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Abstract. This paper proposes the estimation of high re-1 Introduction
turn period quantiles using upper bounded distribution func-
tions with Systematic and additional Non-Systematic infor- Flood frequency analysis is one of the most common meth-
mation. The aim of the developed methodology is to reduceods to estimate the design flood for hydraulic structures and
the estimation uncertainty of these quantiles, assuming théor flood hazard/risk mitigation programs. In Europe, the na-
upper bound parameter of these distribution functions as aional legislation for flood risk assessment is based on flood
statistical estimator of the Probable Maximum Flood (PMF). frequency analysis to estimate discharges associated with dif-
Three upper bounded distribution functions, firstly used inferent return periods, from 50 to 500 years (Benito et al.,
Hydrology in the 90's (referred to in this work as TDF, LN4 2004). In some projects the focus is on extreme floods, which
and EV4), were applied at the Jucar River in Spain. Dif- have been defined according to different authors as floods
ferent methods to estimate the upper limit of these distribu-With an annual probability of occurrence of about #Go
tion functions have been merged with the Maximum Likeli- 107 (Jarret and Tomlinson, 2000), 1®or lesser (Naghet-
hood (ML) method. Results show that it is possible to ob-tini et al., 1996) and in other cases, as floods with return
tain a statistical estimate of the PMF value and to establisHPeriods greater than 500 years (England et al., 2003). Tra-
its associated uncertainty. The behaviour for high return peditionally, extreme flood estimates have been associated with
riod quantiles is different for the three evaluated distributionslarge dam projects or with the location of nuclear and other
and, for the case study, the EV4 gave better descriptive rehigh vulnerable facilities, in which the release of hazardous
sults. With enough information, the associated estimationmaterials to the environment is in consideration (Stevens,
uncertainty for very high return period quantiles is consid- 1992). For some of these projects, the design criteria com-
ered acceptable, even for the PMF estimate. From the romonly include the Probable Maximum Flood (PMF) estima-
bustness analysis, the EV4 distribution function appears tdion. The PMF is the biggest flood physically possible at a
be more robust than the GEV and TCEV unbounded distri-specific catchment (Smith and Ward, 1998). It has a phys-
bution functions in a typical Mediterranean river and Non- ical meaning and it provides an upper limit of the interval
Systematic information availability scenario. In this scenarioWithin which the decision maker must operate and design.
and if there is an upper limit, the GEV quantile estimates areThe PMF is the flood generated by the Probable Maximum
clearly unacceptable. Precipitation (PMP) with the worst but reasonable hydrologi-
cal conditions in the studied basin. The PMP is defined by the
World Meteorological Organization as a precipitation upper
limit for a given region, duration and time of the year (WMO,
1986).

Related to high return period quantiles estimation, flood
frequency analysis has a well known drawback, as pointed
out by Merz and Bbschl (2008): the lack of available in-
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Systematic information). This fact involves the extrapola- In this paper we propose the use of upper bounded distri-
tion of very high return period quantiles from data records bution functions, in order to better estimate high return pe-
which rarely exceed a hundred of years, producing quantileiod quantiles. The upper limit of these distribution func-
estimates with a high level of uncertainty. tions can be fixed a priori or not. Following the classification
In the last decades, as a way to solve this problem, manyf Merz and Bbschl (2008) for additional information, in
authors have included historic and palaeoflood informationthe first case the PMF value can be considered as a causal
(from now, Non-Systematic information) in flood frequency information expansion. This was the option followed pre-
analysis with very good results: starting from the pioneer pa-viously by Elasson (1997), Takara and Loebis (1996) and
per of Leese (1973) and following by the work of Stedinger Takara and Tosa (1999). In the last case, the PMF can be
and Cohn (1986), Hosking and Wallis (1986a,b), Stedingerestimated as one of the parameters of the statistical model,
and Baker (1987), Jin and Stedinger (1989), Stevens (1992)ysing in this paper additional Non-Systematic information,
Pilon and Adamowski (1993), Frances et al. (1994), Cohncalled temporal information expansion, in terms of Merz and
et al. (1997), Jarret and Tomlinson (2000), Martins and Ste-Bloschl (2008) to obtain enough estimation reliability.
dinger (2001), O’Conell et al. (2002), England et al. (2003),

Naulet et al. (2005), Reis and Stedinger (2005) and Merz and o )
Blaschl (2008). 2 Upper bounded distribution functions

Probability distribution functions with 2, 3 or 4 param- T .
) If parent distribution is upper bounded, the annual maximum
eters have been used in extreme floods frequency analysis. L S
: L . Will also be. In this situation, upper unbounded classical lim-
with the common characteristic of having no upper bound, at

least for high positive skewness coefficiept), The use of iting functions from Extreme-Value Theory will not be good

parametric distribution functions allows the quantile extrap- approximations for the estimation of high retur period an-

i . . nual maximum, as it will be shown in the robustness analysis
olation as a function of the requested return period as much

L . . ) : ; . in Sect. 6. The three upper bounded distribution functions
as it is required (obviously increasing at the same time its

uncertainty). However, as the return period increases Withm:)p“ed in the case study were chosen because they had been

unbounded parametric distribution functions, the estimatedprevmus'y sqcc_essfully appl_led to hydrological ex_tremes se-
L . o . Tries. Other distribution functions commonly used in Hydrol-
guantiles increase too with no limit. Though, the question

to pose at this point is: would it be possible to have a ﬂoodOgy which have an upper bound are the Generalized Pareto
P > P " posst : nd the GEV. The former has an upper bound when its shape
with such a high magnitude, as large as it could be obtaine

with these unbounded distribution functions, for a certain parameter is bigger than 0, which occurs for< 2.0. The
X . . latter presents an upper bound when the shape parameter
catchment with specific area and geomorphologic character:

. ; . o : is also positive, but the becomes less than the Gum-
Istics? The_ st_r_aught answer IS no, th'? |s_not p05_3|ble. Ther%el’s coﬁstant skewnessmgoefficient which is equal to 1.14.
must be a limiting flood discharge which is the biggest phys'Our aim is to analyse rivers with high skewness coefficient

ically possible flood for the specific climatic and hydrologic . . . .
characteristics of the catchment, which indeed correspondgyx .clearly plgger than 2), like thosg with a Meqnerranean
regime, which is the reason to not include in this paper the

with the PMF definition (Enzel et al., 1993). Or in Horton's GEV and Generalized Pareto distribution functions.

V\(orqls: -+ a small stream cannot produce a major Missis- Following paragraphs presents a short description con-
sippi flood for much the same reason a barnyard fowl cannot__ . L .

. N , cerning the three selected distributions. More behavioural
lay an egg a yard in diameter” (second authors class nOte%’md statistical details can be found in Botero (2006)
of J. Salas’ lecture in 1990). Not considering the existence '
of this upper limit must introduce an additional significant 5 1 The extreme value with four parameters
model error in the high return period estimated quantiles. distribution function (EV4)

Moreover, in our opinion, this additional error could produce

in most cases the underestimation of the high return periodrhis probability distribution function was firstly proposed by
quantiles, which is one of the most frequent causes of dankanda (1981), who empirically derived it from the EV dis-

failure (ASCE, 1988). tribution function family. The EV4 cumulative distribution
In accordance with reality, some distribution functions in- function (cdf) is given by

corporate an additional parameter, which is actually the up-

per limit to the random variable. This class of functions has g —Xx k

been applied to the extreme frequency analysis of annua x(x) = exp |:_{ } :| (1)

maximum daily precipitation by Esson (1994 and 1997),

Takara and Loebis (1996) and Takara and Tosa (1999)andih > 0;, v >0, a <x < g

frequency analysis of annual maximum flood by Takara and

Tosa (1999). All these authors concluded that upper bounde#hereg anda are respectively the upper and lower bounds

distribution functions fit properly to extreme data and im- of the random variable, and andk are parameters which
prove the quantile estimates. characterize the scale and shape of the distribution.

v(x —a)
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Takara and Tosa (1999) applied this distribution to annualestimate of the PMP. The final expression of the TDF cdf is
maximum daily precipitation and annual maximum daily dis- given by
charge at Ohtsu (Japan). The authors made a sensitivity anal- o+
ysis fixing the upper and lower bounds to a priori values ob- ry (x) = exp [—exp (__x 4+ 2 _ b)] (4)
tained empirically. They concluded in a comparison with o (& —x)
other distribution functions, the EV4 is the most appropri-
ated to datasets with sample skewness coefficient higher tha > %
about 2.

k* <0andx < g

whereg is the upper boundy is a scale parameteb, is a

2.2 The Slade-type four parameter LogNormal location parameter, andis a negative constant.

distribution function (LN4)

Proposed by Slade (1936) and named in this manner b)? Parameter estimation methodology

Takara and Loebis (1996), the LN4 can be obtained if 831  Maximum Likelihood method and data
Slade-type random variable transformation is applied to a classification
Two Parameters LogNormal distributed random variable.

This transformation is given by In this study, the parameters set for each distribution func-
Y —a tion is estimated based on the Maximum Likelihood (ML)
y =1n < ) a<x<g (2) estimation method, as in many others works dealing with
§— 7 Non-Systematic information (Leese, 1973; Condie and Lee,
whereg anda are respectively the upper and lower bounds. 1982; Hosking and Wallis, 1986; Cohn and Stedinger, 1987;
The resulting LN4 pdf is defined as following Phien and Fang, 1989; Guo and Cunnane, 1991; Pilon and
Adamowski, 1993; Frances et al.,, 1994; Kroll and Ste-
fx(x) = §— 4 3)  dinger, 1996; Frances, 1998; Martins and Stedinger, 2001;
(x—a) (g —x)oy V27 O’Connell et al., 2002; Williams, 2002; Naulet et al., 2005;
Calenda et al., 2005; Calenda et al., 2009). This methodol-
1y — my 2 ogy has been selected on the basis of its statistical features
exXp|—5 {T} for large samples, and also because of its ability to incorpo-

rate easily in the estimation process any type of additional

whereu, andoy are the well known LogNormal cdf param- data. . ' _ . .
eters. From the LN4 application to annual maximum daily AS it was mentioned in the Introduction, data series
precipitation data, Takara and Loebis (1996) concluded thafécorded systematically at a flow gauge station located in a
if the four parameters of the distribution are estimated, thefiver section will be called Systematic information. In op-
variability of quantile estimates is higher than if one or both POsition, the Non-Systematic information is that information
limits are fixed previously in a known value. In addition, they Notrecorded systematically. If there is not a gauge station, all
suggested the use of the PMF as the upper bound when dedVer flow information can be considered as Non-Systematic.
ing with floods. In a posterior paper, Takara and Tosa (1999)'I'he sources for this information can be histqrical or from
conclude that the LN4 distribution function fits well to many Palaeofloods studies. The former are associated with past
hydrological datasets with sample skewness coefficient les§uman registered observations (Leese, 1973). The latest are

than about 1.5. floods identified using physical or botanical indicators ir-
respective of any direct human observation (Stedinger and
2.3 The transformed extreme value type distribution Baker, 1987), but not necessarily, previous to human regis-
function (TDF) ters. In practice, Non-Systematic information is always cen-

sored type I, in such a way we have some information con-
This distribution was proposed byigtson (1994) as a sta- cerning a flood at a given time during the Non-Systematic
tistical model for frequency analysis of extreme precipita- period because this flood was bigger than a given discharge
tion. The author suggested that bounded data fitted by awor threshold level of perceptioX y (Stedinger and Cohn,
unbounded distribution as the EV1 (also called Gumbel),1986; Frances et al., 1994), whefkis the threshold return
must deviate from the distribution at high return periods. Inperiod (the return period is used in order to generalize the
Eliasson (1997) is defined a Transformed Distribution Func-results). The value of the peak flow for the floods ab&ye
tion (TDF) derived from a Base Distribution Function (BDF) can be known or not. Concerning the floods bel&yy, al-
selected by the author, which corresponds with the EV1. Inways itis not known their exact values, but at least it is known
his work, Efasson (1997) fits the resulting TDF to standard- they were smaller thai . The threshold level of percep-
ized annual maximum daily precipitation from Iceland and tion can be, for example, the corresponding discharge to the
Washington State (USA) with very good results fixing a prior position of the cave where flood sediments are deposited (for
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palaeoflood information) or the minimum discharge which Sa

produces damages in a city (for historical information). It s Known flood discharge
can change with time and, in some cases, there canbe upper & [ 777 Unknown flood discharge
and lower thresholds for the same flood (following the palae- Threshold evel of perception
oflood example if there are two caves at different positions, Xz

<

the lower one with sediments of a particular flood and the up-
per one without any trace of this flood). On the other hand,
usually the Systematic data is completely known, but some
times the uncertainty in the data forces to treat them also as X
censored.

Concerning “years without information” within the Non-
Systematic period, the statistical treatment depends on the "
situation. If there is no information during some years (his- : >
torical or palaeoflood), it will be in the major part of the cases time
because the flood was below the threshold level of perception
and, therefore, they must be considered as UB data. If «“wdig. 1. Proposed flood data classification (after Naulet, 2002), in
do not know what happened”, the solution is the same tharihis figure with two constanXy; .
we traditionally do when dealing with the Systematic record:
do nothing and assume there is not a bias to miss the ver%

DB

LB EX

UBl

R A
e ———

high floods or very low ones. But the last situation should ~B-i (© Li) =1 Fx (Li; ©) ®)
be very rare, because very frequently there is more than on RPN s
source of information. For example, palaeoflood studies Iook‘iUB’l (©: Ui) = Fx (Ui ©) ()

for slackwater depp_sns in more than one location, in order to, B.i (Q; L;, U,') = Fx (Ui§ Q) — Fx (Li; @) 8
reduce the possibility of missing floods over the threshold

level of perception. ~ where the independent and identically distributed random
Stedinger and Cohn (1986) and Frances et al. (1994) firs{ariaple X is described for all years through its probability
classified the flood information from a statistical point of gensity functionfy (-) or its cumulative distribution function
view. .Howev.er, in a MaX|mum L|keI|_hood framework, our Fx(-); © represents the parameters setis the magnitude
experience dictates it is more convenient to follow the classi-of the flood presented in theyear; U; is the upper bound
fication presented by Naulet (2002), in which any piece (Sysyyhich is not exceeded in theyear; andL; is the lower
tematic or Non-Systematic) of flood data can be classified inygnd exceeded in theyear. The ML estimated parameters
(see Fig. 1): are obtained by maximizing the logarithm of the likelihood

— EX type. The flood peak value is known. It will corre- function over the parameter space.

spond with most of the Systematic data and with some When dealing with Non-Systematic information, what is
Non-Systematic floods with enough information to re- commonly available is a combination of the different types of
construct the peak discharge data described above, as it is shown in Eq. (13) for the like-

lihood function of the case study (Sect. 4). It was stressed

— LB type. Inthis case, itis only known that the flood was by Frances et al. (1994), that from the statistical point of

bigger than a lower bound, which is the knownX y. view there is no difference concerning the source of the Non-

. o _ Systematic information, historical or palaeoflood, and their

— UBtype. Forthis type of dataitis known that at the time yreatment must be completely similar. More over, with this

of the flood, an upper bound/{ with known magnitude ey data classification there is not any difference also be-

was not exceeded. Again, this corresponds with the  yyeen Systematic and Non-Systematic information, with the
XH. additional advantage that always the data can have a time as-

— DB type. The flood peak is unknown and the only in- signed, which will be crucial for future non-stationary flood

formation about this flood is that it has a double bound'frequency models.
This means that the flood was within an interval with
known values for the uppet/) and lower ) bounds.

For annual maxima analysis of a stationary process, but witf?€@ling with upper bounded distribution functions, it must
variable threshold of perception in time, depending on theb€ carefully undertaken the estimation of the upper limit pa-

type of data each yearcontributes to the likelihood function r@meter £). The first possibility is to prefix in a spe-
through one of these general expressions: cific value previously computed (calle@): i.e., the pa-
rameterg is not estimated jointly with the other parame-

Lsy (©; x) = fx (xi; ©) (5)  ters. This was the approach used by Takara and Tosa (1999),

3.2 Upper limit estimation
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Eliasson (1997) and Takara and Loebis (1996). In this casexvhere®’ is the parameters set excludipg The expression
G is the PMF estimate by traditional means. The PMF canin Eqg. (11) must be solved iteratively, fixing tavhen max-
be estimated by different procedures, being the most advisimizing the likelihood function and fixing the rest of parame-
able the rainfall-runoff modelling, where rainfall input is the ters when obtaining a neywalue with the Generic Equation.
PMP estimated by the WMO maximization and transpositionThis procedure is repeated until the estimagedonverges
procedure (WMO, 1986). with the proper tolerance.

A second possibility is to estimate the whole parametersML-PG: Finally, in this casegis fixed at the value previ-
set, includingg, using the ML method. However, with EV4 ously calculated @) as the best approximation for the true
and TDF distribution functions and when the available Non-unknown PMF, and the other parameters are estimated by
Systematic information is a mix of EX and UB data (also ML method:
called Censored Information or CE by Stedinger and Cohn, -G
1986), the estimated is equal to the maximum observed maxL(@’)}
value of the data set (which obviously it is not the PMF) —
and thus, other methods to estimgtenust be introduced.
This follows from the fact that the likelihood function for 4 The Jucar River case study
these two distributions and this type of information decreases
monotonically forg — oo (Kijko and Sellevoll, 1989). The statistical models described above have been applied to

Kijko (2004) proposed what he called a “Generic Equa- the available data of the Jucar River at “Huerto-Mulet” flow
tion” (GE) for the estimation of the maximum earthquake gauge station, where we had Systematic annual maximum
magnitude, which corresponds with the magnitude of theflows from 1946 to 2004 (56 years). This river is located in
largest possible earthquake, conceptually equivalent to th@ semi-arid climate region of Eastern Spain and has a long
PMF for floods. This author developed this equation basedperiod with historical information. The point of interest is
on the limit of a random variable estimator proposed by close to the river sea mouth and has a basin of 21 5G0 km
Cooke (1979). The GE is valid for any cdf and it is given but due to meteorological reasons, actually only one third of

(12)

by the basin is contributing to the floods in this area. The basin
mean annual precipitation is 450 mm, but it must be under-
& lined that the Jucar River presents the typical high variabil-

g = Xmax+ / [Fx (x; ©]"dx 9) ity (or torrentiallity) of Mediterranean rivers, with frequent
0o observed daily precipitation events with more than 100 mm

] . ~ during the Fall season. These extreme events are generated
wherexmax is the maximum observed value of the Systematicy strong Convective Mesoscale Systems positioned in the
and Non-Systematic data, ands the number of observed \\estern Mediterranean Sea (Rigo and Llasat, 2007). The
values (i.e., themax order). It must be noticed that itis not  main sample statistical characteristics of the instantaneous
possible to apply the Generic Equation when there are LB oty ,qual maximum floods are: mean = 713sn!, coefficient
DB data in the available information, because with this kind ¢ \/5riation = 2.74 and skewness coefficient = 5.26.
of data thexmax order cannot be known. The Spanish Centro de Estudios Hidrafizos (Franes,
1998) quantified the peak flow of 4 Non-Systematic floods
who reached the level of an ancient convent, located within

In this paper and in accordance with the selected method tct)he fl_oodplam, in 1778, 1805, 1814 and 1864. The discharge

. g . ‘Fequired to flood the convent is 6208812, which can be
estimateg, the whole parameters set estimation method will . . :
. considered as the threshold level of perception for this source
be referred as following

) ... of information. To reduce the bias in the estimation of the
ML_C.' When Fhe whole parameters set .Of the. distribution number of known floods during the Non-Systematic period,
function is estimated by the ML method, includigcas an-

. L X as studied by Hirsch and Stedinger (1987), we have consid-
other free parameter in the maximization process: ered the beginning of this period in the middle year between
(10) first and second historical floods, eliminating the first one in

the statistical analysis. So, the final selected historical period
ML-GE: It will be referred to the Maximum Likelihood- is 153 years long, since 1792 (the average between 1778 and
Generic Equation estimation method. This method consists-805) to 1945. During this period, the Non-Systematic infor-
on the use of the Generic Equation presented above (Eq. gpation can be classified as CE with 3 EX data type. It must

to estimateg and the ML method for the rest of parameters: be mentioned that, in this case study, the sensitivity of the
results to this decision was small: for the three EV4 mod-

maxL(®") els, the maximum estimated quantile change was 5%. For

g .

. Y n (12) more than one hundred years there was not such extraordi-

8 = Xmax + _{o [Fx (v € 9)]'dx nary floods until 1982, when the threshold was also exceeded

3.3 Proposed estimation methodologies

maxL(®)
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Fig. 2. Applied models to the Jucar River. Stars are the sample plotting positions given Byftmula. Triangle represents théy =
6200 s 1 plotting position. Figures correspond to each estimation method: ML-C (left), ML-PG (central) and ML-GE (right).

with a flood of 12000 is1, and it was almost exceeded in station. With a high probability, it will be an overestimation
1987 with a flood of 5200 fs~1. The stationarity of this of the PMF. With any better estimation, due to the scope of
long information period (more than 200 years) was testedthis study, this value will be used fa¥.
and proved with the test of stationarity described by Lang et Usually, to test the model performance (distribution and
al. (1999 and 2004), using as random variable the cumulaestimation method) from a “descriptive” point of view (Cun-
tive number of floods over the threshold of perception. Asnane, 1986), the fitted cdf and the plotting positions are com-
an example of application of Egs. (5) to (8), the likelihood pared graphically. In this work, the probability plotting po-
function for this case study is: sitions with Systematic and CE Non-Systematic information
were calculated with th& formula proposed by Hirsh and
(13)  stedinger (1987). Figure 2 shows the plotting positions for
5 56 Lhe Jucr?r data and the fits o_f the apﬁlizd distribution functions
) ) y each parameter estimation method.
izl_[1 fx (i ©) 1:1_11 Ix (w2 ©) A very interesting first conclusion about the three upper
bounded distribution functions is their completely different
where the first term represents the contribution to the like-behaviour approaching the upper limit: the EV4 do it faster
lihood function of the Non-Systematic UB floods (during than the LN4 and the TDF is the slowest, even if the upper
the Non-Systematic period the annual maximum flood didlimit is the same as in Fig. 2b or, better, in Fig. 3 (which is
not reach the convent 150 years), theare the three Non- a more general view of Fig. 2 (central), including the same
Systematic EX floods and the are the Systematic ones. upper limit). This different behaviour can be generalized for
Fran@&s (1998) studied this case study, using the un-the usual parameter range of the three functions and results
bounded distribution function TCEV, which assumes a mixedin most cases crucial for the model selection.
population of “ordinary” and “extraordinary” flood events  For the Jucar sample data, Fig. 2 shows the characteris-
(Rossi et al.,, 1984), the later originated by Convectivetic “dog-leg” effect in torrential regime rivers. It is clear the
Mesoscale Systems. In this work, the statistical models apTDF distribution can not reproduce the shape of the plot-
plied for the flood frequency analysis of the Jucar River areting positions. The reason for this unsuitability could be that
combinations of the three bounded distribution functions pre-the TDF is based on a Gumbel distribution function, which,
sented in Sect. 2 and the three parameter estimation metho@cording to Frars (1998), is not appropriate for Mediter-
shown in Sect. 3. The lower bound for the EV4 and LN4 hasranean rivers. On the other hand, the EV4 distribution func-
been fixed to zero, hence reducing to three the number of paion with all the parameter estimation methods is the cdf that
rameters to be estimated. In any case, this is not an influentiddetter reproduces the shape of the plotting positions. The tri-
parameter for high return period quantiles. angle in Fig. 2 represents the non-exceedence probability for
In order to apply the ML-PG parameter estimation the threshold of perception considering the complete sam-
method, a previous PMF value to the Jucar River catchmenple: only the EV4 (for the three estimation methods) can
must be calculated. Cifres and Abad (1992), using for theapproach to it. In fact, the sample skewness coefficient is
PMP the maximization and transposition procedure (WMO,in the range recommended by Takara and Tosa (1999) for
1986), computed the PMF in 25 00812 for the Tous dam,  the EV4. This descriptive skill of the EV4 distribution func-
which is located upstream our point of interest. Assumingtion, when the “dog leg” effect is present, makes the EV4 the
the same specific discharge (overestimating hypothesis), takecommended distribution function to the Jucar River annual
ing into account the catchment area increment and considmaximum floods.
ering only the meteorologically active basin, the PMF can Concerning the estimated PMFg)( for the EV4/ML-C
be extrapolated to 33 900%w~1 at Huerto-Mulet flow gauge and TDF/ML-C models is equal to 13 000Gt 1, which is

L(®) = [Fx (6200 ©)]**
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1 x 10" return period equal to 50 years and a Systematic period of
N =50 years, which can be typical characteristics when
1y 10" dealing with historical information in European cities.
— The parameter estimation methods compared here are
5 those exposed in Sect. 3, but with a variation in the ML-
S 110 PG method introducing some random and systematic errors
3 in the G prefixed value. It has been assumed that the error
S o in G value is normal with a coefficient of variation (&Y
€ 1 x10° of 0.3 and mean equal to 10% bigger than the PMF (i.e., a
< 1 x10 systematic additional positive error of a 10% of the theoreti-
o cal PMF). The aim of this modification in the ML-PG method
1 i 18‘ has been to analyze how the PMF uncertainty is propagated
to the quantile estimation uncertainty. Figure 3 shows the un-

- - certainty ofgy andg, reflecting how it varies with the quan-
5 10 15 20 25 30 35 : . o )
Q [rm'/s] x 10° tile return period 7). The uncertainty is measured with the
next error index:

Fig. 3. TDF, EV4 and LN4 different behaviour approaching the >
same upper limit. Parameters for each distribution function are the \/% ZiS_l (él. _ 9)
same than in Fig. 2 (central): the case study data with the ML-PGE(%) — 100 —

estimation method. 0

(14)

wheres is the number of generated samplésijs the esti-

the maximum observed data (the 1864 flood). This poor re_mated quantile or upper limit; ardlis the theoretical quan-

sult was expected from the likelihood function properties in tile or upper limit value of the distribution function. In terms

these two cases, as it was explained earlier in this papeﬁnc Eq. (14), the error introduced i has an equivalent er-

The ¢ estimated by models TDF/ML-GE (9310Gsrl) " index of 32%, which can be assumed reasonable in our
and LN4/ML-C (99300rs™1) are approximately three eerrlen;e. 4 left. which ds with 01 i
timesG (the PMF deterministic value), which are unreason- rom Fig. 4 left, whic correspon $ with scenario 1, it can
able values, whereas thieestimated with EV4/ML-GE is be seen that the three estimation methods have an error be-
18100 rﬁ’s—,l almost half ofG value (certainly an overes- tween 15% and 25%, from 50 to 500 years quantiles. Below

timation of the PMF) and about 40% above the maximuml200 yeﬁrs,Athe qu:antlle errors are S'”."'a“ bu:] fc(;r q_u;t?tlles
observed value in two centuries, which is more reasonable. arger_t angsoo, the pargmetgr estimation met o with less
error is the ML-GE, which gives the less sensitive error to

the quantile return period. ML-PG is the method whit higher
5 Uncertainty analysis for the EV4 model error, which results in an error of 30% for tfieo oo in op-
position to the ML-GE with only 18%. Obviously, the errors

Once the EV4 distribution function has been selected for thfor the ML-PG method can be reduced if the error in the a
Jucar River case study, an uncertainty analysis has been magigiori G value is reduced, either, its coefficient of variation
in order to establish the reliability of the quantiles and PMF, or its bias.
estimated with this distribution function and using the differ-  On the other hand, results for scenario 2 (Fig. 4 right) show
ent parameter estimation methods (ML-C, ML-GE and ML- that for ML-C and ML-GE methods, the errors f@r andg
PG). For the sack of simplicity and without loosing gener- are limited to about 10%. The quantiles errors with ML-PG
ality, it will be presented the results for the case study datamethod are strongly controlled by tiieerror, even for quan-
types and parameter values. More results can be found itile return periods smaller than 1000 years. In both scenarios
Botero (2006). ML-PG givesgio oopandg, errors close to 30%, which cor-

The uncertainty analysis has been made by Monte Carlgesponds with the assuméglerror index. It is clear that if
simulations with two skewness coefficient scenarios. Onethe G estimation error were zero, this method would be the
population has a high skewness coefficiend (f y, =5.77 best, but it deteriorates as this error increases.
(scenario 1), which corresponds with the EV4'’s skewness co- A second Monte Carlo simulation was performed in order
efficient calculated with the parameters estimated for the Juto analyze how is the influence of th&y, characterized by
car River. The other population haga=2.39 (scenario 2), its return periodH, in thegr andg uncertainty. The return
which is lower than the first one, but it can still be consideredperiod H of the generated series was established at 25, 50,
large and possible in Mediterranean rivers. 100 and 250 years. Figure 5 shows the quantile @edti-

The length of the generated series was 450 years, with anation errors with the ML-GE method. For both scenarios,
Non-Systematic period o#f =400 years with aXyg with it can be observed a minimum error, located near tojthe
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Fig. 4. Estimation error (in %) ofi;y andg (PMF estimate) H =50, M =400 andN = 50 years. Left: scenario 1, right: scenario 2.
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Fig. 5. Estimation error (in %) ofj;y andg (PMF estimate) for different/. M =400 andN =50 years. Left: scenario 1, right: scenario 2.

with a return period equal t&. After this point, the estima- errors in scenario 1, at least up to the estimation of 10 000
tion error is slightly higher, but remains in a similar order. It years return period quantiles, whereas for scenario 2 (lower
means that the Non-Systematic information contributes to reskewness coefficient), the TCEV can be used with confidence
duce the error in the flood quantiles estimation only for thosebelow 1000 years. On the other hand, the GigVerror is
quantiles of equal or larger return period than the thresholdarger than 80% fof" > 200 years in both scenarios.
of perception. Assuming a GEV population (Fig. 7), the three distribution
functions give similagy errors, being the maximum differ-
ence of an absolute increase of only about 20%, compared
6 Robustness analysis with the GEV gr error. For low skewness coefficient (sce-
nario 2, Fig. 7 right), the EV4 gives almost the same errors
Robustness analysis has been also made by Monte Carlo sirnthat the GEV quantile estimations for all return periods, and
ulations. Series have been generated coming from 3 differenthe TCEV for very large oned(> 1000 years). Reader must
populations: (1) EV4 population, to analyse the robustnesgake into account that the TCEV has four parameters (enough
with respect to the selected upper bounded distribution in thdlexibility for a population derived from a GEV with three
case study; (2) TCEV population, in order to analyse robustparameters), but on the other hand the EV4 has a fixed pa-
ness with respect to an unbounded distribution with 4 pa-rameter in this study (i.e., three parameters to be estimated).
rameters, which have shown good results in Mediterranean Finally, for samples with a TCEV population (Fig. 8), the
rivers; and (3) GEV population, to analyse robustness withquantiles estimated with EV4 give similar errors to the TCEV
respect to an unbounded distribution commonly used whenn scenario 2 for return periods smaller than 1000 years,
dealing with flood frequency analysis. In this section, we thought thegy error increment in scenario 1 is limited but
will assume “similar error” if the estimation error increment significant (Fig. 8 left). In both scenarios, the GEV cannot
is smaller than 50%. The estimation method was ML-GE forreproduce the ordinary and extraordinary flood populations
the EV4 and ML for the TCEV and GEV. contained in the TCEV and gives an estimation error incre-
When an EV4 population is assumed (Fig. 6), or in otherment increasing with return period, only acceptable for low
words, if the flood population has an upper bound, the quanguantiles.
tiles estimated with EV4 and TCEV distributions give similar
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Fig. 6. Estimation error (in %) ofj; for EV4, GEV and TCEV distribution functions, assuming an EV4 populatiénr= 50, M = 400 and
N =50 years. Left: scenario 1, right: scenario 2.
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Fig. 7. Estimation error (in %) ofj; for EV4, GEV and TCEYV distribution functions, assuming a GEV populatiéin= 50, M = 400 and
N =50 years. Left: scenario 1, right: scenario 2.
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Fig. 8. Estimation error (in %) of for EV4, GEV and TCEYV distribution functions, assuming a TCEV populatiin= 50, M = 400 and
N =50 years. Left: scenario 1, right: scenario 2.

If TCEV and EV4 behaviours are compared, it should be consider just the “descriptive” ability of the model (as Cun-
underlined how similar they are from robustness point of nane, 1986, refers to), it means mixed population and upper
view: both distributions have a limited estimation error in- bound hypothesis can be interchanged below the PMF, par-
crement for high skewness coefficient (scenario 1, Figs. @&icularly for very high skewness coefficient populations.
and 8 left) and increasing with return period for relative low
skewness coefficient (scenario 2, Figs. 6 and 8 right). If we
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7 Conclusions possible to estimate high return period quantiles with equal
or less uncertainty using the EV4/ML-PG model. However,
Dealing with PMP or PMF, a general assumption in the introducing a prior estimation af with relative small errors
hydrological community is that these upper bounds can bgas we are using in this work) is worst than do not use it and
only estimated deterministically, with the single exception of estimate it statistically by ML-GE or ML-C methods (Fig. 4).
Eliasson (1994) for PMP estimation. However, it has been For the information scenario used in the robustness analy-
rigorously shown in this paper that, using statistical analysissis, it can be concluded the EV4/ML-GE model can satisfac-
with upper bounded distribution functions and introducing tory fit samples coming from unbounded populations (GEV,
additional Non-Systematic information, it is possible to es- Fig. 7) or unbounded mixed populations (TCEV, Fig. 8). On
timate very high return period quantiles and the PMF with the contrary, if the flood population is upper bounded, the
acceptable and similar estimation errors, as it is shown iInTCEV distribution function in general cannot be used for
Figs. 4 and 5. very high return periods and the GEV distribution function

Based on the ML method, three different methodologies toonly can be accepted for the estimation of low return pe-
estimate the parameters of the bounded distribution functiongiod quantiles, as it is shown in Fig. 6. So, it can be gen-
can be implemented, depending on the available flood inforeralized with an upper bounded population, the quantiles
mation. If there is a good deterministic a priori estimation of estimated using unbounded distributions with return period
the PMF, the ML-GP method is advised. Otherwise, ML-C large enough, will be higher than the PMF and, consequently,
can be used considering the upper limit as one more paranwith large unacceptable errors. For return periods producing
eter. But in some combinations of distribution function and quantiles similar to or smaller than the PMF, the error incre-
information (for example, the EV4 and TDF with additional ment compared with the use of the “true” upper bounded dis-
CE Non-Systematic information), the upper limit estimated tribution will depend of the fitted right tail distribution prop-
by ML-C method is equal to the maximum observation. In erties.
these situations, only the ML-GE method can be used.
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