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Abstract. Chloride is commonly used as an environmental
tracer for studying water flow and solute transport in the en-
vironment. It is especially useful for estimating groundwater
recharge based on the commonly used chloride mass balance
(CMB) method. Strong spatial variability in chloride deposi-
tion in coastal areas is one difficulty encountered in appropri-
ately applying the method. A high-resolution bulk chloride
deposition map in the coastal region is thus needed. The aim
of this study is to construct a chloride deposition map in the
Mount Lofty Ranges (MLR), a coastal hilly area of approxi-
mately 9000 km2 spatial extent in South Australia. We exam-
ined geographic (related to coastal distance), orographic, and
atmospheric factors that may influence chloride deposition,
using partial correlation and regression analyses. The results
indicate that coastal distance, elevation, as well as terrain as-
pect and slope, appear to be significant factors controlling
chloride deposition in the study area. Coastal distance ac-
counts for 70% of spatial variability in bulk chloride depo-
sition, with elevation, terrain aspect and slope an additional
15%. The results are incorporated into a de-trended residual
kriging model (ASOADeK) to produce a 1 km×1 km resolu-
tion bulk chloride deposition and concentration maps. The
average uncertainty of the deposition map is about 20–30%
in the western MLR, and 40–50% in the eastern MLR. The
maps will form a useful basis for examining catchment chlo-
ride balance for the CMB application in the study area.

Correspondence to:H. Guan
(huade.guan@flinders.edu.au)

1 Introduction

Chloride is one of the most commonly used environmental
tracers for studying water flow and solute transport in sur-
face water bodies (Dunn and Bacon, 2008; Shaw et al., 2008;
Hrachowitz et al., 2009), vadose zones and aquifers (Eriks-
son and Khunakasem, 1969; Walker et al., 1991; Cook et al.,
1992; Phillips, 1994; Wood and Sanford, 1995; Kirchner et
al., 2000; Edmunds et al., 2002; Scanlon et al., 2002; Minor
et al., 2007). It is particularly useful to estimate groundwater
recharge based on chloride mass balance (CMB). The CMB
method can be applied either for estimating point recharge
with chloride concentration in the steady-state soil profile,
or for estimating catchment-average recharge with chloride
concentration in mean recharged groundwater (Wood, 1999).
For situations where the atmospheric input is the only chlo-
ride source, and no chloride sinks exist in the system, the
CMB method can be formulated as

CpP = CgG+CrR (1)

whereCp is chloride concentration in bulk precipitation,P is
average precipitation,Cg is chloride concentration in ground-
water that was recharged from the catchment,G is ground-
water recharge,Cr is chloride concentration in the runoffR.
The CMB method does not require knowledge of detailed
dynamic hydrological processes (although with such infor-
mation, it would help to apply the CMB method more re-
liably). Thus, the method provides a good solution to es-
timate catchment groundwater recharge in mountainous ter-
rains where hydrogeological and hydrometeorological con-
ditions are complex (Wilson and Guan, 2004). In order to
apply the CMB method, the atmospheric chloride input must
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be known. In the inland area, atmospheric chloride depo-
sition does not vary significantly over large distances (e.g.,
∼100 km) (Keywood et al., 1997). One estimate of average
chloride deposition, either directly measured from bulk pre-
cipitation sampling, or indirectly inferred from the ratio of
36Cl/Cl which has a 30% uncertainty (Scanlon, 2000), is of-
ten used in the CMB calculation. In the coastal area, how-
ever, large spatial variability of chloride deposition is ob-
served (Blackburn and McLeod, 1983; Keywood et al., 1997;
Kayaalp, 2001; Biggs, 2006; Alcala and Custodio, 2008a).
A detailed map of atmospheric chloride deposition in the
coastal area is thus needed to apply the CMB method for
estimating groundwater recharge.

It is commonly accepted that the primary source of the
atmospheric chloride comes from the ocean. At the air-sea
interface, the wind-induced whitecaps and bursts inject sea
water drops into the atmosphere, forming sea salt aerosols
(Lewis and Schwartz, 2004). About 10% of total chloride
in the sea salt aerosols moves into the continents, and the
majority of this chloride is deposited within 100 km of the
coastal area (Eriksson, 1959, 1960). It should be noted that
the anthropogenic sources may add chloride to the atmo-
sphere at some extreme situations where serious air pollution
occurs (Alcala and Custodio, 2008b). Two primary mecha-
nisms, dry deposition and wet deposition, control chloride
removal from the atmosphere to the land surface. Chloride-
bearing aerosols can settle down to the surface by gravita-
tional forces. This dry deposition process is highly depen-
dent on wind conditions and the aerosol size. Chloride in the
aerosols can also be rained out from the cloud, or washed
out by the falling rain drops. This wet deposition process
is dependent on precipitation characteristics. In terms of
hydrological applications, it is the total chloride deposition
(bulk chloride deposition, or BCD hereafter), i.e., the sum of
wet and dry depositions, that is important because it gives
the input chloride for the CMB calculation (Wood and San-
ford, 1995). Thus, BCD is usually measured from accumu-
lated rain samples over a certain period, with samplers sit-
ting in an open area, and exposed to the sky all the time.
As chloride-bearing aerosols originate from the ocean, it is
typically observed that BCD over the continents decays ex-
ponentially with increasing distance from the coast (coastal
distance hereafter) (Keywood et al., 1997; Gustafsson and
Larsson, 2000).

The function of coastal distance dependence, when quan-
titatively determined, is useful to estimate BCD for a point
location at some known distance from the coast. However,
two difficulties are encountered to directly apply this func-
tion in BCD mapping. First, the coastal distance-dependence
reflects the efficiency of atmospheric chloride transport and
how quickly it falls out or precipitates out. Therefore its pa-
rameterization may vary from place to place (Alcala et al.,
2008a), which we term as the difficulty of function param-
eterization. Second, it is difficult to determine the coastal
distance for each mapping pixel because this distance should

be calculated from the coastal point that is upwind from the
pixel. But this direction is often difficult to define. This prob-
lem is hereafter referred to as the difficulty of coastal distance
quantification. Thus, geostatistical methods, such as krig-
ing, are frequently used to map BCD. Carratala et al. (1998)
performed ordinary kriging with 28 data points to construct
a 10×15 km2 resolution BCD map on the eastern coast of
Spain. Gustafsson and Larsson (2000) applied ordinary
block kriging to construct 10×10 km2 resolution seasonal
BCD maps with 49 data points over an area of 8×104 km2

in southern Sweden. Alcala and Custodio (2008a) used or-
dinary kriging to produce a 10×10 km2 resolution mean an-
nual BCD map with measurements at 200 geographic points
for continental Spain (5×105 km2). For these mapping ex-
ercises, the ratio of data points over mapping pixels ranges
from one 16th to about one 60th. In the coastal area, BCD of-
ten varies significantly even over a few kilometres (Kayaalp,
2001). A BCD map of higher spatial resolution is needed, in
particular, for the CMB application. The aim of this study
is to construct BCD map at a spatial resolution of 1×1 km2

over an area of 9000 km2, based on 17 data points. In contrast
to earlier mapping studies, the ratio of data points over map-
ping pixels in this study is only one 500th. The sparse data
points and small sample size largely increase uncertainty of
the kriging estimates (Chang et al., 1998).

Can we incorporate some associated physical process in-
formation, including coastal distance dependence, to make
more reliable estimates of chloride deposition to form a basis
for BCD mapping? In this context, geostatistical approaches,
such as residual kriging (RK), kriging with external drift
(KED), and cokriging, can be used to incorporate informa-
tion of secondary variables in the mapping (Isaaks and Sri-
vastava, 1989; Goovaerts, 2000; Guan et al., 2005). Because
it is difficult to incorporate multiple secondary variables in
cokriging, RK and KED are considered in this study. For
both methods, trend estimates are subtracted from the obser-
vations, before kriging is performed. The objectives of this
study are first to examine the influencing factors associated
with physical processes that control chloride deposition by
correlation and regression analyses, and then based on this to
construct a BCD map.

A number of factors can influence BCD. The first factor to
be considered is the coastal distance. Two previously men-
tioned difficulties, one in function parameterization and the
other in coastal distance quantification, need to be resolved to
incorporate the coastal distance in the mapping. For the first
difficulty, over a small area where the wind and precipitation
climate is relatively simple, it is likely that one parameteriza-
tion of coastal dependence function can be applied. In terms
of the second difficulty, for simple coastal line geometry, the
pixel geographical coordinates may be used as an approxi-
mate for coastal distance. As well as the commonly known
coastal distance effect, topography may also influence BCD
in the coastal area. For example, the relationship between el-
evation and BCD has been implicitly shown in Contreras et
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Fig. 1. The DEM map of the study area with 17 sampling sites (crossed circles) of bulk chloride deposition, with insert maps of Australia and
South Australia showing the regional location of the study area, and an insert map of annual precipitation overlain by 41 wind observation
sites (stars). The numbers next to the chloride sites correspond to those in Table 1. The Bureau of Meteorology IDs of the four selected wind
sites (circled stars) from northwest to southeast are 23090 (W1), 23733 (W2), 23842 (W3), and 24545 (W4). The longitude and latitude
marks are for the DEM map.

al. (2008). However, because elevation and coastal distance
are highly correlated in their data, it is difficult to evaluate the
relative importance of elevation effect. In this manuscript, we
examine whether topography influences BCD by the removal
of the coastal distance effect.

Our starting hypotheses are that in addition to coastal dis-
tance, (1) windward slopes, associated with sea breeze and
in-coming moisture direction, enhance BCD due to topo-
graphic interception, and orographic precipitation, and (2) el-
evation enhances BCD due to increasing precipitation. The
impact of vegetation canopy on BCD is not considered in
this study because bulk chloride samples were collected in
open areas. After the effective factors on BCD are identi-

fied, they are incorporated into BCD mapping for the study
area. The mapping results are compared to ordinary kriging
and KED estimates, and cross validated with the observation
data. The chloride map produced here will be used to ex-
amine the catchment chloride balance status, which is to be
discussed in a subsequent manuscript.

2 Methodology

2.1 Study area and data

The study is based at Adelaide and the Mount Lofty Ranges
(MLR) of South Australia (Fig. 1). The area has 1.2 million
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Table 1. Bulk chloride deposition and concentration over the Mount Lofty Ranges calculated from samples collected over two periods by
DWLBC (1–8) and Flinders University (9–17), and associated site information.

ID Site id Site name Easting Northing Elevationa Aspecta Slopea Precip.b Data period Concentrationc Deposition
(m) (m) (m) (◦) (◦) (mm) m/y–m/y (mg l−1) (g m−2 yr−1)

1 AW503502 Scott Creek 287895 6113235 272 256 0.08 751 02/03–02/05 5.4 4.05
2 AW426638 Mount Barker 306288 6117246 323 125 0.06 705 11/02–11/04 6.1 4.63
3 AW504512 Mt Pleasant 319631 6148870 425 110 0.03 731 12/02–10/03 5.2 2.57
4 AW504559 Cherryville 295316 6134505 531 295 0.10 1000 01/03–07/03 4.2 4.37
5 AW504563 Milbrook 300896 6143374 328 303 0.07 728 07/03–03/04 5.9 3.65
6 AW505517 Penrice 321661 6184765 314 306 0.03 557 12/03–11/04 4.1 1.98
7 AW505537 Mount Adam 318897 6165439 515 308 0.02 868 11/02–11/04 4.1 3.32
8 AW505500 Warren Reservoir 309409 6157186 391 294 0.07 778 10/03–11/04 4.8 3.99
9 Kyp02 Hallett Cove 273701 6115600 125 279 0.09 654 04/92–12/94 12.2 6.97
10 Kyp03 Bedford Park 278584 6121170 161 285 0.12 638 04/92–12/94 6.0 3.97
11 Kyp04 Happy Valley 279315 6115516 149 272 0.11 692 06/92–11/94 4.9 3.78
12 Kyp05 Flagstaff Hill 279991 6118507 180 278 0.12 714 06/92–12/94 6.5 5.10
13 Kyp06 Heathfield 292858 6120585 414 251 0.06 983 07/92–12/94 4.7 4.76
14 Kyp07 Hahndorf 300232 6121471 340 167 0.03 796 07/92–12/94 5.1 4.67
15 Kyp08 Mannum 345887 6135339 47 144 0.02 280 06/92–12/94 3.7 1.33
16 Kyp09 Murray Bridge 342703 6112274 9 116 0.02 340 06/92–12/94 6.1 2.54
17 Kyp10 Tailem Bend 359324 6097715 12 207 0.02 430 07/92–12/94 5.7 2.59

a The elevation is 1-km pixel elevation, while aspect and slope are 9-km pixel values optimized in the regression.
b Precipitation is annual precipitation estimated based on long-term observations (Guan et al., 2009).
c This is weight mean bulk chloride concentration.

residents, with 60% of the water supply coming from the
MLR. It covers an area of about 9000 km2, with a maximum
topographic relief of 700 m. The study area is bounded to
the west by Gulf St Vincent, which extends 150 km in length
and 70 km in width. To the south is the Southern Ocean,
with Lake Alexandria (a fresh water lake influenced by sea
water intrusion) on the southwest boundary of the area. The
primary industries include health service, education, winery
and agriculture. No obvious air pollution sources of chloride
exist in the area. The bedrock in the MLR is late Precam-
brian metasedimentary rocks composed primarily of shales,
siltstones, sandstones, and some limestone (Preiss, 1987).
The climate is characterised by wet winters and dry sum-
mers. Annual precipitation ranges from below 300 mm to
above 1000 mm, with an areal average of 600 mm (Guan et
al., 2009). Mean daily temperature over the area is 15–18◦C.
The annual pan evaporation at a location of 600-mm precip-
itation (area-average value) is about 1500 mm (BOM, 2009).

Bulk chloride concentration was measured at 17 sites in
open areas, over two different periods by two organizations:
Flinders University (1992–1994) and Department of Wa-
ter, Land and Biodiversity Conservation (DWLBC) (2002–
2005) (Table 1). DWLBC samples were integrated rain over
multiple-month periods, while Flinders University samples
were collected daily and summed to monthly. The DWLBC
sampling followed the standard methodology of Friedman et
al. (1992), where a thin layer of mineral oil was applied in the
collectors to avoid water evaporation over the sampling pe-
riod (although evaporation is not critical in measuring BCD).

Fig. 2. Histograms of wind direction observed at 9:00 a.m. (left
column) and 3:00 p.m. (right column) for four selected wind ob-
servation sites (W1, W2, W3, and W4 in Fig. 1). Horizontal axis
shows bin centres of the wind direction in degree clockwise from
the north. The data were collected by BOM in 1977–2008, 1957–
2008, 1987–2008, and 1965–1969 for the four sites, respectively.

On average the sampling duration is about 2 years, with two
sites (Sites 4 and 5) sampled for a period shorter than one
year. They are nevertheless included because the sampling
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period covers both dry and rainy seasons. Both rain sam-
ple volume and chloride concentration were measured for
each cumulative sample. Chloride concentration was mea-
sured with an ion chromatography system, with standard de-
viation of the repeating analysis being less than 0.1 mg l−1

over the normal sample concentration range. Average chlo-
ride concentrations and annual chloride deposition are calcu-
lated from samples at each of the 17 sites (Table 1). In ad-
dition, wind direction data for 41 sites in and near the study
area were obtained from the Bureau of Meteorology of Aus-
tralia (BOM) (Fig. 1). Wind direction was recorded twice
daily at 9:00 a.m. and 3:00 p.m. local time.

It is relatively straightforward to quantify elevation, terrain
aspect and slope for each sampling point. However, coastal
distance needs to be quantified according to the direction of
chloride aerosol sources. Prevailing westerly moisture flux
feeds precipitation (Guan et al., 2009), and thus wet chloride
deposition in the area. In term of dry chloride deposition,
Gulf St Vincent to the west, and Southern Ocean to the south
can provide marine aerosols to the study area. These two ma-
rine chloride sources can be brought into the study area by
westerly winds and southerly winds, respectively. Westerly
sea breezes occur frequently during part of the day (Figs. 2
and 7) over most of the study area, which fuel atmospheric
transport of sea salt aerosols from Gulf St Vincent and fa-
cilitate dry deposition. In contrast, the southerly wind is not
dominant in the study area, even at the southern edge (Fig. 2).
Based on this understanding, for both wet and dry deposition
trajectories, the dominant atmospheric chloride source in this
area is from the west, i.e., from Gulf St Vincent by wind,
and from a larger distance via atmospheric moisture transport
into the area. The Southern Ocean may provide some addi-
tional atmospheric chloride source, but its effect is consid-
ered to be secondary. This assumption is supported by par-
tial correlation results (Sect. 3.1). We use geographic coordi-
nateX (e.g. Universal Transverse Mercator, or UTM easting)
to approximate the coastal distance for the chloride aerosols
from the Gulf St Vincent source, andY (UTM northing) for
chloride aerosols sourced from the Southern Ocean. Given
the relative position of the study area with respect to the two
marine aerosol sources, and the shape of coastal line (Fig. 1),
this approximation is considered to be reasonable.

2.2 Correlation analysis

Correlation analysis has been widely used to examine the
linear association between different variables. The Pearson
product-moment correlation coefficient (r) is the most com-
mon measure of linear association between two variables.
When multiple variables are correlated to one another, the
correlation coefficient of the variable of interest with any one
of the other variables may give association implication which
is not physically dependent. To solve this problem, a partial
correlation coefficient is applied to examine the linear cor-
relation between the two variables with the effects of other

selected variables removed (Lowry, 1999–2009). An exam-
ple of partial correlation coefficient between variablesx and
y independent of a third variable (z) is calculated using

rxy(z) =
rxy −rxzryz√

1−r2
xz

√
1−r2

yz

(2)

wherer is Pearson correlation coefficient between the two
variables denoted in the subscripts. The partial correlation
coefficients are calculated with MATLAB in this study. Af-
ter rxy(z) is obtained, the significance is tested with a t-
distribution. The t-value is calculated by

t =
rxy(z)√

(1−r2
xy(z))/(N −2)

(3)

whereN (≥6) is the number of samples (Lowry, 1999–2009).
Strictly speaking, the significance testing relies on the as-
sumption that each variable is spatially independent, which
is often invalid for regionalized random variables, such as
the ones examined here. Thus, the p-value of each corre-
lation coefficient, based on t-testing is not strictly correct.
Nevertheless, they should be still useful to compare which
variables are more important to bulk chloride deposition, and
to determine which variables are not significant (details are
discussed in the Results section). This loose significance test
is applied to examine our two hypotheses, one relating to the
elevation effect and the other associated with terrain aspect
(slope orientation) effect on BCD. If the tested factor is im-
portant to BCD, the partial correlation coefficient between
BCD and the factor variable should have a corresponding p-
value much smaller than others.

2.3 Kriging with external drift and residual kriging

For both RK and KED, a trend is removed from the data
for kriging. The difference is that for RK, trend estimat-
ing and kriging are performed independently. The effect of
spatial correlation in data is not considered by the RK re-
gression. For KED, the two are performed simultaneously,
with the spatial correlation effect being considered. This ren-
ders KED statistically more appealing. However, because the
trend is estimated automatically in KED, some understand-
ing of physical processes may not be able to be reflected in
the trend, and even worse, the trend may not have the sup-
port of common sense (Isaaks and Srivastava, 1989, p. 532).
In addition, because all data points are included in the KED
trend estimating, a few outliers may deviate the estimates
from the optimal trend. These issues become less problem-
atic for RK because the trend estimates can be compared and
tested before the kriging. In particular, a few outliers (if iden-
tified) with respect to the dominant trend can be excluded
from the regression for the trend estimates. Thus, in terms of
actual performance, KED and RK both have advantages and
disadvantages. In fact, when the generalized least squares are
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used to fit the regression, they are shown to be equivalent by
Hengl et al. (2007).

In this study, both RK (ordinary least squares being used
for regression fitting) and KED are performed and compared.
KED is described below, and RK is explained in the next
section. After correlation and partial correlation analysis
(Sect. 3.1), it is found that logD (whereD is the BCD value)
is better thanD to be used to construct the BCD map. Three
secondary variables, UTM EastingX, NorthingY , and ele-
vationZ are selected to estimate the external drift. KED is
implemented by jointly fitting the parametersb0, b1, b2 and
b3 in Eq. (4) and the error variogram parameters (sill, nugget,
range) of a spherical variogram model, using the Restricted
Maximum Likelihood method (Cressie, 1993).

logD = b0+b1X+b2Y +b3Z+ε (4)

whereε is the error (or residual) term.

2.4 ASOADeK regression and mapping

A residual kriging model, Auto-searched Orographic and At-
mospheric effects De-trended Kriging (ASOADeK), is ap-
plied to construct the BCD map. The ASOADeK model has
two components: a regression to obtain the trend estimates,
and a residual kriging to compensate where the regression
estimate is poor. The regression was originally developed to
auto-search the effects of atmospheric moisture gradient, pre-
vailing moisture flux direction and associated terrain aspect
and slope, and terrain elevation, on precipitation distribution.
Recently, it was applied to examine orographic effects on rain
isotope distribution (Guan et al., 2009). Since wet deposition
and dry deposition over the area have similar dominant west-
erly sources (supported by correlation analysis in Sect. 3.1),
we attempt to use the ASOADeK regression to examine the
effects of selected geographic (associated with coastal dis-
tance) and topographic variables on BCD. The original re-
gression model, including both elevation and terrain aspect,
can be found in Guan et al. (2005). The regression model
used below including elevation, terrain aspect and slope, first
appears in Guan et al. (2009).

logD = b0+b1X+b2Y +b3Z+b4βcosα+b5βsinα+ε (5)

whereD is BCD (g m−2 yr−1), X andY are geographic coor-
dinates (usually as easting and northing in UTM coordinate
system, in km), used to capture the effect of coastal distance
dependence,Z is above-sea-level terrain elevation in kilo-
metres,β is the slope angle in degree,α is the terrain as-
pect, defined as the direction of slope orientation, zero to the
north, increasing clockwise, and 180 to the south. The two
trigonometric terms are derived from cos(α−ω), whereω is
the source flux direction. This function has a value of 1 at
windward slopes, and−1 at leeward slopes. This formula-
tion was originally designed to capture the orographic effect
of more precipitation (or chloride deposition) on the wind-
ward slope than on the leeward side. If chloride deposition

is enhanced in the leeward side, the sign ofb4 andb5 will be
reversed. For situations where the sample size is small, only
the terms of statistical significance should be included in the
regression. As discussed later, only three predictor variables
(X, Z andβsinα) are applied for BCD distribution estimates
in the study area.

After the regression is performed, it is used to generate
a regression estimate map (the trend) based on the digital
elevation model (DEM). The difference between the obser-
vations and regression estimates are then used to generate a
de-trended residual map by ordinary kriging. The final map
is the sum of the regression and the residual maps. This pro-
cedure is simply called ASOADeK mapping. In this study,
the BCD map is obtained by transforming ASOADeK es-
timated logD to D. The performance of this mapping ap-
proach is examined by cross validation, in which each of the
total N data points is set aside each time to compare with
the mapping estimate at the location based on the remaining
(N −1) data points (Isaaks and Srivastava, 1989). Regres-
sion is performed for each cross validation set, while one
variogram model is applied for all sets. The mapping result
is also compared to direct ordinary kriging of the observed
chloride depositions. This is called direct kriging, to be dis-
tinguished from KED, and from the residual kriging, which
is one component of the ASOADeK model. All kriging cal-
culations (except for KED) are performed with Geostatistical
Software Library (Deutsch and Journel, 1998). Finally, the
bulk chloride concentration map is then constructed based
on the annual chloride deposition map and the annual pre-
cipitation map of the study area, both at a spatial resolution
of 1 km×1 km.

After the ASOADeK mapping, the uncertainty originated
from the mapping approach is calculated. The mapping un-
certainty (εm) is composed of the regression uncertainty and
residual kriging uncertainty. With an assumption that the
mapping uncertainty follows normal distribution, it is calcu-
lated as

εm = u

√
ε2

r +Vk (6)

whereu is the critical value of the standard normal distribu-
tion, (1.645 for 90%, and 1.960 for 95% confidence level),
εr is the standard error of the regression fit, andVk is kriging
variance. A confidence level of 90% is used in this study.
This error is calculated based on logD, which is then con-
verted toD to construct the uncertainty map. Because of
nonlinear nature of the exponential function, resulted posi-
tive and negative uncertainties (i.e., error bars) are not sym-
metric.
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Table 2. Pearson correlation coefficients and partial correlation coefficients of chloride depositionD and logD with selected variables for
the data sets of 15 sites and 17 sites. (P is long-term mean annual precipitation, other symbols are described in Eq. (5), the correlation
coefficients in bold face are significant above 99.9% confidence level for simple correlation, and above 95% for partial correlation).

Variables
15 data points 17 data points

Simple correlation Partial correlation Simple correlation Partial correlation
D logD D logD logD logD D logD D logD logD logD

(X) (X) (X,Z) (X, Z, βsinα) (X) (X) (X,Y ) (X, Y, Z)

P 0.48 0.63 0.27 0.59 0.26 0.32 0.56 0.66 0.11 0.31 0.57 0.27
X −0.81 −0.84 NaN NaN NaN NaN −0.79 −0.80 NaN NaN NaN NaN
Y −0.61 −0.57 −0.19 −0.05 −0.38 −0.14 −0.37 −0.36 −0.43 −0.42 NaN NaN
Z −0.03 0.13 0.21 0.55 NaN NaN 0.17 0.27 −0.06 0.11 0.53 NaN
βcosα 0.03 0.08 −0.24 −0.20 −0.37 0.14 0.11 0.14 −0.23 −0.19 0.03 0.17
βsinα −0.43 −0.45 0.49 0.55 0.56 NaN −0.49 −0.51 0.22 0.21 0.25 0.07

Fig. 3. The log values of observed annual chloride deposition vs.
UTM Easting (as a proxy for coastal distance), with sites #16 and
#17 excluded in the regression. The numbers next to the symbols
correspond to those in Table 1 and Fig. 1.

3 Results

3.1 Correlation and regression analysis

As discussed in Sect. 2.1, the dominant marine chloride
source to the study area is from a westerly direction. Chlo-
ride deposition data of most sites follows this trend (Table 1,
Fig. 3) except for sites 16 and 17. This is most likely be-
cause the Southern Ocean chloride source becomes impor-
tant in BCD at these two sites. To further examine whether
BCD at these two sites behave differently from the other 15
sites, correlation and partial correlation analyses of bothD

and logD are conducted with six selected variables (annual
precipitationP and the five predictor variables in Eq. 5), for
both sets of 15 and 17 sites, respectively (Table 2). As (par-

tial) correlation coefficients are slightly larger for logD than
for D, further discussion is focused on the logD results.

For both sets,X is the most significant variable correlated
with logD (Table 2 columns 3 and 9). This result supports
our assumption thatX closely approximates the coastal dis-
tance for BCD in the study area. For the set of 15 data points,
after X effect is removed, three significant variables areP ,
Z and βsinα (column 5). SinceP and Z are highly cor-
related (correlation coefficient = 0.95), afterX andZ effects
are removed,βsinα is the only remaining significant variable
(column 6). Thus, for the 15-site set, BCD is influenced by
east-west distance, elevation, and terrain aspect. For the set
of 17 data points, after theX effect is removed, no signifi-
cant variable is left (column 11). ThatY is not significant for
both sets of 15 and 17 data points, with theX effect being
removed, supports that the southerly marine chloride source
is not important to the study area. If the effects ofX andY

are removed,P andZ are the remaining significant variables
(column 12). Because of high correlation betweenP and
Z, the three most influencing factors are east-west distance,
north-south distance, and elevation (column 13). The differ-
ence in inferred influencing factors between the two sets of
data supports that BCD at sites 16 and 17 behaves differently
from that at the other 15 sites. This result is consistent with
our understanding of the BCD in the study area (Sect. 2.1).

Based on the correlation analysis result, three variables
X, Y , andZ are used to auto-calculate the external drift for
KED, because all 17 points have to be included in KED map-
ping. For RK, ASOADeK model allows regression and resid-
ual kriging to be performed separately. Data of either the
first 15 sites or the whole 17 points can be used for regres-
sion, and then residual data are calculated for the 17 sites
for ordinary kriging. To determine which sets of data to be
used for ASOADeK regression, regression is performed with
corresponding significant variables for each set, respectively
(Table 3). The regression based on the first 15 sites outper-
forms that based on the total 17 sites (Table 3 columns 8–10).
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Table 3. Regression results of logD with selected variables (X, Y , andZ values are in a unit of km) for 15 and 17 points, respectively.

15 data points

Variables b0 b1X b3Z b5 βsinα R2 Adjusteda R2 MAEb

X
coefficients 9.59 −1.70

0.71 0.69 0.69 (18%)p-values 9E-15 7E-05

X,Z
coefficients 9.43 −1.82 0.84

0.80 0.77 0.60 (15%)p-values 2E-14 2E-05 0.04

X, Z, βsinα
coefficients 10.08 −2.40 0.72 2.98

0.86 0.83 0.46 (12%)p-values 1E-11 3E-05 0.05 0.05

17 data points

Predictor variables b0 b1X b2Y b3Z R2 AdjustedR2 MAE

X
coefficients 9.25 −1.25

0.63 0.61 0.67 (18%)p-values 6E-17 1E-04

X,Y
coefficients 9.61 −1.2 0.004

0.70 0.66 0.64 (17%)p-values 1E-14 2E-04 0.11

X,Y,Z
coefficients 9.56 −0.98 −0.009 0.94

0.78 0.73 0.60 (16%)p-values 2E-14 8E-04 0.01 0.04

a Adjusted coefficient of multiple determination considering the number of predictor variables effect.
b MAE is the mean absolute error (g m−2 yr−1) of the regression estimates, with percentage of average observation values (3.94 g m−2 yr−1

for 15 sites, and 3.78 g m−2 yr−1 for 17 sites) shown in the brackets.

Thus, sites 16 and 17 are excluded from the ASOADeK re-
gression, but they are included for residual kriging to gener-
ate the chloride deposition map.

Both correlation and regression analysis support that BCD
at sites 16 and 17 in the southeastern corner, has different
influencing factors than the first 15 sites which cover the ma-
jority of the study area. To avoid the disturbance from these
two sites in examining the dominant BCD influencing pro-
cesses over the study area, the correlation and regression re-
sults based on the first 15 sites are discussed. The regression
results indicate that coastal distance explains about 70% of
the logD spatial variability (Table 3 row 2) in the study area,
while elevation accounts for about 9%, and terrain aspect and
slope accounts for 6%. We now examine the two hypotheses
regarding (1) elevation and (2) west-facing slope facilitating
chloride deposition. The positive partial correlation result
with X effect removed (Table 2 column 5) indicates that el-
evation enhances chloride deposition. This enhancement is
apparently caused by increased precipitation and thus wet
chloride deposition with elevation. Terrain aspect and slope
are another significant factor on BCD, as indicated by the
partial correlation betweenD andβsinα, with X andZ ef-
fects removed (Table 2 column 6). The partial correlation
coefficient between the two variables is positive. Based on
the definition of terrain aspectα in Eq. (5), it has a posi-
tive value on east-facing slopes. This indicates that, after the
costal distance effect is excluded, more chloride deposition
occurs on the eastern slopes (leeward slopes) with respect to
the primary atmospheric chloride source direction, instead of
on the western (windward) slopes in our starting hypothesis.

3.2 BCD mapping

To determine which method is used for BCD mapping, the
performance of three methods (direct kriging, KED, and
ASOADeK) are compared. Direct kriging is performed with
D values based on the 17 sites. Calculated variogram and fit-
ted model is shown in Fig. 4a. KED is performed with logD

values based on the 17 sites, with a fitted variogram model
of (range = 51 km, sill = 0.028, nugget = 0.029). ASOADeK
regression is performed with logD values based on the first
15 sites. The residual logD values are then calculated for the
17 sites for ordinary kriging, with calculated variogram and
model fitting shown in Fig. 4b. Cross validation is used to
evaluate the performance of the three methods (Fig. 5a). The
result suggests that ASOADeK regression, ASOADeK and
KED outperform direct kriging. ASOADeK and KED per-
form similarly, with ASOADeK chosen to construct the final
BCD map. The MAE value of ASOADeK regression cross
validation is 0.64 g m−2, about 16% of average observation
values over the first 15 locations in Table 1, and the MAE
value of ASOADeK cross validation is 0.69 g m−2, about
18% of the observation average. ASOADeK cross validation
results slightly degrades in comparison to that of the regres-
sion, probably because the chloride network density is too
low, resulting in some degree of over-parameterization. The
residual kriging is nevertheless applied because sites 16 and
17 are not included in the regression.

Comparison of cross validations provides us confidence to
construct BCD map using the ASOADeK model. Both bulk
chloride deposition and concentration maps and their uncer-
tainties are shown in Fig. 6. Overall, the annual chloride de-
position rate is over 6 g m−2 in the southwestern corner and
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Fig. 4. Calculated variograms and the model fittings for(a) ob-
served annual bulk chloride deposition, and(b) regression de-
trended logD residuals over the 17 sites. The fitted model is a
Gaussian model (range = 48 km, sill = 1.8 (g m−2)2, and nugget
= 0.05 (g m−2)2) for (a), and a spherical model (range = 50 km, sill
= 0.058, and nugget = 0.006 for (b).

western coast, decreasing to 4–5 g m−2 in the central part,
and to below 2 g m−2 in the eastern and northeastern edges of
the area (Fig. 6a). The large uncertainty occurs in the south-
western corner of the study area, which is apparently due to
lack of the observation data. When this corner is excluded,
the average negative mapping uncertainty at 90% confidence
level is some 1 g m−2, about 20% of the estimated chloride
deposition in the western half, while about 40% for the east-
ern half of the study area (Fig. 6b). The average positive un-
certainty is about 1.5 g m−2, about 30% of estimated chloride
deposition in the western half, and 50% of that in the eastern
half of the study area (Fig. 6c). These values are larger than
the cross-validation MAE values (Fig. 5a). The mapping un-
certainty at the sampling sites is smaller. The mean absolute
error of the ASOADeK regression estimates at the 15 sites
is 0.45 g m−2, equivalent to 11% of the average observed an-
nual chloride deposition (3.94 g m−2) at these sites (Fig. 5b).

Fig. 5. (a)Cross-validation estimates of annual bulk chloride depo-
sition from regression, ASOADeK, KED, and direct ordinary krig-
ing, and(b) regression estimates of annual bulk chloride deposition
(for the 15 sites) and ASOADeK estimates (for all 17 sites), in com-
parison to the observations. The MAE values are mean absolute er-
rors (g m−2) of the observation sites, and the r-values are Pearson
correlation coefficients between the estimates and the observations.

After the residual kriging is added, the mean absolute er-
ror over the 17 sites is reduced to 0.19 g m−2 (Fig. 5b, this
is different from cross validation results shown in Fig. 5a),
about 5% of the average observed annual deposition at these
sites. A long term mean precipitation map was previously
constructed for the study area, based on a much denser ob-
servation network (96 gauges) and a much longer observation
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Fig. 6. ASOADeK constructed maps, and their positive and negative uncertainty at a 90% confidence level, for bulk chloride deposition
(g m−2 yr−1) (a, b, andc), and for bulk chloride concentration (mg l−1) (d, e, andf). The cross symbols on (b) and (c) is the bulk chloride
sampling sites (Fig. 1).

period (the majority of these data have over 30 years records)
(Guan et al., 2009). The average uncertainty of the precipita-
tion map is about 2% at 90% confidence level. Based on this
precipitation map, and the chloride deposition map, a map
of bulk chloride concentration (Fig. 6d) and its uncertainty
maps (Fig. 6e and f) are provided. The low precipitation-
mapping uncertainty is neglected when chloride concentra-
tion uncertainty is calculated. The map (Fig. 7d) shows that

bulk chloride concentration is about 5 mg l−1 in the centre of
the MLR, increasing westward toward the coast and south-
east ward, to above 10 mg l−1. The uncertainty in bulk chlo-
ride concentration is 1–1.5 mg l−1 for the central of the MLR,
below or around 30% of the estimated chloride concentra-
tion. This level of uncertainty is similar to that using more
expensive36Cl/Cl method (Scanlon, 2000). However, due to
the sparse sample points in the eastern part of the study area,
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Fig. 7. Mean values of sin(wind direction) at the 41 observation
sites (Fig. 1) for two seasons:(a) summer months (12, 1, 2), and
(b) winter months (6, 7, 8).

the uncertainty is over 40% of the estimated chloride con-
centration. More sampling points are recommended for the
future in this portion of the area.

4 Discussion

It is interesting that chloride deposition in the east-facing
slope appears to be significantly larger than the west-facing
slope. Previously, we thought that the western slope, facing
incoming chloride-bearing aerosols flux, might intercept at-
mospheric chloride and enhance deposition. This hypothesis
is not supported by the correlation analysis result. As wind
plays an important role in aerosol transport, analysis of wind
direction may give us some hints. In Fig. 7, the average sine
values of wind direction at 9:00 a.m. and 3:00 p.m. are plot-
ted against longitude. The sine value is positive if the wind
comes from the east, and negative if the wind comes from the

west. During the day time (reflected in 3:00 p.m. measure-
ments), westerly winds dominate in the study area, which
may facilitate aerosol transport to the east. When the west-
erly air mass is constrained by the topographic barrier on the
western slope, wind speed increases, and reaches the maxi-
mum at the upwind side of the hill. The wind speed decreases
over the downwind slope. This phenomenon has been exten-
sively studied in sand dune formation processes (Andreotti et
al., 2002). The elevated wind speed at the upwind slope facil-
itates atmospheric chloride transport, and a decreased wind
speed at the downwind slope facilitates chloride deposition,
which may explain the positive partial correlation betweenD

andβsinα from the data. The above discussion is based on
the assumption that the ocean to the west of the study area
is the only source of atmospheric chloride. Without further
sampling and examination, other possibility cannot be ex-
cluded. For example, the positive partial correlation between
D andβsinα may be an artefact from local dust recycling, or
local atmospheric chloride sources.

5 Conclusions

Bulk chloride deposition in Adelaide and the Mount Lofty
Ranges, a coastal area in South Australia, was examined with
selected geographical (coastal distance), orographic (eleva-
tion, slope and aspect), and atmospheric (precipitation) vari-
ables. Both partial correlation analysis and regression anal-
ysis were performed to understand the controlling factors in
bulk chloride deposition. The results support that westerly
marine source provides aerosols for BCD in the most part
of the study area, and indicate that the coastal distance, el-
evation, and terrain aspect and slope appear to be three sig-
nificant factors controlling chloride deposition. Coastal dis-
tance accounts for about 70% of the spatial variability in
chloride deposition, with elevation, and terrain aspect and
slope accounting for about 15%. Elevation enhances chlo-
ride deposition most likely by increasing wet deposition. The
correlation results suggest that more chloride deposition oc-
curs at the eastern slope than the western slope of the MLR.
Based on the regression analysis results, a de-trended resid-
ual kriging mapping procedure (ASOADeK) was applied to
construct a bulk chloride deposition map and a bulk chloride
concentration map. The average uncertainty of the deposi-
tion map is 20–30% in the western and central MLR, com-
parable to that of the36Cl/Cl method, and over 40% in the
eastern MLR where more future sampling is recommended.
The maps will be useful to examine catchment chloride bal-
ance for the CMB application in the study area, which is the
subject of a separate paper.
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