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Abstract. Previous studies indicate the generalized Pareto
distribution (GPD) as a suitable distribution function to reli-
ably describe the exceedances of daily rainfall records above
a proper optimum threshold, which should be selected as
small as possible to retain the largest sample while assur-
ing an acceptable fitting. Such an optimum threshold may
differ from site to site, affecting consequently not only the
GPD scale parameter, but also the probability of threshold
exceedance.

Thus a first objective of this paper is to derive some ex-
pressions to parameterize a simple threshold-invariant three-
parameter distribution function which assures a perfect over-
lapping with the GPD fitted on the exceedances over any
threshold larger than the optimum one. Since the proposed
distribution does not depend on the local thresholds adopted
for fitting the GPD, it is expected to reflect the on-site cli-
matic signature and thus appears particularly suitable for hy-
drological applications and regional analyses.

A second objective is to develop and test the Multiple
Threshold Method (MTM) to infer the parameters of interest
by using exceedances over a wide range of thresholds apply-
ing again the concept of parameters threshold-invariance. We
show the ability of the MTM in fitting historical daily rainfall
time series recorded with different resolutions and with a sig-
nificative percentage of heavily quantized data. Finally, we
prove the supremacy of the MTM fit against the standard sin-
gle threshold fit, often adopted for partial duration series, by
evaluating and comparing the performances on Monte Carlo
samples drawn by GPDs with different shape and scale pa-
rameters and different discretizations.
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(rdeidda@unica.it)

1 Introduction

Several rainfall modelling approaches for hydrological ap-
plications use a simple representation of the rainfall process
and assume that the marginal distribution of rainy and non-
rainy valuesx at daily or any other fixed time scale can be
described by the following Cumulative Distribution Func-
tion (CDF):

F(x) = Pr {X ≤ x| X ≥ 0} = (1 − ζ0) + ζ0 F0(x) (1)

x ≥ 0

whereζ0=Pr{X>0|X≥0} represents the probability of oc-
currence of rainy days, whileF0(x)=Pr{X≤x|X>0} is the
CDF of only rainy values.

Commonly used distribution functionsF0(x) of strictly
positive rainfall records include the exponential, Gamma
(Pearson III), log-Gamma (log-Pearson III), skewed normal
(i.e. a normal distribution fitted to the Box-Cox transformed
data), and lognormal (e.g.,Swift and Schreuder, 1981; Ke-
dem et al., 1990a,b, 1997; Shimizu, 1993; Katz, 1999; Cheng
and Qi, 2002; Cho et al., 2004; Shoji and Kitaura, 2006; Lan-
gousis and Veneziano, 2007; Langousis et al., 2009; Suhaila
and Jemain, 2007).

Equation (1) has some advantages, but it also presents
some potential problems that must be taken into account and
properly managed. A great advantage obviously relies on the
simplicity of this representation that allows to easily simu-
late rainfall time series by reproducing separately the binary
process of rainfall occurrences (i.e. the succession of wet and
dry periods) on one hand, and the distribution of rainfall val-
ues on rainy days on the other hand. E.g. this is the work-
ing mode of simple weather simulators implemented in some
widely used models, such as EPIC (Erosion-Productivity
Impact Calculator) and SWAT (Soil and Water Assessment
Tool), in which the temporal sequence of wet/dry days is of-
ten modelled by Markov chains, while the distributionF0(x)
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is fitted on all strictly positive rainfall records and then used
to fill in the records of rainy days in the Markov chain (e.g.,
Nicks, 1974; Nicks et al., 1995; Williams, 1995).

The simple form of Eq. (1) suggests fittingF0(x) on all
strictly positive rainy observations, but particular care should
be taken in this (seemingly very simple) approach. Indeed,
the distribution of very small values may not be clearly def-
inite and may depart from the distribution of the bulk of
higher records for several reasons, including: (i) small val-
ues may be due to dew processes rather than being the result
of true rainfall events; (ii) measurements of very small rain-
fall values may be seriously affected by local atmospheric
interactions (e.g. evaporation and wind); (iii) small rainfall
amounts manually collected by non-recording rain gauges
may be sometimes classified as rainy or non-rainy records de-
pending on the subjective judgment of the person in charge of
the observation. Moreover, whatever the cause may be, there
is empirical evidence that small values often depart from the
distribution of the bulk of rainfall observations. Thus, what-
ever distributionF0(x) is candidate to describe daily rainfall
records, a robust criterion is needed to infer parameter val-
ues only on records exceeding a proper optimum threshold,
in order to be confident that all the censored values belong to
the same distribution.

We also want to highlight that fitting a distribution func-
tion Fu(x)=Pr{X≤x|X>u} on the records above a given
thresholdu leads in general to parameter estimates that differ
from those ofF0(x), even ifF0(x) andFu(x) belong to the
same family. For practical applications it is thus particularly
useful to derive relationships to parameterize Eq. (1) with
threshold-invariant parameters by assuring a perfect overlap-
ping with the distributionFu(x) for anyx>u, regardless the
value of the thresholdu.

The first objective of our work is thus the derivation
of such relations. Although some developments presented
in this paper hold for any distribution functionFu(x),
we specifically focus on the generalized Pareto distribu-
tion (GPD) (Pickands, 1975) for the following reasons.

First, under certain conditions, the GPD family has impor-
tant connections with the generalized extreme value distri-
bution (GEV) family (e.g. the shape parameter is expected
to be the same asymptotically as the thresholdu → ∞, while
the other parameters are linked through theoretical relations),
thus fitting GPD can give us a more accurate insight into the
maxima. Referring the reader toGumbel (1958), Castillo
(1988), andColes(2001) for a review of the GEV and GPD
properties and derivations, we just remark that if there exists
a limiting distribution of the block-maxima extracted from
our samples (usually yearly maxima in Earth sciences), this
distribution belongs to the domain of attraction of the GEV
family (Fisher and Tippett, 1928; Gnedenko, 1943). In ad-
dition, under these conditions, the Balkema – De Haan –
Pickands theorem (Balkema and de Haan, 1974; Pickands,
1975) states that the limit distribution of scaled excesses over
high enough thresholds has a corresponding approximate

distribution within the GPD family. For hydrological ex-
treme events modelling,Madsen et al.(1997a,b) general-
ized previous findings byCunnane(1973) and showed that
fitting a GPD on a reasonable number of exceedances over
a proper threshold leads to more accurate extreme quantile
estimates than fitting a GEV on annual maxima. We re-
mark also that it would be desiderable to select as low an
optimum threshold as possible in order to minimize the es-
timation variance when fitting the GPD on observed sam-
ples (Coles, 2001). With this aim, graphical and numerical
methods have been proposed and applied by several authors
(e.g., Davison and Smith, 1990; Smith, 1994; Lang et al.,
1999; Dupuis, 1998; Choulakian and Stephens, 2001; Guil-
lou and Hall, 2001; Peng and Qi, 2004), but what can be
assumed as an optimal threshold for rainfall observations is
still an open question without a definitive answer. In a recent
study, under the hypothesis that the rainfall process can be
described by multiplicative models,Veneziano et al.(2009)
highlighted some convergence problems for the GPD shape
parameter when fitting the distribution function on records
above a finite threshold. Finally, the detection of an optimum
threshold becomes even more difficult, if not impossible us-
ing available methods, on heavily quantized records (Deidda
and Puliga, 2006). In this framework, the GPD fitting ap-
proach proposed in this paper makes it possible to overcome
some of these problems, such as the estimation bias related to
heavily quantized records and to non asymptotic thresholds
(Veneziano et al., 2009).

A second reason for the adoption of the GPD is that its
mathematical form leads to very simple equations for the pa-
rameterization of Eq. (1) using results of inference on records
censored with any threshold. Indeed, for thresholds larger
than the optimum, the shape parameter of the GPD is ex-
pected to be constant, while the scale parameter should lin-
early depend on the threshold value. Thus simple linear
equations for reparameterization of the scale parameter have
been proposed (see e.g.,Madsen et al., 1997b; Coles, 2001).
Begueŕıa (2005) analyzed several daily time series in Spain
and used these expressions to estimate the scale parameters
corresponding to the on-site optimum thresholds by averag-
ing the reparameterized scale values obtained for a range of
thresholds. Nevertheless, a drawback of this approach is that
the final scale parameter estimates depend not only on the
local climatic conditions but also on the on-site optimum
threshold. In this paper we generalize these concepts in or-
der to eliminate the dependence of the scale parameter on
the threshold and we also provide a threshold-invariant pa-
rameterization for theζ0 parameter. Specifically, we rewrite
Eq. (1) using only three parameters to describe the rainy and
non-rainy records, regardless of the thresholds adopted to fit
the GPD on the exceedances. In such a way Eq. (1) becomes
independent from the threshold with undoubted advantages
for practical applications and regional analyses.
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As the last but not least reason, there is much published
evidence of the good capability of the GPD in describing
rainfall exceedances (see e.g.,Cameron et al., 2000; Coles
et al., 2003; De Michele and Salvadori, 2005; Fitzgerald,
1989; Madsen et al., 2002; Salvadori and De Michele, 2001;
Van Montfort and Witter, 1986). Moreover, recent studies
by Begueŕıa (2005), Deidda and Puliga(2006), andBegueŕıa
et al. (2009) gave evidence, using L-moment ratio diagram
(Hosking, 1990), that GPD is the best candidate to be the
parent distribution of daily rainfall time series.

The second objective of this paper is to propose and test
the Multiple Threshold Method (MTM) which is based on
the threshold-invariant GPD parameterization of Eq. (1) and
provides a fitting to Eq. (1) on the excesses above a proper
range of thresholds. Although the motivation for the de-
velopment of the MTM comes from the need to improve
the fitting on irregularly discretized records, as is often the
case for manually collected rainfall measurements, we show
that its performances are superior anyway to standard single-
threshold fitting on regularly discretized data. The need of
such a technique is motivated by the discretization usually
adopted for rainfall records, which can be the common stan-
dard resolution of 0.2 mm for tipping-bucket rain gauges
in Europe (or 0.254 mm in the US), but can also become
higher for records manually collected by non-recording rain
gauges. For example,Deidda(2007) highlighted that many
time series collected by the Sardinian Hydrological Survey
(Italy) contain anomalous quantities of daily rainfall records
rounded off at unexpected resolutions of 0.5, 1 and 5 mm/d.
Recently,Deidda and Puliga(2009) evaluated and compared
the performances of several estimators of the GPD param-
eters on discretized samples. Specifically, they considered
some widely used estimators such as those based on maxi-
mum likelihood, simple moments and probability weighted
moments (Hosking and Wallis, 1987), as well as other re-
cently proposed GPD estimators such as those based on the
maximum penalized likelihood (Coles and Dixon, 1999), the
minimum density power divergence (Júarez and Schucany,
2004), the likelihood moment estimator (Zhang, 2007), the
median estimator (Peng and Welsh, 2001). Nevertheless,
Deidda and Puliga(2009) concluded that none of the con-
sidered methods provides acceptable estimates when records
are discretized at a resolution of 1 mm or larger. Indeed bias
and root mean square errors of parameter estimates are often
of the same magnitude as the site-to-site variability of the pa-
rameter values to be estimated. In this paper we show, using
observed as well as synthetic time series, how the Multiple
Threshold Method is able to overcome these fitting problems
even on roughly rounded-off and heavily quantized records.

The paper is organized as follows. Section2 briefly
describes the database. In Sect.3, we derive some rela-
tions between Eq. (1) and distribution functions fitted on
the exceedances above any threshold, then we provide spe-
cific equations to reparameterize the GPD and finally rewrite
Eq. (1) with only three threshold-invariant parameters. In

Sect.4, we introduce the MTM and present some examples
of application on daily rainfall time series. In Sect.5, the per-
formances of the MTM are evaluated on Monte Carlo sam-
ples drawn by GPD, while Sect.6 is devoted to the conclu-
sions.

2 Database

Some of the analyses and figures presented in the follow-
ing sections were performed on daily rainfall time series
collected by the Sardinian Hydrological Survey (Italy) from
1922 to 1996: specifically, we used 217 time series with
more than 40 complete years of records. Most of the se-
ries were collected by non-recording standard rain gauges
and discretized with resolutions up to 1 and 5 mm (Deidda,
2007), while only a subset was obtained by tipping-bucket
rain gauges and was correctly discretized at 0.2 mm. Time
series are used with a twofold objective: to show the MTM
working on historical records and to select representative
GPD parameters for evaluation of MTM performances on
synthetic samples.

3 Some basic relationships

We derive here some general relationships among the
marginal distributionF(x) in Eq. (1) and distribution func-
tions Fu(x) of the exceedances over any thresholdu≥0
(Sect.3.1). Results are then applied to parameterize Eq. (1)
using GPD parameter estimates on left-censored records
in order to obtain a three-parameter distribution which de-
scribes rainy and non-rainy values (Sect.3.2). A reader who
is not interested in the details of derivation of such relation-
ships may skip Sect.3, just keeping in mind Eqs. (8) and (9),
which are needed to reparameterize the GPD in Eq. (10) us-
ing estimates obtained with any thresholdu.

3.1 Some relations among uncensored and left-censored
distribution functions

We want first to derive some relationships amongF(x) =

Pr{X≤x|X≥0}, F0(x) = Pr{X≤x|X>0}, and Fu(x) =

Pr{X≤x|X>u}, in order to obtain a perfect overlapping
among these Cumulative Distribution Functions (CDFs) for
anyx>u as sketched in Fig.1.

Using simple arguments of probability we can write
Fu(x) = 1− Pr{X>x|X>u} = 1−

Pr{X>x|X≥0}

Pr{X>u|X≥0}
= 1−

1−F(x)
1−F(u)

for x>u. These equalities lead to the following relationship
betweenF(x) andFu(x) for anyx>u:

F(x) = (1 − ζu) + ζu Fu(x) x > u (2)

whereζu=Pr{X>u|X≥0}=1−F(u) represents the survival
function (i.e. the probability to observe excesses ofu),
while Fu(x) is the CDF ofx>u only. Nevertheless, since
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Fig. 1. The sketch depicts some relations among the cu-
mulative distribution functions (CDFs)F(x)=Pr{X≤x|X≥0},
F0(x)=Pr{X≤x|X>0}, and Fu(x)=Pr{X≤x|X>u}, which are
used in the text to determine the constraints for overlapping of all
the CDFs for anyx above the thresholdu. Cartesian axes ofF(x)

are drawn with a thin line and characteristic values are reported on
the left side, while the axes ofF0(x) and Fu(x) are drawn with
dashed and solid thick lines, respectively, with values reported on
the right side.

Fu(u)=limx→u+ Fu(x)=0, Eq. (2) becomes valid for any
x≥u and thus includes also Eq. (1) as a special case foru=0.

Using similar arguments we can write
Fu(x)=1−

Pr{X>x|X>0}

Pr{X>u|X>0}
=1−

1−F0(x)
1−F0(u)

to obtain a relationship
betweenF0(x) andFu(x):

F0(x) = F0(u) + [1 − F0(u)] Fu(x) x ≥ u (3)

Finally, computing Eqs. (1) and (2) for x=u, eliminating
F(u) among the equations, and puttingFu(u)=0 we obtain:

ζu = ζ0 [1 − F0(u)] (4)

We highlight that all the above equations hold for any distri-
bution functionFu(x) adopted to fit the exceedances above a
thresholdu. The same equations can be derived by the fol-
lowing proportions in Fig.1:

1 − F(x)

1 − F(u)
=

1 − F0(x)

1 − F0(u)
=

1 − Fu(x)

1 − Fu(u)
x > u (5)

3.2 GPD reparameterization

Now let us assume that for a given thresholdu the ex-
ceedances of our sample could be reliably described by
a generalized Pareto distribution (GPD):

Fu(x) = Fu (x; αu, ξ) = (6)

=


1 −

(
1 + ξ x − u

αu

)−1/ξ

ξ 6= 0

1 − exp
(
−

x − u
αu

)
ξ = 0

whereξ is the shape parameter,αu the scale parameter, while
u is the threshold value.

The ξ parameter controls the tail behaviour of the distri-
bution and the attitude to originate heavy extremes. Forξ=0
the distribution has the ordinary exponential form. Forξ>0
the distribution has a long right tail, thus it is often referred to
as “heavy tailed distribution”: in this case it is worth noticing
that simple moments of order greater than or equal to 1/ξ are
degenerate, thus estimators based on ordinary moments can
be applied to fit Eq. (6) only for ξ�1/2 to prevent degenera-
tion of the first two moments and consequent parameter esti-
mation biases (Hosking and Wallis, 1987). For ξ<0 the dis-
tribution is short tailed with an upper bound value(u−αu/ξ).
For a givenξ , the scale parameterαu controls the mean of the
exceedances above the thresholdu. Finally, the thresholdu
cannot be considered a true distribution parameter: indeed,
the value ofu must be specified (and used for left-censoring
the sample) before fitting Eq. (6) since the GPD is a distribu-
tion of threshold excesses.

As discussed in the Introduction, in literature several meth-
ods have been proposed to infer the shapeξ and the scaleαu

parameters of the GPD once the thresholdu has been set.
Concerning the probabilityζu to observe an exceedance of
the thresholdu, since the number of exceedances follows a
binomial distribution, the same following estimator can be
derived by the maximum likelihood, the simple moments,
and the probability weighted moments methods:

ζu =
Nu

N
(7)

whereNu is the number of records above the thresholdu and
N is the sample size (including the zeros).

The generalized Pareto distribution has an important prop-
erty. If a sample can be reasonably considered drawn by a
GPD with thresholdu∗ and shape parameterξ , then the ex-
cesses of any other thresholdu>u∗ should also follow a GPD
with the same shape parameterξ and a scale parameterαu

which will linearly change with the thresholdu.
Now, let us assume that GPD in Eq. (6) is a reasonable

model for the exceedances over a given thresholdu and
that parametersξ , αu andζu have been estimated using ex-
ceedances over this threshold. Our objective is to parame-
terize equationsF(x) andF0(x) by imposing a perfect over-
lapping withFu(x) for any x>u, as depicted in Fig.1 and
formalized by the equations derived in Sect.3.1. In doing so
let us assume that alsoF0(x) is a GPD with thresholdu=0
and parametersα0 and ξ , and that it can be expressed by
Eq. (6) with u=0.

SubstitutingF0(x) andFu(x) from Eq. (6) into Eq. (3) we
can easily obtain:

α0 = αu − ξu u ∀ ξu (8)

where the subscriptu is used to label parameter estimates
(includingξ ) on the basis of the threshold used.
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Thus, if a suitable threshold has been selected (so that the
excesses can be reliably represented by a GPD), by virtue of
Eq. (8) theα0 reparameterization should be invariant for any
higher threshold (even ifαu changes withu). As discussed
in the introduction, similar equations have been proposed and
used to reparameterize the scale parameterαu∗ correspond-
ing to the optimum thresholdu∗ by usingαu estimates ob-
tained for thresholdsu>u∗ (see e.g.,Madsen et al., 1997b;
Begueŕıa, 2005). Nevertheless, in such approachesαu∗ esti-
mates will depend not only on the local climatic conditions
but also on the local optimum thresholdu∗, which may be
different from site to site. In contrast, results from Eq. (8)
do not depend on the on-site optimum threshold. Finally we
highlight that Eq. (8) can also be derived by the linkage be-
tween GPD and GEV distribution in the asymptotic limit (see
e.g.,Coles, 2001, p. 83), but here it was obtained more sim-
ply without this assumption.

Computing nowF0(u) from Eq. (6), i.e. putting firstu=0
and then computing forx=u, substitutingF0(u) in Eq. (4),
and (optionally) using Eq. (8) we obtain:

ζ0 =

 ζu

(
1 + ξu

u
α0

)1/ξ

= ζu

(
1 − ξu

u
αu

)−1/ξ

ξu 6= 0

ζu exp u
α0

= ζu exp u
αu

ξu = 0
(9)

As Eq. (8), this last equation states that theζ0 reparameter-
ization is threshold-invariant, although the probabilityζu of
exceedingu obviously decreases asu increases.

Finally, a threshold-invariant GPD parameterization is ob-
tained by substitutingF0(x) from Eq. (6) into Eq. (1), and
usingα0 andζ0 values calculated from Eqs. (8) and (9):

F(x) =


1 − ζ0

(
1 + ξ x

α0

)−1/ξ

ξ 6= 0

1 − ζ0 exp
(
−

x
α0

)
ξ = 0

x ≥ 0 (10)

Assuming x as an i.i.d. random variable, the distri-
bution function of annual maximaG(x) is related to
F(x) and the yearly return periodT by the relation
G(x)=F(x)n=1−1/T , where n=365.25 is the average
number of days in a year. Thus obtaining an expression for
theT -year return period quantile is straightforward:

xT =


α0
ξ


[

1 −

(
1 −

1
T

)1/n

ζ0

]−ξ

− 1

 ξ 6= 0

− α0 ln

[
1 −

(
1 −

1
T

)1/n

ζ0

]
ξ = 0

(11)

We highlight two important properties of Eq. (10). Firstly,
it perfectly overlaps any GPD fitted on the exceedances over
thresholds larger than the optimum oneu∗: the only minor
drawback is that there can be small departures from records
smaller thanu∗, but this does not affect extreme quantile
estimations by Eq. (11). Secondly, the three parameters in

Eq. (10) do not depend on the threshold used for GPD fit-
ting, but only on the local climatic features: this property is
particularly helpful to investigate the spatial pattern of rain-
fall signature in regional analyses.

4 The multiple threshold method

By virtue of the GPD properties and of the derivations pre-
sented in Sect.3, if a sample can be reasonably considered
drawn from a GPD with thresholdu∗ and shape parame-
tersξ , then for any other thresholdu>u∗ we should expect
threshold-invariance not only for the estimates of the shape
parameterξ , but also for the reparameterizationsα0 andζ0
provided by Eqs. (8) and (9). This concept is used in the de-
velopment of the Multiple Threshold Method (MTM) which
is based on the parameter estimates within a range of thresh-
oldsu>u∗ and provides robust GPD fitting regardless of the
data resolution or rounding off. Concerning the choice of the
optimum thresholdu∗ we remark that it should be selected
large enough to reliably consider the distribution of the ex-
ceedances closely approximated by a GPD, but low enough
to keep small the estimation variance.

For the sake of clarity, we first present in Sect.4.1 the
MTM with an application on a time series in our database
which was recorded at 0.2 mm resolution, deferring the prob-
lems related to data discretization and MTM application on
roughly rounded-off records to Sect.4.2.

4.1 MTM rationale

To show how the threshold-invariant properties of the param-
eterizations derived in Sect.3 hold for rainfall time series
and to convey better the MTM rationale, in Figs.2 and 3
we present the results obtained on a 58-yr long time series
recorded by a tipping-bucket rain gauge at a 0.2 mm resolu-
tion.

We first obtained theξ andαu estimates on the excesses of
a range of thresholdsu by maximizing the likelihood func-
tion in Grimshaw(1993), and theζu estimates by Eq. (7).
Then we used Eqs. (8) and (9) to calculate the parametersα0
andζ0 for each thresholdu. The first three plots from the top
of Fig. 2 show these estimatesξ , α0 andζ0 as a function of
thresholdsu ranging from 0 to 20 mm. We can clearly ob-
serve a stabilization of theξ estimates for thresholds larger
than u∗

≈3 mm, indicating that the tail behaviour becomes
stable and thusu∗ can be considered an optimal threshold. A
similar behaviour can be observed for the estimates ofα0 and
ζ0 which become stable foru>u∗, as expected by the theo-
retical derivations presented in previous Sect.3. Finally, for
thresholds larger than about 10 mm, we can observe all the
estimates starting to visibly fluctuate, and moreover the devi-
ations of theξ parameter seem to be amplified in theα0 and
ζ0 estimates. We also remark that the increasing variability
of all the estimates should be expected since, despite the fact
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Fig. 2. Example of MTM application on a daily rainfall time series
collected by a tipping-bucket rain gauge with a 0.2 mm resolution.
The first plot from the top displays theξ estimates as the thresholdu

ranges from 0 to 20 mm: theξM MTM estimate is the median value
(horizontal line) within the range of thresholds between 2.5 and
12.5 mm suggested for practical applications. Similarly, the sec-
ond and third plots display the unconditionedα0 andζ0 estimates
provided by Eqs. (8) and (9) as a function ofu. In the fourth plot the
αM

0 MTM estimate is obtained as the median value of the reparam-

eterizedαC
0 estimates conditioned to theξM MTM estimate, while

in the fifth plot theζM
0 MTM estimate is obtained by theζC

0 esti-

mates conditioned to bothξM andαM
0 MTM estimates. The sixth

plot shows the sizes of the records exceeding the thresholdsu. The
starting point of stabilization of all estimates suggestsu∗

≈3 mm as
an optimum threshold.

that thresholds between 10 and 20 mm may be considered
modest, the corresponding number of exceedances becomes
very small, as shown in the last plot of Fig.2.

Although the rigorous assessment of the optimum thresh-
old u∗ goes beyond the main scope of this paper, we per-
formed the same analysis on the other time series that were
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Fig. 3. These figures display the good GPD fitting obtained by
MTM application showed in Fig.2. The top plot shows the em-
pirical survival function (circles) and Eq. (10) parameterized with
MTM estimates (line): we can observe how the fitting can reliably
capture the highest records, despite the fact that the MTM was ap-
plied with a moderate range of thresholds up to 12.5 mm. The bot-
tom plot shows a zoom of the empirical CDF and the MTM-GPD
fit with the same symbols: we can observe again a good fitting, ex-
cept for very small records below the optimum thresholdu∗

≈3 mm
detected in previous Fig.2.

recorded with a 0.2 mm discretization. The results were very
similar to those presented in Fig.2, revealing the the optimal
thresholdu∗ in our dataset is always smaller than 5 mm and
generally around 3–4 mm.

Starting from these observations and from the results
on roughly discretized time series presented in Fig.4 and
discussed later, the main idea of the Multiple Threshold
Method (MTM) is to estimate theξ , α0 andζ0 parameters
in Eq. (10) using a convenient statistic of the estimates ob-
tained from a range of thresholds. As a convenient statistic,
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Fig. 4. Other examples of application of the MTM estimator as in Fig.2, but here columns show the results on time series containing
anomalous percentages of roughly rounded-off records. The selection of the time series was made to give examples of MTM working with
different roundings (the left column shows results for a sample with many records discretized at 5 mm, the other ones for samples containing
many roundings at 1 mm) and different values of the shape parameter (from left to rightξ≈0, 0.25, 0.35). Again, comparing the fourth row of
subplots against the second one, and the fifth one against the third one we can observe the benefit of hierarchical MTM application. Finally
the last row compares the empirical survival function (circles) with Eq. (10) parameterized withξM , αM

0 andζM
0 MTM estimates (line) for

each time series.

we suggest the adoption of the median value since it is quite
robust to the asymmetric distribution of the estimates ob-
tained for different thresholds on discretized samples (see
e.g., Fig. 4). Concerning the range of thresholds to be
adopted, we calculate the median of the estimates obtained
for thresholds ranging from 2.5 to 12.5 mm: for our time se-
ries this represents a trade-off among the need to (i) have a
range large enough to filter out and smooth the departures ar-
tificially driven by large roundings (as those shown in the left
column of Fig.4), (ii) hold enough exceedances in order to
keep small the estimation variance, and (iii) perform almost
all the estimates using thresholdsu>u∗.

The horizontal lines of the first three plots in Fig.2 show
preliminary MTM results, i.e. the median of theξ , α0 andζ0
estimates on a range of thresholdsu from 2.5 to 12.5 mm. We
can observe how the parameter estimates within the adopted
range of thresholds are very close to the lines representing the
MTM estimates. The departures on the left hand side indi-
cate that the exceedances over thresholds smaller than 3 mm
are not fitted by a GPD, while the departures observed for the
larger thresholds are due, as already discussed, to the increas-
ing estimation variance associated with the small number of
exceedances.

Although results in the first three plots in Fig.2can be con-
sidered already satisfactory, we suggest to improve further
the behaviour of our estimates by applying the MTM through
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the following hierarchical steps, where the final MTM esti-
mates will be denoted asξM , αM

0 , andζM
0 and will be used to

parameterize Eq. (10).

– Step 1:ξM estimate.We first obtain the MTM estimate
ξM of the shape parameter as the median of theξ esti-
mates on the suggested range of thresholds as shown in
first plot of Fig.2.

– Step 2:αM
0 estimate.In order to filter out the variability

of the α0 estimates driven by the fluctuations ofξ we
estimate again theαu values conditioned toξM estimate
obtained at step 1 (i.e. we maximize the likelihood func-
tion with ξ=ξM known) and use again the reparameter-
ization in Eq. (8) with the newαu estimates andξ=ξM

constant. Results from Eq. (8) are now denoted asαC
0 to

remark that they are conditioned toξM and are shown in
the fourth plot of Fig.2: comparing with the second plot
of the same figure we can observe a minor dispersion of
the newαC

0 estimates. Finally, the MTM estimateαM
0

of the scale parameter is the median of the newαC
0 esti-

mates within the range of thresholds.

– Step 3: ζM
0 estimate. In a similar way we can reduce

the variability ofζ0 by introducing theζu estimates pro-
vided by Eq. (7) together with the MTM estimatesξM

andαM
0 (obtained at step 1 and 2) into Eq. (9). Results

from Eq. (9) are now denoted asζC
0 to remark again that

they are conditioned toξM andαM
0 and are shown in the

fifth plot of Fig. 2 which again displays a reduction of
variability with respect to the unconditioned estimates
in the third plot of the same figure. Finally, the MTM es-
timateζM

0 is the median of the newζC
0 estimates within

the range of thresholds.

The described procedure provides the MTM estimates
ξM

=0.15, αM
0 =4.95 mm, andζM

0 =0.20 that are used to
parameterize Eq. (10) for the analyzed time series. Fig-
ure 3 (top) shows the excellent fitting of Eq. (10) to our
sample from moderate to the highest rainfall values, while
Fig. 3 (bottom) provides a zoom of the empirical CDF to
show departures from very small rainfall values, consistently
with results of parameter estimates presented in previous
Fig. 2. However, adopting the optimal thresholdu∗

≈3 mm,
with the exception of the recordsx ∈ (0,u∗), Eq. (10) allows
modelling in a simple way (i.e. with only three threshold-
invariant parameters) the whole rainfall marginal distribution
and gives a very good representation of the higher records
providing a reliable insight on the extreme behaviour.

4.2 MTM on roughly rounded-off records

We want now to discuss the MTM application on time se-
ries with significant percentages of records rounded off at
large discretizations.Deidda(2007) analyzed the database
described in Sect.2 and found that many daily rainfall time

series collected by non-recording rain gauges contain anoma-
lous percentages of records discretized at multiples of 0.1,
0.2, 0.5, 1 and 5 mm. Columns from left to right in Fig.4
show the results of the MTM on three of these time series
with different discretizations and shape parameter values: the
first time series contains more than 30% of records anoma-
lously discretized at multiples of 5 mm and is characterized
by ξ≈0; the second one has about 70% of records discretized
at 1 mm andξ≈0.25; the third one counts about 35% of val-
ues at 1 mm resolution andξ≈0.35.

As in Fig.2, the first three rows of subplots in Fig.4 show
the ξ , α0, andζ0 estimates as a function of the thresholdu.
If we compare these results with those presented in Fig.2
we can observe an increased dispersion and a wide spread
of all the estimates, and we can also observe the repetition
of some patterns at multiple intervals of the discretizations
of the records. The fourth and fifth rows show the condi-
tioned estimatesαC

0 andζC
0 : we can observe a stabilization

of these estimates, although the signatures of roundings are
still present. As previously described, the MTM estimates
ξM , αM

0 , andζM
0 are obtained as the median ofξ , αC

0 , and
ζC

0 values (displayed in the first, fourth and fifth rows of
subplots in Fig.4) within the range of thresholds between
2.5 and 12.5 mm.

Analyzing the results of Fig.4, it should now be clearer the
rationale of our suggestion to apply the MTM in a range of
thresholds between 2.5 and 12.5 mm. Indeed, since we often
observed an anomalous percentage of roundings with 5 mm
resolution, the adopted range corresponds to joining two in-
tervals of thresholds of 5 mm in size and centered on 5 mm
and 10 mm, where we observe the jumps of the estimates. At
the same time applying the median operator to the estimates
on the proposed range of thresholds should guarantee that the
MTM estimates are not affected by errors due to an impre-
cise location of the optimal thresholdu∗. Indeed, we can also
notice how determining the optimal thresholdu∗ by looking
for the starting point of constant parameter estimates is quite
difficult, if not impossible here.

Finally the last row of Fig.4 compares the empirical sur-
vival functions of the three time series with Eq. (10) param-
eterized by the MTM estimatesξM , αM

0 , andζM
0 . As already

noticed for Fig.3 we can observe again the good perfor-
mances of the MTM in capturing the tail of the empirical
distributions, despite the roundings. Thus, regardless of the
exponential or heavy tailed shape behaviour, the proposed
approach is robust also when fitting time series with signif-
icant percentages of roughly rounded-off and heavily quan-
tized records.

5 MTM performances

We explore here the performances of the MTM on Monte
Carlo samples drawn by GPDs with different parameters
and different discretizations: specifically, we compare MTM
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results with those of a standard fit with a single threshold.
In order to evaluate the performances on synthetic samples
that can be considered representative of our daily rainfall
records, we preliminarily evaluated the GPD parameters on
the longest time series belonging to the dataset described in
Sect.2: namely, 217 time series with more than 40 com-
plete years of records. With this aim, the MTM presented in
Sect.4 was first applied on these time series with a range of
thresholds between 2.5 and 12.5 mm and using three differ-
ent GPD parameters estimators: the Simple Moments (SM),
the Probability Weighted Moments (PWM), and the Maxi-
mum Likelihood (ML) methods based on the expression re-
ported inHosking and Wallis(1987), Stedinger et al.(1993),
andGrimshaw(1993). The MTM estimates ofξM andαM

0
parameters obtained for each station using the three estima-
tors are shown in the scatterplot of Fig.5. We can observe
how theξM estimates derived from the SM method are never
larger than 0.35: this can be explained by the bias of the
estimator related to the divergence of ordinary moments on
heavy tailed distributions (Hosking and Wallis, 1987), thus
we discarded the SM approach for our analysis. We can also
observe that theξM estimates by ML are slightly more spread
than the PWM ones. We investigated the issue to some de-
tail and the largest ML estimates should be due to the higher
sensitivity of the ML method to the presence of outliers or
to convergence problems as argued byHosking and Wallis
(1987). We also visually inspected the CDFs of the few time
series with a negative shape parameter and found that they
can be reliably described by exponential distributions (ξ=0).

On the basis of this preliminary analysis, we decided to
explore the MTM performances with the ML estimator on
Monte Carlo samples generated by Eq. (10) with the follow-
ing 7 couples (ξ , α0) of GPD parameters (displayed in Fig.5
with square symbols): (0, 9), (0, 12), (0.2, 6), (0.2, 9), (0.2,
12), (0.4, 6), (0.4, 9).

90% of the MTM ζM
0 estimates resulted in a range be-

tween 0.15 and 0.25 with a median value very close to 0.20,
while the lengths of the considered time series range between
40 and 60 yr. Thus, for the sake of simplicity, we decided to
generate all synthetic daily rainfall time series by Eq. (10) us-
ing only the valueζ0=0.20 and a length of 50 yr, since choos-
ing different values has the only effect to slightly change the
number of strictly positive records.

To evaluate the MTM performances on records with dif-
ferent discretizations we considered the following groups of
tests:

– Test A: all records are discretized with a 0.2 mm reso-
lution. This corresponds to the standard resolution of
most tipping-bucket rain gauges in Europe.

– Test B: all records are discretized with a 1 mm resolu-
tion, as most time series in our database contain large
amounts of records discretized at multiples of 1 mm.
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Fig. 5. The scatterplot displays the couples of (ξM , αM
0 ) MTM

estimates of GPD parameters for the 217 daily rainfall time series
(which are more than 40-yr long) collected by the Sardinian Hy-
drological Survey (Italy). Parameters estimates were obtained by
applying the MTM within a range of thresholds between 2.5 and
12.5 mm: plus signs, circles, and diamonds refer to estimates
based on maximum likelihood (ML), probability weighted moments
(PWM) and simple moments (SM), respectively. Finally the seven
couples of GPD parameters used in Sect.5 to explore the perfor-
mances of the MTM on Monte Carlo samples are drawn with square
symbols.

– Test C: 30% of records are discretized with a 5 mm res-
olution, 40% are discretized with a 1 mm resolution,
while the remaining 30% are discretized at 0.2 mm.
This is the case of a large number of time series in which
we detected a mixture of discretizations up to 5 mm.

In summary, we generated 5000 samples of 50-yr synthetic
daily rainfall time series from Eq. (10) with a probability of
rainfall ζ0=0.20 and (ξ , α0) parameters taking the values of
the 7 couples reported above. Each sample was then dis-
cretized according to the three group of tests.

On each sample we estimated theξ , α0, andζ0 parame-
ters with two different approaches. In the first approach the
ξ andα0 values are simply estimated on all strictly positive
records, thus adopting a single thresholdu=0, whileζ0 is es-
timated as the ratio between the number of all strictly positive
records and the sample size: this will be referred to as “stan-
dard fit”. In the second approach theξ , α0, andζ0 parameters
are provided by the MTM on a range of thresholds between
2.5 and 12.5 mm as described in Sect.4: this approach will
be referred to as “MTM fit”. Finally, parameterizing Eq. (11)
with ξ , α0, andζ0 parameters obtained by the two fitting ap-
proaches we estimated also the 50-yr return period quantile
x50 from each sample. In both approaches estimates are al-
ways obtained by maximizing the likelihood function.
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Fig. 6. Same as Fig.4, but here the MTM is applied on three synthetic samples generated by Eq. (10) and discretized according to the
rounding rules of test A (0.2 mm resolution), B (1 mm resolution), and C (mixing of resolutions up to 5 mm): results of each test are shown
in columns from left to right, respectively. The sixth row of subplots now shows the percentage of records exceeding each thresholdu with
respect to the number of strictly positive records.

Examples of MTM application on 50-yr synthetic time se-
ries generated by Eq. (10) with parametersξ=0.2,α0=9 mm,
andζ0=0.2 are shown in Fig.6: each column reports the re-
sults for a sample extracted from one the groups of tests A,
B, and C. As in previous Figs.2 and4, the first three rows of
subplots show the unconditioned estimates ofξ , α0, andζ0
as a function of the threshold, while the fourth and fifth rows
show the reduction of the spread for conditioned estimates
αC

0 , andζC
0 , but again the signature of the roundings is still

visible. Comparing these results with those in the previous
Fig. 4, we can observe a strong similarity with the patterns
obtained for historical daily rainfall time series. Moreover, in
the first column of subplots of Fig.6 (time series discretized
with 0.2 mm resolution) we can again observe the increasing
dispersion of the unconditioned estimates ofξ , α0, andζ0 for
thresholds larger than the MTM range. As already discussed
for Fig. 2, this dispersion can be related to the increasing

estimation variance as the number of excesses decreases. It
is worth noticing on the second and third columns of subplots
of Fig. 6 how the increasing dispersion is hidden by the ef-
fects of roundings. Finally, the last row of subplots in Fig.6
shows a comparison between the empirical survival functions
and Eq. (10) parameterized withξM , αM

0 , andζM
0 MTM es-

timates: again we can visually appreciate the good results of
the proposed approach and the reliable fitting to the highest
quantiles.

Figure7 shows the relative frequency distributions ofξ ,
α0, ζ0, andx50 estimates provided by the standard fit (left col-
umn) and the MTM fit (right column) on 5000 Monte Carlo
samples discretized according to tests A, B, and C. The ver-
tical lines in each subplot show the parameter values used
for generations (ξ=0.2, α0=9 mm, andζ0=0.2) and the ex-
pected 50-yr return period quantilex50=187 mm. A visual
analysis of the subplots in the left column of Fig.7 gives us
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Fig. 7. Relative frequency distributions ofξ , α0 and ζ0 and corresponding 50-yr quantiles on 5000 GPD random samples discretized
according to test A (resolution1=0.2 mm, dotted lines), B (1=1 mm, dashed lines), and C (mixing of resolutions up to1=5 mm, solid
lines). Results from the standard fit method with a single thresholdu=0 (all strictly positive records are used) and from the MTM applied
in a range of thresholds between 2.5 mm and 12.5 mm are shown in the left and right column, respectively. From top to bottom, the plots
display results forξ , α, ζ0 and 50-yr quantile estimates. Vertical thick solid lines show the parameters of Eq. (10) used for Monte Carlo
simulations and the expected quantile.
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Table 1. Bias (top part of the table) and RMSE (bottom part) of MLξ estimates obtained by the standard fit with a single thresholdu=0
and the MTM fit on a range of thresholds between 2.5 to 12.5 mm. Parameters are estimated from synthetic samples generated by Eq. (10)
with different couples of shapeξ and scaleα0 GPD parameters andζ0=0.2. Each sample is 50-yr long and is discretized according to test A
(0.2 mm resolution), B (1 mm resolution), and C (mixing of resolutions up to 5 mm). For test A, results for the standard fit with a single
thresholdu=5 mm are also presented.

bias ofξ

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) −0.012 −0.009 −0.020 −0.014 −0.010 −0.023 −0.016
(1=0.2 mm) standard (u=5) −0.013 −0.010 −0.018 −0.013 −0.010 −0.018 −0.014

MTM −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.002

Test B standard (u=0) −0.049 −0.038 −0.082 −0.058 −0.045 −0.094 −0.067
(1=1.0 mm) MTM −0.005 −0.003 −0.006 −0.004 −0.003 −0.005 −0.004

Test C standard (u=0) −0.074 −0.059 −0.109 −0.085 −0.069 −0.121 −0.096
(1=mixed) MTM −0.012 −0.008 −0.022 −0.012 −0.008 −0.019 −0.013

RMSE ofξ

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.020 0.019 0.028 0.024 0.022 0.033 0.028
(1=0.2 mm) standard (u=5) 0.025 0.023 0.034 0.028 0.026 0.038 0.032

MTM 0.023 0.022 0.032 0.028 0.026 0.036 0.031

Test B standard (u=0) 0.052 0.041 0.084 0.061 0.049 0.096 0.071
(1=1.0 mm) MTM 0.024 0.022 0.033 0.028 0.025 0.036 0.032

Test C standard (u=0) 0.076 0.061 0.110 0.087 0.072 0.123 0.098
(1=mixed) MTM 0.026 0.023 0.039 0.029 0.027 0.040 0.033

a clear picture of the bias affecting the standard fit estimates:
the larger the discretization, the higher the bias. On the other
hand, looking at the corresponding subplots in the right col-
umn we can observe how the MTM is not affected by these
bias problems: the only visible drawback is a slight increase
of the estimation variance related to the lower number of ex-
ceedances used for MTM estimations.

Figures presented and discussed till now give us a qualita-
tive but quite clear idea of MTM supremacy on the standard
fit. Nevertheless, in order to provide an objective evalua-
tion of the MTM performances, we evaluated bias and RMSE
of the two fitting approaches for each group of rounding-off
tests and GPD parameters:

bias
(
θ̂
)

= E
[
θ̂ − θ

]
RMSE

(
θ̂
)

=

√
E

[(
θ̂ − θ

)2
] (12)

where θ̂ is an estimator (provided by the standard or the
MTM approach) of the parameterθ . In our case theθ pa-
rameter can beξ , α0, ζ0, or the 50-yr return period quantile

x50. For each parameter, results in term of bias and RMSE
are presented in Tables1, 2, 3, and4, respectively. We do
not show results in terms of estimation variance, since it can
be easily obtained as var(θ̂)=RMSE(θ̂)2

−bias(θ̂)2. But we
would like to highlight that the estimation variance of the
standard fit (on all strictly positive records) is expected to be
lower than the one of the MTM fit, since var(θ̂) of ML esti-
mators is asymptotically inversely proportional to the sample
size: as shown in the sixth row of subplots in Fig.6, the num-
ber of exceedances of the MTM range of thresholds varies
between about 75% and 25% of all strictly positive records.

An overall look at the tables clearly reveals how perfor-
mances can drastically change depending on the resolution
of the sample (test A, B, and C) and also on the shape and
scale parameter values. However some general behaviours
can be identified.

The top part of each table shows the bias for each param-
eter: we can observe a clear supremacy of the MTM against
the standard fit for all the considered discretizations and for
all the couples (ξ , α0) of GPD parameters. The qualitative
conclusions from Fig.7 are objectively confirmed here also
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Table 2. Same as Table1 but forα0 estimates.

bias ofα0

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.21 0.21 0.24 0.25 0.25 0.29 0.29
(1=0.2 mm) standard (u=5) 0.28 0.27 0.34 0.32 0.30 0.38 0.36

MTM 0.03 0.02 0.01 0.01 0.02 0.01 0.02

Test B standard (u=0) 0.97 0.98 1.15 1.17 1.17 1.35 1.36
(1=1.0 mm) MTM 0.10 0.07 0.12 0.09 0.09 0.11 0.09

Test C standard (u=0) 1.60 1.64 1.74 1.88 1.96 1.99 2.16
(1=mixed) MTM 0.27 0.21 0.42 0.28 0.23 0.40 0.31

RMSE ofα0

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.30 0.35 0.29 0.34 0.40 0.33 0.38
(1=0.2 mm) standard (u=5) 0.45 0.51 0.51 0.53 0.58 0.59 0.61

MTM 0.41 0.47 0.44 0.49 0.55 0.53 0.55

Test B standard (u=0) 1.00 1.02 1.16 1.19 1.21 1.36 1.39
(1=1.0 mm) MTM 0.42 0.47 0.47 0.50 0.54 0.54 0.56

Test C standard (u=0) 1.61 1.66 1.75 1.90 1.98 2.00 2.18
(1=mixed) MTM 0.49 0.51 0.62 0.56 0.60 0.66 0.64

for the other couples of GDP parameters: the MTM is able
to correct most of the bias affecting the standard fit.

The bottom part of the tables reports the evaluation of per-
formances in term of RMSE. We can still observe a clear
supremacy of the MTM for samples discretized according to
test B and C. For test B, where samples are rounded off at a
1 mm resolution, the RMSE for the standard fit is about 2–
3 times larger than the one for the MTM fit, while for test C
(roundings up to 5 mm) the ratio of RMSEs of the two fitting
approaches increases to about 3–4. Thus there is no doubt
about the advantage of applying the MTM approach on sam-
ples with records rounded off at 1 mm or higher resolutions.
Moreover, it is worthwhile noticing that in the case of test C,
where 30% of records were rounded off at a 5 mm resolution,
the RMSE of the standard fit assumes unacceptable values if
compared to the range of GPD parameters estimated on our
database (Fig.5): e.g. the RMSE(ξ ) is of order 0.1 while the
range of estimates in our database is between 0 and 0.4, simi-
lar arguments hold also forα0 since RMSE(α0)≈2 mm while
α0 estimates range from 6 to 12 mm.

Now, let us draw some considerations on the RMSE for
test A, where all records were discretized at a resolution
0.2 mm. Although this is the standard resolution of most
tipping-bucket rain gauges in Europe, results for this test can

be considered representative also for many tipping-bucket
rain gauges in the US where the standard resolution is of-
ten 0.254 mm, very close to our choice. Looking through the
tables, we can observe for test A that the RMSE for all con-
sidered parameters is slightly better for the standard fit (with
a single thresholdu=0) rather than for the MTM one: as
already discussed this result is obviously expected since the
standard fit is performed on all strictly positive records while
the MTM is based on estimates coming from left-censored
samples with size ranging from about 25% to 75% of all
strictly positive data (see e.g. the plots in the sixth row of
Fig. 6), thus the slight worsening of the MTM RMSE with
respect to the standard fit cannot be attributed to a deficiency
of the MTM itself, but to the increasing estimation variance
as the the sample size decreases. In order to support this ar-
gument, for test A we also report in all the tables the results
of the standard fit with a single thresholdu=5 mm, which
appears to be reasonable for our time series since we found
an optimum threshold aroundu∗

≈3−4 mm for daily rainfall
data in our database: we can observe how the RMSE for the
standard fit withu=5 mm becomes the same as the one for
the MTM fit, despite the fact that the latter is penalized by
the higher estimation variance due to the smaller number of
exceedances.
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Table 3. Same as Table1 but for ζ0 estimates.

bias ofζ0

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) −0.002 −0.002 −0.003 −0.002 −0.002 −0.003 −0.002
(1=0.2 mm) standard (u=5) −0.005 −0.003 −0.009 −0.005 −0.003 −0.008 −0.005

MTM −0.000 0.000 0.001 0.000 0.000 0.001 0.000

Test B standard (u=0) −0.011 −0.008 −0.016 −0.011 −0.008 −0.016 −0.011
(1=1.0 mm) MTM −0.001 −0.001 −0.003 −0.001 −0.001 −0.002 −0.001

Test C standard (u=0) −0.019 −0.014 −0.026 −0.018 −0.014 −0.025 −0.018
(1=mixed) MTM −0.004 −0.002 −0.010 −0.003 −0.002 −0.008 −0.003

RMSE ofζ0

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.004 0.003 0.004 0.004 0.003 0.004 0.004
(1=0.2 mm) standard (u=5) 0.007 0.005 0.012 0.007 0.006 0.012 0.007

MTM 0.007 0.005 0.011 0.007 0.005 0.012 0.007

Test B standard (u=0) 0.011 0.009 0.016 0.011 0.009 0.016 0.011
(1=1.0 mm) MTM 0.007 0.005 0.011 0.007 0.005 0.011 0.007

Test C standard (u=0) 0.019 0.015 0.026 0.018 0.014 0.025 0.018
(1=mixed) MTM 0.008 0.005 0.015 0.008 0.006 0.013 0.008

In the light of these results we strongly suggest the use of
the MTM not only on roughly rounded-off data, but also on
correctly discretized records as in test A for the following
reasons. Firstly, when we increase the threshold to a reliable
valueu∗ for the standard fit, the RMSEs become the same for
the two approaches, but the MTM does not suffer from bias
problems. Secondly, RMSE of MTM is acceptable anyway if
compared to the range of GPD parameters values estimated
on our database (Fig.5). Thirdly, the MTM does not require
an exact determination of the optimum threshold, but a vi-
sual analysis like we made in our dataset can suffice: the
median value on the wide range of thresholds is robust even
in the case that a small number of estimates are obtained on
thresholds smaller than the optimum oneu∗ for each ana-
lyzed station; on the other hand, applying the standard fit on
the excesses of a wrong thresholdu<u∗ will certainly lead to
a higher bias and consequently a higher RMSE (see e.g. the
estimates for thresholds lower than 3 mm in Fig.2).

6 Final remarks and conclusions

Special caution should always be taken when representing
the distribution of rainfall records collected at a daily or any
other fixed time scale by dealing separately with the zero and
non zero records and by fitting any distribution function on
all strictly positive records: indeed the smallest values usu-
ally depart from the distribution of the bulk of the records and
can introduce a bias in the parameter estimates (as shown in
Fig. 2). Thus, whatever distribution is candidate to describe
daily rainfall, we need to choose a proper threshold to reli-
ably describe our sample by the fitted distribution.

Theoretical arguments suggest modelling threshold ex-
ceedances by the generalized Pareto distribution (GPD),
moreover empirical evidences support this choice for rain-
fall records. Thus derivations and applications presented in
this paper are focused on the GPD, but many concepts are
quite general and applicable to other distributions.

Although several methods to determine the optimum
threshold to fit the GPD have been proposed in literature,
a general consensus has not been reached yet and proposed
methods can lead to different results. Moreover, the presence
of roughly rounded-off records, as detected in many time
series of our database, makes this task even more difficult:
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Table 4. Same as Table1 but forx50 extreme quantile estimates corresponding to a 50-yr return period.

bias ofxT

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9
qT 74 98 124 187 249 382 574

Test A standard (u=0) −2 −2 −7 −7 −7 −31 −31
(1=0.2 mm) standard (u=5) −1 −1 −4 −5 −5 −14 −18

MTM −0 −0 0 1 0 2 2

Test B standard (u=0) −6 −7 −25 −28 −30 −110 −126
(1=1.0 mm) MTM −1 −0 −1 −1 −1 −2 −2

Test C standard (u=0) −8 −10 −30 −38 −43 −127 −163
(1=mixed) MTM −1 −1 −5 −5 −4 −15 −19

RMSE ofxT

ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9
qT 74 98 124 187 249 382 574

Test A standard (u=0) 4 5 12 17 22 53 74
(1=0.2 mm) standard (u=5) 4 6 13 18 24 56 80

MTM 5 6 13 19 25 58 84

Test B standard (u=0) 7 8 26 31 35 114 136
(1=1.0 mm) MTM 4 6 14 19 24 58 84

Test C standard (u=0) 9 11 31 40 46 130 170
(1=mixed) MTM 5 6 14 19 25 58 81

selecting only those time series that were discretized at a
0.2 mm resolution, we found a stabilization of the shape pa-
rameter for thresholds larger than 3–4 mm. Thus, we as-
sumed an optimum threshold located around these values.
Nevertheless, should other values be more reliable in other
regions, the methods proposed here can be applied anyhow
on revised ranges of thresholds.

The GPD is usually fitted on rainfall time series (or other
hydrological variables) through the following steps: (i) iden-
tification of a single optimum thresholdu∗ for each time
series with any numerical or graphical method; (ii) estima-
tion of the probability of threshold excesses, e.g. counting
the number of exceedances; (iii) inference of GPD shape
and scale parameters on the exceedances over the selected
optimum threshold with any parameter estimator. In order
to represent and reproduce a time series, or to estimate ex-
treme quantiles, four parameters for each site should be de-
termined: the shapeξ and scaleαu∗ parameters of the fitted
GPD, the thresholdu∗ and the probabilityζu∗ to observe ex-
ceedances over the threshold. Nevertheless,αu∗ andζu∗ es-
timates are not the best indicators of climatological spatial
patterns, because of their dependence on the thresholdu∗.

In this paper we provided equations to eliminate this de-
pendence of parameters on the threshold and to describe
the rainfall distribution with the simple representation in
Eq. (10), where only the three threshold-invariant parame-
ters ξ , α0, andζ0 are used. In such a way, even if we are
analyzing different stations where we observe a good fit-
ting of exceedances distributions with different values of the
thresholds, once the fitting has been completed we can forget
the threshold values, and use Eq. (10) without any explicit
parameter dependence on the thresholds. This is a desired
property for regional analyses since the three parametersξ ,
α0, andζ0 reflect only the climatic signature.

Using this threshold-invariance property of theξ , α0,
and ζ0 parameters we developed the Multiple Threshold
Method (MTM) which provides the three estimates as the
median values of reparameterizations over a proper range
of thresholds. We have also shown how the MTM is par-
ticularly able to filter out the deviations from threshold-
invariance which are artificially driven by the presence of
roughly rounded-off records. Indeed, despite the fact that
ξ , α0, and ζ0 reparameterizations are expected to be con-
stant for any threshold larger than the optimum one, the pres-
ence of rounded-off records leads to fluctuations around the
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expected values, but the median operator is robust even in
case of asymmetric fluctuations of the estimates, as found on
historical time series with roughly rounded-off records and
on synthetic samples discretized at different resolutions. The
range of thresholds adopted here for the MTM is between
2.5 and 12.5 mm: in our opinion this is the best trade-off be-
tween the need to have a range wide enough to filter out fluc-
tuations artificially driven by the roundings, but also small
enough to have an acceptable estimation variance, and finally
we are quite confident that most of the thresholds are larger
than the optimum one, at least in the database analyzed here.
However, as already remarked, if there is evidence of dif-
ferent optimum threshold values in other regions, the MTM
range of thresholds can be consequently revised.

The Monte Carlo method was systematically applied to
evaluate and compare the performances of the MTM against
the single-threshold standard fit in terms of bias and RMSE,
considering different discretizations, as well as different
shape and scale GPD parameters. Results of our analysis
clearly prove the supremacy of the MTM with respect to the
standard fit in case of roughly rounded-off records, while in
the test devised for records discretized at a 0.2 mm resolution
(like most EU tipping-bucket rain gauges) the RMSE for the
MTM resulted about the same as the standard fit with a sin-
gle threshold aroundu=5 mm, but MTM has the smallest
bias. Thus in conclusion the MTM always performs better
than the standard single-threshold fit regardless of the record
discretizations. Moreover, we strongly recommend the MTM
also because the results provided by the median operator over
a wide range of thresholds should not be affected by small er-
rors in the location of the optimum threshold, as conversely
happens for the single-threshold standard fit.

All the analyses were performed with the ML, nevertheless
the MTM can be applied anyhow on the estimates provided
by any other estimator.
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