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Abstract. Vertisols are clay soils that are common in the
monsoonal and dry warm regions of the world. One of the
characteristics of these soil types is to form deep cracks dur-
ing periods of extended dry, resulting in significant variation
of the soil and hydrologic properties. Understanding the in-
fluence of these varying soil properties on the hydrological
behavior of the system is of considerable interest, particu-
larly in the retrieval or simulation of soil moisture. In this
study we compare surface soil moisture (θ in m3 m−3) re-
trievals from AMSR-E using the VUA-NASA (Vrije Uni-
versiteit Amsterdam in collaboration with NASA) algorithm
with simulations from the Community Land Model (CLM)
over vertisol regions of mainland Australia. For the three-
year period examined here (2003–2005), both products dis-
play reasonable agreement during wet periods. During dry
periods however, AMSR-E retrieved near surface soil mois-
ture falls below values for surrounding non-clay soils, while
CLM simulations are higher. CLMθ are also higher than
AMSR-E and their difference keeps increasing throughout
these dry periods. To identify the possible causes for these
discrepancies, the impacts of land use, topography, soil
properties and surface temperature used in the AMSR-E al-
gorithm, together with vegetation density and rainfall pat-
terns, were investigated. However these do not explain
the observedθ responses. Qualitative analysis of the re-
trieval model suggests that the most likely reason for the

Correspondence to:Y. Y. Liu
(yi.y.liu@csiro.au)

low AMSR-E θ is the increase in soil porosity and surface
roughness resulting from cracking of the soil. To quantita-
tively identify the role of each factor, more in situ measure-
ments of soil properties that can represent different stages of
cracking need to be collected. CLM does not simulate the
behavior of cracking soils, including the additional loss of
moisture from the soil continuum during drying and the in-
filtration into cracks during rainfall events, which results in
overestimatedθ when cracks are present. The hydrological
influence of soil physical changes are expected to propagate
through the modeled system, such that modeled infiltration,
evaporation, surface temperature, surface runoff and ground-
water recharge should be interpreted with caution over these
soil types when cracks might be present. Introducing tempo-
rally dynamic roughness and soil porosity into retrieval algo-
rithms and adding a “cracking clay” module into models are
expected to improve the representation of vertisol hydrology.

1 Introduction

Soil moisture is a key variable in the water and energy cy-
cles and its accurate representation and measurement is re-
quired for estimation and prediction of infiltration, evapora-
tion, runoff and latent, sensible and ground heat fluxes. Soil
moisture over large scales can be derived from remote sens-
ing observations (e.g., Owe et al., 2008; Gao et al., 2006;
Wen et al., 2003; Wagner et al., 1999) or model simulations
(e.g., Evans and McCabe, 2010; Rodell et al., 2004). Com-
paring remotely sensed soil moisture with other independent
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Fig. 1. Spatial distribution of vertisols over mainland Australia
(based on Isbell, 2002).

soil moisture products such as ground observations, models
or other remote sensing techniques (McCabe et al., 2008;
Scipal et al., 2008; Draper et al., 2009) allows for better un-
derstanding of soil moisture estimates derived by different
approaches (Wagner et al., 2003; McCabe et al., 2005a). Sev-
eral such studies have been conducted and generally show
reasonably good correspondence between remotely sensed
and modeled soil moisture (Choi et al., 2008; Rüdiger et al.,
2009; Santanello Jr. et al., 2007; Vischel et al., 2008).

However, these comparison studies pay little attention to
large scale vertisol regions. Vertisols cover more than 3 mil-
lion km2 globally, with major areas including eastern Aus-
tralia, particularly Queensland with 0.5 million km2 and New
South Wales (see Fig. 1), as well as the Deccan Plateau of
India, eastern Africa, South America and parts of eastern
China. Due to the desirable agricultural and hydraulic char-
acteristics of clay soils, they are disproportionally important
for cropping and irrigation, which makes accurate represen-
tation of the behavior of the soil moisture response important
in characterizing their water and energy balances. Key fea-
tures of these soils include swelling during wetting periods
and shrinking during drying periods, with the potential for
cracks to develop under extended dry conditions. The pore
volume of vertisol soils varies with moisture condition, in-
creasing the difficulty in accurately estimating moisture con-
tent (Cornelis et al., 2006).

Given the relative importance of these soil regions in agri-
cultural production, the accurate representation of soil mois-
ture response is of considerable interest. In the absence of
detailed in situ measurements, remote sensing and land sur-
face modeling approaches offer the only means to obtain es-
timates of the soil moisture state. Identifying whether these
approaches are capable of reflecting the expected responses
of vertisol soils is required. In order to assess the repro-
duction of soil moisture response in clay soils, we compare

the near surface soil moisture content (θ in m3 m−3) de-
rived from the Advanced Microwave Scanning Radiometer
(AMSR-E) with the upper layer moisture content from the
Community Land Model (CLM) across mainland Australia,
focusing on the vertisol regions identified in Fig. 1.

Monthly averages of soil moisture from AMSR-E and
CLM for January and October 2004 are shown in Fig. 2.
January is the monsoon season for northern Australia and
the dry season for the south, while October is the wet season
over southern Australia (particular southeast and southwest)
and dry season over the north. The expected soil moisture
responses to these large scale precipitation trends are clearly
reflected in both satellite based retrievals and in land surface
model output. In the vertisol regions of north Australia, the
soil moisture is clearly higher than the surrounding non-clay
soils during the wet season (see Fig. 2a and b). For the land
surface model data, this trend continues into the dry season
(Fig. 2d). For AMSR-E retrievals however, the clay soils il-
lustrate a lower moisture state relative to surrounding areas
(Fig. 2c). Under similar meteorological conditions, the soil
moisture content of clay soils would not be expected to be
lower than non-clay soils, since the smaller clay particles are
able to retain more water molecules. Temporally, the diver-
gence between the land surface model and AMSR-E starts at
the end of the rainy season, keeps increasing through the dry
season and peaks at the beginning of the next rainy season
(Fig. 3).

Explaining these differing responses is the key motiva-
tion of the current paper. Explicitly, we seek answers to the
following questions. First, what causes the low values of
AMSR-E θ over vertisols during dry periods? Second, what
causes the increasing difference between AMSR-E and CLM
θ during dry and early rainy seasons over vertisols? Also,
if CLM does not reasonably represent soil moisture tempo-
ral dynamics on vertisols, what are the potential impacts on
linked hydrological components?

In identifying the possible reasons for observed variations,
a number of contributing factors will be examined, including:

– the influences of topographic conditions and land use;

– the impacts of soil properties (by running the retrieval
algorithm using uniform soil properties);

– the effects of vegetation density on the accuracy of
AMSR-E θ retrievals;

– the temporal dynamics of other hydrological influences
such as rainfall; and

– the hydrological influences of cracks developed during
dry periods.

All of these have the potential to influence both the simu-
lated soil moisture from CLM and the retrieval algorithm
used to derive near soil moisture from AMSR-E. The follow-
ing sections outline the data sources and the methodology
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Fig. 2. Monthly averages of AMSR-E retrieved and CLM simulatedθ (m3 m−3) for January and October 2004, describing the moisture
condition during the wet and dry season for northern Australia, respectively. The black lines indicate the extent of vertisols. Average daily
AMSR-E θ of vertisol areas within the black square (panel c) is plotted in Fig. 3.

employed to discriminate the possible reasons for the dif-
fering soil moisture responses observed between these two
estimation techniques, and identify where improvements in
descriptions of the soil physical processes might be required
to improve estimation over vertisol soil types.

2 Data sources

The following sections briefly outline the sources and types
of information used in this analysis.

2.1 AMSR-E soil moisture

The AMSR-E sensor onboard NASA’s Aqua satellite has
been providing passive microwave measurements at 6.9 GHz
(C-band) and five higher frequencies (including 36.5 GHz
Ka-band) since May 2002, with daily ascending (13:30 equa-
torial local crossing time) and descending (01:30 equatorial
local crossing time) overpasses.

There are several algorithms to retrieve soil moisture us-
ing AMSR-E observed brightness temperatures. Draper et
al. (2009) illustrated that the soil moisture retrievals by an al-
gorithm developed by Vrije Universiteit Amsterdam, in col-
laboration with NASA (hereafter VUA-NASA) had better

correspondence to in situ data over south-eastern Australia
than other retrievals. In addition, no apparent radio frequency
interference on AMSR-E C-band brightness temperature was
observed over Australia (Njoku et al., 2005), making this a
useful test-bed to analyze retrievals from this band. There-
fore, the VUA-NASA product is applied in this study.

The VUA-NASA algorithm uses the Land Parameter Re-
trieval Model (LPRM), requiring horizontal (H) and vertical
(V) polarization C-band and V polarization Ka-band bright-
ness temperatures (Tb) (Owe et al., 2008). Soil surface tem-
perature is estimated from Ka-bandTb (Holmes et al., 2009).
The vegetation optical depth (τ , dimensionless) and soil-
water mixture dielectric constant are derived simultaneously.
The soil moisture is solved from the dielectric constant using
the Wang-Schmugge model (Wang and Schmugge, 1980).
Several assumptions are made in the LPRM, including: a
constant single scattering albedo, canopy surface tempera-
ture equal to soil surface temperature, equality of vegetation
parameters for both H and V polarizations, and minimal ef-
fect of surface roughness (De Jeu, 2003).

Here we useθ retrievals acquired by descending passes
as the minimal temperature gradients at midnight are more
favorable for the retrievals (De Jeu, 2003). Soil moisture re-
trievals from C-band were re-sampled to 0.25◦ (about 25 km)
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Fig. 3. (a)Average daily CLM simulated and AMSR-E retrievedθ for the vertisol soils within the square shown in Fig. 2c from 1 January
2003 through 31 December 2005.(b) Difference between daily CLM and AMSR-Eθ . The smooth line was derived by taking a 30-day
moving average.

resolution over mainland Australia. The C-bandθ represents
the top few centimeters of soil. For example, the penetration
depth of AMSR-E C-band is about 1 cm forθ of 0.2 m3 m−3,
and 2 cm forθ of 0.1 m3 m−3 (Kuria et al., 2007).

2.2 Land surface model soil moisture

The CLM is a publicly available distributed land surface
model that combines components from the Common Land
Model and the National Center for Atmospheric Research
Land Surface Model (NCAR-LSM) (Oleson et al., 2004; Dai
et al., 2003).

In CLM, the vertical profiles of sand and clay are taken
into account by using a 10-layered soil component (Bonan
et al., 2002). In this study, we only use the top layer soil
moisture (about 1.8 cm), giving a depth comparable with the
AMSR-E soil moisture. Soil moisture dynamics of the top
layer are governed by infiltration, surface and sub-surface
runoff, gradient diffusion, gravity and evapotranspiration,
with soil hydraulic properties defined as functions of sand
and clay percentage (psand andpclay). Equations describing
the soil properties are given below; additional details about
CLM can be obtained from Oleson et al. (2004).

θsat= 0.489−0.00126(psand) (1)

9sat= −10.0×101.88−0.0131(psand) (2)

B = 2.91+0.159(pclay) (3)

9 = 9sat(θ/θsat)
−B (4)

whereθsat is the saturated soil moisture (m3 m−3), 9sat is
the saturated soil matric potential (mm),θ is soil moisture
(m3 m−3) and9 is soil matric potential (mm) (Oleson et al.,
2004).

For this study, CLM was run at a 3-hourly time step and
the outputs were re-sampled to 0.25◦ spatial resolution. To
correspond with the time of the AMSR-E descending over-
pass, CLM soil moisture values at 01:00 a.m. LT were used
for comparison. The unit of CLM soil moisture is kg m−2.
Given that the soil layer depth is 1.8 cm, CLM soil moisture
(kg m−2) was converted toθ (m3 m−3) for direct comparison
with AMSR-E retrievals.

The LPRM and CLM model both use the same soil prop-
erty dataset (http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.
php). The dataset is based on the Food and Agriculture Or-
ganization (FAO) Soil Map of the World, which is linked to a
global database of over 1300 soil samples. The data was spa-
tially re-sampled to 0.25◦ resolution for use in LPRM and
CLM.

2.3 Vegetation information

The Normalized Difference Vegetation Index (NDVI) prod-
uct, derived from the Advanced Very High Resolution
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Radiometer (AVHRR) instruments on-board the National
Oceanic and Atmospheric Administration (NOAA) plat-
forms, is provided in the Global Inventory Monitoring and
Modeling Studies (GIMMS) (seehttp://glcf.umiacs.umd.
edu/data/gimms/) dataset (Tucker et al., 2005). GIMMS was
used in this study to examine vegetation density, together
with the monthly AMSR-E vegetation optical depth (τ ) that
is simultaneously retrieved with AMSR-Eθ . Both of these
variables are indicators of vegetation density, although they
have different physical interpretations. In general, NDVI rep-
resents the greenness of vegetation, and vegetation optical
depth is largely a function of vegetation water content and to-
tal biomass (De Jeu, 2003). Higher retrieval accuracy of soil
moisture is expected with lower vegetation density (Jackson
and Schmugge 1995; Njoku and Entekhabi 1996).

2.4 Precipitation data

The dynamics inθ are expected to be well correlated to rain-
fall (McCabe et al., 2005b). Gridded rainfall data for main-
land Australia were included in the analysis for comparison
with soil moisture patterns. The data were interpolated from
point observations by the Queensland Department of Natu-
ral Resources and Mines (http://www.longpaddock.qld.gov.
au/silo/). The original daily 0.05◦ resolution gridded data
was re-sampled to 0.25◦ resolution to allow direct compari-
son.

2.5 Topographic data

The GEODATA 9 s digital elevation model (DEM-9S) ver-
sion 3 product was used in this analysis to establish the topo-
graphic conditions (seehttp://www.ga.gov.au). This product,
jointly developed by the Australian National University and
Geoscience Australia, provides a grid of ground level eleva-
tion covering the whole Australia, with a spacing of 9 s in
longitude and latitude (approximately 250 m).

3 Results and discussions

3.1 Effects of surface and atmospheric variables on
AMSR-E

This section focuses on the effects of topography, land use,
vegetation density, and precipitation pattern on the AMSR-E
soil moisture retrievals over the vertisols.

The large scale vertisol region spanning from NT to cen-
tral QLD (Fig. 1), which exhibits low AMSR-Eθ during dry
periods (Fig. 2c), is referred to as the Mitchell Grass Downs.
The region is dominated by Mitchell grasses, lacking in na-
tive trees (attributed to the deep cracking behavior of the clay
soils) and used predominantly for cattle grazing (ANRA,
2001). Large scale land management practices such as tillage
that may potentially impact surface roughness and/or vege-
tation cover are unlikely to occur, thus the low AMSR-Eθ

Fig. 4. Elevation map of vertisol regions over mainland Australia.

during dry periods can not be attributed to land management.
The landscape across this region and non-clay soils in their
vicinity is reasonably flat (Fig. 4) and therefore topography
appears to play no significant role in AMSR-E soil moisture
retrievals either.

Both NDVI and AMSR-E vegetation optical depth demon-
strate low vegetation density over vertisols and surround-
ing non-clay soils during January and October 2004, typi-
cal of the vegetation coverage in this region (Fig. 5). Dur-
ing the dry October 2004, the NDVI over the Mitchell Grass
Downs is clearly lower than surrounding areas, which might
be attributed to the vegetation types. While the surround-
ing non-clay areas are mainly covered by perennial hum-
mock grasses, woodlands and shrublands, the Mitchell Grass
Downs are dominated by relatively short Mitchell grasses
with little top cover (Cofinas and Creighton, 2001). The cat-
tle grazing activities over the Mitchell Grass Downs may fur-
ther exacerbate the difference.

Temporally, AMSR-Eτ and NDVI show very similar veg-
etation seasonality (Fig. 6). Over region A, the fluctuations
of both products are highly correlated. Over region B, slight
differences can be observed between August and November.
While NDVI has a decreasing tendency, AMSR-Eτ slightly
increases or stays constant. Overall, low vegetation density
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Fig. 5. Monthly averages of AMSR-E vegetation optical depth (τ ) and NDVI for January and October 2004.

observed from AMSR-Eτ and NDVI indicates that the im-
pacts of vegetation on AMSR-Eθ are minimal over vertisols
and non-clay soils in close vicinity.

The monthly total rainfall for January and October 2004 is
shown in Fig. 7. It can be seen that vertisol regions in north-
ern Australia did not receive more rainfall in January 2004 or
less rainfall in October 2004 than surrounding non-clay soils,
suggesting that rainfall does not explain the distinct AMSR-
E θ behavior over vertisols observed in Fig. 2.

3.2 Effects of soil physical characteristics on AMSR-E

Since the low AMSR-Eθ values over vertisols in the dry
season can not be attributed to surface or atmospheric fac-
tors, the most likely reason lies in the soil types (e.g., clay or
sand) and/or the unique physical characteristics of vertisols –
shrinking and cracking under dry conditions.

3.2.1 Soil types

To assess the influences of soil types in the VUA-NASA
algorithm, monthly averages of AMSR-E soil moisture re-
trievals were simulated by assuming the entire continent had
a homogenous sand soil type, results of which are shown in
Fig. 8. In comparison with the original retrievals (Fig. 2), val-
ues ofθ retrievals over vertisols shift closer to surrounding

non-clay soils in the wet season. The contrast between ver-
tisols and non-clay soils however becomes more obvious in
the dry season. Similar spatial patterns are obtained when as-
suming homogeneous distributions for clay soils. From this
analysis of constant soil type on retrievals, it seems clear that
the soil property dataset used is not the cause for the different
θ patterns seen over vertisols and non-clay soils.

3.2.2 Surface temperature

As mentioned in Sect. 2.1, in the VUA-NASA algorithm, soil
surface temperature is estimated from Ka-bandTb using a
linear relationship.Tb is principally determined by emissiv-
ity and surface temperature. With cracks developing over
vertisols during dry periods, soil porosity and surface rough-
ness (h) increase, which may lead to increased emissivity and
consequently higherTb. As a result, the derived surface tem-
perature, following the linear relationship withTb, might be
overestimated. To investigate if higherTb (i.e. overestimated
surface temperature) could cause the lowθ retrievals over
vertisols, the VUA-NASA algorithm was applied by only
changingTb and keeping other parameters the same (Fig. 9).
Simulations show that the higher theTb, the higher are the
values ofθ . Thus, surface temperature does not provide a
mechanism for underestimation of AMSR-Eθ over vertisols.
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Fig. 6. Time series of averaged AMSR-Eτ and GIMMS NDVI of vertisol areas within regions A and B (shown in Fig. 5c). The AMSR-Eτ

is resampled to 15-day average for comparison with NDVI. It should be noted that although both products share the same y-axis, they have
different physical interpretations (see Sect. 2.3).

3.2.3 Soil porosity and surface roughness

Both soil porosity and surface roughness are assumed con-
stant in the VUA-NASA algorithm. Figure 10 qualitatively
illustrates how neglecting an increase in soil porosity could
lead to an underestimation of soil moisture. Suppose that
under a condition of no cracks, soil porosity of the entire
soil column is 0.45 m3 m−3 and soil moisture is 0.1 m3 m−3.
When cracks are open, the soil porosity of the top soil layer
may increase to 0.6 m3 m−3 (while soil moisture is still as-
sumed to be 0.1 m3 m−3). The increase in soil porosity in-
creases the proportion of air and decreases the fraction of
soil (including soil water and solid soil material) within a unit
volume. The dielectric constant of air is much smaller than
solid soil and water, thus increasing soil porosity will reduce
the mixture dielectric constant for the same soil moisture
(Fig. 10b). The soil porosity (0.45) and fraction of clay/sand
(40%/31%) are taken from FAO and represent typical values
for vertisols over mainland Australia. Surface temperature
(Ts: 300 K) is representative over vertisols in north Australia
during October 2004. The Wang-Schmugge model (Wang
and Schmugge, 1980) is utilized to link these variables (also
including actual soil moisture and soil porosity) to the mixed
dielectric constant.

Figure 10c shows that if the increase in soil porosity (i.e.,
from 0.45 to 0.6) is not considered, the retrieved soil mois-
ture will be lower than the actual soil moisture. One might
expect that the difference between retrieved and actual soil
moisture will be greater when the cracks at the surface are
wider. As shown in Fig. 10c, when the actual soil moisture is
0.1 m3 m−3 and soil porosity of vertisols increases to 0.7, the
retrieved soil moisture is as low as 0.02 m3 m−3 if ignoring
the change in soil porosity. If soil porosity keeps increasing
and/or actual soil moisture decreases, the dielectric constant
may be lower than that when soil moisture is zero and soil
porosity is 0.45, which will result in “invalid” soil moisture
retrievals.

De Jeu et al. (2009) demonstrated that increasing the value
of surface roughness in the VUA-NASA algorithm when
the soil dries would improve the accuracy of remote sens-
ing soil moisture retrievals. Here we compare the influences
of surface roughness and soil porosity on the AMSR-E re-
trievals: that is, only changing surface roughness or soil
porosity while keeping everything else constant. Increasing
surface roughness or soil porosity can increase the values of
θ (Fig. 11). The difference is that increasing surface rough-
ness will result in lowerτ , while increasing soil porosity will
not affect the values ofτ . Thus comparing AMSR-Eτ with
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Fig. 7. Monthly total rainfall (mm) for January and October 2004.

other vegetation index (e.g., NDVI) may help determine the
more important factor in the underestimation of AMSR-Eθ

over vertisols. If AMSR-Eτ highly agree with NDVI (e.g.,
Fig. 6a), low values of AMSR-Eθ over vertisols may be
mainly attributed to soil porosity change. If AMSR-Eτ devi-
ates from the pattern of NDVI (e.g. NDVI decreasing while
τ increasing as shown in Fig. 6b), AMSR-Eτ seems to be
overestimated and thus the change in surface roughness may
play a crucial role.

In the absence of any in situ measurements over these ver-
tisol regions, we can not perform any quantitative analysis
to identify the individual contribution from soil porosity and
surface roughness; however it is clear that both factors play
a role in the underestimation ofθ when cracks are present.
More in situ measurements of soil properties (e.g., soil mois-
ture, soil porosity and fractions of clay and sand) represent-
ing different stages of cracking over vertisols need to be col-
lected to better characterize these responses.

Fig. 8. Monthly averages of AMSR-E surface soil moisture
(m3 m−3) for January and October 2004, using uniform soil prop-
erties (soil porosity and fractions of sand/clay) in the retrieval algo-
rithm.

3.3 Effects of soil physical characteristics on CLM

We now discuss whether CLM reasonably represent the soil
moisture over vertisols. As expected, values of CLMθ over
vertisols are higher than surrounding non-clay soils in the
dry season (Fig. 2), as the smaller clay particles are able
to retain more water molecules. This means that the soil
type is reasonably represented in the land surface model.
In addition, the vegetation types and topographic condi-
tions represented in the CLM are quite similar as shown in
Figs. 4 and 5 with slight differences in spatial resolution (see
http://ldas.gsfc.nasa.gov/gldas). The temporal responses of
AMSR-E and CLMθ are rather similar during the wet sea-
son (Fig. 3), which means the precipitation is also well rep-
resented in the land surface model.

Therefore, the most likely reason for the divergence be-
tween AMSR-E and CLMθ during the dry season (see
Fig. 3), from the land surface model perspective, seems to
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Fig. 9. The impacts of 37 GHz verticalTb on retrieved soil moisture
using the VUA-NASA algorithm. The vertical and horizontalTb at
6.9 GHz are taken from AMSR-E observations on 1 October 2004
for one grid cell over the vertisols within region A (shown in Fig. 5).
Soil porosity and fractions of clay/sand are taken from FAO soil
property dataset for the same grid cell.

lie in the lowest CLMθ . In the dry season, the lowest CLM
θ stays at permanent wilting point when9max is equal to
−1.5×105 mm. From Eqs. (1), (2) and (3) it can be seen
that minimum soil moisture is dependent on fractions of clay
and sand. Clay soils have greater9sat, higherθsat and higher
value ofB. From Eq. (4), we can calculate that under the
same9, theθ of clay soils is higher than non-clay soils. For
soils without cracking characteristics, it might be valid that
the lowestθ is reached at the permanent wilting point. How-
ever, the field experiment conducted by Chan and Hodgson
(1981) over cracking grey clay soils in southeast Australia
revealed that once cracks in vertisols are formed, further loss
of moisture from soil also occurs as direct evaporation, dry-
ing the soil to below the permanent wilting point. The mea-
sured9 can decrease to−8.0×105 mm and even lower. Se-
lim and Kirkham (1970) performed a laboratory experiment
and found that cracks could increase the total evaporation by
2.5 cm over 12 days, 30% higher than soils without cracks.
Without considering cracks, CLMθ over vertisols during dry
periods is therefore likely overestimated, which may partially
cause the increasing difference between AMSR-E and CLM
θ during dry seasons (Fig. 3). Furthermore, the underesti-
mated evaporation might lead to an overestimation of sensi-
ble heat and surface temperature over vertisols. Evans and
McCabe (2010) found that a regional climate models sim-
ulated surface temperature over vertisols in summer (when
vertisols regularly dry out and crack) were higher than the
observed temperature by more than 2 K – a possible reper-
cussion of the poor representation of the cracking clay soils.

The impacts of soil cracking on the hydrological cycle are
not limited to surface soil moisture and evaporation. Austin
and Prendergast (1997) conducted a border (also referred to
as flood, surface or bay) irrigation experiment over cracked
soils in south-east Australia and found that the infiltration
through soil cracks represented almost half of the total ir-
rigation. In the Ord River Irrigation Area in north-western
Australia, Smith (2008) observed the persistent groundwater
rise during the past 10 years, and attributed this to large in-
filtration losses through cracking clays in the early wet sea-
son. Over rain-fed crops on clay soils in central Queens-
land, the infiltration rate when cracks are open is greater than
25 mm per hour, while the infiltration rate is only 1–2 mm per
hour when no cracks are present. Outside Australia, Allen et
al. (2005) monitored the rainfall, runoff, soil moisture, and
groundwater levels over a hydrological year in north-central
Texas and found that recharge through the cracks allowed
rapid and relatively deep wetting of otherwise impermeable
clays. This finding is also supported by Amidu and Dun-
bar (2007). This may explain why the largest difference be-
tween CLM and AMSR-Eθ is observed at the beginning of
the rainy season (Fig. 3). At the start of the wet season, the
cracks are present and AMSR-Eθ is still underestimated.
Without considering open cracks in CLM, the water actu-
ally infiltrating into open cracks might be partly considered
as surface soil moisture in the simulations, which explains
the largest discrepancy between AMSR-E and CLMθ . Af-
ter several rainfall events, cracks disappear and the AMSR-E
and CLMθ gradually converge.

4 Conclusions

AMSR-E retrievals and CLM simulations provide two dif-
ferent approaches to approximating the actual soil moisture.
Responses of estimated soil moisture to meteorological con-
ditions correspond well during wet periods. However, neither
approach adequately accounts for the behavior of cracking
clays under very dry conditions. Since the cracking behavior
of clays has impacts on the partitioning of precipitation and
irrigation waters into groundwater recharge, soil moisture,
surface runoff and evaporation, model outputs from CLM
and AMSR-E retrievals should be interpreted with care over
these soil conditions.

From the aspect of AMSR-E retrieval, the assumption of
constant soil porosity and surface roughness in the retrieval
algorithm results in underestimation of soil moisture. How
to cope with temporal changes in soil porosity and surface
roughness remains a challenge to retrieving soil moisture
from passive microwave satellite observations. This study
illustrates that the effect of cracking soils is one reason why
it is difficult to derive estimates of soil moisture content over
the top few cm of the soil column with good absolute accu-
racy. Even if we could, the relationship of absolute water
content between top layer and greater depth can be weak
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Fig. 10.Simplified illustration of how open cracks increase soil porosity and further lead to an underestimation of soil moisture. With cracks
opening, the porosity at the surface will increase. Due to the low dielectric constant of air, the mixed dielectric constant at the surface will
decrease. Without considering the increase in porosity, the estimated soil moisture will be lower than the actual.

Fig. 11. The impacts of(a) surface roughness (h) and(b) soil porosity on retrieved soil moisture and vegetation optical depth using VUA-
NASA algorithm.

(Manfreda et al., 2007), not just because of soil water move-
ment (e.g. infiltration into open cracks), but also due to ver-
tical changes in structure and bulk density (Van Dam, 2000).

However, this need not be a major obstacle for use-
ful application of satellite passive microwave soil moisture
for many purposes. Crow et al. (2009) demonstrate how
improvements in satellite-based rainfall estimates can be
achieved by utilizing changes in satellite-based soil mois-
ture retrievals over the contiguous United States. Reichle
and Koster (2004) used the cumulative distribution functions
matching technique before assimilatingθ into GLDAS, il-
lustrating that absolute accuracy is not necessarily required.

Liu et al. (2009) demonstrated that a merged satellite-based
soil moisture product from several instruments on different
satellites could capture the actual long term changes in sur-
face water availability despite low absolute accuracy of orig-
inal products. McCabe et al. (2008) also describe using soil
moisture retrievals as an independent evaluation variable for
other remote sensing retrievals and land surface model out-
put. Efforts to utilize the spatial pattern intrinsic in satellite
based retrievals also provide a novel means of utilizing the
information rich data.
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From a land surface modeling perspective, if the influence
of cracking soils are not considered, the accurate partitioning
of precipitation into soil moisture, evaporation, infiltration
and surface runoff is likely to be affected, suggesting that
caution be used in interpreting these model outputs.

Despite uncertainties related to cracking clays, useful in-
formation can still be obtained from comparisons between
AMSR-E and CLM soil moisture. The differences between
CLM and AMSR-E soil moisture might indicate the periods
of crack formation, expanding and resealing. Developing a
dynamic module of “cracking clays” and incorporating this
into land surface and hydrological models may improve the
estimates of hydrological cycle and energy fluxes.

The influence of cracking vertisols on AMSR-E retrieved
soil moisture illustrated in this paper remains an open issue
to address in both current and future soil moisture missions,
such as the Soil Moisture and Ocean Salinity (SMOS) and
Soil Moisture Active/Passive (SMAP) sensors. To achieve
the stated aim of providing volumetric soil moisture with the
accuracy of 0.04 m3 m−3 or better (Kerr et al., 2000; SMAP
Mission, 2007), attention to such issues is required.
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