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N. V. Dung1,3, B. Merz1, A. Bárdossy2, T. D. Thang3, and H. Apel1

1GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, Germany
2Institute of Hydraulic Engineering, University of Stuttgart, Stuttgart 70569, Germany
3Southern Institute of Water Resources Research SIWRR, Ho Chi Minh City, Vietnam

Received: 22 November 2010 – Published in Hydrol. Earth Syst. Sci. Discuss.: 3 December 2010
Revised: 21 April 2011 – Accepted: 27 April 2011 – Published: 29 April 2011

Abstract. Automatic and multi-objective calibration of hy-
drodynamic models is – compared to other disciplines like
e.g. hydrology – still underdeveloped. This has mainly two
reasons: the lack of appropriate data and the large compu-
tational demand in terms of CPU-time. Both aspects are
aggravated in large-scale applications. However, there are
recent developments that improve the situation on both the
data and computing side. Remote sensing, especially radar-
based techniques proved to provide highly valuable infor-
mation on flood extents, and in case high precision DEMs
are present, also on spatially distributed inundation depths.
On the computing side the use of parallelization techniques
brought significant performance gains. In the presented study
we build on these developments by calibrating a large-scale
1-dimensional hydrodynamic model of the whole Mekong
Delta downstream of Kratie in Cambodia: we combined in-
situ data from a network of river gauging stations, i.e. data
with high temporal but low spatial resolution, with a se-
ries of inundation maps derived from ENVISAT Advanced
Synthetic Aperture Radar (ASAR) satellite images, i.e. data
with low temporal but high spatial resolution, in an multi-
objective automatic calibration process. It is shown that
an automatic, multi-objective calibration of hydrodynamic
models, even of such complexity and on a large scale and
complex as a model for the Mekong Delta, is possible. Fur-
thermore, the calibration process revealed model deficiencies
in the model structure, i.e. the representation of the dike sys-
tem in Vietnam, which would have been difficult to detect by
a standard manual calibration procedure.
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(dung@gfz-potsdam.de)

1 Introduction

Numerical models for flood simulation have been devel-
oped and applied since several decades for many engineer-
ing, planning and risk assessment studies worldwide (Chow,
1973; Cunge, 1975; Aronica et al., 1998a; Aronica et al.,
1998b; Bates and De Roo, 2000; Cunge, 2003; Horritt,
2004). In order to simulate floods, several methods were
applied varying from zero dimensional models to three-
dimensional models, however, with a focus on one- and
two-dimensional models (Bates and De Roo, 2000; Sanders,
2007; Apel et al., 2009). The choice of the modelling ap-
proach for a certain application depends on both scientific
and technical aspects as well as on the resources available.
These aspects include, among others, the scale of the simu-
lation domain, topography, topographical data available, the
complexity of the hydraulic regime and computational costs.

The presented study focuses on floods in the Mekong
Delta, one of the largest estuaries in the world with a highly
complex hydraulic system. Floods in the Mekong Delta oc-
cur annually. Average floods are perceived as beneficial to
the Delta, whereas extreme floods cause huge damage (Hoa
et al., 2007; MRC, 2009). In fact, the annual floods are the
basis of the livelihoods of several million people in the Cam-
bodian and Vietnamese part of the Delta. Flood models de-
veloped for the whole Mekong Delta covering the area down-
stream of Kratie in Cambodia are at the core one-dimensional
(Nien, 1996; Thuy and Dac, 2000; Dac, 2005; Dung and
Thang, 2007; Hoa et al., 2007; Hoa et al., 2008). This is
due to the vast extent of the simulation domain and the pe-
culiarities of the hydraulic regime in the Cambodian part of
the Delta including the Tonle Sap lake, the large number of
man-made structures in the Vietnamese part of the Delta and
the complex bi-modal tidal influence of the South China Sea
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and the Gulf of Thailand. The differences between these
models consist of the different representation of the flood-
plains, of the numerical scheme used for solving the gov-
erning equations, and – most important – the database for
the hydraulic control structures in the Vietnamese part of the
Delta. The flood model (Dung and Thang, 2007) used for this
study was created in Southern Institute of Water Resources
Research (SIWRR) using a huge updated database for the in-
frastructure of the Mekong Delta and is based on the software
package MIKE 11 developed by Danish Hydraulic Institute
(DHI).

However, even though large efforts were put into obtain-
ing the best possible data for setting up the model, calibra-
tion is required, which searches for the best possible rep-
resentation of natural flow resistance in the simplified flow
representation in the model, but also compensates for model
insufficiencies and errors, which are unavoidable (Cunge,
2003). In fact, most models must be calibrated to some
degree to be useful for any practical application (Gupta et
al., 1998). The calibration can be performed either man-
ually or automatically. For hydrodynamic models manual
calibration is the standard – in contrast to hydrological mod-
elling, where sophisticated automatic calibration dominates
nowadays, both in research and application. In fact, just a
few studies are published dealing with automatic calibration
of hydrodynamic, respectively flood models (2-dimensional
from Fabio el al., 2010, 1-dimensional from Madsen and Vin-
ter, 2006). Automatic calibration adjusts parameters auto-
matically according to a specified search scheme optimising
numerical measures of goodness of fit of the model results
to the data. Automatic calibration gained increasing pop-
ularity in the past decades, because it alleviates the chief
drawbacks of manual approaches which are subjective, te-
dious, much dependent on the expertise of modellers, and
need huge amount of labour (Duan et al., 1993; Madsen,
2000; Fabio et al., 2010). A lot of research has been carried
out for developing automated calibration routines or applying
them to a large number of water-related applications (Duan
et al., 1992; Solomatine et al., 1999; Skahill and Doherty,
2006; B́ardossy and Singh, 2008). Depending on the spec-
ified technique and the dimension of the parameter space,
calibration algorithms have to evaluate many simulations, up
to hundreds or thousands or even much more. Hydrological
models usually take some minutes or even some seconds per
simulation run. Most of hydrodynamic models, particularly
flood inundation models, require much longer computation
times, typically in the range of some hours or days. Con-
sequently, work on automatic calibration of hydrodynamic
models, especially of large-scale flood models, is rare. In the
Mekong Delta, all the mentioned existing flood models have
been calibrated manually. However, due to the ever growing
computational power and parallelization techniques an auto-
matic calibration of such large-scale hydrodynamic model as
the one presented here became feasible from a computational
point of view.

The lack of appropriate data is another handicap to model
calibration. Data requirements used for a calibration process
depend on the model. For example, for a lumped rainfall-
runoff model, catchment runoff data are needed (Madsen,
2000). For highly distributed hydrodynamic models, spa-
tially distributed data such as satellite derived flood extents
or water stage maps are strongly recommended as calibration
dataset (Bates, 2004). In the last few decades, along with
the growth in the area of flood modelling, major advances
have been made in the field of remote sensing. Reinforcing
the connection between increasing computation power and
increasing data availability could improve the model perfor-
mance significantly (e.g. Aronica et al., 2002; Di Baldassarre
et al., 2009; Mason et al., 2009; Schumann et al., 2009a).

The dataset used for this calibration study contains in-
situ data from a network of river gauging stations and a
series of flood extent maps, derived from the ENVISAT
Advanced Synthetic Aperture Radar (ASAR) satellite plat-
form (http://envisat.esa.int/instruments/asar/). Because of
the different type and spatial and temporal coverage of
the calibration data, a multi-objective optimization frame-
work has to be chosen. Several multi-objective optimiza-
tion techniques have been developed in the past decade,
such as multi-objective complex evolution method MOCOM
(Yapo et al., 1998), multi-objective shuffled complex evo-
lution metropolis algorithm MOSCEM (Vrugt et al., 2003)
or multi-objective genetic algorithms (Zitzler, 2000; Deb et
al., 2002; Khu and Madsen, 2005). From studies comparing
different multi-objective automatic calibration algorithms it
can be concluded that there is no algorithm which is supe-
rior in all cases (Zitzler, 2000; Tang et al., 2006; Wöhling et
al., 2008). Given the comparable performance of the avail-
able algorithms we selected the Non-dominated Sorting Ge-
netic Algorithm II (NSGA II) (Deb et al., 2002) because of
its ease-to-use properties and suitability for a parallelization
scheme.

The purpose of this study was to develop a scheme which
integrates in-situ data and remote sensing data in a paral-
lelized multi-objective automatic calibration framework for
a large-scale flood model in the Mekong Delta. In Sect. 2,
the study site and data are introduced. In Sect. 3, the devel-
oped flood model is described. The calibration routine with
details on the formulation of objective functions, the auto-
matic optimization algorithm and the parallelization scheme
is explained. Section 4 reports the results and discussion,
followed by conclusions in Sect. 5.

2 Case study area and data

2.1 The Mekong Delta

The Mekong River Delta is situated in the Cambodian and
Vietnamese part of the lower Mekong basin (Fig. 1). The
flow regime in the delta is highly complex due to the very
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Fig. 1. The Mekong basin and delta and gauging stations in Cambodia and Vietnam used for the calibration (red points); station names are
given in Table 1.

low topography of the Mekong Delta, especially in the Viet-
namese part presenting multiple layered circle channel sys-
tems, the impacts of two different tidal modes, the peculiarity
of the upstream boundary in Cambodia with the Great Lake
Tonle Sap and the numerous man-made hydraulic structures
in the Vietnamese part of the Delta. The most striking natural
feature is the Tonle Sap lake in Cambodia, which serves as a
huge buffer for flood discharges during the monsoon season.
When the water level in Kratie, which is the upper boundary
of the Delta, exceeds the level of 17 m a.s.l., overbank flow in
the area of Kampong Cham downstream of Kratie is initiated
(Hoi, 2005). The overbank flow separates into two different
flow paths: The right overbank flow follows the main stream,
but divides further near Phnom Penh into flow into the Tonle
Sap Lake to the North and further down in southern direc-
tion to the Mekong Delta, Vietnam. A large proportion of
the left overbank flow flows directly south and reaches the
Plain of Reeds, the North-eastern part of the Delta in Viet-
nam, thus causing a second flood wave besides the floods
from the Mekong main stem in these parts.

The floodplains in Cambodia differ significantly from
those in Vietnam. In Cambodia the plains are in a compara-
ble natural state with only a few control structures, whereas
the floodplains in Vietnam are under large regulation by a
huge system of navigation and irrigation channels, sluice
gates, pumps and especially a sophisticated dike system.
Thus, the combination of the natural hydraulic peculiarities
in combination with the large anthropogenic influence cre-
ates a very complex system, which challenges every mod-
elling effort.

2.2 Data

The database used for this study consists of data used for
building and modifying the model and those for evaluat-
ing the performance of the model. A large amount of to-
pographic data obtained from numerous administrative and
scientific providers was used for the creation of the model,
including data acquired by both ground survey and remote
sensing. However, in the scope of this paper, we will mainly
present the data used for the calibration.

Two types of data were used for this purpose. The first
type consists of water level time series from a network of
gauging stations. Further, we use a series of flood extent
maps derived from ENVISAT ASAR satellite images. While
the former data are point data with high temporal resolution,
the latter have a high spatial, but a low temporal resolution.

2.2.1 Gauge data

The typical source of hydrodynamic model calibration data
consists of main stream measurements at gauging stations
at the boundaries of and sometimes also inside the model
domain. In the present study, water level time series at 12
gauging stations of the measurement network (Fig. 1) along
the Mekong River and Bassac were used, of which 7 stations
are located in Cambodia and 5 stations in Vietnam. The time
series used in this study cover the flood season 2008, e.g.
from beginning of June to the end of December.

These gauge data were provided by Mekong River Com-
mission (MRC). Table 1 gives details about the location of
the gauging stations used in this study.
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Table 1. Gauging stations used for calibrating the hydrodynamic model (data source: MRC); note: the Mekong in Cambodia is named Tien
river in Vietnam, the Bassac in Cambodia is the Hau river in Vietnam.

no. name of station geographical location location at weight assigned
long lat river to the station

1 Kratie (CAM) 105.987 12.240 Mekong 1
2 Kampong Cham (CAM) 105.338 11.909 Mekong 2∗

3 Prekdam (CAM) 104.804 11.813 Tonle Sap 1
4 Phnom Penh port (CAM) 104.923 11.575 Tonle Sap 1
5 Chaktomouk (CAM) 104.923 11.552 Mekong 1
7 Neakluong (CAM) 105.284 11.261 Mekong 1.5
6 Khokhel (CAM) 105.040 11.240 Bassac 1.5
8 Tan Chau (VN) 105.243 10.803 Tien river 2∗

9 Chau Doc (VN) 105.113 10.707 Hau river 2
10 Vam Nao (VN) 105.357 10.575 Vam Nao river 2∗

11 My Thuan (VN) 105.900 10.273 Tien river 1.5∗

12 Can Tho (VN) 105.790 10.033 Hau river 1.5

∗: those stations are shown in the hydrograph comparison in Sect. 5.

2.2.2 Remote sensing data

The availability of remotely sensed flood extends has made
a significant change from a data poor to a data rich envi-
ronment for flood modelling (Schumann et al., 2009a). By
combining these data with gauge data the calibration of hy-
drodynamic models can be better constrained, because the
ability of the model to reproduce the temporal and spatial
inundation dynamics can be evaluated at the same time.

Most recently the mapping of inundation areas by Syn-
thetic Aperture Radar (SAR) sensors have gained large pop-
ularity because of their insensitivity to cloud coverage, which
is the main drawback of optical sensors in inundation map-
ping. The value of such data for model calibration has been
documented in a number of studies, which all used one or
sometimes two flood extent maps in manual calibration mode
(Horritt, 2006; Di Baldassarre et al., 2009). In this study a
series of flood extent maps (Fig. 2) covering the period of
17 June 2008 to 30 November 2008 were used. These maps
were provided by German Aerospace Center (DLR) utilizing
ENVISAT ASAR radar imagery. The Advanced Synthetic
Aperture Radar (ASAR) on the platform uses the C-Band.
Data used for generation of the inundation maps are acquired
in wide swath mode (image mode) with a geometric resolu-
tion of 90 m to ensure the coverage of the whole Mekong
Delta in one dataset for one point in time. The derivation of
the inundation maps is performed by a histogram threshold
based approach similar to the one described by Schumann et
al. (2009c). The implementation of the method used for in-
undation map generation (Huth et al., 2009) was integrated
in an automated processing chain for standardized and re-
peatable processing of inundation time series (Gstaiger et al.,
2011). The histogram threshold based method is based on
the assumption that water surfaces are forward scattering the

radar signal resulting in low backscatter signals to the sensor.
It uses multiple grey level thresholds and image morpholog-
ical operations. The derived inundation maps were validated
by several field surveys in the Mekong Delta. The accuracy
at the edges of the inundation maps is estimated as 1–2 pix-
els, i.e. 90–180 m for the ASAR derived inundation maps.
Further details can be found in Gstaiger et al. (2011).

3 The flood model

The flood model was set up to represent the river network and
floodplains in the Mekong Delta (Dung and Thang, 2006,
2007; Dung et al., 2009, 2010). The model domain hav-
ing the size of more than 55 000 km2 embraces the complete
Delta from Kratie including the Tonle Sap Great Lake in
Cambodia to the river mouths in Vietnam (Fig. 3). For such a
large-scale model only a 1D approach is feasible from a com-
putational point of view. However, the model needs to repre-
sent the floodplains in order to be hydraulically meaningful
and to enable prediction of flood extends. Two different ways
of representing the floodplains were followed. The compar-
atively natural floodplains in Cambodia including the Tonle
Sap, where hardly any channels and dikes exist, are simu-
lated by wide cross sections including the floodplains, which
is the usual approach in 1-dimensional hydrodynamic flood
models. The floodplains in Vietnam, which are separated
into a multitude of compartments enclosed by high dikes,
which are comparable to dike rings in the Netherlands, were
treated differently. Because most of the compartments repre-
sent a closed system surrounded by dikes and channels, flood
cells are modelled by artificial branches with low and wide
cross sections extracted directly from the DEM being the
standard Shuttle Radar Topography Mission (SRTM) DEM
with a horizontal resolution of 90 m. Those branches are
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Fig. 2. Flood extent maps derived from ASAR used for model calibration. The numbers in the brackets indicate the weights assigned for the
individual map in the calibration process (cf. Sect. 4).

linked to the channel by control structures. Here weirs were
used to represent dikes and dike overflow and sluice gates
were used whenever information on existing sluice gates was
present. Figure 4 illustrates the approach, by which a quasi-
2-dimensional model is established. This approach resem-
bles the first hydrodynamic model developed for the Mekong
Delta by Cunge (1975), but adopted to the present channels
and dikes, which were hardly present at that time. The model
consists of 4235 branches, of which more than 2134 are used
to represent the flood plains of the Mekong Delta in Vietnam
in 564 compartments, which is equivalent to about 26376
computational nodes (see Table 2). The length of the sim-
ulated channel system is about 25 000 km. The topographi-
cal data for the model were collected from various sources,
thus having different levels of accuracy. The most accurate
data could be collected for the main stems of the Mekong
and some larger channels. For the smaller channels, where
sometimes no bathymetric data were available, bed elevation
had to be assumed. The same holds true for the dike ele-
vations, with the additional problem of different datum used
by the different agencies and districts for geo-referencing of
elevations.

4 Calibration framework

For the automatic calibration of such a large-scale hydrody-
namic model utilizing the different data sources described in
Sect. 2.2 the framework shown in Fig. 5 has been developed.
It consists of the following four elements:

1. parameter classification

2. multi-objective calibration algorithm

3. formulation of objective functions

4. parallelization scheme

4.1 Parameter classification

The calibration of the model is performed by adjusting the
roughness parameters. However, with a model of more than
26000 computational nodes, respectively possible different
roughness parameters, is it obvious that the number of ad-
justable parameters have to be reduced. Otherwise the opti-
mization problem would have way too many degrees of free-
dom to be solved unambiguously. This is achieved by classi-
fying the channel and floodplain elements. Five classes were
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Fig. 3. The model river network including Tonlé Sap – Great Lake.

Fig. 4. Representation of a typical floodplain compartment in the
Vietnamese part of the Delta.

defined: the main rivers in the Cambodian model domain
(Mekong and Bassac), the main rivers (Tien and Hau rivers)
and major channels in the Vietnamese part of the Delta, the
floodplains in Cambodia and in Vietnam respectively due to
their different characteristics, and the remaining medium and
small channels in Vietnam. Figure 6 illustrates the spatial
distribution of the different classes.

For each class feasible ranges of roughness parameters
were defined. The ranges are comparable to those published
in hydraulic text books and other publications (Chow et al.,
1988; Werner et al., 2005; Pappenberger et al., 2007b; Fabio
et al., 2010). The ranges chosen enclose the values typically
expected for the flow conditions, but are also large enough in
order to enable compensation of model errors – most likely
geometric errors – by the calibration. However, in sensitivity
runs we observed that the model got unstable for values ex-
ceeding the defined ranges. Therefore, the ranges were lim-
ited to ranges preventing model instabilities. Table 3 sum-
marizes the roughness parameterization.

Fig. 5. The calibration framework for the hydrodynamic model.

Table 2. Statistics of the hydrodynamic model of the Mekong Delta.

Number of real branches 4235
Length of simulated channel system ∼25 000
Number of “artificial” branches 2134
Number of computing nodes 26376
Downstream boundary conditions 84
Upstream boundary conditions 4
Number of flood plain compartments 564

4.2 Multi-objective optimization algorithm

A multi-objective calibration problem can be stated as a
minimization or maximization problem over several objec-
tive functions (Madsen, 2000). In this study, both objective
functions formulated are based on maximum forms (Nash-
Sutcliffe coefficient and flood area index). Hence, the opti-
mization of the maximum is more suitable in this case. It can
be formalized as:

Max {F1(θ),F2(θ),...,Fm(θ)} (1)

Whereθ = (θ1,θ2,...,θn) is a decision vector located within
the parameter space8 ⊂ Rn. The numerators n and m denote
the number of parameters to be estimated and the number
of objective functions, respectively. The objective functions
Fi(θ), i = 1...m reflect the model performance with respect
to the selected calibration objectives. Because of the max-
imization form used higher values inFi(θ) indicate better
model performance in calibration objectivei.

The solution to (1) will not, in general, be a single unique
parameter set but will consist of a set of Pareto-optimal solu-
tions, which are best solutions from a multi-objective point
of view.
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Table 3. Assignment of roughness values to five classes of channels and floodplains.

No. Group’s Strickler’s Descriptions
Name [Manning’s]

coefficient range

1 MK BS [20, 60] Branches used to model Mekong river in Cambodia,
[0.016, 0.05] Bassac River in Cambodia, Tonle Sap Great Lake

2 TienHau [20, 60] Mekong River in Vietnam (Tien River), Bassac River
[0.016, 0.05] in Vietnam (Hau River), and major branches of these rivers

3 CamFP [10, 50] Branches for modeling Cambodia floodplains
[0.02, 0.1]

4 VietFP [10, 50] Artificial branches for modeling Vietnam floodplains
[0.02, 0.1]

5 Global [20, 60] Other from above (remaining branches)
[0.016, 0.5]

Fig. 6. Scheme of the roughness classification of channels and :
black for Mekong and Bassac in Cambodia, red for Tien and Hau
river and major channels in Vietnam, blue for Cambodian flood-
plains, green for Vietnamese floodplain compartments and magenta
for the remaining channels in the Vietnamese delta (cf. Table 3).

In general, approaches to solve a multi-objective optimiza-
tion problem can be categorized into two types. The classi-
cal type, named weighted sum approach is to assign a weight
to each normalized objective function so that the problem is
transformed to a single objective problem. The main diffi-
culty of this approach is the need of prior information of the
weight factor. Opposite of this, Pareto-ranking approaches

use the concept of Pareto dominance in evaluating fitness
or in assigning selection probabilities to solutions. In this
approach, the population of estimated parameters is ranked
according to a dominance rule, and then each solution is as-
signed a fitness value based on its rank in the population.
The first Pareto ranking technique was proposed by Gold-
berg (1989).

Genetic algorithms (GA) are well suited heuristic meth-
ods for multi-objective optimization problems. In this class
of algorithms solutions are generated using mechanisms in-
spired by natural evolution. They encompass selection, mat-
ing, crossover, and mutation principles. Since the pioneer-
ing work by Schaffer (1985), a number of studies on multi-
objective genetic algorithms (MOGA) have emerged (Konak
et al., 2006). Most of these studies were motivated by a sug-
gestion of a non-dominated GA outlined in (Goldberg, 1989).
The most notable one is the Non-sorting Genetic Algorithm
(NSGA) II developed by (Deb et al., 2002). Compared to
its previous version NSGA first proposed by Srinivas and
Deb (1995), NSGA II shows a significant improvement by
using a fast non-dominated sorting algorithm and the elitism
concept. Several calibration studies of hydrological models
based on NSGA II have been published (Khu and Madsen,
2005; Kollat and Reed, 2006; Madsen and Khu, 2006; Feni-
cia et al., 2007; Reed et al., 2007; Tang et al., 2007).

NSGA II involves four steps (Deb et al., 2002):
Step 1: Population Initialization

– Generate initial populationP of sizeN .

– Evaluate the fitness of each individual inP .

Step 2: Ranking

– SortP based on domination to form fronts.

– Compute “density” or “crowding distance” for each
individual inP .

www.hydrol-earth-syst-sci.net/15/1339/2011/ Hydrol. Earth Syst. Sci., 15, 1339–1354, 2011
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– Make a complete ordered sorting using both above
concepts.

Step 3: Offspring Generation

– Form a pooling group of a size less thanN of the current
population using binary tournament selection

– Implement crossover using Simulated Binary Crossover
(SBX) to create a temporarily offspring set of size ofN .

– Mutate each individual of the above set to create the
offspring populationQ of sizeN .

Step 4: Forming Next Generation Population

– CombineP andQ to makeR (size of 2× N ), then rank
R based on domination and diversity (“crowding
distance”).

– Select the bestN individual inR to form next
generation

– Back to step 3. (the loop consisting of step 3 and step 4
is called main loop of the algorithm)

Table 4 gives values of main parameters used for the NSGA
II in this study.

The stopping criteria of the process
In multi-objective optimization problems, several termi-

nating conditions could be applied to stop the calibration
process, e.g. evolution time, a fixed number of generations.
These criteria can be defined at the beginning of the calibra-
tion process. Another way to determine the termination of
the process is to measure the improvement over the iterations
by comparing a function based on the two Pareto parameter
sets which belong to two successive populations (Zitzler et
al., 2000; Shafii and De Smedt, 2009). In this calibration
framework a fixed number of loops MI (see Table 4) was
used. Due to the computational demand for the whole pro-
cess, MI should be chosen so that the initial populationiP

multiplied by MI is not exceedingly large. The choice ofiP

is elaborated in detail in Sect. 4.4. Through a series of im-
plementing tests withiP ranging from 36 to 60 and MI from
30 to 50, MI was fixed to 30.

4.3 Definition of the calibration objectives

4.3.1 The first objective function

Using the stage hydrographs recorded at 12 stations along the
main stream of the Mekong and Bassac rivers, the first objec-
tive function evaluates the temporal performance in simulat-
ing water levels in the main channels and is formulated based
on the Nash-Sutcliffe model efficiency coefficient:

F1 =

nS∑
i=1

ωS
i F S

i (2)

Table 4. Summary of parameter settings for multi-objective opti-
mization in master-slave parallelization scheme.

Parameters value

Initial population (iP ) 52
Mating pool size (MPS) iP /2
Tournament size (TS) 2 (binary)
Crossover probability (pC) 1
Mutation probability (pM) 1/iP
Number of processors (nP ) 12–14
Maximum iterations (MI) 30

with
nS∑
i=1

ωS
i = 1 and

F S
i = 1−

∑n
t=1h2

t (W
OBS
i,t −WSIM

i,t )2∑n
t=1h2

t (W
OBS
i,t −W

OBS
i )2

(3)

In the above equations,WOBS
i,t , WSIM

i,t are the observed and
simulated water level, respectively, at station numberi and

at time t , W
OBS
i the average observed water level at station

numberi, nS the number of stations,n the number of time
steps in the calibration period.ht andωS

i are weighting co-
efficients. ht indicates the importance given to particular
portions of the hydrograph. This reflects the idea that it is
difficult to obtain a model which performs equally well for
high and low flows (Madsen, 2000), and that, in our flood
study, high flows are of higher importance. Therefore, the
flood peak period of the hydrograph is given a higher weight.
ωi indicates the importance given to a certain location of the
network of gauging stations.F S

i is the weighted form of the
Nash-Sutcliffe coefficient given to station numberi. F1 de-
notes the first objective function which is the maximization
form of the weighted average of the station coefficients men-
tioned. The optimal solution isF1 = 1.

Gauging stations located closer to the sea and showing a
large impact of the ocean tides even during high flows are
given a lower weight. This reflects the lower impact of the
flood wave on the inundation compared to the tidal influence.
Furthermore, gauging stations in Cambodia are also assigned
with a lower weight (except Kompong Cham, where the over-
bank flow happens first initiating the large scale inundation)
because of their relatively low impact on the inundation in
Vietnam, which is the main focus of this study. In the actual
setting of the weights some subjectivity is involved (which is
very often the case), but it is based on expert knowledge of
the hydraulic regime, which is justifiable from our point of
view. In preliminary runs of the calibration we used uniform
weights inF1, but the overall performance of the calibration
was worse compared to the weighted scheme. Table 1 gives
the weights associated to the different stations.
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Fig. 7. Illustration of the evaluation of the spatial performance of
the model using flood extent maps.(a) Representation of the diked
floodplains in the Vietnamese part of the Delta in the model overlain
by the flood extent map. Red dot: node that represents the inunda-
tion state of the area in the floodplain compartment surrounding the
node in the model; yellow pixel: pixel of the extent map matching
the node; gray pixels: neighbouring pixels of the extent map used in
the performance evaluation.(b) Fuzzy membership function used
for the determination of the floodplain compartment nodes as being
flooded.

4.3.2 The second objective function

The second objective function evaluates the spatial perfor-
mance of the model in predicting inundation extent utilizing
the series of ASAR derived flood extent maps. Several ap-
proaches to compare simulated and observed inundation ex-
tents have been proposed and discussed (Aronica et al., 2002;
Hunter et al., 2005; Pappenberger et al., 2007a; Schumann et
al., 2009a). The most recommended measure is the flood area
index, which is a binary pixel-wise comparison of observed
and simulated flood extent maps and which is formulated for
a single flood extent map as:

F M
i =

P 11
i

P 11
i +P 01

i +P 10
i

(4)

where:P 11
i is the number of pixels for which simulation and

observation indicate “wet”.
P 10

i is the number of pixels for which observation indi-
cates “wet” and simulation indicates “dry”.

P 01
i is the number of pixels for which simulation indicates

“wet” and observation indicates “dry”.
F M

i is the flood area index to the flood map numberi.
The deficiencies of this measure, for example bias towards

large inundation extent, are known and reported. Nonethe-
less, due to the lack of better alternatives up to date, it is still
the basic measure used and recommended for deterministic
calibration (see Schumann et al., 2009a for a review). In this
study we accept this limitation and put the focus more on the
development and testing of automatic calibration routines,

instead of improving the goodness of fit measure for the in-
undation extent. However, since the hydrodynamic model
is basically 1-dimensional and does not deliver inundation
maps directly, the method for deriving the flood area index
had to be revised. Interpolating a 2-dimensional flood ex-
tent map for comparison with the observed inundation extent
from the nodes of the 1-dimensional model, which is a quite
error-prone procedure especially in the complex and heav-
ily dike protected floodplains in Vietnam, was an inappropri-
ate option. Therefore we developed the following method,
which also considers uncertainties of the simulation (by the
model setup and imperfect spatial representation) and flood
maps (by classification errors and geo-referencing). Fig-
ure 7a shows the overlay of a flood extent map and a typi-
cal flood plain in Vietnam as represented in the model. The
junction of the four floodplain branches point represents the
inundation state and depth of an enclosed floodplain com-
partment. This is overlain by a single pixel of the flood ex-
tent map (yellow in Fig. 7a). The probability of being flooded
of the simulated nodePsim representing the floodplain com-
partment is defined by a fuzzy set, i.e. a membership func-
tion is assigned to each floodplain node as shown in Fig. 7b.
Just one computational node at the centre of the compartment
(red node in Fig. 7a) is taken into account in the comparison.
However this is an imperfect representation of the inundation
state of the area around the node in the compartment. We
therefore assume that the higher the water depth at the node
the higher is probability of the area around the node being
flooded completely. If the water depth is lower than or equal
to 5 cm, the probability is defined as 0 given the uncertain-
ties of the DEM and the actual micro-topography. In other
words, with simulated water levels below 5 cm the probabil-
ity of the major parts around the node of the compartment
being flooded is zero. On the other hand, if the water depth
is higher than 30 cm, we assume that the area surrounding
the node is inundated completely. This assumption is based
on the typical micro-topography, especially the height of the
low dikes surrounding paddy fields. The probability of inun-
dation for water levels between 5 and 25 cm rises linearly.
And, in order to reduce the spatial error in comparing just
a single pixel of the flood extent map with the state of the
node for the floodplain compartment, also the neighbouring
8 pixels are included in the performance evaluation. Here,
the probability of being floodedPSAR is determined by the
proportion of the 9 cells identified as flooded in the extent
map.

By the assignment of probabilities of a floodplain compart-
ment of being flooded both in the simulation and the map-
ping, the performance of the model can be evaluated proba-
bilistically in a Monte-Carlo procedure comprised two steps:

Step1:

– generate a random numberrsim in (0, 1) for every simu-
lated node; ifrsim is smallerPsim then this node is con-
sidered being wet, otherwise it is dry.
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– generate a random numberrSAR in (0, 1) for every 9-
pixel cell; if rSAR is smallerPSAR then this cell is con-
sidered being wet, otherwise it is dry.

– repeat the actions above for all flood cells

Step 2:

– calculate the measureFi using Eq. (4)

The above two steps are repeated 1000 times (Monte Carlo
sampling). The mean (50 % percentile of the distribution
function ofFi) is considered as the measure based on a single
map numberi.

To calculate the second objective function, the Fi of the
individual extent maps are combined as a weighted sum:

F2 =

nM∑
i=1

ωM
i F M

i (5)

where
nM∑
i=1

ωM
i = 1

F2 is the second objective function to be maximized, with
ωM

i as the weighing coefficient which indicates the impor-
tance given to flood extent map numberi. A perfect match
if all flood extent maps would evaluate toF2 = 1. In the pre-
sented work we used the weighting coefficients as shown in
Fig. 3. Emphasis is given on maps covering the whole flood-
plain in Vietnam and mostly acquired during the flood sea-
son. Four early “almost dry” maps were assigned the value
0 to their weights, because our study is mainly focused on
flood modelling. Maps which do not cover whole area of
interest were assigned a lower weight.

4.3.3 Normalization of objective functions

Many Multi-Objective Evolutionary Algorithms (MOEAs)
use a distance metric to ensure a well-spread distribu-
tion of individuals along the Pareto front. In NSGA it
is the crowding distanced. However, the individual ob-
jective functions may or may not operate over a compa-
rable scale. It is, therefore, important to consider and
adapt to widely disparate scaling among different objectives
(Pedersen and Goldberg, 2004).

In this present study, two objective functions were formu-
lated using different performance measure. The first objec-
tive function is based on Nash-Sutcliffe coefficient, hence
ranges from−∞ to 1 (not fully bounded). While the sec-
ond objective function is founded on flood indexes, which
vary between 0 and 1 (bounded). In the published version of
NSGA II proposed by Deb et al. (2002), the crowding dis-
tance method did not discuss on scaling factor which may
cause bad distribution on the Pareto front. Or, the crowd-
ing distance only took account for the case of known bounds
(Pedersen and Goldberg, 2004). The normalization is for-
malized as:

dj = dj +
fi,j+1−fi,j−1

fi,max−fi,min
(6)

wheredj is the crowding distance for an individualj , fi,j

objective value of theith objective of the individualj . In
literature,fi,max andfi,min are recommended to be fixed or
equal to the two bound values of the objectivei. If the nor-
malization byfi,max andfi,min was not done, the crowding
distance would be dominated by the objective functions with
larger values. Hence distribution of solutions on the Pareto
front would be biased towards those objectives. Furthermore,
for the case of unbounded or not fully bounded range of pa-
rameters, it is necessary to find another way for the normal-
ization. Thereforefi,max andfi,min will be selected as lo-
cal maximum and minimum values of F1 and F2 for each
Pareto front and the normalization is consequently performed
on these varying bounds.

4.4 The master slave parallelization scheme

In order to facilitate the automatic calibration of the model a
parallelization scheme for the optimization process was im-
plemented. Computational time is still the bottleneck of au-
tomatic calibration on single processor unit.

In this study, a typical model run for the simulated time
period of five months took roughly 150 min, which is not ex-
tremely long, but still too long for automatic calibration on
a single processor requiring several hundreds or even thou-
sands of model runs. Therefore a master-slave paralleliza-
tion routine was designed for this study and implemented
on a Windows-based computational server with 16 proces-
sors. In a master-slave scheme the master processor controls
the communication and work load of sub-ordinated – slave
– processors (Tang et al., 2007). Applying this scheme to
the calibration framework (see Fig. 6) the master processor
has a fully functional version of the NSGA II that uses slave
processors to evaluate solution and return objective values to
perform all of the required evolutionary search operations.

The number of processorsnP used for the computation
was selected between 12 and 14. The reason is thatnP

should be enough big to maximize the utilization of multi-
processors units but should not be too big to cause the unit to
stall by processor communication overload. And, in order to
optimize the performance of the computation, the size of the
initial populationiP and the number of CPUsnP should suit
(see Table 4). In general,nP should be an integer divisor of
iP in order to achieve optimal synchronization of the model
runs of the slaves. In the present study, for example, we set
iP to 52 andnP to 13.

4.5 Computational framework

As mentioned before, MIKE 11 was used to create the flood
model in this study. The MIKE software package con-
tains already a generic tool for automatic calibration AU-
TOCAL. The module includes two global optimization al-
gorithms (Shuffled Complex Evolution SCE and Popula-
tion Simplex Evolution PSE), which were applied in some
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Table 5. Parameter sets and objective function values for best solutions for F1 (first line) and F2 (second line).

Strickler roughness coefficient Objective functions
Global Mekong Tien-Hau CamFP VietFP F1 F2

21.502 25.084 43.471 10.315 19.153 0.930 0.242
25.281 42.294 29.483 34.047 10.014−0.064 0.531

published studies on hydrological model calibration (Mad-
sen, 2000; Madsen, 2003; Blasone et al., 2006; Ngo et al.,
2007). However, the current version of AUTOCAL is not
appropriate for presented study for the following reasons:

1. Both above algorithms are mainly designed for single
objective calibration (although they can be suited for
multi-objective optimization by aggregating single ob-
jective calibration).

2. The format of the input and output file should follow the
format supported by AUTOCAL, which at the moment
does not support the use of flood extent maps or spatial
information in general.

3. It requires the installation of the additional commercial
OfficeGrid module for parallel computing facilities.

DHI MIKE is a commercial software package, therefore ac-
cess to the source code in order to implement the required
changes is not possible. In order to meet the requirements
of this study wrapper codes around the actual hydrodynamic
model were developed. A parallel version of NSGA II has
been developed to control the calibration process and serve as
a wrapper for all components. The scripting language Python
was selected due to available packages for paralleliza-
tion (http://wiki.python.org/moin/ParallelProcessing). Fur-
thermore, Python is the main scripting language in Ar-
cGIS, which could be included in the evaluation of the sec-
ond objective functions in future applications, e.g. for 2-
dimensional hydrodynamic model calibration, where a direct
comparison of inundation extents is possible. Others issues
to deal with were reading the ASCII output files of MIKE11
to retrieve the simulation results and comparison with the
flood extend maps.

5 Results and discussion

The flood model was used to simulate the flood season of
2008. A time step of 30 min was chosen to maintain model
stability. For the optimisation algorithmiP was set to 52,
the maximum iterations to 30, and hence the total number of
model runs and objective function evaluations to 1560. The
number of processors used was 13. The evaluation of each
population took about 10 h, i.e. the whole calibration process
took about 300 h or 12.5 days. Figure 8 shows the Pareto

Fig. 8. Pareto-optimal solutions of the final population maximizing
the objective functions.

front of the final population, which consist of 52 Pareto-
optimal solutions. Table 5 lists the parameter sets and ob-
jective function values for the optimal solutions for both F1
and F2.

Figure 8 and Table 5 indicate that the objective function
values for F1 and F2 exhibit a significant spread over the final
population and also on the Pareto front. The best solution for
either objective can only be reached in combination with a
rather poor performance in the other objective. However, F1
is more sensitive than F2 as the wider spread on the horizon-
tal axis in Fig. 8 illustrates. Because the objective function
values were normalized (cf. Sect. 4.3.3), a direct comparison
of the sensitivity by value range is valid.

Figure 9 shows the parameter distribution for the final pop-
ulation over the five parameter classes. The parameter dis-
tributions on the Pareto front exhibit two distinct features:
(1) As already indicated in Table 5, the best solutions for F1
and F2 show an almost contrary behaviour, and (2) the largest
spread in parameter range from the Pareto optimal solutions
is observed in the Cambodian floodplain.

While this is hard to explain by the parameter values alone,
the comparison of the simulated hydrographs as well as the
simulated inundation areas for the best solutions for F1 and
F2 with the observed values provides more specific insights.
Figure 10 shows the observed and simulated inundation areas
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Fig. 9. Parameter distribution of the simulations of final population.

for two different dates in the high flood period. Here it be-
comes obvious, that the best solution for F1 underestimates
the inundation areas, especially in the Long Xuyen Quad-
rangle west of the Bassac/Hau river. Also in the Plain of
Reeds the simulation exhibits some problems in simulating
the observed inundation pattern. Some compartments are
simulated as flooded while being observed as dry and vice
versa. This situation is improved in the best simulation for
F2, as expected. Here the Long Xuyen Quadrangle is inun-
dated to a large extent and also the inundation pattern in the
Plain of Reeds is matched better. However, this improve-
ment comes at the cost of large errors in the simulation of
the hydrographs as shown in Fig. 11. In order to improve
the spatial performance of the model the calibration routine
tries to increase the water levels in the Vietnamese part of
the Delta, for which the comparison of the inundation maps
was performed. This is achieved by lowering the roughness
(higher Strickler coefficients) in the Mekong/Bassac and in
the Cambodian floodplains, causing less inundation and in-
flow in the Tonle Sap. This is illustrated by the simulated
water levels in Kampong Cham, which are about 3 meters
below the observed water levels. By this the buffering capa-
bilities of the Tonle Sap in the model is reduced and more
water is conveyed to the Vietnamese Delta, both through the
main channels and the floodplains. In addition, the rough-
ness was enlarged in the Tien and Hau rivers (lower Strick-
ler coefficients) resulting in simulated water levels about 1 m
above the recorded values (cf. stations Tan Chau and Vam
Nao in Fig. 11). This in turn causes larger inundation areas

in the Long Xuyen Quadrangle and the Plain of Reeds mainly
due to overflow of dikes. The overflow of dikes, respectively
the dike elevations, controls the inundation of closed flood-
plain compartments in Vietnam, while the actual floodplain
flow has only little influence on the inundation extent. This
can be derived from the comparatively small changes in the
roughness of the Pareto optimal solutions for the Vietnamese
floodplains in Fig. 9. These findings indicate that the dike el-
evations as implemented in the model are erroneous, despite
the efforts taken in gathering the best possible information.

Possible error sources are the different datum and projec-
tions used by the different districts and provinces in the Delta
when surveying the dikes. These often do not conform and
can cause inconsistencies in the model. In general it can be
noted that the spatial performance of the model is average at
best and that the main reason is the representation of the dike
elevations in the model. Another error has to be attributed to
the coarser representation of the floodplain compartments in
the model compared to reality.

Simulation with best Euclidean parameter set and dikes
heights−20 %

In order to test the hypothesis of incorrect dike elevations we
performed a simulation with lowered dike heights. For this
simulation we selected the parameter set from the final Pareto
optimal solution with the “smallest Euclidian distance” to the
optimal pit (1,1):
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Fig. 10. Inundation areas from ENVISAT ASAR (blue) and simulated inundation areas (light red) for best solutions for F1 and F2 for two
satellite overpasses during the high flood period. Areas which are both observed and simulated wet appear in purple, both simulated and
observed dry appear white. The red circle indicates the Long Xuyen Quadrangle, the green circle the Plain of Reeds. The small diamonds
represent the floodplain compartments for which the flood area index was calculated.

Fig. 11. Observed and simulated hydrographs for best solutions for
F1 and F2 for selected gauging stations.

min(
√

(1−F1)2+(1−F2)2) (7)

Table 6 lists the parameter set fulfilling the criteria. This set
was used simulating the inundation with dike heights gener-
ally lowered by 20 %. The result in terms of model perfor-
mance is also given in Table 6. Both two objectives show
increased performance when lowering the dike heights by

20 %. This corroborates the hypothesis that the dike repre-
sentation in the model is responsible for the errors in predict-
ing inundation extents. Further investigations on the real dike
heights are therefore advised. However, this is not within the
scope of this paper.

6 Conclusions

This study aims at automatic, multi-objective calibration of
hydrodynamic models and takes a large-scale flood model of
the Mekong Delta as an example. The objectives were the
simulation of (1) temporal dynamics, i.e. stage hydrographs
along the main streams, and (2) spatial dynamics, i.e. flood
extent in the northern part of the Delta in Vietnam. The for-
mulation of both objectives was based on two types of data
source which are complementary and valuable for calibration
of hydrodynamic models. The first source is comprised of
in-situ point measurements of a network of gauging stations.
The second one is a series of flood extent maps derived from
remote sensing satellite imagery (ENVISAT ASAR). An au-
tomatic calibration process based on the multi-objective ge-
netic algorithm NSGA II has been developed in order to op-
timize both objectives simultaneously. Furthermore, to over-
come the main handicap of computation time required, a
master-slave parallelization scheme on multi-processor CPU
has been implemented.
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Table 6. Best Euclidian distance parameter set of the final Pareto optimal population and performance values of F1 and F2 and corresponding
Euclidian distances to the optimal pit (1,1) with original (in normal font style, upper) and lowered dike heights (in bold, lower) cases.

Strickler coefficient Objective
Euclidian Distancefunctions to (1, 1)

Global Tien-Hau Meko-Bass CamFP VietFP F1 F2

20.816 24.808 34.512 10.000 14.859
0.745 0.405 0.647

0.759 0.499 0.556

It can be concluded that an automatic, multi-objective cal-
ibration of hydrodynamic models, even of such large-scale
and complex applications as in the Mekong Delta, is possi-
ble. This is an important step towards more objectivity in hy-
drodynamic model calibration. The calibration showed that
a trade-off between the two objectives exists – a good perfor-
mance in one of the objectives can only be reached at the ex-
pense of a poor performance in the other. Exploring the best
solutions for the single objective functions it became clear
that the model contains deficiencies in the representation of
the dike system in Vietnam. Thus it can be concluded that the
automatic, multi-objective calibration is not only able to pa-
rameterize a hydrodynamic model properly, but also able to
identify model deficiencies on an objective basis. This con-
clusion was corroborated by a sensitivity simulation using
the best Euclidean distance parameter set and dike heights
generally lowered by 20 %, which improved the performance
of the model. By obtaining a set of Pareto-optimal solutions,
it is also possible to derive uncertainty estimates of simula-
tion runs. This is achieved by evaluating the ensemble of
model results obtained with the Pareto-optimal parameteri-
zations. Thus the benefit of the multi-objective, automatic
calibration is trifold, encouraging us to advocate for an in-
creasing use of this procedure in hydrodynamic modelling.
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