar retrieval
strategies as compared to the proposed method in this study.
That is, first, the roughness parameters that are needed by
the radiative transfer models were calibrated or estimated.
Then, soil moisture retrievals were conducted based on the
obtained roughness estimates. In comparison to our case
study, the main difference is existed in the roughness deriva-
tion step. The above studies used training data sets consisting
of remote sensed observations and corresponding field mea-
surements, in association with radiative transfer models (e.g.,
IEM). While our study applied AIEM simulations and the cl
calibration approach proposed by Baghdadi et al. (2006b),
since this calibration scheme was also developed based on
abundant data sets and has been proven effective (Álvarez-
Mozos et al., 2008; Baghdadi et al., 2006b).

With respect to the approaches for the correction of vege-
tation effects, Joseph et al. (2010) proposed a novel method
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(ratio method) and proved that it is superior to the water
cloud model when vegetation scattering component is dom-
inant. The general accuracy of the soil moisture retrievals
was obtained with an RMSE level of 0.04 cm3 cm−3 across
two frequencies observations. Good agreement was found
between the inversion results and the ground-truth measure-
ments in semi-arid regions (Zribi et al., 2011). The retrieved
soil moisture mean errors were equal to 0.039 cm3 cm−3 for
olive trees areas. The water cloud model was also used in
this study, and leaf area index values were used to estimate
vegetation water content, which in turn results in accurate
soil moisture estimates in wheatland, with a mean RMSE
of 0.058 cm3 cm−3. To use these methods depends on the
availability of reliable vegetation water content data. Unfor-
tunately, the resources in the current study are not able to
provide appropriate data sets to perform the specific param-
eterization scheme to derive or calibrate the vegetation water
content.

Both Pathe et al. (2009) and Mladenova et al. (2010) ap-
plied the change detection method by using ASAR global
monitoring data to derive or validate soil moisture in differ-
ent test sites. The RMSEs of these reported soil moisture es-
timations were generally on the orders of 0.04 cm3 cm−3 to
0.14 cm3 cm−3 over different land covers and scales. Wag-
ner et al. (2007) compared four kinds of published global
soil moisture products between each individual data set in
the Duero basin in Spain. In total, the RMSE is around
0.06 cm3 cm−3 across different satellite estimates. There-
fore, the RMSE of 0.06 cm3 cm−3 for soil moisture estimates
after vegetation effect correction in the current study is com-
parable to the results referred above. It is probably an accept-
able magnitude to be of use for various applications (Wagner
et al., 2007), although the value is higher than the targeted er-
ror of 0.04 cm3 cm−3 for AMSR-E (Njoku et al., 2003) and
SMOS products (Kerr et al., 2001). It can be concluded that
both sensors and retrieval methods must be carefully chosen
in order to achieve more accurate soil moisture retrievals de-
pending on the characteristics of the study area and available
data sets, particularly if the operational retrieval application
is envisaged (Pathe et al., 2009).

4 Conclusions

Previous studies have demonstrated that it is still problem-
atic to accurately assess soil moisture using theorized mod-
els, e.g., IEM or AIEM, if the surface roughness is not ap-
propriately quantified. Conventionally, areal roughness can
be obtained from parameterization, ancillary datasets, or by
upscaling point measurements. Although these methods are
practicable in some way, it is still worth seeking a direct
way of quantifying the spatial distribution of roughness at
the pixel scale.

The investigation presented in this paper proposes a
promising two-step retrieval strategy to estimate surface

roughness and soil moisture without auxiliary information.
Both standard deviation of surface height and correlation
length can be estimated from multi-angular SAR observa-
tions. Then, the derived roughness parameters were used in
the inversion of soil moisture based on the AIEM. An evalua-
tion was carried out in the middle reaches of the Heihe River
Basin and the results show that this method is reliable. Af-
ter a correction of vegetation effect by using the water cloud
model, the resulting RMSE of soil moisture range between
0.04 cm3 cm−3 to 0.06 cm3 cm−3. It is suggested that the er-
rors of the estimation can be attributed to the presence of re-
maining vegetation effects, the semi-empirical deduction of
surface roughness, and the difference in sensing depths be-
tween SAR and TDR probe measurements. In summary, the
proposed method is shown to be an effective method for sur-
face roughness characterization and soil moisture mapping at
regional scale, based solely on satellite data instead of using
ancillary information, such as point measurements by pin-
profilometer. Therefore, not only time and resources can be
saved, the uncertainties in association with the upscaling of
point roughness measurement can be avoided as well.

Potential future works in this area should extend the ap-
plication of the proposed method over other study regions.
Besides, with more and more satellites carrying payloads
of polarimetric SAR, such as ALOS-PALSAR, Radarsat-2,
and TerraSAR constellation, the usage of the polarimetric-
decomposition technique for soil moisture derivation can be
anticipated. This technique facilitates the separation of the
scattering signature into different parts attributed to different
objective properties in order to obtain the exclusive contribu-
tion of soils underlying canopy layer (Hajnsek et al., 2009).
Furthermore, airborne 3-D light detection and ranging (LI-
DAR) systems may make it possible to effectively collect sur-
face roughness information over large areas, thereby solving
the problem of acquiring statistically representative surface
roughness measurements. Such a development would dra-
matically conduce to the inversion of soil moisture (Wagner
and Pathe, 2004).
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face roughness heterogeneity and scattering behavior for radar
measurements, IEEE T. Geosci. Remote, 44, 2438-2444,
doi:10.1109/TGRS.2006.873742, 2006.

Zribi, M., Chahbi, A., Shabou, M., Lili-Chabaane, Z., Duchemin,
B., Baghdadi, N., Amri, R., and Chehbouni, A.: Soil sur-
face moisture estimation over a semi-arid region using EN-
VISAT ASAR radar data for soil evaporation evaluation, Hydrol.
Earth Syst. Sci., 15, 345–358,doi:10.5194/hess-15-345-2011,
2011.

Hydrol. Earth Syst. Sci., 15, 1415–1426, 2011 www.hydrol-earth-syst-sci.net/15/1415/2011/

http://dx.doi.org/10.5194/hess-15-151-2011
http://dx.doi.org/10.1109/TGRS.2005.863858
http://dx.doi.org/10.1109/TGRS.2010.2040746
http://dx.doi.org/10.5194/hess-13-259-2009
http://dx.doi.org/10.1109/TGRS.2008.2004711
http://dx.doi.org/10.1080/01431160601075533
http://dx.doi.org/10.1016/j.rse.2006.10.026
http://dx.doi.org/10.1016/j.rse.2009.02.013
http://dx.doi.org/10.5194/hess-14-613-2010
http://dx.doi.org/10.3390/s8074213
http://dx.doi.org/10.1007/s10040-006-0104-6
http://dx.doi.org/10.1007/s10040-006-0104-6
http://dx.doi.org/10.1016/S0034-4257(03)00051-8
http://dx.doi.org/10.1016/j.rse.2006.10.014
http://dx.doi.org/10.1016/j.rse.2004.11.014
http://dx.doi.org/10.1109/TGRS.2006.873742
http://dx.doi.org/10.5194/hess-15-345-2011

