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Abstract. Unsaturated hydraulic properties and their spatial
variability today are analyzed in order to use properly math-
ematical models developed to simulate flow of the water and
solute movement at the field-scale soils. Many studies have
shown that observations of soil hydraulic properties should
not be considered purely random, given that they possess a
structure which may be described by means of stochastic pro-
cesses. The techniques used for analyzing such a structure
have essentially been based either on the theory of regional-
ized variables or to a lesser extent, on the analysis of time
series. This work attempts to use the time-series approach
mentioned above by means of a study of pressure headh and
water contentθ which characterize soil water status, in the
space-time domain. The data of the analyses were recorded
in the open field during a controlled drainage process, evap-
oration being prevented, along a 50 m transect in a volcanic
Vesuvian soil. The isotropic hypothesis is empirical proved
and then the autocorrelation ACF and the partial autocorre-
lation functions PACF were used to identify and estimate the
ARMA(1,1) statistical model for the analyzed series and the
AR(1) for the extracted signal. Relations with a state-space
model are investigated, and a bivariate AR(1) model fitted.
The simultaneous relations betweenθ andh are considered
and estimated. The results are of value for sampling strate-
gies and they should incite to a larger use of time and space
series analysis.

Correspondence to:A. Comegna
(alessandro.comegna@unibas.it)

1 Introduction

The increasing need for water for domestic and industrial
purposes under ever more stringent environmental protec-
tion measures, combined with advances in irrigation, makes
it necessary to gain in-depth knowledge of water and solute
flow in the vadose zone, understood as the zone roughly ex-
tending from the soil surface to the water table. Mathemati-
cal models have for some time been available that allow the
probable losses of water by evaporation and percolation to
be estimated, as well as the probable solute residence times
and the evolution of available water reserves (Feddes et al.,
1988). Based on laws of water flow in unsaturated porous
media, in order to be applied such models are known to re-
quire mathematical relations linking the local value of water
content in volumeθ to the water tensionh and soil hydraulic
conductivityk. Experimental observations to measure as di-
rectly as possible the relations betweenθ , h and k can be
developed through field trials (Hillel, 1998). It is also well
known that in field applications of models, to achieve re-
sults of a practical interest, there must be an evaluation in
statistical terms of the variability of such observable parame-
ters also in fairly homogeneous natural media. Deterministic
evaluation of spatial heterogeneity of soil physical and hy-
draulic properties requires a large number of measurements
and hence can only be performed for limited areas. This has
led to the increasing use of statistical models in which hy-
draulic variables are considered stochastic (Freeze, 1975).

Given the complexity of the problem, several decades
ago, systematic field measurements were conducted and the
data were analysed in order to specify and describe het-
erogeneities (Nielsen et al., 1973). The conventional sta-
tistical approach adopted at the time consisted in treating
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Fig. 1. View of the experimental plot displaying relative position of
TDR probes and 0.3 m depth tensiometers.

observations concerning the property in question as statisti-
cally independent quantities abstracted from their spatial po-
sition. Only in recent years have surveys been conducted
that have clearly shown the existence of a spatial structure
of heterogeneities (Russo and Bresler, 1981). This structure
has been described with geostatistical techniques essentially
derived from regionalized variable theory (Matheron, 1971)
in terms of semivariograms. Each physical property, in the
case of isotropy, could thus be considered as the realization
of a stochastic process which is a function of coordinates on
a horizontal plane and, in the case of anisotropy, a function
of direction. Applications of such techniques have proved
promising for describing variability in space of soil hydraulic
properties and have led to defining the number and distance
at which to make determinations, thereby reducing sampling
costs (Vieira et al., 1981).

Another group of techniques, also used to study the
structure of variability, is based on a modified time se-
ries theory (Box and Jenkins, 1970). By using such tech-
niques, the structure may be described in terms of auto-
correlation functions and SARMA (Spatial Autoregressive-
Moving Average) models with a view to estimating the
stochastic properties of the data. Some of these applica-
tions in soil physics and hydrology include the studies by
Morkoc et al. (1985), Anderson and Cassel (1986), Wen-
droth et al. (1992), Cassel et al. (2000), Heuvelink and Web-
ster (2001), Wendroth et al. (2006).

In the present paper, reference is made to a state-space sta-
tistical model which was set up to analyze the water status of
a volcanic Vesuvian soil. Section 2 illustrates the experiment
from which observations were made on the two parameters in
questionθ andh. Section 3 deals with the state-space model
formulation. Sections 4 and 5 analyze two applications of the
model in the univariate and bivariate case. Finally in Sect. 6
some conclusions will be drawn and comments made.

2 Description of the experiment

The experiment was conducted on a sandy soil (83% sand,
12% silt and 5% clay, USDA), located at Ponticelli, Naples
(Italy; 40◦52′00′′ N and 14◦53′00′′ E) and pedologically clas-
sifiable as anAndosol. This soil was chosen because it is
typical of a large, intensively cultivated area near Vesuvius.
At the center of the field, where the trial was carried out, a
plot with dimensions of 2× 50 m2 was prepared along a N–
S axis, with a boundary ridge about 0.25 m high (Fig. 1).

At the center of the plot 50 three-rod time domain reflec-
tometry (TDR) probes (0.15 m long and a wire spacing of
0.015 m) were inserted at constant distance of 1 m apart for
measuring, at a depth of 0.3 m, volumetric soil water content
θ . The TDR probes were multiplexed manually to a TDR
100 tester (Campbell Scientific, Inc, Logan, UT). On a paral-
lel transect, at a distance of 0.5 m from the TDR probe line,
50 tensiometers were installed with their tip at a depth of
0.3 m to register tensionh in the liquid phase. The ceramic
tensiometer cups were made in our laboratory, with the fol-
lowing characteristics: (i) the bubbling pressure (Pa), defin-
able as the pressure at which soil air enters the tensiome-
ter, is greater than 0.5 hPa; (ii) the cup conductance (C)

is greater than 0.0111 cm3 s−1 hPa−1 of pressure difference
across the wall; (iii) considering that the gauge sensitivity
(S) is 1000 hPa cm−3, an instrumental time constant in water
τ = C−1S−1 may be calculated equal to 90 s. Water tension
was measured connecting tensiometers to a microdatalogger
(Skye-Instruments, Ltd, UK)

For the purposes of the trial, the plot was ponded by apply-
ing water in excess of the infiltration rate, while an overflow
pipe guaranteed a constant water depth of 0.15 m. The time
required for establishing steady-state flow in the profile at all
depths to 1.5 m, was about 1 week. When infiltration was
complete, the surface of the plot was covered with a plastic
sheet so as to prevent evaporation from the soil surface and
rainfall infiltration in the soil profile.

Measurements were carried out at twelve sampling times
at increasing time intervals (5, 24, 48, 72, 120, 160, 240,
336, 432, 600, 768, 936 h, respectively) from the start of the
drainage process. Such times on a logarithmic scale are dis-
tributed approximately along a straight line; in other words,
the choice of measuring times on this scale may be consid-
ered approximately equidistant.

The water contentθ and the tensionh were always mea-
sured at the same time, thereby making it easier to deter-
mine the retention curvesθ (h). Monitoring was interrupted
42 days after the end of infiltration when the drainage process
was evolving so slowly as to make it pointless to continue
with the experiment.
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Fig. 2. Stochastic representation of input-output transformation
model.

3 State-space model formulation

Clearly, there is a strict analogy between space and time, at
least in the case of one-dimensional space. Hence, under
the hypothesis of isotropy, analytical methods are to a broad
extent equivalent. Typically, time series analysis allows us
to analyse spatial structure in terms of autocorrelation func-
tions and generalisation of state-space models. For this par-
ticular method of regression in the time and space domain,
unlike the methods of kriging and cokriging (Vieira et al.,
1983) the assumption of stationarity of observations is not
required. The state-space method (Kalman, 1960) is partic-
ularly interesting when the phenomenon in question satis-
fies certain systems of differential equations. The method
has been used in economics (Shumway and Stoffer, 2000)
and has yielded good results in agronomic and soil science
(Vieira et al., 1983; Morkoc et al., 1985; Wendroth et al.,
1992; Wu et al., 1997; Cassel et al., 2000; Poulsen et al.,
2003; Nielsen and Wendroth, 2003)

Let us useY(x), x =xo+1, ..., xo+n, to indicate the values
assumed byn observations made for a certain soil parame-
ter Y along a given transect (below we shall use the simpler
notationY t , t = 1, 2, ...,n). A state-space model consists,
in the formulation most useful for our purposes (for details
and generalisations see Anderson and Moore, 1979), of two
equations:{

Y t = F
′

tZt +vt

Zt = GtZt−1+wt

isotropic
⇒

Zt = G1tZt−1+G2tZt+1+wt

anisotropic
t = 1,2, ...n (1)

The first termed that of observations and the second that of
transition, whereF t is a known vector (p, 1), Zt is a vec-
tor (p,1) of the system state,Gt, G1t , G2t are a set matrices
(p, p); vt ∼ N (0;σ 2

vt
) independent ofwt ∼ Np(0;

∑
wt

). The
model (1) is wholly specified by the parameters (F t , Git,σ

2
vt

,∑
wt

) and includes, as particular cases, other statistical mod-
els such as regression, ARIMA and SARMA models.

Having set the initial values, we may obtain optimal fore-
casts and estimates of the non-observable components by
using theKalman filter. At the same time, from many ob-
servations made of soil physical and hydraulic properties,
the latter may plausibly have been generated by stationary
isotropic processeswith parameters independent of the indi-
vidual measuring points:

E(Y t ) = µ; var(Y t ) = σ 2 cov(Y t ,Y t±h) = c(h).

Hence we may consider the case in which the equations in
(1) are reduced to simple ARMA and SARMA models. The
importance of being able to make the double representation
(state-space and SARMA or ARMA) lies in the fact that
ARMA and SARMA models are easy to identify and esti-
mate, while state-space models allow a more straightforward,
immediate interpretation of the phenomena to which they are
applied. Indeed, from (1) it follows thatY t may be inter-
preted as the result of signalF ′

tZt which is overlaid by a
random errorvt . Evolution of many physical phenomena can
be well represented with a logical scheme like that reported
in Fig. 2.

The system structure is usually very straightforward and
can be approximated, in the isotropic case, by an AR(1),
given by:

Zt= φZt−1+wt

or, in the anisotropic case, a SAR(1) given by:

Zt = c0+φ1Zt−1+φ2Zt+1+wt

Note that, if it isφ1 = φ2 then the SAR(1) model may be
replaced by the simpler AR(1) model.

Moreover, if we assumep = 1,F t = 1,Gt=φ then we ob-
tain more simply:{

Y t = Zt +vt

Zt = φZt−1+wt
⇔

{
(−φB)Y t = (−αB)et

(1−φB)Zt = wt
, t = 1,2,...,n (2)

whereB is the backshift autoregressive operator,φi > αi and
et such thatet −α1et−1−α2et+1 = v−φ1vt−1−φ2vt+1+wt .
Thus both the equation of the observations and that of tran-
sition (i.e. the signal) are reduced to simple ARMA models
and especially to an ARMA (1,1) forY t and an AR(1) for
Zt .

Besides, as is widely acknowledged in soil physics, be-
tween the many parameters there may well be functional re-
lations such that what applies to the univariate cases can be
extended to the simultaneous analysis in whichY t is anr-
dimensional vector. Under isotropic hypothesis, a particular
generalisation of (1) to the caser = 2 imply the following
model:{

Y t = F tZt +vt

Zt = GtZt−1+wt
;t = 1,2,...,n (3)

whereFt is the (2,p) observation matrix which expresses
the pattern which converts the unobserved stochastic (p, 1)
vectorZt into the (2, 1) vector observed seriesY t , andGt a
(p, p) matrix of state-space coefficients or transition matrix
indicating the measure of spatial regression

vt∼ N2

(
0;

∑
vt

)
independent of

wt∼ Np

(
0;

∑
wt

)
.
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Table 1. Descriptive indices of the spatial series observed along the transect at 0.3 m depth of soil profile.

Min Max Mean SD Skew Kurt CV

θ3 (−) 0.307 0.383 0.341 0.019 0.217−0.675 0.056
θ6 (−) 0.257 0.330 0.287 0.018 4.462−0.505 0.062
θ11 (−) 0.205 0.283 0.239 0.016 0.256−0.353 0.068
θ100 (−) 0.236 0.300 0.257 0.015 0.655−0.233 0.057
h3 (cm) 58.0 103.1 83.2 10.4 −0.411 −0.217 0.125
h6 (cm) 113.1 180.9 147.3 16.4 0.141−0.700 0.111
h11 (cm) 189.7 305.2 244.9 27.8 0.108−0.670 0.113

Min = minimum value; Max = maximum value; SD = standard deviation: Skew = skewness; Kurt = kurtosis; CV = coefficient of variation.

 

 

Fig. 3. Soil water tension (h) and volumetric water content (θ as a
function of time at the 0.3 m depth for all redistribution times during
the drainage period.

In the particular case ofp = 2, Ft = I with I the identical ma-
trix andGt =8, we have the equivalent bivariate model:{

Y t = Zt +vt

Zt = 8Zt−1+wt
⇔

{
(I −8B)Y t = (I −2B)et

(I −8B)Zt = wt
t = 1,2,...,n

where et∼WN(0;6e) is independent of wt∼WN(0;6w) and
8 are2 (2, 2) matrices of unknown parameters to be esti-
mated.

4 Application in the univariate case

In this section we will analyze individually the two param-
eters which characterize the soil water status in terms ofθ

and h measured at 0.3 m depth, along the N–S line of the
plot so as to highlight their intrinsic structure linked to re-
gional variability and, for 3 of the 12 measuring sampling
times (the 3rd, 6th and 11th carried out 48, 168 and 768 h
respectively from the start of the drainage), the variations oc-
curring in time (the parameters concerned are indicated byθi

andhi).
The data were first elaborated using classical statistical

techniques, hypothesizing that the parameters vary in an es-
sentially random manner. From this point of view, the main
statistical indices (min. value, max. value, mean, standard
deviation, skewness, kurtosis, coefficient of variation) of the
above parameters are reported in Table 1.

From Table 1 we may deduce, for all the measuring times
considered, an increase in the standard deviation (SD) with
its mean for parameter h, whereas the SD ofθ is practically
constant. We also note that the coefficient of variation (CV)
of h is almost twice that ofθ . Concluding, the two processes
describingh andθ are, in time, both non-stationary on the
mean, whileh is also non-stationary in variance. Figure 3
illustrates the above points: it reports the 50 observations of
θ andh for 10 of the 12 sampling times (from the 2nd to the
11th). This all agrees with the theoretical results obtained
by Yeh et al. (1985), which predicted such behaviour on the
basis of the stochastic analysis of unsaturated flow through
heterogeneous media.

In the context of stochastic analysis it is essential to verify,
for the parameters considered, the existence of a correlation
structure.

Variablesθ andh, given that they are recorded at constant
intervals along the transect, are ordered in space and their
evolution in the prefixed direction can therefore be evaluated
by means of typical statistical analyses of the time series and
in particular by means of the ARMA model (see Box and
Jenkins, 1970) only when the hypothesis of isotropy can be
justified. A preliminary test was than carried out onθ3 andh3
series. The model which supplied the most acceptable results
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Fig. 4. 95% confidence region ofφ1 andφ2 parameters for(a) θ

and(b) h serie.

in terms of simplicity and interpretability, both because of
the limited number of parameters and goodness of fit of the
data, was SAR(1) model where the unknown parameters to
be estimated areφ1 andφ2. The above criteria of choice was
followed for all models subsequently used. It should be noted
that if φ1 andφ2 are substantially equal thanθ3 and h3 are to
be considered isotropic, conversely anisotropy may be taken
into account.

The iterative least-squares method estimate of the model
parameters in question, provided the results reported in Ta-
ble 2 where standard deviations are in brackets. Having sup-
posed that the phenomenon is isotropic and therefore invert-
ible in space, the estimatedφ1 andφ2 values are expected
to be equal. In particular, in our case, we may observe that
φ1 = φ2. If the estimates are analyzed in greater detail, in
the Fig. 4a, b it may be noted that the parameters in question
are statistically identical. Then the model reported in (1) was

Table 2. Parameter estimates and comparison of SAR(1) model for
the series examined and goodness of fit indexR2; in parenthesis the
standard deviation of the estimates.

θ3 h3

c0 0.0858 29688.27
(0.0418) (12629)

φ1 0.3950 0.331
(0.1409) (0.1341)

φ2 0.3530 0.317
(0.1488) (0.1374)

σw 0.01435 8935.8
R2 0.4568 0.2907

Table 3. Parameter estimates of the ARMA(1,1) model, forθ3, h3,
θ100 and goodness of fitR2. In parenthesis the standard deviations
of the estimated parameters.

φ α σ̂l R2

θ3 0.94 (0.075) 0.51 (0.12) 0.0136 0.501
h3 0.91 (0.07) 0.63 (0.14) 8.729 0.300
θ100 0.77 (0.10) 0.21 (0.10) 0.0110 0.392

applied, only to three series of data obtained along the tran-
sect. The series concerns, in particular, values of soil water
contentθ and tensionh obtained 48 h from the beginning of
the drainage. Furthermore the analysis will be extended to a
section of the soil moisture retention curveθ (h) constructed
for h = 100 cm, subsequently indicated asθ100.

More significantly, the essential characters assumed in the
space from the distribution of the parameters in question may
be deduced from the transects of Fig. 5, which report the
relative values in the 50 observation points.

To identify the ARMA models to be adapted to the above
three series, we estimated the autocorrelation (ACF) and par-
tial autocorrelation (PACF) function. As transpires from
Fig. 6a, b, c, the three series can be well represented by an
ARMA (1,1) model.

Anyway analysis of ACF residuals (Fig. 6d) shows clearly
that no structure whatever is present in the series of noises,
which is further confirmation of the good fit of the model
used to represent the examined parameters.

Parameter estimates, obtained with the least squares
method, of the ARMA(1,1) model adapted to the above se-
ries and the goodness index fitR2 (mean square errors in
brackets) are reported in Table 3 below. Clearly, all three
series show a strong inertia component which confirms the
presence of the spatial structure ascribable to an AR(1),
accompanied by marked fortnitosness as results from the low
value ofR2. The Jarque-Berà (Snedecor e Cochran, 1980)
test is performed to evaluate the normality of the residual of

www.hydrol-earth-syst-sci.net/14/2455/2010/ Hydrol. Earth Syst. Sci., 14, 2455–2463, 2010



2460 A. Comegna et al.: State-space approach to evaluate spatial variability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40 50

Distance along the transect (m)

θ
a

 
 

0

20

40

60

80

100

0 10 20 30 40 50

Distance along the transect (m)

h 
(c

m
)

b

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 10 20 30 40 50

Distance along the transect (m)

θ 1
00

c

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40 50

Distance along the transect (m)

θ

a

 
 

0

20

40

60

80

100

0 10 20 30 40 50

Distance along the transect (m)

h 
(c

m
)

b

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 10 20 30 40 50

Distance along the transect (m)

θ 1
00

c

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40 50

Distance along the transect (m)

θ

a

 
 

0

20

40

60

80

100

0 10 20 30 40 50

Distance along the transect (m)

h 
(c

m
)

b

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 10 20 30 40 50

Distance along the transect (m)

θ 1
00

c

 

 Fig. 5. Measured values of:(a) soil water contentθ3, (b) soil water
tensionh3 and(c) soil water contentθ100, ath = 100 cm.

both ARMA(1,1) models end the null hypothesis (normality
distribution) is accepted. The kernel estimate residuals dis-
tributions are reported in Fig. 7.

The estimated model was then used to obtain optimal pre-
dictions along the transect. Figure 8a, b reports the observed
data, a signal estimate and the relative noise for seriesθ3 and
h3. The graphs for the other series were similar, with anal-
ogous signal in the general pattern, not reported here for the
sake of brevity, confirming that the spatial structure of soil
hydraulic parameters is a characteristic of the porous medium
in question.

Fig. 6. Estimated ACF and PACF functions with approximate 95%
confidence bond, for:(a) soil water contentθ3, (b) soil water ten-
sionh3, (c)water contentθ100, ath = 100 cm and(d) noise in model
1 for θ3,h3, θ100.

5 Application in the bivariate case

Consistent with the aim of simultaneously analysing param-
etersθ andh as a bivariate dynamic system and modelling
statistically the intrinsic variability, in this section we seek
to ascertain once again the suitability of the multivariate ap-
proach based on the use of state-space models. Preliminary
qualitative assessment regarding the nature of the functional
relationship betweenθ andh may be inferred from inspec-
tion of figure 9 which reports all theθ andh values measured
contemporaneously for each of the 50 sites and for 10 of the
12 measuring times.

In particular, the figure shows the degree of heterogene-
ity of the moisture retention curveθ (h) irrespective of the
velocity with whichh varies in time in relation to the redis-
tribution process of moisture in the soil profile. For a more
straightforward interpretation, the scatter (θ , h) was fitted
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(right) 
Fig. 7. Kernel density residual estimation from model ARMA(1, 1)
for parameterθ3 (up) andh3 (below).

with a curve to which the analytical expression proposed by
van Genuchten (1980) was assigned:

θ (h) = θr +
θs −θr(

1+|αh|
n
)m h < 0 (4)

θ (h) = θs h ≥ 0 (5)

whereθs andθr denote the saturated and residual water con-
tent respectively. The constantsα, m andn are shape param-
eters andm = 1−

1
n
.

The estimate of parameter (α, n) in model and the good-
ness index of fitR2, obtained by the least squares method,
led to the following results:θr = 0, α = 0.01, n = 1.46 and
R2 = 0.90.

The problem that arises at this point is to ascertain whether
the bivariate model is compatible with the results obtained
for the individual variablesθ andh. In this respect, it can
be easily verified that a bivariate ARMA(1,1) means that the
single components are univariate ARMA(2,2) in contrast to
ARMA(1,1) models that are adaptable toθ andh. Admit-
tedly, the situations between the elements8 and2 may co-
incide, hence ARMA(2,2) are simplified into ARMA(1,1).
However, the constraints to be met are such as to rule out
that this may in practice occur. On the other hand, if in (3)
we havevt = 0, thenY t coincides withZt and this has two
implications: (a) it can no longer be supposed thatθ andh

are broken down simultaneously into a signal and an error
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Fig. 8. Values of(a) θ3 and(b) h3, observed, fitted and predicted
with ARMA(1,1) model.
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Fig. 9. Scatter ofθ (h) values observed in the field along the transect
at 0.3 m depth of soil profile.

(this does not exclude the decomposition of single compo-
nents); (b) the ARMA structure ofY t is simplified into the
bivariate AR(1) model:

(I −8B)Y t = wt (6)

which implies, for the single components, ARMA(2,1) mod-
els. As may be noted, we still have a different model from
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Fig. 10. Schematic representation of cross correlation matrices of
estimated residues: (� ) auto-cross correlations non significantly
different from zero, (– ) auto-cross correlation significantly greater
than zero.

ARMA(1,1) obtained empirically for the components, but in
this case the coincidental conditions such that an ARMA(2,1)
is reduced to an ARMA(1,1), are not very constraining.
Hence it is plausible that the bivariate model forY t is type
(6). Moreover, it is easy to prove that model (6), through
orthogonalization of6w, may equally be represented by the
following:{

θt = c1+β1 ht +β2 θt−1+β3 ht−1+at

ht = c2+δ1 θt +δ2 ht−1+δ3 θt−1+bt
(7)

which expresses the simultaneous functional relation be-
tweenθ andh. Note that in Eq. (3),at andbt are white noises
independent among them and respectively withht and θt .
Moreover, the proof is straightforward that if8 = Diag{φ11,
φ22} then we also obtainβ2=φ11 and δ2=φ22.

The estimates of the bivariate AR(1) and the relative cor-
relation matrix of the residuals are:

8̂ =

 0.60
(0.12)

0

0 0.48
(0.13)

; R =

(
1 −0.38

−0.38 1

)
while the first 10 auto cross-correlations matrices of the es-
timated residuals, for exploratory purposes are reported syn-
thetically in Fig. 10.

From these it emerges that the bivariate AR(1) model fits
the two phenomena well and highlights the existence of si-
multaneous causal relations, as was to be expected, between
θ andh. Estimation with the least squares of model (3) sup-
plied the following results (in brackets the mean square de-
viations of the estimates):

θ̂t = 0.13
(2.8)

−0.00061
(−2.71)

ht + 0.68
(5.94)

θt−1+0.00036
(1.55)

ht−1; R2
= 0.48

ĥt = 54.5
(1.82)

−231.1
(−2.73)

θt +0.49
(3.9)

ht−1+193.88
(2.18)

θt−1 ; R2
= 0.33

(8)

As may be noted, this yieldŝβ2 ≈ φ̂11 and δ̂2 ≈ φ̂22 which
may be considered further confirmation of the goodness of
the statistical model used to interpret and describe the two
parametersθ t andht and the relations between them. In this
respect, in Fig. 11 we report theθt values observed and those
estimated with the first of (4). The expression manages to
capture the phenomenon’s general trend. A similar relation-
ship, albeit not presented, is obtained for the second of (4).

 
Fig. 11. Water contentθ3 observed and estimated with the first of
Eq. (8).

6 Conclusions

The soil water status may be better defined stochastically
rather than deterministically since it is not always possible
to evaluate with precision the behaviour of parametersθ and
h of the flow system at an assigned point in time. This is
due both to intrinsic and extrinsic heterogeneities of natural
porous media, and to field crop root water uptake as well as
natural contributory factors which are essentially stochastic.

The experiment carried out on a field plot on a Vesuvian
volcanic soil, with regard to its water status, showed thatθ

andh are essentially multi-dimensional processes when ob-
served in space and time. The isotropic nature of the phe-
nomena are firstly empirical verified and then the space cor-
relation structures were analyzed using state-space methods
which allowed the setting-up of univariate models. The non-
stationary nature of soil water tension, in mean and in vari-
ance was then ascertained, whereas water content was locally
stationary on mean and variance for the whole period of ob-
servation. In any case, the signals in the observed series were
fairly clear and marked even if influenced in complex manner
by the water dynamics of the soil profile.

The deterministic relations betweenθ and h suggested
the use of bivariate models which allowed for any simulta-
neous isotropic relations existing between the two parame-
ters in space. The theoretical potential and the practical im-
plications of these results in the modelling of water trans-
port processes in unsaturated heterogeneous porous media
require further in-depth studies above all with regard to dif-
ferent pedological contexts from those here analyzed. Since
drainage is the predominant transport process in this simpli-
fied hydrological experiment, it is reasonable to suppose that
it depends upon the combined effect of soil conducting prop-
erties within the entire soil profile.

Nevertheless, starting from available knowledge and ver-
ified combination of accuracy and flexibility in the models
used, we hope that these instruments may be considered ad-
equate for the study and interpretation of the statistical prop-
erties of soil hydraulic parameters.
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