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Abstract. Previous studies indicate the generalized Paretdl Introduction
distribution (GPD) as a suitable distribution function to reli-
ably describe the exceedances of daily rainfall records abov&everal rainfall modelling approaches for hydrological ap-
a proper optimum threshold, which should be selected aglications use a simple representation of the rainfall process
small as possible to retain the largest sample while assurand assume that the marginal distribution of rainy and non-
ing an acceptable fitting. Such an optimum threshold mayr@iny valuesx at daily or any other fixed time scale can be
differ from site to site, affecting consequently not only the described by the following Cumulative Distribution Func-
GPD scale parameter, but also the probability of thresholdion (CDF):
exceedance.

Thus a first objective of this paper is to derive some ex-F(x) =PriX =x X >0 =1~ + k) 1)
pressions to parameterize a simple threshold-invariant three)z ~0
parameter distribution function which assures a perfect over- —

lapping with the GPD fitted on the exceedances over anyyhere ;p=Pr{X>0|X>0} represents the probability of oc-
threshold larger than the optimum one. Since the proposedyrrence of rainy days, whil&o(x)=Pr{X <x|X>0} is the
distribution does not depend on the local thresholds adoptedpE of only rainy values.
for fitting the GPD, it is expected to reflect the on-site cli- Commonly used distribution functiongy(x) of strictly
matic signature and thus appears particularly suitable for hypositive rainfall records include the exponential, Gamma
drological applications and regional analyses. (Pearson lll), log-Gamma (log-Pearson Ill), skewed normal
A second objective is to develop and test the Multiple (j e, a normal distribution fitted to the Box-Cox transformed
Threshold Method (MTM) to infer the parameters of interest data), and lognormal (e.gSwift and Schreuderl981 Ke-
by using exceedances over a wide range of thresholds applytem et al, 1990ab, 1997 Shimizy 1993 Katz, 1999 Cheng
ing again the concept of parameters threshold-invariance. Wgpg Qi 2002 Cho et al, 2004 Shoji and Kitaura2006 Lan-
show the ability of the MTM in fitting historical daily rainfall  gousis and Venezian@007 Langousis et al2009 Suhaila
time series recorded with different resolutions and with a sig-and Jemain2007).
nificative percentage of heavily quantized data. Finally, we Equation () has some advantages, but it also presents
prove the supremacy of the MTM fit against the standard sinsome potential problems that must be taken into account and
gle threshold fit, often adopted for partial duration series, byproperly managed. A great advantage obviously relies on the
evaluating and comparing the performances on Monte Carlamplicity of this representation that allows to easily simu-
samples drawn by GPDs with different shape and scale pagte rainfall time series by reproducing separately the binary
rameters and different discretizations. process of rainfall occurrences (i.e. the succession of wet and
dry periods) on one hand, and the distribution of rainfall val-
ues on rainy days on the other hand. E.g. this is the work-
ing mode of simple weather simulators implemented in some
widely used models, such as EPIC (Erosion-Productivity
Impact Calculator) and SWAT (Soil and Water Assessment

Correspondence taR. Deidda Tool), in which the temporal sequence of wet/dry days is of-
BY (rdeidda@unica.it) ten modelled by Markov chains, while the distributiBg(x)
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is fitted on all strictly positive rainfall records and then used distribution within the GPD family. For hydrological ex-
to fill in the records of rainy days in the Markov chain (e.g., treme events modellingMiadsen et al(1997ab) general-
Nicks, 1974 Nicks et al, 1995 Williams, 1995. ized previous findings bZunnang1973 and showed that
The simple form of Eq. ) suggests fittingFo(x) on all fitting a GPD on a reasonable number of exceedances over
strictly positive rainy observations, but particular care shoulda proper threshold leads to more accurate extreme quantile
be taken in this (seemingly very simple) approach. Indeedgestimates than fitting a GEV on annual maxima. We re-
the distribution of very small values may not be clearly def- mark also that it would be desiderable to select as low an
inite and may depart from the distribution of the bulk of optimum threshold as possible in order to minimize the es-
higher records for several reasons, including: (i) small val-timation variance when fitting the GPD on observed sam-
ues may be due to dew processes rather than being the resylies Coles 2001). With this aim, graphical and numerical
of true rainfall events; (ii) measurements of very small rain- methods have been proposed and applied by several authors
fall values may be seriously affected by local atmospheric(e.g., Davison and Smith199Q Smith, 1994 Lang et al,
interactions (e.g. evaporation and wind); (iii) small rainfall 1999 Dupuis 1998 Choulakian and Stephen2001; Guil-
amounts manually collected by non-recording rain gaugedou and Hal|l 200% Peng and Qi2004), but what can be
may be sometimes classified as rainy or non-rainy records deassumed as an optimal threshold for rainfall observations is
pending on the subjective judgment of the person in charge otill an open question without a definitive answer. In a recent
the observation. Moreover, whatever the cause may be, thergtudy, under the hypothesis that the rainfall process can be
is empirical evidence that small values often depart from thedescribed by multiplicative model¥eneziano et al(2009
distribution of the bulk of rainfall observations. Thus, what- highlighted some convergence problems for the GPD shape
ever distributionFy(x) is candidate to describe daily rainfall parameter when fitting the distribution function on records
records, a robust criterion is needed to infer parameter valabove a finite threshold. Finally, the detection of an optimum
ues only on records exceeding a proper optimum thresholdthreshold becomes even more difficult, if not impossible us-
in order to be confident that all the censored values belong ting available methods, on heavily quantized recofsidda
the same distribution. and Puliga2009. In this framework, the GPD fitting ap-
We also want to highlight that fitting a distribution func- proach proposed in this paper makes it possible to overcome
tion F,(x)=Pr{X<x|X>u} on the records above a given some of these problems, such as the estimation bias related to
threshold: leads in general to parameter estimates that differheavily quantized records and to non asymptotic thresholds
from those ofFp(x), even if Fo(x) and F,,(x) belong to the  (Meneziano et al2009.
same family. For practical applications it is thus particularly A second reason for the adoption of the GPD is that its
useful to derive relationships to parameterize Eg.with mathematical form leads to very simple equations for the pa-
threshold-invariant parameters by assuring a perfect overlaprameterization of Eq1{) using results of inference on records
ping with the distributionF,, (x) for anyx>u, regardless the censored with any threshold. Indeed, for thresholds larger
value of the threshold. than the optimum, the shape parameter of the GPD is ex-
The first objective of our work is thus the derivation pected to be constant, while the scale parameter should lin-
of such relations. Although some developments presenteéarly depend on the threshold value. Thus simple linear

in this paper hold for any distribution functiott), (x), equations for reparameterization of the scale parameter have
we specifically focus on the generalized Pareto distribu-been proposed (see e.§ladsen et a.1997h Coles 2001).
tion (GPD) Pickands1979 for the following reasons. Beguefa (2005 analyzed several daily time series in Spain

First, under certain conditions, the GPD family has impor- and used these expressions to estimate the scale parameters
tant connections with the generalized extreme value distri-corresponding to the on-site optimum thresholds by averag-
bution (GEV) family (e.g. the shape parameter is expectedng the reparameterized scale values obtained for a range of
to be the same asymptotically as the threshold oo, while thresholds. Nevertheless, a drawback of this approach is that
the other parameters are linked through theoretical relationsthe final scale parameter estimates depend not only on the
thus fitting GPD can give us a more accurate insight into thelocal climatic conditions but also on the on-site optimum
maxima. Referring the reader teumbel (1958, Castillo  threshold. In this paper we generalize these concepts in or-
(1988, andColes(2007) for a review of the GEV and GPD der to eliminate the dependence of the scale parameter on
properties and derivations, we just remark that if there existghe threshold and we also provide a threshold-invariant pa-
a limiting distribution of the block-maxima extracted from rameterization for they parameter. Specifically, we rewrite
our samples (usually yearly maxima in Earth sciences), thi€q. (1) using only three parameters to describe the rainy and
distribution belongs to the domain of attraction of the GEV non-rainy records, regardless of the thresholds adopted to fit
family (Fisher and Tippettl928 Gnedenkp1943. In ad-  the GPD on the exceedances. In such a way Bdhécomes
dition, under these conditions, the Balkema — De Haan -independent from the threshold with undoubted advantages
Pickands theoremB@lkema and de Haard974 Pickands  for practical applications and regional analyses.

1979 states that the limit distribution of scaled excesses over
high enough thresholds has a corresponding approximate
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As the last but not least reason, there is much publishe®ect.4, we introduce the MTM and present some examples
evidence of the good capability of the GPD in describing of application on daily rainfall time series. In Sestthe per-
rainfall exceedances (see e.Gameron et al.200Q Coles  formances of the MTM are evaluated on Monte Carlo sam-
et al, 2003 De Michele and Salvadqrl005 Fitzgerald ples drawn by GPD, while Sed.is devoted to the conclu-
1989 Madsen et a).2002 Salvadori and De Miche]&001; sions.

Van Montfort and Witter 1986. Moreover, recent studies

by Begueta (2005, Deidda and Puligé2006, andBeguefa

et al. (2009 gave evidence, using L-moment ratio diagram 2 Database

(Hosking 1990, that GPD is the best candidate to be the

parent distribution of daily rainfall time series. Some of the analyses and figures presented in the follow-

The second objective of this paper is to propose and testd sections were performed on daily rainfall time series
the Multiple Threshold Method (MTM) which is based on collected by the Sardinian Hydrological Survey (ltaly) from
the threshold-invariant GPD parameterization of By.and 1922 to 1996: specifically, we used 217 time series with
provides a fitting to EqQ.1) on the excesses above a proper more than 40 complete years of records. Most of the se-
range of thresholds. Although the motivation for the de- fies were collected by non-recording standard rain gauges
velopment of the MTM comes from the need to improve and discretized with resolutions up to 1 and 5 nibeidda
the fitting on irregularly discretized records, as is often the2007), while only a subset was obtained by tipping-bucket
case for manually collected rainfall measurements, we showain gauges and was correctly discretized at 0.2mm. Time
that its performances are superior anyway to standard singles€ries are used with a twofold objective: to show the MTM
threshold fitting on regularly discretized data. The need ofworking on historical records and to select representative
such a technique is motivated by the discretization usuallySPD parameters for evaluation of MTM performances on
adopted for rainfall records, which can be the common stansSynthetic samples.
dard resolution of 0.2mm for tipping-bucket rain gauges
in Europe (or 0.254mm in the US), but can also become
higher for records manually collected by non-recording rain
gauges. For exampl®eidda(2007) highlighted that many

time series collected by the Sardinian Hydrological Surveymarginal distributionf (x) in Eq. (1) and distribution func-

(Italy) contain anomalous quantities of daily rainfall records |. ‘
rounded off at unexpected resolutions of 0.5, 1 and 5mm/d.tlons Fu(x) of the exceedances over any thresheid0

RecentlyDeidda and Puligé2009 evaluated and compared (S_ect.3.1). Results are then_ applied to parameterize E. (
the performances of several estimators of the GPD param.L-jSIrlg GPD par_ameter estimates on I_eftjcer?sored.records
order to obtain a three-parameter distribution which de-

eters on discretized samples. Specifically, they considered . :
some widely used estimators such as those based on maX?-C”beS rainy and non-rainy values (S&g). A reader who

mum likelihood, simple moments and probability weighted IS pot mteresFed n th? details 9f dgnvgﬂon of such relation-
moments Kosking and Wallis 1987, as well as other re- sr;]lpshmay sklpdSS(iE, Just keepl?g_ln Tk:ndGEIgSSI and ),
cently proposed GPD estimators such as those based on ggrIch are needed 1o reparameterize the in EQ).ds-
maximum penalized likelihoodJoles and Dixon1999, the ing estimates obtained with any threshold

minimum density power divergencduarez and Schucany
2009, the likelihood moment estimatoZkang 2007, the
median estimatorReng and Welsh2001). Nevertheless,
Deidda and Puligg2009 concluded that none of the con- We want first to derive some relationships amafigr) =
sidered methods provides acceptable estimates when recorg,';{X<x|X>o}, Fo(x) = PHX<x|X>0}, and F,(x) =
are discretized at a resolution of 1 mm or larger. Indeed bia%r{xz)dx;u}, in order to obtain a perfect overlapping

and root mean square errors of parameter estimates are oftefy, g these Cumulative Distribution Functions (CDFs) for

of the same magnitude as the site-to-site variability of the pa’anyx>u as sketched in FigL.

rameter values to be estimated. In this paper we show, using Using simple arguments of probability we can write
observed as well as synthetic time series, how the MultipIeF ()= 1— PX>x|X>u} = 1— PHX>x|X>0) _ q_ 1-F(x)
Threshold Method is able to overcome these fitting problems " _ e = e S Tohing relatonsni
. ) Yor x>u. These equalities lead to the following relationship

even on roughly rounded-off and heavily quantized records. betweenF (x) and F,, (x) for anyx>u:

The paper is organized as follows. Secti@nbriefly " '
describes the database. In Se&twe derive some rela-  p(y) = (1 — ¢,) + ¢, Fu(x) x > u 2
tions between Eq.1j and distribution functions fitted on
the exceedances above any threshold, then we provide speteres,=Pr{X>u|X>0}=1—F(u) represents the survival

y p p p

cific equations to reparameterize the GPD and finally rewritefunction (i.e. the probability to observe excessesudf
Eq. (1) with only three threshold-invariant parameters. In while F,(x) is the CDF ofx>u only. Nevertheless, since

Some basic relationships

We derive here some general relationships among the

3.1 Some relations among uncensored and left-censored
distribution functions
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F(x) AF(x) R The & parameter controls the tail behaviour of the distri-
i L bution and the attitude to originate heavy extremes.;.=bd
T T the distribution has the ordinary exponential form. Eer0
5 FOOR R the distribution has a long right tail, thus it is often referred to
as “heavy tailed distribution”: in this case it is worth noticing
g FudEw 1 — that simple moments of order greater than or equalgaafié
u Fu(u):O X x-axis for lfj(x) de i X
; generate, thus estimators based on ordinary moments can
i FOL....... frmmesesoeeeens frosemmesmerneaeeeeea e > be applied to fit Eq.Q) only for £ «1/2 to prevent degenera-
i F0=0 | tion of the first two moments and consequent parameter esti-
mation biasesHosking and Wallis1987). For& <0 the dis-
tribution is short tailed with an upper bound value-«,, /£).
For a givert, the scale parametey, controls the mean of the
exceedances above the threshold=inally, the threshold
Fig. 1.  The sketch depicts some relations among the cu-Cannot be considered a true distribution parameter: indeed,
mulative distribution functions (CDFS)F(x)=Pr{X <x|X>0}, the value ofx must be specified (and used for left-censoring
Fo(x)=PH{X<x|X>0}, and F,(x)=Pr{X<x|X>u}, which are  the sample) before fitting EgG)since the GPD is a distribu-
used in the text to determine the constraints for overlapping of alltion of threshold excesses.
the CDFs for anyt above the threshold. Cartesian axes of (x) As discussed in the Introduction, in literature several meth-
are drawn with a thin line and characteristic values are reported orbds have been proposed to infer the shiapad the scale,,
the left side, while the axes dfp(x) and F, (x) are drawn with parameters of the GPD once the thresholtias been set.
dashed ar_ld solid thick lines, respectively, with values reported 9"Concerning the probability, to observe an exceedance of
the right side. the threshold:, since the number of exceedances follows a
binomial distribution, the same following estimator can be
Fuw)=lim,_, .+ Fu(x)=0, Eq. @) becomes valid for any derived by the maximum likelihood, the simple moments,

x>u and thus includes also Ed)(as a special case fo.=0.  @nd the probability weighted moments methods:

1-¢,
1

N 00 u X x-axis for F(x)

Using similar arguments we can write N,
F,(x)=1— Egiﬂﬁigizl— % to obtain a relationship  &u = )
betweenFy(x) and F, (x): )
whereN,, is the number of records above the thresho&hd
Fo(x) = Fo(u) + [1 — Fo)] Fu(x) x > u (3) N is the sample size (including the zeros).

The generalized Pareto distribution has an important prop-
erty. If a sample can be reasonably considered drawn by a
GPD with threshold:* and shape parametgy then the ex-

Su = %o [1 — Fo(w)] (4)  cesses of any other threshalg«* should also follow a GPD
with the same shape parameteand a scale parametey,
which will linearly change with the threshold

Now, let us assume that GPD in E®) (s a reasonable
model for the exceedances over a given thresholand
that parameters, «, and¢, have been estimated using ex-
1-Fx) _1-F& _1-F®x) X > u (5)  ceedances over this threshold. Our objective is to parame-
1-Fw 1-F@w 1- F,u) terize equationg (x) and Fo(x) by imposing a perfect over-
lapping with F, (x) for any x>u, as depicted in Figl and
formalized by the equations derived in S&tL In doing so
Now let us assume that for a given threshaldhe ex-  |€t Us assume that alsy(x) is a GPD with threshold =0

ceedances of our sample could be reliably described bNd parameterao and§, and that it can be expressed by

a generalized Pareto distribution (GPD): Eq. €) with u=0.
SubstitutingFp(x) and F,, (x) from Eq. 6) into Eqg. @) we

Finally, computing Egs.1) and @) for x=u, eliminating
F(u) among the equations, and puttifg(x)=0 we obtain:

We highlight that all the above equations hold for any distri-
bution functionF), (x) adopted to fit the exceedances above a
thresholdu. The same equations can be derived by the fol-
lowing proportions in Figl.:

3.2 GPD reparameterization

Fu(x) = Fy (x; oy, &) = (6)  can easily obtain:
-1
1_(1_,_&)60‘;/) /557&0 g = ay —Syu YV, (8)
= e where the subscript is used to label parameter estimates
1— exp (—a—) £§=0 (including&) on the basis of the threshold used.

whereg is the shape parametet, the scale parameter, while
u is the threshold value.
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Thus, if a suitable threshold has been selected (so that thEq. (10) do not depend on the threshold used for GPD fit-
excesses can be reliably represented by a GPD), by virtue dfng, but only on the local climatic features: this property is
Eq. 8) theag reparameterization should be invariant for any particularly helpful to investigate the spatial pattern of rain-
higher threshold (even &, changes with:). As discussed fall signature in regional analyses.
in the introduction, similar equations have been proposed and
used to reparameterize the scale parametercorrespond-
ing to the optimum threshold* by usingw, estimates ob- 4 The multiple threshold method
tained for thresholds >u* (see e.g.Madsen et a).1997h
Beguefa, 2005. Nevertheless, in such approachegs esti- By virtue of the GPD properties and of the derivations pre-
mates will depend not only on the local climatic conditions sented in Sect, if a sample can be reasonably considered
but also on the local optimum threshald, which may be  drawn from a GPD with threshold* and shape parame-
different from site to site. In contrast, results from E8) ( tersé, then for any other threshold>u* we should expect
do not depend on the on-site optimum threshold. Finally wethreshold-invariance not only for the estimates of the shape
highlight that Eq. 8) can also be derived by the linkage be- parameteg, but also for the reparameterizatiosms and ¢o
tween GPD and GEV distribution in the asymptotic limit (see provided by Egs.§) and @). This concept is used in the de-
e.g.,Coles 2001, p. 83), but here it was obtained more sim- velopment of the Multiple Threshold Method (MTM) which

ply without this assumption. is based on the parameter estimates within a range of thresh-
Computing nowFy(x) from Eq. @), i.e. putting firstu=0  oldsu>u* and provides robust GPD fitting regardless of the
and then computing far=u, substitutingFo(u) in Eq. @), data resolution or rounding off. Concerning the choice of the
and (optionally) using Eq8j we obtain: optimum threshold:* we remark that it should be selected
large enough to reliably consider the distribution of the ex-
¢ (1 + & L)l/é s (1 — &, L)_l/s £ £ 0 ceedances closely approximated by a GPD, but low enough
o = % “ (9)  to keep small the estimation variance.
Cu €XP 56 =Ly eXp o & =0 For the sake of clarity, we first present in Settl the

MTM with an application on a time series in our database
which was recorded at 0.2 mm resolution, deferring the prob-
lems related to data discretization and MTM application on
roughly rounded-off records to Sedt2

As Eg. @), this last equation states that thereparameter-
ization is threshold-invariant, although the probabitiyof
exceeding: obviously decreases asncreases.

Finally, a threshold-invariant GPD parameterization is ob-
tained by substituting’o(x) from Eq. 6) into Eq. ), and 41 MTM rationale
usingap andgp values calculated from Egs8)(and ©):

To show how the threshold-invariant properties of the param-

-1/%
1-2¢o (1 + & aio) E#0 eterizations derived in Sec3. hold for rainfall time series
F(x) = x>0 (10) and to convey better the MTM rationale, in Figsand 3
1—-¢oexpl—= £=0 we present the results obtained on a 58-yr long time series
Q

recorded by a tipping-bucket rain gauge at a 0.2 mm resolu-
Assuming x as an i.i.d. random variable, the distri- tion.
bution function of annual maximaG(x) is related to We first obtained thé andw, estimates on the excesses of
F(x) and the yearly return period” by the relation a range of thresholds by maximizing the likelihood func-
G(x)=F(x)"=1-1/T, where n=36525 is the average tion in Grimshaw(1993, and the, estimates by Eq.7).
number of days in a year. Thus obtaining an expression folThen we used Eqs8) and @) to calculate the parameters
the T-year return period quantile is straightforward: and¢g for each threshold. The first three plots from the top
P of Fig. 2 show these estimatés «g and¢p as a function of
. { |:1 - (1 - %) /":| thresholds: ranging from 0 to 20 mm. We can clearly ob-
— | —1t&#£0

)

E ) serve a stabilization of the estimates for thresholds larger
xr = Un (11) than u*~3 mm, indicating that the tail behaviour becomes
[1 -(1-%) } _ o stable and thug* can be considered an optimal threshold. A

T §= similar behaviour can be observed for the estimateg aind

Zo which become stable far>u™*, as expected by the theo-

We highlight two important properties of EqL@). Firstly, retical derivations presented in previous S&ctrinally, for
it perfectly overlaps any GPD fitted on the exceedances ovethresholds larger than about 10 mm, we can observe all the
thresholds larger than the optimum ome the only minor  estimates starting to visibly fluctuate, and moreover the devi-
drawback is that there can be small departures from recordations of thet parameter seem to be amplified in dxeand
smaller thanu™, but this does not affect extreme quantile ¢p estimates. We also remark that the increasing variability
estimations by Eq.1(1). Secondly, the three parameters in of all the estimates should be expected since, despite the fact
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" M M M
ML-MTM-GPD fit st074-58y &" = 0.15 ~ oy = 4.95 - (' = 0.20 ML-MTM-GPD fit st074-58y £* = 0.15 - o) = 4.95 - { 7= 0.20
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: o sample
ML-MTM-GPD fit
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S . - 10_5 L L L L
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0 5 10 15 20 x [mm] - daily rainfall
15
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0 ‘ ‘ ‘ = i
0 5 10 15 20 T 085
=] 6
Sl | 0.8 i
=
2 -
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0 5 " [}nom] ML-MTM-GPD fit
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X [mm] - daily rainfall
Fig. 2. Example of MTM application on a daily rainfall time series
collected by a tipping-bucket rain gauge with a 0.2 mm resolution. Fig. 3. These figures display the good GPD fitting obtained by
The first plot from the top displays tf§eestimates as the threshaldd ~ MTM application showed in Fig2. The top plot shows the em-
ranges from 0 to 20 mm: theM MTM estimate is the median value  Pirical survival function (circles) and Eq1Q) parameterized with
(horizontal line) within the range of thresholds between 2.5 andMTM estimates (line): we can observe how the fitting can reliably
12.5mm suggested for practical applications. Similarly, the sec-capture the highest records, despite the fact that the MTM was ap-
ond and third plots display the unconditionegl and ¢y estimates plied with a moderate range of thresholds up to 12.5 mm. The bot-
provided by Egs.§) and ©) as a function ofi. In the fourth plotthe ~ tom plot shows a zoom of the empirical CDF and the MTM-GPD
! MTM estimate is obtained as the median value of the reparamit with the same symbols: we can observe again a good fitting, ex-

eterizecC estimates conditioned to &' MTM estimate, while  CEPt for very small records below the optimum thresholek3 mm
) 0 M . . . i detected in previous Fig.

in the fifth plot the;y” MTM estimate is obtained by th;-\oc esti-

mates conditioned to boti" andoz(';’I MTM estimates. The sixth
plot shows the sizes of the records exceeding the thresholtise

starting point of stabilization of all estimates suggests’3 mm as
an optimum threshold.

recorded with a 0.2 mm discretization. The results were very
similar to those presented in Fig.revealing the the optimal
thresholdu™* in our dataset is always smaller than 5 mm and
generally around 3—4 mm.
that thresholds between 10 and 20 mm may be considered Starting from these observations and from the results
modest, the corresponding number of exceedances becomes roughly discretized time series presented in Bignd
very small, as shown in the last plot of F&). discussed later, the main idea of the Multiple Threshold
Although the rigorous assessment of the optimum threshMethod (MTM) is to estimate thé, «p and i parameters
old u* goes beyond the main scope of this paper, we perin Eqg. (L0) using a convenient statistic of the estimates ob-
formed the same analysis on the other time series that wertained from a range of thresholds. As a convenient statistic,
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Fig. 4. Other examples of application of the MTM estimator as in Rigbut here columns show the results on time series containing
anomalous percentages of roughly rounded-off records. The selection of the time series was made to give examples of MTM working with
different roundings (the left column shows results for a sample with many records discretized at 5 mm, the other ones for samples containing
many roundings at 1 mm) and different values of the shape parameter (from left t6xi@h®.25, 0.35). Again, comparing the fourth row of
subplots against the second one, and the fifth one against the third one we can observe the benefit of hierarchical MTM application. Finally

the last row compares the empirical survival function (circles) with E6). parameterized witg™, ag" and;(')vI MTM estimates (line) for
each time series.

we suggest the adoption of the median value since it is quite The horizontal lines of the first three plots in F&yshow
robust to the asymmetric distribution of the estimates ob-preliminary MTM results, i.e. the median of teag and¢g
tained for different thresholds on discretized samples (se@stimates on a range of threshaldsom 2.5t0 12.5 mm. We
e.g., Fig.4). Concerning the range of thresholds to be can observe how the parameter estimates within the adopted
adopted, we calculate the median of the estimates obtainerhnge of thresholds are very close to the lines representing the
for thresholds ranging from 2.5 to 12.5 mm: for our time se- MTM estimates. The departures on the left hand side indi-
ries this represents a trade-off among the need to (i) have aate that the exceedances over thresholds smaller than 3 mm
range large enough to filter out and smooth the departures agre not fitted by a GPD, while the departures observed for the
tificially driven by large roundings (as those shown in the left larger thresholds are due, as already discussed, to the increas-
column of Fig.4), (ii) hold enough exceedances in order to ing estimation variance associated with the small number of
keep small the estimation variance, and (iii) perform almostexceedances.
all the estimates using thresholds u*. Although results in the first three plots in Fcan be con-
sidered already satisfactory, we suggest to improve further
the behaviour of our estimates by applying the MTM through
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the following hierarchical steps, where the final MTM esti- series collected by non-recording rain gauges contain anoma-
mates will be denoted &3, ag", and;(',\" and willbe usedto  lous percentages of records discretized at multiples of 0.1,
parameterize Eql1(). 0.2, 0.5, 1 and 5mm. Columns from left to right in Fig.
Mo ] . ] show the results of the MTM on three of these time series
— Step 1:% estimateWe first obtain the MTM estimate \yith different discretizations and shape parameter values: the

M . .
§" of the shape parameter as the median ofstlesti-  fjrst time series contains more than 30% of records anoma-
mates on the suggested range of thresholds as shown ig sl discretized at multiples of 5mm and is characterized
first plot of Fig.2. by £~0; the second one has about 70% of records discretized

at 1 mm and~0.25; the third one counts about 35% of val-
ues at 1 mm resolution argde0.35.
As in Fig. 2, the first three rows of subplots in Figshow
theé&, ag, and¢g estimates as a function of the threshold
If we compare these results with those presented in Fig.
we can observe an increased dispersion and a wide spread
of all the estimates, and we can also observe the repetition
of some patterns at multiple intervals of the discretizations
of the records. The fourth and fifth rows show the condi-
Fioned estimateag and g“oc . we can observe a stabilization
of these estimates, although the signatures of roundings are
still present. As previously described, the MTM estimates
eM, oM, and ¢ are obtained as the median &faf, and
g“OC values (displayed in the first, fourth and fifth rows of
— Step 3: ;(l)\/l estimate. In a similar way we can reduce subplots in Fig.4) within the range of thresholds between
the variability ofzg by introducing thet, estimates pro- ~ 2-5and 12.5mm.
vided by Eq. ) together with the MTM estimates" Analyzing the results of Figt, it should now be clearer the
ande})! (obtained at step 1 and 2) into E)(Results ~ rationale of our suggestion to apply the MTM in a range of
from Eq. ©) are now denoted & to remark again that thresholds between 2.5 and 12.5mm. Indeed, since we often
observed an anomalous percentage of roundings with 5mm
resolution, the adopted range corresponds to joining two in-
tervals of thresholds of 5mm in size and centered on 5mm
and 10 mm, where we observe the jumps of the estimates. At
the same time applying the median operator to the estimates
on the proposed range of thresholds should guarantee that the
MTM estimates are not affected by errors due to an impre-
The described procedure provides the MTM estimatescise location of the optimal threshald. Indeed, we can also
£M=0.15, aM=4.95mm, and¢}'=0.20 that are used to notice how determining the optimal threshaitiby looking
parameterize Eq.10) for the analyzed time series. Fig- for the starting point of constant parameter estimates is quite
ure 3 (top) shows the excellent fitting of Eql@) to our difficult, if not impossible here.
sample from moderate to the highest rainfall values, while Finally the last row of Fig4 compares the empirical sur-
Fig. 3 (bottom) provides a zoom of the empirical CDF to vival functions of the three time series with EGOJ param-
show departures from very small rainfall values, consistentlyeterized by the MTM estimates, aO'V', andgc',\". As already
with results of parameter estimates presented in previousoticed for Fig.3 we can observe again the good perfor-
Fig. 2. However, adopting the optimal thresholti~3 mm, mances of the MTM in capturing the tail of the empirical
with the exception of the recordse (0,u*), Eqg. (L0) allows distributions, despite the roundings. Thus, regardless of the
modelling in a simple way (i.e. with only three threshold- exponential or heavy tailed shape behaviour, the proposed
invariant parameters) the whole rainfall marginal distribution approach is robust also when fitting time series with signif-
and gives a very good representation of the higher recordécant percentages of roughly rounded-off and heavily quan-
providing a reliable insight on the extreme behaviour. tized records.

— Step 2:a3" estimateln order to filter out the variability
of the ag estimates driven by the fluctuations &€fwe
estimate again the, values conditioned té™ estimate
obtained at step 1 (i.e. we maximize the likelihood func-
tion with £=¢M known) and use again the reparameter-
ization in Eq. B) with the neww, estimates ang=¢M
constant. Results from EdB)(are now denoted a% to
remark that they are conditioned&¥¥ and are shown in
the fourth plot of Fig2: comparing with the second plot
of the same figure we can observe a minor dispersion o
the newe§ estimates. Finally, the MTM estimate)
of the scale parameter is the median of the pévesti-
mates within the range of thresholds.

they are conditioned oV andozg" and are shown in the
fifth plot of Fig. 2 which again displays a reduction of
variability with respect to the unconditioned estimates
in the third plot of the same figure. Finally, the MTM es-
timate;év' is the median of the ne\g\bc estimates within
the range of thresholds.

4.2 MTM on roughly rounded-off records

5 MTM performances
We want now to discuss the MTM application on time se-
ries with significant percentages of records rounded off atWe explore here the performances of the MTM on Monte
large discretizationsDeidda (2007 analyzed the database Carlo samples drawn by GPDs with different parameters
described in Seck and found that many daily rainfall time and different discretizations: specifically, we compare MTM
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results with those of a standard fit with a Single threshold. Scatterplot of & vs oag' estimates by MTM-GPD fit - Nyears >= 40 — Nstaz = 217
In order to evaluate the performances on synthetic samples ‘ ‘ . ‘

that can be considered representative of our daily rainfall .o So LT

records, we preliminarily evaluated the GPD parameters on  oaf g o° o 00t°| o ©

the longest time series belonging to the dataset described ir o 4 4w * L * .
Sect.2: namely, 217 time series with more than 40 com- | 0 %% °;‘+§o o COAR PP
plete years of records. With this aim, the MTM presented in s o ® e ‘f}r{ o R :‘
Sect.4 was first applied on these time series with a range of . % be o oed Fo C,) .8 S
thresholds between 2.5 and 12.5mm and using three differ-z, °% Nais B }”ff’.gﬁ. 0 & o op o

ent GPD parameters estimators: the Simple Moments (SM), b 0ot ‘J’t ?‘3’;’ & & ,00
the Probability Weighted Moments (PWM), and the Maxi- o1f m°+o.” , 0‘3@"’?" % W00
mum Likelihood (ML) methods based on the expression re- %&?g 2 ::'?D:o

ported inHosking and Wallig1987), Stedinger et al1993, ol T Wiw %°+O’|j°3 g °$ o[
and Grimshaw(1993. The MTM estimates o™ and o) o pwni 0 I¥8 " on NEX
parameters obtained for each station using the three estima O Mc:ougles ‘ ‘ ‘ ‘ ‘ “ .

tors are shown in the scatterplot of Flgy. We can observe s e 7

how theeM estimates derived from the SM method are never

larger than 0.35: this can be explained by the bias of theFig_ 5. The scatterplot displays the couples oM( o) MTM
estimator related to the divergence of ordinary moments Ofgtimates of GPD parameters for the 217 daily rainfall time series
heavy tailed distributionsHosking and Wallis1987), thus  (which are more than 40-yr long) collected by the Sardinian Hy-
we discarded the SM approach for our analysis. We can als@rological Survey (Italy). Parameters estimates were obtained by
observe that theM estimates by ML are slightly more spread applying the MTM within a range of thresholds between 2.5 and
than the PWM ones. We investigated the issue to some det2.5mm: plus signs, circles, and diamonds refer to estimates
tail and the largest ML estimates should be due to the highebased on maximum likelihood (ML), probability weighted moments
sensitivity of the ML method to the presence of outliers or (PWM) and simple moments (SM), respectively. Finally the seven
to convergence problems as arguedHysking and Wallis couples of GPD parameters used in Sé&do explore the perfor-
(1987. We also visually inspected the CDFs of the few time mances of the MTM on Monte Carlo samples are drawn with square

9
M
oy [mm]

series with a negative shape parameter and found that the mbols.
can be reliably described by exponential distributians().

On the basis of this preliminary analysis, we decided to
explore the MTM performances with the ML estimator on  — Test C 30% of records are discretized with a 5mm res-
Monte Carlo samples generated by Etp)(with the follow- olution, 40% are discretized with a 1 mm resolution,
ing 7 couples, ag) of GPD parameters (displayed in Fi. while the remaining 30% are discretized at 0.2 mm.
with square symbols): (0, 9), (0, 12), (0.2, 6), (0.2, 9), (0.2, This is the case of a large number of time series in which
12), (0.4, 6), (0.4, 9). we detected a mixture of discretizations up to 5mm.

90% of the MTM ;“(')V' estimates resulted in a range be- .
. . In summary, we generated 5000 samples of 50-yr synthetic
tween 0.15 and 0.25 with a median value very close to 0.20,, : . . . . .
Haily rainfall time series from Eq10) with a probability of

while the lengths of the considered time series range betweepainfall —0.20 and £, arg) parameters taking the values of
40 and 60yr. Thus, for the sake of simplicity, we decided to bo=1 » ®0) P g .

. . . . . the 7 couples reported above. Each sample was then dis-
generate all synthetic daily rainfall time series by Bd) (Us- cretized according to the three aroun of tests
ing only the valuep=0.20 and a length of 50 yr, since choos- 9 group '

ing different values has the only effect to slightly change the on ?aCh sa’.“p'e we estimated thewo, a"?d ¢o parame-
. - ters with two different approaches. In the first approach the
number of strictly positive records.

To evaluate the MTM performances on records with dif- & andog values are simply estimated on all strictly positive

ferent discretizations we considered the following groups ofr_ecords, thus adqptmg asingle threshwicl, Wh'le.§0 ISes-
tests: timated as the ratio between the number of all strictly positive

records and the sample size: this will be referred to as “stan-

— Test A all records are discretized with a 0.2 mm reso- dard fit". In the second approach thexo, and¢o parameters
lution. This corresponds to the standard resolution ofare provided by the MTM on a range of thresholds between
most tipping-bucket rain gauges in Europe. 2.5 and 12.5mm as described in Sektthis approach will

be referred to as “MTM fit". Finally, parameterizing E4.1)

— Test B all records are discretized with a 1 mm resolu- with &, o, and¢g parameters obtained by the two fitting ap-
tion, as most time series in our database contain larggyroaches we estimated also the 50-yr return period quantile
amounts of records discretized at multiples of 1mm. .., from each sample. In both approaches estimates are al-

ways obtained by maximizing the likelihood function.
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Fig. 6. Same as Fig4, but here the MTM is applied on three synthetic samples generated byl@ar(d discretized according to the
rounding rules of test A (0.2 mm resolution), B (1 mm resolution), and C (mixing of resolutions up to 5mm): results of each test are shown
in columns from left to right, respectively. The sixth row of subplots now shows the percentage of records exceeding eachithwéshold
respect to the number of strictly positive records.

Examples of MTM application on 50-yr synthetic time se- estimation variance as the number of excesses decreases. It
ries generated by EqLQ) with parameter§=0.2, «o0=9 mm, is worth noticing on the second and third columns of subplots
and¢o=0.2 are shown in Fig6: each column reports the re- of Fig. 6 how the increasing dispersion is hidden by the ef-
sults for a sample extracted from one the groups of tests Afects of roundings. Finally, the last row of subplots in Fag.

B, and C. As in previous Fig& and4, the first three rows of shows a comparison between the empirical survival functions
subplots show the unconditioned estimate$ ofo, and¢o and Eq. (0) parameterized witlg™, aO'V', andg(')v' MTM es-

as a function of the threshold, while the fourth and fifth rows timates: again we can visually appreciate the good results of
show the reduction of the spread for conditioned estimateshe proposed approach and the reliable fitting to the highest
ozg, andgoc, but again the signature of the roundings is still quantiles.

visible. Comparing these results with those in the previous Figure7 shows the relative frequency distributions &f

Fig. 4, we can observe a strong similarity with the patterns«yg, ¢o, andxsg estimates provided by the standard fit (left col-
obtained for historical daily rainfall time series. Moreover, in umn) and the MTM fit (right column) on 5000 Monte Carlo
the first column of subplots of Fi@ (time series discretized samples discretized according to tests A, B, and C. The ver-
with 0.2 mm resolution) we can again observe the increasingical lines in each subplot show the parameter values used
dispersion of the unconditioned estimate$ af, and¢g for for generationsg=0.2, ap=9 mm, and;p=0.2) and the ex-
thresholds larger than the MTM range. As already discussegbected 50-yr return period quantilgo=187 mm. A visual

for Fig. 2, this dispersion can be related to the increasinganalysis of the subplots in the left column of Figives us
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Fig. 7. Relative frequency distributions &f, «g and ¢g and corresponding 50-yr quantiles on 5000 GPD random samples discretized
according to test A (resolution=0.2 mm, dotted lines), BA=1mm, dashed lines), and C (mixing of resolutions up\te5 mm, solid

lines). Results from the standard fit method with a single thresheld (all strictly positive records are used) and from the MTM applied

in a range of thresholds between 2.5 mm and 12.5 mm are shown in the left and right column, respectively. From top to bottom, the plots

display results fog, «, ¢g and 50-yr quantile estimates. Vertical thick solid lines show the parameters ol@aqded for Monte Carlo
simulations and the expected quantile.
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Table 1. Bias (top part of the table) and RMSE (bottom part) of llestimates obtained by the standard fit with a single thresieldl

and the MTM fit on a range of thresholds between 2.5 to 12.5 mm. Parameters are estimated from synthetic samples generéitéd by Eq. (
with different couples of shapeand scalexg GPD parameters arg=0.2. Each sample is 50-yr long and is discretized according to test A
(0.2 mm resolution), B (1 mm resolution), and C (mixing of resolutions up to 5mm). For test A, results for the standard fit with a single
thresholdu=5 mm are also presented.

bias of¢

& 0 0 0.2 0.2 0.2 0.4 0.4

%) 9 12 6 9 12 6 9
Test A standardy=0) -0.012 -0.009 -0.020 -0.014 -0.010 -0.023 -0.016
(A=0.2mm) standard#=5) -0.013 -0.010 -0.018 -0.013 -0.010 -0.018 -0.014

MTM —-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
TestB standard4=0) —0.049 -0.038 -0.082 -0.058 -0.045 -0.094 -0.067
(A=1.0mm) MTM —0.005 -0.003 -0.006 —0.004 -0.003 -0.005 -0.004
TestC standard«=0) —-0.074 -0.059 -0.109 -0.085 -0.069 -0.121 —0.096
(A=mixed) MTM -0.012 -0.008 -0.022 -0.012 -0.008 -0.019 -0.013

RMSE ofé&

& 0 0 0.2 0.2 0.2 0.4 0.4

aQ 9 12 6 9 12 6 9
Test A standardu=0) 0.020 0.019 0.028 0.024 0.022 0.033 0.028
(A=0.2mm) standard«=5) 0.025 0.023 0.034 0.028 0.026 0.038 0.032

MTM 0.023 0.022 0.032 0.028 0.026 0.036 0.031
Test B standardu=0) 0.052 0.041 0.084 0.061 0.049 0.096 0.071
(A=1.0mm) MTM 0.024 0.022 0.033 0.028 0.025 0.036 0.032
TestC standard«=0) 0.076 0.061 0.110 0.087 0.072 0.123 0.098
(A=mixed) MTM 0.026 0.023 0.039 0.029 0.027 0.040 0.033

a clear picture of the bias affecting the standard fit estimatestsg. For each parameter, results in term of bias and RMSE
the larger the discretization, the higher the bias. On the otheare presented in Tablds 2, 3, and4, respectively. We do
hand, looking at the corresponding subplots in the right col-not show results in terms of estimation variance, since it can
umn we can observe how the MTM is not affected by thesebe easily obtained as @)=RMSE®)2—biagf)2. But we
bias problems: the only visible drawback is a slight increasewould like to highlight that the estimation variance of the
of the estimation variance related to the lower number of ex-standard fit (on all strictly positive records) is expected to be
ceedances used for MTM estimations. lower than the one of the MTM fit, since @) of ML esti-
Figures presented and discussed till now give us a qualitamators is asymptotically inversely proportional to the sample
tive but quite clear idea of MTM supremacy on the standardsize: as shown in the sixth row of subplots in FBgthe num-
fit. Nevertheless, in order to provide an objective evalua-ber of exceedances of the MTM range of thresholds varies
tion of the MTM performances, we evaluated bias and RMSEbetween about 75% and 25% of all strictly positive records.
of the two fitting approaches for each group of rounding-off ~ An overall look at the tables clearly reveals how perfor-

tests and GPD parameters: mances can drastically change depending on the resolution
/A n of the sample (test A, B, and C) and also on the shape and
b'a5’(9> =E [9 B 9] scale parameter values. However some general behaviours

The top part of each table shows the bias for each param-

eter: we can observe a clear supremacy of the MTM against

wheref is an estimator (provided by the standard or thethe standard fit for all the considered discretizations and for
MTM approach) of the parametér In our case thé pa- all the couplesq, ag) of GPD parameters. The qualitative
rameter can bé€, «g, Zo, or the 50-yr return period quantile conclusions from Fig7 are objectively confirmed here also

RMSE() = |E [(é _ 9)2} (12)  can be identified.
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Table 2. Same as Tabl# but for g estimates.

bias ofaq

& 0 0 0.2 0.2 0.2 0.4 0.4

ap 9 12 6 9 12 6 9
TestA standard(=0) 0.21 0.21 0.24 0.25 0.25 0.29 0.29
(A=0.2mm) standard4=5) 0.28 0.27 0.34 0.32 0.30 0.38 0.36

MTM 0.03 0.02 0.01 0.01 0.02 0.01 0.02
TestB standards=0) 0.97 098 115 1.17 1.17 135 1.36
(A=1.0mm) MTM 0.10 0.07 0.12 0.09 0.09 0.11 0.09
TestC standard=0) 1.60 164 1.74 188 196 199 216
(A=mixed) MTM 0.27 0.21 042 028 0.23 040 0.31

RMSE ofag

& 0 0 0.2 0.2 0.2 0.4 0.4

oo 9 12 6 9 12 6 9
Test A standard(=0) 0.30 0.35 0.29 0.34 040 0.33 0.38
(A=0.2mm) standard4=5) 0.45 051 051 053 058 059 0.61

MTM 0.41 047 044 049 055 053 0.55
TestB standards=0) 1.00 1.02 116 1.19 121 136 1.39
(A=1.0mm) MTM 042 047 047 050 054 054 0.56
TestC standard=0) 161 166 1.75 190 198 2.00 2.18
(A=mixed) MTM 049 051 062 056 060 0.66 0.64

for the other couples of GDP parameters: the MTM is ablebe considered representative also for many tipping-bucket
to correct most of the bias affecting the standard fit. rain gauges in the US where the standard resolution is of-
The bottom part of the tables reports the evaluation of perten 0.254 mm, very close to our choice. Looking through the
formances in term of RMSE. We can still observe a cleartables, we can observe for test A that the RMSE for all con-
supremacy of the MTM for samples discretized according tosidered parameters is slightly better for the standard fit (with
test B and C. For test B, where samples are rounded off at @ single threshold:=0) rather than for the MTM one: as
1 mm resolution, the RMSE for the standard fit is about 2—already discussed this result is obviously expected since the
3 times larger than the one for the MTM fit, while for test C standard fit is performed on all strictly positive records while
(roundings up to 5 mm) the ratio of RMSEs of the two fitting the MTM is based on estimates coming from left-censored
approaches increases to about 3—4. Thus there is no doubamples with size ranging from about 25% to 75% of all
about the advantage of applying the MTM approach on samstrictly positive data (see e.g. the plots in the sixth row of
ples with records rounded off at 1 mm or higher resolutions.Fig. 6), thus the slight worsening of the MTM RMSE with
Moreover, it is worthwhile noticing that in the case of test C, respect to the standard fit cannot be attributed to a deficiency
where 30% of records were rounded off at a 5 mm resolution of the MTM itself, but to the increasing estimation variance
the RMSE of the standard fit assumes unacceptable values #s the the sample size decreases. In order to support this ar-
compared to the range of GPD parameters estimated on ogument, for test A we also report in all the tables the results
database (Figh): e.g. the RMSE) is of order 0.1 while the  of the standard fit with a single threshalé=5 mm, which
range of estimates in our database is between 0 and 0.4, simippears to be reasonable for our time series since we found
lar arguments hold also fos since RMSFExg)~2 mmwhile  an optimum threshold around~3—4 mm for daily rainfall
ag estimates range from 6 to 12 mm. data in our database: we can observe how the RMSE for the
Now, let us draw some considerations on the RMSE forstandard fit withu=5mm becomes the same as the one for
test A, where all records were discretized at a resolutionthe MTM fit, despite the fact that the latter is penalized by
0.2mm. Although this is the standard resolution of most the higher estimation variance due to the smaller number of
tipping-bucket rain gauges in Europe, results for this test cargxceedances.
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Table 3. Same as Tabl# but for ¢y estimates.

bias of¢g

& 0 0 0.2 0.2 0.2 0.4 0.4

o 9 12 6 9 12 6 9
Test A standard=0) -0.002 -0.002 -0.003 -0.002 -0.002 -0.003 —-0.002
(A=0.2mm) standard{=5) -0.005 -0.003 -0.009 -—-0.005 -0.003 -—-0.008 —0.005

MTM —0.000 0.000 0.001 0.000 0.000 0.001 0.000
TestB standards=0) -0.011 -0.008 -0.016 -0.011 -0.008 -0.016 -0.011
(A=1.0mm) MTM —0.001 -0.001 -0.003 -0.001 -0.001 -0.002 -0.001
TestC standards=0) -0.019 -0.014 -0.026 -0.018 -0.014 -0.025 -0.018
(A=mixed) MTM -0.004 -0.002 -0.010 -0.003 -0.002 -—-0.008 -0.003

RMSE of¢g

& 0 0 0.2 0.2 0.2 0.4 0.4

o 9 12 6 9 12 6 9
Test A standardi(=0) 0.004 0.003 0.004 0.004 0.003 0.004 0.004
(A=0.2mm) standardu=5) 0.007 0.005 0.012 0.007 0.006 0.012 0.007

MTM 0.007 0.005 0.011 0.007 0.005 0.012 0.007
TestB standardi=0) 0.011 0.009 0.016 0.011 0.009 0.016 0.011
(A=1.0mm) MTM 0.007 0.005 0.011 0.007 0.005 0.011 0.007
TestC standard«=0) 0.019 0.015 0.026 0.018 0.014 0.025 0.018
(A=mixed) MTM 0.008 0.005 0.015 0.008 0.006 0.013 0.008

In the light of these results we strongly suggest the use o6 Final remarks and conclusions
the MTM not only on roughly rounded-off data, but also on
correctly discretized records as in test A for the following Special caution should always be taken when representing
reasons. Firstly, when we increase the threshold to a reliabléhe distribution of rainfall records collected at a daily or any
valueu™ for the standard fit, the RMSEs become the same forother fixed time scale by dealing separately with the zero and
the two approaches, but the MTM does not suffer from biasnon zero records and by fitting any distribution function on
problems. Secondly, RMSE of MTM is acceptable anyway if all strictly positive records: indeed the smallest values usu-
compared to the range of GPD parameters values estimateally depart from the distribution of the bulk of the records and
on our database (Fi). Thirdly, the MTM does not require can introduce a bias in the parameter estimates (as shown in
an exact determination of the optimum threshold, but a vi-Fig. 2). Thus, whatever distribution is candidate to describe
sual analysis like we made in our dataset can suffice: thelaily rainfall, we need to choose a proper threshold to reli-
median value on the wide range of thresholds is robust evembly describe our sample by the fitted distribution.
in the case that a small number of estimates are obtained on Theoretical arguments suggest modelling threshold ex-
thresholds smaller than the optimum omefor each ana- ceedances by the generalized Pareto distribution (GPD),
lyzed station; on the other hand, applying the standard fit ormoreover empirical evidences support this choice for rain-
the excesses of a wrong thresholdu* will certainly leadto  fall records. Thus derivations and applications presented in
a higher bias and consequently a higher RMSE (see e.qg. thehis paper are focused on the GPD, but many concepts are
estimates for thresholds lower than 3 mm in Fp. quite general and applicable to other distributions.
Although several methods to determine the optimum
threshold to fit the GPD have been proposed in literature,
a general consensus has not been reached yet and proposed
methods can lead to different results. Moreover, the presence
of roughly rounded-off records, as detected in many time
series of our database, makes this task even more difficult:
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Table 4. Same as Tabl# but for x5g extreme quantile estimates corresponding to a 50-yr return period.

bias ofxy

& 0 0 02 02 02 0.4 0.4

ag 9 12 6 9 12 6 9

qr 74 98 124 187 249 382 574
Test A standardy=0) -2 -2 -7 -7 -7 -31 -31
(A=0.2mm) standard=5) -1 -1 —4 -5 -5 -14 18

MTM -0 -0 0 1 0 2 2
TestB standards=0) -6 -7 -25 -28 -30 -110 -126
(A=1.0mm) MTM -1 -0 -1 -1 -1 -2 -2
TestC standarasc0) -8 —-10 -30 -38 —-43 -—-127 -163
(A=mixed) MTM -1 -1 -5 -5 -4 -15 -19

RMSE ofx7

& 0 0 02 02 02 0.4 0.4

ag 9 12 6 9 12 6 9

qr 74 98 124 187 249 382 574
Test A standardi(=0) 4 5 12 17 22 53 74
(A=0.2mm) standardi=5) 4 6 13 18 24 56 80

MTM 5 6 13 19 25 58 84
TestB standardu(=0) 7 8 26 31 35 114 136
(A=1.0mm) MTM 4 6 14 19 24 58 84
TestC standard«=0) 9 11 31 40 46 130 170
(A=mixed) MTM 5 6 14 19 25 58 81

selecting only those time series that were discretized at a In this paper we provided equations to eliminate this de-
0.2 mm resolution, we found a stabilization of the shape papendence of parameters on the threshold and to describe
rameter for thresholds larger than 3—-4mm. Thus, we asthe rainfall distribution with the simple representation in
sumed an optimum threshold located around these value€q. (10), where only the three threshold-invariant parame-
Nevertheless, should other values be more reliable in otheters&, ag, and¢p are used. In such a way, even if we are
regions, the methods proposed here can be applied anyhoanalyzing different stations where we observe a good fit-
on revised ranges of thresholds. ting of exceedances distributions with different values of the
The GPD is usually fitted on rainfall time series (or other thresholds, once the fitting has been completed we can forget
hydrological variables) through the following steps: (i) iden- the threshold values, and use Efj0)(without any explicit
tification of a single optimum threshol@* for each time  parameter dependence on the thresholds. This is a desired
series with any numerical or graphical method; (ii) estima- property for regional analyses since the three paraméters
tion of the probability of threshold excesses, e.g. countingag, andgg reflect only the climatic signature.
the number of exceedances; (iii) inference of GPD shape Using this threshold-invariance property of t§e ao,
and scale parameters on the exceedances over the selectged ¢, parameters we developed the Multiple Threshold
optimum threshold with any parameter estimator. In ordermethod (MTM) which provides the three estimates as the
to represent and reproduce a time series, or to estimate enedian values of reparameterizations over a proper range
treme quantiles, four parameters for each site should be def thresholds. We have also shown how the MTM is par-
termined: the shapg and scalex,« parameters of the fitted tjcularly able to filter out the deviations from threshold-
GPD, the threshold* and the probability,« to observe ex-  invariance which are artificially driven by the presence of
ceedances over the threshold. Neverthelessand¢,- es-  roughly rounded-off records. Indeed, despite the fact that
timates are not the best indicators of climatological spatialg, «, and¢o reparameterizations are expected to be con-
patterns, because of their dependence on the threshold  stant for any threshold larger than the optimum one, the pres-
ence of rounded-off records leads to fluctuations around the
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expected values, but the median operator is robust even i€@ameron, D., Beven, K., and Tawn, J.. An evaluation of three
case of asymmetric fluctuations of the estimates, as found on stochastic rainfall models, J. Hydrol., 228, 130-149, 2000.
historical time series with roughly rounded-off records and Castillo, E.: Extreme values theory in engineering, Academic Press,
on synthetic samples discretized at different resolutions. The San Diego, 1988. . S

range of thresholds adopted here for the MTM is betweercheng, M._and Qi, Y.: Frontal Rainfall-Rate Distribution and Some
2.5 and 12.5mm: in our opinion this is the best trade-off be- ffzrwglulsllggszoonotzhe Threshold Method, J. Appl. Meteorol., 41,
hNe(?n the n.e.e(.j to ha\./e arange wide er?OUQh to filter out ﬂuc_Cho, H. K., Bowman, K. P., and North, G. R.: A Comparison of
tuations artificially driven by the roun,dmgs' .bUI also Sma” Gamma and Lognormal Distributions for Characterizing Satel-
enough to have an acceptable estimation variance, and finally jite Rain Rates from the Tropical Rainfall Measuring Mission, J.
we are quite confident that most of the thresholds are larger appl. Meteorol., 43, 1586-1597, 2004.

than the optimum one, at least in the database analyzed herghoulakian, V. and Stephens, M. A.: Goodness-of-Fit Tests for the
However, as already remarked, if there is evidence of dif- Generalized Pareto Distribution, Technometrics, 43, 478-484,
ferent optimum threshold values in other regions, the MTM  2001.

range of thresholds can be consequently revised. Coles, S.: Anintroduction to statistical modeling of extreme values,

The Monte Carlo method was systematically applied to _ SPringer-Verlag, London, 2001.

evaluate and compare the performances of the MTM agains?c}les’ S. and Dixon, M.: Likelihood-Based Inference for Extreme
. . . Value Models, Extremes, 2, 5-23, 1999.

the S.mglg_thre.ShOId Sta.ndard. fit I.n terms of bias and,RMSEColes, S., Pericchi, L. R., and Sisson, S.: A fully probabilistic
gﬁg;fi;%gsgggrén; [;Jllsggtl;:é?gs, RaesS Lm{;llo?z uc:’lf;?]fl;;is gggrsc.)ach to extreme rainfall modeling, J. Hydrol., 273, 35-50,
clearly prove the supremacy of the MTM with respect to the cunnane, C.: A particular comparison of annual maxima and partial
standard fit in case of roughly rounded-off records, while in  duration series methods of flood frequency prediction, J. Hydrol.,
the test devised for records discretized at a 0.2 mm resolution 18, 257-271, 1973.
(like most EU tipping-bucket rain gauges) the RMSE for the Davison, A. C. and Smith, R. L.: Models for exceedances over high
MTM resulted about the same as the standard fit with a sin- thresholds, J. Roy. Stat. Soc. B Met., 52, 393-442, 1990.
gle threshold aroungd=5mm, but MTM has the smallest De Michele, C. and Sa_lvadori, G.: Some hydrological applications
bias. Thus in conclusion the MTM always performs better of smal_l se_tmp_le estimators of Generalized Pareto and Extreme
than the standard single-threshold fit regardless of the recorg \_/alue d|§tr|but|op§, J- Hydrol_., 301, 37-53, 2005. . o

. o eidda, R.: An efficient rounding-off rule estimator: Application
discretizations. Moreover, we strongly recommend the MTM to daily rainfall time series, Water Resour. Res., 43, W12405
also because the results provided by the median operator over doi:10.1029/2006WR005469, 2007, ' R '
awide range of thresholds should not be affected by small erpejqga, R. and Puliga, M.: Sensitivity of Goodness of Fit statistics
rors in the location of the optimum threshold, as conversely  tg rainfall data rounding off, Phys. Chem. Earth, 31, 1240-1251,
happens for the single-threshold standard fit. doi:10.1016/j.pce.2006.04.041, 2006.

All the analyses were performed with the ML, neverthelessDeidda, R. and Puliga, M.: Performances of some parameter esti-

the MTM can be applied anyhow on the estimates provided mators of the generalized Pareto distribution over rounded-off
by any other estimator. samples, Phys. Chem. Earth, 34, 626-634, doi:10.1016/j.pce.
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