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Abstract. This paper proposes the estimation of high re-
turn period quantiles using upper bounded distribution func-
tions with Systematic and additional Non-Systematic infor-
mation. The aim of the developed methodology is to reduce
the estimation uncertainty of these quantiles, assuming the
upper bound parameter of these distribution functions as a
statistical estimator of the Probable Maximum Flood (PMF).
Three upper bounded distribution functions, firstly used in
Hydrology in the 90’s (referred to in this work as TDF, LN4
and EV4), were applied at the Jucar River in Spain. Dif-
ferent methods to estimate the upper limit of these distribu-
tion functions have been merged with the Maximum Likeli-
hood (ML) method. Results show that it is possible to ob-
tain a statistical estimate of the PMF value and to establish
its associated uncertainty. The behaviour for high return pe-
riod quantiles is different for the three evaluated distributions
and, for the case study, the EV4 gave better descriptive re-
sults. With enough information, the associated estimation
uncertainty for very high return period quantiles is consid-
ered acceptable, even for the PMF estimate. From the ro-
bustness analysis, the EV4 distribution function appears to
be more robust than the GEV and TCEV unbounded distri-
bution functions in a typical Mediterranean river and Non-
Systematic information availability scenario. In this scenario
and if there is an upper limit, the GEV quantile estimates are
clearly unacceptable.

Correspondence to:F. Franćes
(ffrances@hma.upv.es)

1 Introduction

Flood frequency analysis is one of the most common meth-
ods to estimate the design flood for hydraulic structures and
for flood hazard/risk mitigation programs. In Europe, the na-
tional legislation for flood risk assessment is based on flood
frequency analysis to estimate discharges associated with dif-
ferent return periods, from 50 to 500 years (Benito et al.,
2004). In some projects the focus is on extreme floods, which
have been defined according to different authors as floods
with an annual probability of occurrence of about 10−3 to
10−7 (Jarret and Tomlinson, 2000), 10−3 or lesser (Naghet-
tini et al., 1996) and in other cases, as floods with return
periods greater than 500 years (England et al., 2003). Tra-
ditionally, extreme flood estimates have been associated with
large dam projects or with the location of nuclear and other
high vulnerable facilities, in which the release of hazardous
materials to the environment is in consideration (Stevens,
1992). For some of these projects, the design criteria com-
monly include the Probable Maximum Flood (PMF) estima-
tion. The PMF is the biggest flood physically possible at a
specific catchment (Smith and Ward, 1998). It has a phys-
ical meaning and it provides an upper limit of the interval
within which the decision maker must operate and design.
The PMF is the flood generated by the Probable Maximum
Precipitation (PMP) with the worst but reasonable hydrologi-
cal conditions in the studied basin. The PMP is defined by the
World Meteorological Organization as a precipitation upper
limit for a given region, duration and time of the year (WMO,
1986).

Related to high return period quantiles estimation, flood
frequency analysis has a well known drawback, as pointed
out by Merz and Bl̈oschl (2008): the lack of available in-
formation about large events in a relatively short data series
recorded systematically at a flow gauge station (from now,
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Systematic information). This fact involves the extrapola-
tion of very high return period quantiles from data records
which rarely exceed a hundred of years, producing quantile
estimates with a high level of uncertainty.

In the last decades, as a way to solve this problem, many
authors have included historic and palaeoflood information
(from now, Non-Systematic information) in flood frequency
analysis with very good results: starting from the pioneer pa-
per of Leese (1973) and following by the work of Stedinger
and Cohn (1986), Hosking and Wallis (1986a,b), Stedinger
and Baker (1987), Jin and Stedinger (1989), Stevens (1992),
Pilon and Adamowski (1993), Frances et al. (1994), Cohn
et al. (1997), Jarret and Tomlinson (2000), Martins and Ste-
dinger (2001), O’Conell et al. (2002), England et al. (2003),
Naulet et al. (2005), Reis and Stedinger (2005) and Merz and
Blöschl (2008).

Probability distribution functions with 2, 3 or 4 param-
eters have been used in extreme floods frequency analysis
with the common characteristic of having no upper bound, at
least for high positive skewness coefficient (γx). The use of
parametric distribution functions allows the quantile extrap-
olation as a function of the requested return period as much
as it is required (obviously increasing at the same time its
uncertainty). However, as the return period increases with
unbounded parametric distribution functions, the estimated
quantiles increase too with no limit. Though, the question
to pose at this point is: would it be possible to have a flood
with such a high magnitude, as large as it could be obtained
with these unbounded distribution functions, for a certain
catchment with specific area and geomorphologic character-
istics? The straight answer is no, this is not possible. There
must be a limiting flood discharge which is the biggest phys-
ically possible flood for the specific climatic and hydrologic
characteristics of the catchment, which indeed corresponds
with the PMF definition (Enzel et al., 1993). Or in Horton’s
words: “... a small stream cannot produce a major Missis-
sippi flood for much the same reason a barnyard fowl cannot
lay an egg a yard in diameter” (second author’s class notes
of J. Salas’ lecture in 1990). Not considering the existence
of this upper limit must introduce an additional significant
model error in the high return period estimated quantiles.
Moreover, in our opinion, this additional error could produce
in most cases the underestimation of the high return period
quantiles, which is one of the most frequent causes of dam
failure (ASCE, 1988).

In accordance with reality, some distribution functions in-
corporate an additional parameter, which is actually the up-
per limit to the random variable. This class of functions has
been applied to the extreme frequency analysis of annual
maximum daily precipitation by Elı́asson (1994 and 1997),
Takara and Loebis (1996) and Takara and Tosa (1999) and in
frequency analysis of annual maximum flood by Takara and
Tosa (1999). All these authors concluded that upper bounded
distribution functions fit properly to extreme data and im-
prove the quantile estimates.

In this paper we propose the use of upper bounded distri-
bution functions, in order to better estimate high return pe-
riod quantiles. The upper limit of these distribution func-
tions can be fixed a priori or not. Following the classification
of Merz and Bl̈oschl (2008) for additional information, in
the first case the PMF value can be considered as a causal
information expansion. This was the option followed pre-
viously by Eĺıasson (1997), Takara and Loebis (1996) and
Takara and Tosa (1999). In the last case, the PMF can be
estimated as one of the parameters of the statistical model,
using in this paper additional Non-Systematic information,
called temporal information expansion, in terms of Merz and
Blöschl (2008) to obtain enough estimation reliability.

2 Upper bounded distribution functions

If parent distribution is upper bounded, the annual maximum
will also be. In this situation, upper unbounded classical lim-
iting functions from Extreme-Value Theory will not be good
approximations for the estimation of high return period an-
nual maximum, as it will be shown in the robustness analysis
in Sect. 6. The three upper bounded distribution functions
applied in the case study were chosen because they had been
previously successfully applied to hydrological extremes se-
ries. Other distribution functions commonly used in Hydrol-
ogy which have an upper bound are the Generalized Pareto
and the GEV. The former has an upper bound when its shape
parameter is bigger than 0, which occurs forγx < 2.0. The
latter presents an upper bound when the shape parameter
is also positive, but then,γx becomes less than the Gum-
bel’s constant skewness coefficient, which is equal to 1.14.
Our aim is to analyse rivers with high skewness coefficient
(γx clearly bigger than 2), like those with a Mediterranean
regime, which is the reason to not include in this paper the
GEV and Generalized Pareto distribution functions.

Following paragraphs presents a short description con-
cerning the three selected distributions. More behavioural
and statistical details can be found in Botero (2006).

2.1 The extreme value with four parameters
distribution function (EV4)

This probability distribution function was firstly proposed by
Kanda (1981), who empirically derived it from the EV dis-
tribution function family. The EV4 cumulative distribution
function (cdf) is given by

FX(x) = exp

[
−

{
g − x

ν (x − a)

}k
]

(1)

k > 0; v > 0; a ≤ x ≤ g

whereg anda are respectively the upper and lower bounds
of the random variable, andv andk are parameters which
characterize the scale and shape of the distribution.
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B. A. Botero and F. Franćes: Estimation of high return period flood quantiles 2619

Takara and Tosa (1999) applied this distribution to annual
maximum daily precipitation and annual maximum daily dis-
charge at Ohtsu (Japan). The authors made a sensitivity anal-
ysis fixing the upper and lower bounds to a priori values ob-
tained empirically. They concluded in a comparison with
other distribution functions, the EV4 is the most appropri-
ated to datasets with sample skewness coefficient higher than
about 2.

2.2 The Slade-type four parameter LogNormal
distribution function (LN4)

Proposed by Slade (1936) and named in this manner by
Takara and Loebis (1996), the LN4 can be obtained if a
Slade-type random variable transformation is applied to a
Two Parameters LogNormal distributed random variable.
This transformation is given by

y = ln

(
x − a

g − x

)
a ≤ x ≤ g (2)

whereg anda are respectively the upper and lower bounds.
The resulting LN4 pdf is defined as following

fX(x) =
g − a

(x − a) (g − x) σy

√
2 π

(3)

exp

[
−

1

2

{
y − µy

σy

}2
]

whereµy andσy are the well known LogNormal cdf param-
eters. From the LN4 application to annual maximum daily
precipitation data, Takara and Loebis (1996) concluded that
if the four parameters of the distribution are estimated, the
variability of quantile estimates is higher than if one or both
limits are fixed previously in a known value. In addition, they
suggested the use of the PMF as the upper bound when deal-
ing with floods. In a posterior paper, Takara and Tosa (1999)
conclude that the LN4 distribution function fits well to many
hydrological datasets with sample skewness coefficient less
than about 1.5.

2.3 The transformed extreme value type distribution
function (TDF)

This distribution was proposed by Elı́asson (1994) as a sta-
tistical model for frequency analysis of extreme precipita-
tion. The author suggested that bounded data fitted by an
unbounded distribution as the EV1 (also called Gumbel),
must deviate from the distribution at high return periods. In
Elı́asson (1997) is defined a Transformed Distribution Func-
tion (TDF) derived from a Base Distribution Function (BDF)
selected by the author, which corresponds with the EV1. In
his work, Eĺıasson (1997) fits the resulting TDF to standard-
ized annual maximum daily precipitation from Iceland and
Washington State (USA) with very good results fixing a prior

estimate of the PMP. The final expression of the TDF cdf is
given by

FX(x) = exp

[
−exp

(
−x

α
+

α k∗

(g − x)
− b

)]
(4)

α > 0; k∗ < 0 and x ≤ g

whereg is the upper bound,α is a scale parameter,b is a
location parameter, andk∗is a negative constant.

3 Parameter estimation methodology

3.1 Maximum Likelihood method and data
classification

In this study, the parameters set for each distribution func-
tion is estimated based on the Maximum Likelihood (ML)
estimation method, as in many others works dealing with
Non-Systematic information (Leese, 1973; Condie and Lee,
1982; Hosking and Wallis, 1986; Cohn and Stedinger, 1987;
Phien and Fang, 1989; Guo and Cunnane, 1991; Pilon and
Adamowski, 1993; Frances et al., 1994; Kroll and Ste-
dinger, 1996; Frances, 1998; Martins and Stedinger, 2001;
O’Connell et al., 2002; Williams, 2002; Naulet et al., 2005;
Calenda et al., 2005; Calenda et al., 2009). This methodol-
ogy has been selected on the basis of its statistical features
for large samples, and also because of its ability to incorpo-
rate easily in the estimation process any type of additional
data.

As it was mentioned in the Introduction, data series
recorded systematically at a flow gauge station located in a
river section will be called Systematic information. In op-
position, the Non-Systematic information is that information
not recorded systematically. If there is not a gauge station, all
river flow information can be considered as Non-Systematic.
The sources for this information can be historical or from
palaeofloods studies. The former are associated with past
human registered observations (Leese, 1973). The latest are
floods identified using physical or botanical indicators ir-
respective of any direct human observation (Stedinger and
Baker, 1987), but not necessarily, previous to human regis-
ters. In practice, Non-Systematic information is always cen-
sored type I, in such a way we have some information con-
cerning a flood at a given time during the Non-Systematic
period because this flood was bigger than a given discharge
or threshold level of perceptionXH (Stedinger and Cohn,
1986; Frances et al., 1994), whereH is the threshold return
period (the return period is used in order to generalize the
results). The value of the peak flow for the floods aboveXH

can be known or not. Concerning the floods belowXH , al-
ways it is not known their exact values, but at least it is known
they were smaller thanXH . The threshold level of percep-
tion can be, for example, the corresponding discharge to the
position of the cave where flood sediments are deposited (for

www.hydrol-earth-syst-sci.net/14/2617/2010/ Hydrol. Earth Syst. Sci., 14, 2617–2628, 2010



2620 B. A. Botero and F. Francés: Estimation of high return period flood quantiles

palaeoflood information) or the minimum discharge which
produces damages in a city (for historical information). It
can change with time and, in some cases, there can be upper
and lower thresholds for the same flood (following the palae-
oflood example if there are two caves at different positions,
the lower one with sediments of a particular flood and the up-
per one without any trace of this flood). On the other hand,
usually the Systematic data is completely known, but some
times the uncertainty in the data forces to treat them also as
censored.

Concerning “years without information” within the Non-
Systematic period, the statistical treatment depends on the
situation. If there is no information during some years (his-
torical or palaeoflood), it will be in the major part of the cases
because the flood was below the threshold level of perception
and, therefore, they must be considered as UB data. If “we
do not know what happened”, the solution is the same than
we traditionally do when dealing with the Systematic record:
do nothing and assume there is not a bias to miss the very
high floods or very low ones. But the last situation should
be very rare, because very frequently there is more than one
source of information. For example, palaeoflood studies look
for slackwater deposits in more than one location, in order to
reduce the possibility of missing floods over the threshold
level of perception.

Stedinger and Cohn (1986) and Frances et al. (1994) first
classified the flood information from a statistical point of
view. However, in a Maximum Likelihood framework, our
experience dictates it is more convenient to follow the classi-
fication presented by Naulet (2002), in which any piece (Sys-
tematic or Non-Systematic) of flood data can be classified in
(see Fig. 1):

– EX type. The flood peak value is known. It will corre-
spond with most of the Systematic data and with some
Non-Systematic floods with enough information to re-
construct the peak discharge.

– LB type. In this case, it is only known that the flood was
bigger than a lower boundL, which is the knownXH .

– UB type. For this type of data it is known that at the time
of the flood, an upper bound (U ) with known magnitude
was not exceeded. Again, thisU corresponds with the
XH .

– DB type. The flood peak is unknown and the only in-
formation about this flood is that it has a double bound.
This means that the flood was within an interval with
known values for the upper (U ) and lower (L) bounds.

For annual maxima analysis of a stationary process, but with
variable threshold of perception in time, depending on the
type of data each yeari contributes to the likelihood function
through one of these general expressions:

LSY (2; x) = fX

(
xi; 2

)
(5)

time

d
is

c
h

a
rg

e

XH

Known flood discharge

Unknown flood discharge

DB

LB

UB

EX

XH1

XH2

Threshold level of perception

Fig. 1. Proposed flood data classification (after Naulet, 2002), in
this figure with two constantXH .

LLB,i

(
2; Li

)
= 1 − FX

(
Li; 2

)
(6)

LUB,i

(
2; Ui

)
= FX

(
Ui; 2

)
(7)

LDB,i

(
2; Li, Ui

)
= FX

(
Ui; 2

)
− FX

(
Li; 2

)
(8)

where the independent and identically distributed random
variableX is described for all years through its probability
density functionfX (·) or its cumulative distribution function
FX (·); 2 represents the parameters set;xi is the magnitude
of the flood presented in thei-year; Ui is the upper bound
which is not exceeded in thei-year; andLi is the lower
bound exceeded in thei-year. The ML estimated parameters
are obtained by maximizing the logarithm of the likelihood
function over the parameter space.

When dealing with Non-Systematic information, what is
commonly available is a combination of the different types of
data described above, as it is shown in Eq. (13) for the like-
lihood function of the case study (Sect. 4). It was stressed
by Frances et al. (1994), that from the statistical point of
view there is no difference concerning the source of the Non-
Systematic information, historical or palaeoflood, and their
treatment must be completely similar. More over, with this
new data classification there is not any difference also be-
tween Systematic and Non-Systematic information, with the
additional advantage that always the data can have a time as-
signed, which will be crucial for future non-stationary flood
frequency models.

3.2 Upper limit estimation

Dealing with upper bounded distribution functions, it must
be carefully undertaken the estimation of the upper limit pa-
rameter (g). The first possibility is to prefixg in a spe-
cific value previously computed (calledG): i.e., the pa-
rameterg is not estimated jointly with the other parame-
ters. This was the approach used by Takara and Tosa (1999),
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Elı́asson (1997) and Takara and Loebis (1996). In this case,
G is the PMF estimate by traditional means. The PMF can
be estimated by different procedures, being the most advis-
able the rainfall-runoff modelling, where rainfall input is the
PMP estimated by the WMO maximization and transposition
procedure (WMO, 1986).

A second possibility is to estimate the whole parameters
set, includingg, using the ML method. However, with EV4
and TDF distribution functions and when the available Non-
Systematic information is a mix of EX and UB data (also
called Censored Information or CE by Stedinger and Cohn,
1986), the estimated̂g is equal to the maximum observed
value of the data set (which obviously it is not the PMF)
and thus, other methods to estimateg must be introduced.
This follows from the fact that the likelihood function for
these two distributions and this type of information decreases
monotonically forg → ∞ (Kijko and Sellevoll, 1989).

Kijko (2004) proposed what he called a “Generic Equa-
tion” (GE) for the estimation of the maximum earthquake
magnitude, which corresponds with the magnitude of the
largest possible earthquake, conceptually equivalent to the
PMF for floods. This author developed this equation based
on the limit of a random variable estimator proposed by
Cooke (1979). The GE is valid for any cdf and it is given
by

g = xmax +

g∫
−∞

[
FX (x; 2)

]n
dx (9)

wherexmax is the maximum observed value of the Systematic
and Non-Systematic data, andn is the number of observed
values (i.e., thexmax order). It must be noticed that it is not
possible to apply the Generic Equation when there are LB or
DB data in the available information, because with this kind
of data thexmax order cannot be known.

3.3 Proposed estimation methodologies

In this paper and in accordance with the selected method to
estimateg, the whole parameters set estimation method will
be referred as following
ML-C: When the whole parameters set of the distribution
function is estimated by the ML method, includingg as an-
other free parameter in the maximization process:

maxL(2) (10)

ML-GE: It will be referred to the Maximum Likelihood-
Generic Equation estimation method. This method consists
on the use of the Generic Equation presented above (Eq. 9)
to estimateg and the ML method for the rest of parameters:

maxL(2′)

g = xmax +

g∫
−∞

[
FX (x; 2′, g)

]n
dx

 (11)

where2′ is the parameters set excludingg. The expression
in Eq. (11) must be solved iteratively, fixing theg when max-
imizing the likelihood function and fixing the rest of parame-
ters when obtaining a newg value with the Generic Equation.
This procedure is repeated until the estimatedg converges
with the proper tolerance.
ML-PG: Finally, in this case,gis fixed at the value previ-
ously calculated (G) as the best approximation for the true
unknown PMF, and the other parameters are estimated by
ML method:

g = G

maxL(2′)

}
(12)

4 The Jucar River case study

The statistical models described above have been applied to
the available data of the Jucar River at “Huerto-Mulet” flow
gauge station, where we had Systematic annual maximum
flows from 1946 to 2004 (56 years). This river is located in
a semi-arid climate region of Eastern Spain and has a long
period with historical information. The point of interest is
close to the river sea mouth and has a basin of 21 500 km2,
but due to meteorological reasons, actually only one third of
the basin is contributing to the floods in this area. The basin
mean annual precipitation is 450 mm, but it must be under-
lined that the Jucar River presents the typical high variabil-
ity (or torrentiallity) of Mediterranean rivers, with frequent
observed daily precipitation events with more than 100 mm
during the Fall season. These extreme events are generated
by strong Convective Mesoscale Systems positioned in the
Western Mediterranean Sea (Rigo and Llasat, 2007). The
main sample statistical characteristics of the instantaneous
annual maximum floods are: mean = 713 m3 s−1, coefficient
of variation = 2.74 and skewness coefficient = 5.26.

The Spanish Centro de Estudios Hidrográficos (Franćes,
1998) quantified the peak flow of 4 Non-Systematic floods
who reached the level of an ancient convent, located within
the floodplain, in 1778, 1805, 1814 and 1864. The discharge
required to flood the convent is 6200 m3 s−1, which can be
considered as the threshold level of perception for this source
of information. To reduce the bias in the estimation of the
number of known floods during the Non-Systematic period,
as studied by Hirsch and Stedinger (1987), we have consid-
ered the beginning of this period in the middle year between
first and second historical floods, eliminating the first one in
the statistical analysis. So, the final selected historical period
is 153 years long, since 1792 (the average between 1778 and
1805) to 1945. During this period, the Non-Systematic infor-
mation can be classified as CE with 3 EX data type. It must
be mentioned that, in this case study, the sensitivity of the
results to this decision was small: for the three EV4 mod-
els, the maximum estimated quantile change was 5%. For
more than one hundred years there was not such extraordi-
nary floods until 1982, when the threshold was also exceeded
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Fig. 2. Applied models to the Jucar River. Stars are the sample plotting positions given by theE formula. Triangle represents theXH =

6200 m3 s−1 plotting position. Figures correspond to each estimation method: ML-C (left), ML-PG (central) and ML-GE (right).

with a flood of 12 000 m3 s−1, and it was almost exceeded in
1987 with a flood of 5200 m3 s−1. The stationarity of this
long information period (more than 200 years) was tested
and proved with the test of stationarity described by Lang et
al. (1999 and 2004), using as random variable the cumula-
tive number of floods over the threshold of perception. As
an example of application of Eqs. (5) to (8), the likelihood
function for this case study is:

L(2) =
[
FX (6200; 2)

]150 (13)

3∏
i=1

fX

(
yi; 2

) 56∏
i=1

fX

(
xi; 2

)
where the first term represents the contribution to the like-
lihood function of the Non-Systematic UB floods (during
the Non-Systematic period the annual maximum flood did
not reach the convent 150 years), theyi are the three Non-
Systematic EX floods and thexi are the Systematic ones.

Franćes (1998) studied this case study, using the un-
bounded distribution function TCEV, which assumes a mixed
population of “ordinary” and “extraordinary” flood events
(Rossi et al., 1984), the later originated by Convective
Mesoscale Systems. In this work, the statistical models ap-
plied for the flood frequency analysis of the Jucar River are
combinations of the three bounded distribution functions pre-
sented in Sect. 2 and the three parameter estimation methods
shown in Sect. 3. The lower bound for the EV4 and LN4 has
been fixed to zero, hence reducing to three the number of pa-
rameters to be estimated. In any case, this is not an influential
parameter for high return period quantiles.

In order to apply the ML-PG parameter estimation
method, a previous PMF value to the Jucar River catchment
must be calculated. Cifres and Abad (1992), using for the
PMP the maximization and transposition procedure (WMO,
1986), computed the PMF in 25 000 m3 s−1 for the Tous dam,
which is located upstream our point of interest. Assuming
the same specific discharge (overestimating hypothesis), tak-
ing into account the catchment area increment and consid-
ering only the meteorologically active basin, the PMF can
be extrapolated to 33 900 m3 s−1 at Huerto-Mulet flow gauge

station. With a high probability, it will be an overestimation
of the PMF. With any better estimation, due to the scope of
this study, this value will be used forG.

Usually, to test the model performance (distribution and
estimation method) from a “descriptive” point of view (Cun-
nane, 1986), the fitted cdf and the plotting positions are com-
pared graphically. In this work, the probability plotting po-
sitions with Systematic and CE Non-Systematic information
were calculated with theE formula proposed by Hirsh and
Stedinger (1987). Figure 2 shows the plotting positions for
the Jucar data and the fits of the applied distribution functions
by each parameter estimation method.

A very interesting first conclusion about the three upper
bounded distribution functions is their completely different
behaviour approaching the upper limit: the EV4 do it faster
than the LN4 and the TDF is the slowest, even if the upper
limit is the same as in Fig. 2b or, better, in Fig. 3 (which is
a more general view of Fig. 2 (central), including the same
upper limit). This different behaviour can be generalized for
the usual parameter range of the three functions and results
in most cases crucial for the model selection.

For the Jucar sample data, Fig. 2 shows the characteris-
tic “dog-leg” effect in torrential regime rivers. It is clear the
TDF distribution can not reproduce the shape of the plot-
ting positions. The reason for this unsuitability could be that
the TDF is based on a Gumbel distribution function, which,
according to Franćes (1998), is not appropriate for Mediter-
ranean rivers. On the other hand, the EV4 distribution func-
tion with all the parameter estimation methods is the cdf that
better reproduces the shape of the plotting positions. The tri-
angle in Fig. 2 represents the non-exceedence probability for
the threshold of perception considering the complete sam-
ple: only the EV4 (for the three estimation methods) can
approach to it. In fact, the sample skewness coefficient is
in the range recommended by Takara and Tosa (1999) for
the EV4. This descriptive skill of the EV4 distribution func-
tion, when the “dog leg” effect is present, makes the EV4 the
recommended distribution function to the Jucar River annual
maximum floods.

Concerning the estimated PMF (ĝ), for the EV4/ML-C
and TDF/ML-C models is equal to 13 000 m3 s−1, which is
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Fig. 3. TDF, EV4 and LN4 different behaviour approaching the
same upper limit. Parameters for each distribution function are the
same than in Fig. 2 (central): the case study data with the ML-PG
estimation method.

the maximum observed data (the 1864 flood). This poor re-
sult was expected from the likelihood function properties in
these two cases, as it was explained earlier in this paper.
The ĝ estimated by models TDF/ML-GE (93 100 m3 s−1)
and LN4/ML-C (99 300 m3 s−1) are approximately three
timesG (the PMF deterministic value), which are unreason-
able values, whereas thêg estimated with EV4/ML-GE is
18 100 m3 s−1, almost half ofG value (certainly an overes-
timation of the PMF) and about 40% above the maximum
observed value in two centuries, which is more reasonable.

5 Uncertainty analysis for the EV4 model

Once the EV4 distribution function has been selected for the
Jucar River case study, an uncertainty analysis has been made
in order to establish the reliability of the quantiles and PMF,
estimated with this distribution function and using the differ-
ent parameter estimation methods (ML-C, ML-GE and ML-
PG). For the sack of simplicity and without loosing gener-
ality, it will be presented the results for the case study data
types and parameter values. More results can be found in
Botero (2006).

The uncertainty analysis has been made by Monte Carlo
simulations with two skewness coefficient scenarios. One
population has a high skewness coefficient (γx) of γx = 5.77
(scenario 1), which corresponds with the EV4’s skewness co-
efficient calculated with the parameters estimated for the Ju-
car River. The other population has aγx = 2.39 (scenario 2),
which is lower than the first one, but it can still be considered
large and possible in Mediterranean rivers.

The length of the generated series was 450 years, with a
Non-Systematic period ofM = 400 years with aXH with

return period equal to 50 years and a Systematic period of
N = 50 years, which can be typical characteristics when
dealing with historical information in European cities.

The parameter estimation methods compared here are
those exposed in Sect. 3, but with a variation in the ML-
PG method introducing some random and systematic errors
in the G prefixed value. It has been assumed that the error
in G value is normal with a coefficient of variation (CVG)
of 0.3 and mean equal to 10% bigger than the PMF (i.e., a
systematic additional positive error of a 10% of the theoreti-
cal PMF). The aim of this modification in the ML-PG method
has been to analyze how the PMF uncertainty is propagated
to the quantile estimation uncertainty. Figure 3 shows the un-
certainty ofq̂T andĝ, reflecting how it varies with the quan-
tile return period (T ). The uncertainty is measured with the
next error index:

E(%) = 100

√
1
S

∑S
i=1

(
θ̂i − θ

)2

θ
(14)

whereS is the number of generated samples;θ̂i is the esti-
mated quantile or upper limit; andθ is the theoretical quan-
tile or upper limit value of the distribution function. In terms
of Eq. (14), the error introduced inG has an equivalent er-
ror index of 32%, which can be assumed reasonable in our
experience.

From Fig. 4 left, which corresponds with scenario 1, it can
be seen that the three estimation methods have an error be-
tween 15% and 25%, from 50 to 500 years quantiles. Below
200 years, the quantile errors are similar, but for quantiles
larger thanq̂500, the parameter estimation method with less
error is the ML-GE, which gives the less sensitive error to
the quantile return period. ML-PG is the method whit higher
error, which results in an error of 30% for theq̂10 000, in op-
position to the ML-GE with only 18%. Obviously, the errors
for the ML-PG method can be reduced if the error in the a
priori G value is reduced, either, its coefficient of variation
or its bias.

On the other hand, results for scenario 2 (Fig. 4 right) show
that for ML-C and ML-GE methods, the errors forq̂T andĝ

are limited to about 10%. The quantiles errors with ML-PG
method are strongly controlled by theG error, even for quan-
tile return periods smaller than 1000 years. In both scenarios
ML-PG givesq̂10 000andĝ, errors close to 30%, which cor-
responds with the assumedG error index. It is clear that if
theG estimation error were zero, this method would be the
best, but it deteriorates as this error increases.

A second Monte Carlo simulation was performed in order
to analyze how is the influence of theXH , characterized by
its return periodH , in the q̂T andĝ uncertainty. The return
periodH of the generated series was established at 25, 50,
100 and 250 years. Figure 5 shows the quantile andĝ esti-
mation errors with the ML-GE method. For both scenarios,
it can be observed a minimum error, located near to theq̂T
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Fig. 4. Estimation error (in %) of̂qT andĝ (PMF estimate).H = 50,M = 400 andN = 50 years. Left: scenario 1, right: scenario 2.

Fig. 5. Estimation error (in %) of̂qT andĝ (PMF estimate) for differentH . M = 400 andN = 50 years. Left: scenario 1, right: scenario 2.

with a return period equal toH . After this point, the estima-
tion error is slightly higher, but remains in a similar order. It
means that the Non-Systematic information contributes to re-
duce the error in the flood quantiles estimation only for those
quantiles of equal or larger return period than the threshold
of perception.

6 Robustness analysis

Robustness analysis has been also made by Monte Carlo sim-
ulations. Series have been generated coming from 3 different
populations: (1) EV4 population, to analyse the robustness
with respect to the selected upper bounded distribution in the
case study; (2) TCEV population, in order to analyse robust-
ness with respect to an unbounded distribution with 4 pa-
rameters, which have shown good results in Mediterranean
rivers; and (3) GEV population, to analyse robustness with
respect to an unbounded distribution commonly used when
dealing with flood frequency analysis. In this section, we
will assume “similar error” if the estimation error increment
is smaller than 50%. The estimation method was ML-GE for
the EV4 and ML for the TCEV and GEV.

When an EV4 population is assumed (Fig. 6), or in other
words, if the flood population has an upper bound, the quan-
tiles estimated with EV4 and TCEV distributions give similar

errors in scenario 1, at least up to the estimation of 10 000
years return period quantiles, whereas for scenario 2 (lower
skewness coefficient), the TCEV can be used with confidence
below 1000 years. On the other hand, the GEVq̂T error is
larger than 80% forT > 200 years in both scenarios.

Assuming a GEV population (Fig. 7), the three distribution
functions give similar̂qT errors, being the maximum differ-
ence of an absolute increase of only about 20%, compared
with the GEV q̂T error. For low skewness coefficient (sce-
nario 2, Fig. 7 right), the EV4 gives almost the same errors
that the GEV quantile estimations for all return periods, and
the TCEV for very large ones (T > 1000 years). Reader must
take into account that the TCEV has four parameters (enough
flexibility for a population derived from a GEV with three
parameters), but on the other hand the EV4 has a fixed pa-
rameter in this study (i.e., three parameters to be estimated).

Finally, for samples with a TCEV population (Fig. 8), the
quantiles estimated with EV4 give similar errors to the TCEV
in scenario 2 for return periods smaller than 1000 years,
thought theq̂T error increment in scenario 1 is limited but
significant (Fig. 8 left). In both scenarios, the GEV cannot
reproduce the ordinary and extraordinary flood populations
contained in the TCEV and gives an estimation error incre-
ment increasing with return period, only acceptable for low
quantiles.
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Fig. 6. Estimation error (in %) of̂qT for EV4, GEV and TCEV distribution functions, assuming an EV4 population.H = 50,M = 400 and
N = 50 years. Left: scenario 1, right: scenario 2.

Fig. 7. Estimation error (in %) of̂qT for EV4, GEV and TCEV distribution functions, assuming a GEV population.H = 50,M = 400 and
N = 50 years. Left: scenario 1, right: scenario 2.

Fig. 8. Estimation error (in %) of̂qT for EV4, GEV and TCEV distribution functions, assuming a TCEV population.H = 50,M = 400 and
N = 50 years. Left: scenario 1, right: scenario 2.

If TCEV and EV4 behaviours are compared, it should be
underlined how similar they are from robustness point of
view: both distributions have a limited estimation error in-
crement for high skewness coefficient (scenario 1, Figs. 6
and 8 left) and increasing with return period for relative low
skewness coefficient (scenario 2, Figs. 6 and 8 right). If we

consider just the “descriptive” ability of the model (as Cun-
nane, 1986, refers to), it means mixed population and upper
bound hypothesis can be interchanged below the PMF, par-
ticularly for very high skewness coefficient populations.
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7 Conclusions

Dealing with PMP or PMF, a general assumption in the
hydrological community is that these upper bounds can be
only estimated deterministically, with the single exception of
Elı́asson (1994) for PMP estimation. However, it has been
rigorously shown in this paper that, using statistical analysis
with upper bounded distribution functions and introducing
additional Non-Systematic information, it is possible to es-
timate very high return period quantiles and the PMF with
acceptable and similar estimation errors, as it is shown in
Figs. 4 and 5.

Based on the ML method, three different methodologies to
estimate the parameters of the bounded distribution functions
can be implemented, depending on the available flood infor-
mation. If there is a good deterministic a priori estimation of
the PMF, the ML-GP method is advised. Otherwise, ML-C
can be used considering the upper limit as one more param-
eter. But in some combinations of distribution function and
information (for example, the EV4 and TDF with additional
CE Non-Systematic information), the upper limit estimated
by ML-C method is equal to the maximum observation. In
these situations, only the ML-GE method can be used.

Between the LN4, TDF and EV4 upper bounded distribu-
tion functions, the latest is the distribution function which
better represents the shape of the empirical distribution func-
tion of the Jucar River, which has a high skewness coefficient
and, consequently, in accordance with the results obtained by
Takara and Loebis (1996) and Takara and Tosa (1999). Com-
bining this distribution function with the three proposed pa-
rameter estimation methods, the Jucar series has been fitted
and it has been possible to estimate statistically a PMF value
for this river with an error of 50% (obtained by Monte Carlo
analysis). In any case, the resulting estimate is not out the
possible range of the Jucar River PMF at its sea mouth.

The uncertainty analysis shows that the EV4/ML-GE sta-
tistical model is the most adequate among those presented
in this paper, for the estimation of high return period quan-
tiles and PMF when dealing with CE type Non-Systematic
information.

For the sensitivity analysis case study (with more histor-
ical information than in the Jucar River), thêq10 000 and
ĝ (PMF estimate) estimation error using the EV4/ML-GE
model is approximately about 20%. Nevertheless, this model
shows a slight sensitivity to the sample skewness, giving a
reduction for theq̂T andĝ estimation error as the skewness
coefficient is reduced. It must be pointed out theĝ error with
all methods is close to thêq10 000 error. Actually, if we ac-
knowledge the 10 000 years return period quantile estimation
error is admissible, we must admit also theĝ estimation error
using the statistical approach given by ML-C or ML-GE.

The q̂10 000error obtained with the model EV4/ML-PG is
approximately the error associated with the deterministic es-
timation of the PMF. It means that if it is available a previ-
ous value of the PMF, with its associated uncertainty, it is

possible to estimate high return period quantiles with equal
or less uncertainty using the EV4/ML-PG model. However,
introducing a prior estimation ofG with relative small errors
(as we are using in this work) is worst than do not use it and
estimate it statistically by ML-GE or ML-C methods (Fig. 4).

For the information scenario used in the robustness analy-
sis, it can be concluded the EV4/ML-GE model can satisfac-
tory fit samples coming from unbounded populations (GEV,
Fig. 7) or unbounded mixed populations (TCEV, Fig. 8). On
the contrary, if the flood population is upper bounded, the
TCEV distribution function in general cannot be used for
very high return periods and the GEV distribution function
only can be accepted for the estimation of low return pe-
riod quantiles, as it is shown in Fig. 6. So, it can be gen-
eralized with an upper bounded population, the quantiles
estimated using unbounded distributions with return period
large enough, will be higher than the PMF and, consequently,
with large unacceptable errors. For return periods producing
quantiles similar to or smaller than the PMF, the error incre-
ment compared with the use of the “true” upper bounded dis-
tribution will depend of the fitted right tail distribution prop-
erties.
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