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Abstract. The coefficient of L-variation (L-CV) is com- countered in hydrology when dealing with floods or extreme
monly used in statistical hydrology, in particular in regional rainfall events. The coefficient of L-variation (L-CV) is an-
frequency analysis, as a measure of steepness for the frether — more efficient in many cases — measure of data dis-
quency curve of the hydrological variable of interest. As op- persion introduced bi#osking(1990. It has hence replaced
posed to the point estimation of the L-CV, in this work we the conventional CV in various applications of statistical hy-
are interested in the estimation of the interval of values (con-drology. In particular, the use of the L-CV as a measure of
fidence interval) in which the L-CV is included at a given steepness of the flood frequency curve has become a stan-
level of probability (confidence level). Several candidate dis-dard in regional flood frequency analysis (see d2garson
tributions are compared in terms of their suitability to provide 1991, Hosking and Wallis 1993 Stedinger and Lu1995

valid estimators of confidence intervals for the population L- Fill and Stedinger1998 Hosking and Wallis 1997 Rob-

CV. Monte-Carlo simulations of synthetic samples from dis- son and Reed1999 Castellarin et a).2001). Many sta-
tributions frequently used in hydrology are used as a basis fotistical procedures of regionalization of floods are based on
the comparison. The best estimator proves to be provided byhe hypothesis that the L-CV is informative enough to repre-
the log-Student t distribution whose parameters are estimatedent the differences among the flood frequency distributions
without any assumption on the underlying parent distribu-at different sites. For example, the sample L-CV is used to
tion of the hydrological variable of interest. This estimator is designate “homogeneous regions”, where it is assumed that
shown to also outperform the non parametric bias-correctedhe frequency distribution of flood peaks for different sites is
and accelerated bootstrap method. An illustrative example ofthe same, except for a site-specific scale fadbalfymple

how this result can be used in hydrology is presented, namely96Q Index-Flood method). Other studies state that the slope
in the comparison of methods for regional flood frequencyof the flood frequency curves (or, equivalently, their L-CV)
analysis. In particular, it is shown that the confidence inter-should be taken as the statistical descriptor to be related to
vals for the L-CV can be used to assess the amount of spatiadatchment attributes such as area or mean elevation (see e.g.,
heterogeneity of flood data not explained by regionalizationRobinson and Sivapalah997 Allamano et al, 2009.

models. Instead of estimating the L-CV by a single value, in this
work we are interested to provide an interval estimation of
the L-CV, i.e., to infer the range (the confidence interval) in
1 Introduction which the population L-CV is included at a given level of
probability (the confidence level). The most immediate ad-
It is well known that the sample coefficient of variation (CV), vantage of using confidence intervals, as opposed to point
i.e., the ratio of standard deviation to the mean of a serie€stimates, is that they clearly indicate the reliability of the
of data, exhibits substantial bias and variance when samplegstimate, given by the confidence level. But the advantages
are small or belong to highly skewed populatioWsgel and ~ are more than that. For example, in regional frequency anal-

Fennesseyl993. This is the problem that is normally en- Ysis, L-CV confidence intervals could be used to compare on
a single basis very different approaches such as those based

) on site grouping and those that allow for the continuous vari-
Correspondence toA. Viglione ability of L-CV. In the first case it is assumed that the popu-
BY (viglione@hydro.tuwien.ac.at) lation L-CV is constant along a homogeneous region (group
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of sites). In the second case it is assumed that a model tpared for a wide range of sample lengths and underlying par-
describe the variability of the population L-CV applies to the ent distributions, whose type is selected among those more
whole analysed region, for example based upon a linear ofrequently used in hydrological applications: the Generalized
non-linear functional relationship between the L-CV and cli- Extreme Value, the Pearson type lll, the Log-Normal with 3
matic/physiographic characteristics. These two assumptionparameters, the Generalized Pareto and the Generalized Lo-
can be compared by counting how often the at-site L-CVgistic distributions. The results are shown in Sdatvhere:
confidence intervals actually include the regionally estimated(i) a correction for the bias of estimation of the sample L-CV
L-CV. The spatial variability of the L-CV is essentially due and its variance is proposed (Seétl); (ii) the method is

to sample variability and spatial heterogeneity. If the confi- compared to the non-parametric bias-corrected and acceler-
dence intervals include the regional model in less cases thaated BG bootstrap, an appealing computer-based alternative
specified by the confidence level, this is because of unexmethod (Sect.2); and (iii) the goodness of estimation of the
plained spatial heterogeneity. Different models can therefor@©0% confidence intervals for the L-CV is analysed in more
be compared in terms of their ability to explain the spatial detail.

heterogeneity of the data. Anillustrative example is provided The outcome of this study for hydrological applications
at the end of the paper. is shown through an example (Seé&). in which differ-

The more natural way to estimate confidence intervals forent regionalization techniques (the index-flood technique
a parameter is by deriving them from its sampling distribu- with “fixed regions”, the “region of influence” approach
tion (e.g.,Kottegoda and Ross@997, Sect. 5.3). In asymp- and a “region-free” simple regression method) are compared
totic theory, approximate estimates of the sampling distri-against a given data-set of flood peaks. Their performance is
bution of the L-CV are derived for large samples and for assessed by counting how often the L-CV confidence inter-
specific underlying parent distributions (see etfpsking vals actually include the regionally estimated L-CV.

1986 1990. In the hydrological literature some attempts to
extend the asymptotic results to shorter samples exist. For ) o
example,Chowdhury et al(1991) assume that the sample 2 Sampling distribution of the L-CV

L-CV is normally distributed and use a first-order estimate L-moments were introduced Byosking (1999 and are lin-

f it mptotic varian rrected, for small samples, with S - .
of its asymptotic variance corrected, for small samples, ear combinations of the Probability Weighted Moments de-

coefficients obtained through a Monte-Carlo procedure. In. -
their analysis a Generalized Extreme Value parent distribu-]clnecj by Greenwood et al(1979 (see alsdSilitto, 1969.

tion is assumedSankarasubramanian and Srinivagéb®99 S%mrpli Ft’irc;ibg?llltyXWelght;d Mormeril\ts,nc;)mputed from the
consider, in a similar work, the Generalized Normal, Log- order statisticsty:n, £2:n, ... An:n, A€ gIVEN by
Normal and Pearson type Il distributions. n—1\"1 & 1
. . - o -1 J
In this work we estimate the sampling distribution of the bx =n < > Z < )Xj:na (1)
L-CV for short samples and independently of the underly- j=k+1

ing parent dlistr_ibut_ion. To meet this aim, we exploit the re- wheren is the sample length aridis the order of the proba-
sults of a distribution-free approach, recently proposed bybility weighted moment. Sample L-moments are defined as
the statistical community, to derive estimators for variances

and covariances of sample L-momeriEamir and Seheult r—1

2004. The estimators of the sample L-CV and its variancelr = » i1 bk (2)
are used to fit several two-parameters candidate sampling *=0

distributions (Sect2). Through Monte-Carlo simulations, \yhere the coefficients

we check if these sampling distributions are suitable to derive

confidence intervals for the L-CV, e.g., if the 90% confidence Pii= (=1 * <r> (’ +k> ©)
limits (i.e., the end points of a confidence interval) obtained k k

for different samples encompass the_ true population paramesye those of the “shifted Legendre polynomials” (stesk-
ter 90% of the times. This property is referred as “validity” ing and Wallis 1997). Since L-moment estimators are linear

of the estimator of the confidence intervals (in our case thenctions of the sample values, they are virtually unbiased
estimator is provided by the candidate sample distribution of.

i i and have relatively small sampling variance.

the L-CV). We use a graphical goodness-of-fit method that

is able to show for which confidence levels the estimator camp.1  Variance of the sample L-CV

be considered valid and to evidence the reasons for the lack

of validity of it, in particular the effects of bias of estimation The asymptotic variances and covariances of the sample L-
of the sample L-CV and its variance. We also use a synthetienomentsiy, /o, ...,I, are derived byHosking (1990, who
goodness-of-fit measure, the Anderson-Darling test statisticalso demonstrate that their distribution is asymptotically nor-
which checks the validity of the estimator for all confidence mal. Elamir and Seheul(2004 derive the exact variance

levels en bloc (SecB). The candidate distributions are com- structure of sample L-moments in the non-asymptotic case
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without formulating assumptions on the underlying parentwhere N (0, 1) is the standard normal distribution. Because
distributions. Let's call the variances and covariances offor short samples the normal distribution could be too nar-
the sample Probability Weighted Moments = var(b;) and row, inspired by the definition of the distribution of the mean
Or = cov(by, by), respectively. Elamir and Seheul{2004) of a sample when its real variance is unknown (see Kai-,
demonstrate that a distribution-free unbiased estimatéyof tegoda and Ross&997), we also consider

is

1 t+yvar) - 7,1 (10)
b, — _ Oy S, NO) . e . -
O = bibi n&++2) Z [(-D™(—k=2" + as an alternative distribution, whefg_1 is a Student t distri-
" 15’“5)” bution withn — 1 degrees of freedom. Note that the variance
+(i—DVG 1=V Xin X jins (4)  of the distribution defined by Eq1() is greater thawar(r),

since the variance df,_1 is greater than 1.

Both the normal and the Student t distribution are symmet-
ric. On the other hand, given that in hydrology random vari-
ables are typically non-negative (e.gqutsoyiannis2005,
some sampling distributions should be asymmetric. There-
fore, we consider also the distribution

wheren™ =n(n—1)...(n —r +1). Observing that Eq.2)
can also be expressedlas bC”, wherel = (i1, ...,1,), b=
(bo, ...,by—1) andCT is the transponse of thex n lower tri-
angular matrix with entriep;_, , given in Eq. @), the vari-
ance matrix of the L-moments is given by

var() =cec’ ) 2 var(r)
Glr=—t, o= YA (11)
where ® = var(b) is the variance matrix of the probability var(r) !

weighted moments with elementy. The matrix®, ob-  whereG is a gamma distribution with shape paramétand
of the variance matriX®. On these basis, it descends from

Eq. 6) that an unbiased estimator of viris: fo(xsk,¢) = Wl(k)x"*le*(x/q’). (12)
\Er(\l)zcé)CT. (6) Among the asymmetric distributions, we also consider the

) o ~_ log-normal and the log-Student t distributions, i.e., we as-
The sample L-CV, i.e,, the coefficient of L-variation, is syme that the logarithm of the sample L-CV is normally or
defined by the ratio of the first two sample L-moments, Student t distributed. In the first case, the sampling distribu-

tion of the logarithm of the L-CV can be approximated by
t=Ip/lh, (7)

wherel; is the sample mean aitglis a measure of the disper- 109(t) — %'09 (1+ ?g”) +
sion around the mean value. The variance of the L-moment

ratioz can be related to the variance structure of sample L-
moments given in Eq6) using a Taylor-series-based approx- +
imation to the variance of the ratio of two random variables
(see e.g.Kendall and Stuartl961):

log <1+ Va:;”) N@©,1), (13)

which follows from the definition of mean and variance of a

log-normally distributed random variable. Analogously, as-
(8) suming that the same relationships hold for the log-Student t
distribution, which is a reasonable approximation due to the
similarity of the two distributions,

= = — 2
varn) = vargll) varglz) B 2cov(ll,lz) [l_z } .
! 15 l1lo

1 h

The functions to calculatel], (6) and @) are provided in the -
R packagensRFA (Viglione, 2010. log(r) — %Iog (1+ vatrz(t)>

2.2 Candidate distributions for the sample L-CV

. . . . var(t
According toHosking(1990, the L-moment ratio estimators + |log <l+ 2( )> Ty-1. (14)
are asymptotically normally distributed and have small bias !

and variance, specially if compared with the classical coeffi-thg og-Student's t distribution is a generalization of the log-

cients of variation, skewness and kurtosiegking and Wal- - ,ormg distribution that has heavier tails but approaches log-

lis, 1997). Keeping the hypothesis of normality, formulated normality as the sample lengthincreases.

in the asymptotic theory, the first candidate distribution for | the following we present the method used to verify if

the sample L-CV considered here is these approximations provide valid estimators of the confi-
— dence intervals for the L-CV for samples of lengthnd sev-

t++/var(t)-N(0,1), (9) eral underlying parent distributions. It is important to notice
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that we do not check if these distributions fit well the sam-

[ce)
pling distribution ofz, but if they provide a good estimate of ° S
the range in whichr (the population L-CV) is included at
a given level of probability. For instance, dfis biased, its © .
“real” sampling distribution is not suitable to derive confi- S
dence intervals for the population L-CV. IRER D
I . C
3 Validity of the confidence interval estimators » 8
Monte-Carlo simulations are used to verify if the candidate N A
distributions provide valid confidence interval estimators for . .
the population L-CV. Here a confidence interval estimator ~~~~~ a
is said to be valid if the(1 —«) - 100% confidence limits o |/ / “oob
= ! I I I I T

obtained for different samples encompasses the true L-CV
value in(1—«)-100% of the times; we want the estimator
to be valid for everyx € (0,1). In other words, a confidence
interval estimator is valid if it provides unbiased confidence Fig. 1. L-CV-L-CA diagram. Lines are(a) numerical constraint
limits. Given a parent distribution whose characteristics (andgiven by Hosking and Walli(1997); (b) bisector band identified
real L-CV r) are known,N =10 000 samples of lengthare  5ingvogel and Wilson(199 samples (se¥iglione et al, 2007).
randomly extracted from it. For eaMthem, the estimatespoints A, B, C and D have L-C\¢=0.2, 0.3, 0.4, 0.5 and L-CA
of the sample L-CVf and its variancear(s) are calculated as  73=0.1, 0.2, 0.3, 0.4, respectively.
shown in Sect2. By applying the approximations of Eq8~
14), we obtainN estimates of the distribution offor each
model. The candidate distributid? of ¢ can be consistently ~Of the distributions. Thev estimated variances are then too
used to estimate the confidence intervalsffifithe probabil- ~ Small. In the opposite case, when the curve has an S shape
ity of non-exceedance (z) is uniformly distributed between ~and crosses the bisector in the middle of the graph, the cho-
0 and 1 (which is a consequence of the fact that) is the ~ S€n variances are too high becausefe) points are con-
probability integral transform of; see e.g.Kottegoda and ~ centrated in the vicinity of the middle valueS0 When the
RossQ 1997 Sect. 8.2.1). Therefore we test the uniformity Curves are always over or under the bisector, then the scale
of P(r) through goodness-of-fit methods. parameter of the distribution (which relatesrjohas been

Many goodness-of-fit tests for the uniform distribution ex- overestimated or underestimated, respectively. In the first
ist (e.g.,D’Agostino and Stephend986. As in Laio and  case the reat value falls, more frequently than expected,
Tamea(2007) we adopt here a less formal but more reveal- ©n the low tail of the distributions, then the estimateare
ing graphical method, based on a probability plot represen©0 high, and viceversa.
tation. Given, for one candidate distributionzothe sample ~_ In addition to the graphical method, we use the Anderson-
Pi(7), P2(1), P3(7), ..., Py (7) resulting from thev Monte- ~ Darling statistic in order to synthetically quantify the discrep-
Carlo simulations, the probability plot represents #iér) ancy between the cumulative distribution function (CDF) of
values versus their empirical cumulative distribution func- £1(), P2(2), P3(), ..., Px(r) and the uniform distribution
tion, R;/N. The shape of the resulting curve reveals if the U between 0 and 1. The Anderson-Darling statistic is a
sample of probabilities is approximately uniform, in which measure of the mean squared difference between the em-
case the ®;(7), R;/N) points are close to the bisector of the Pirical and hypothetical CDF, in practice estimated as (e.g.,
diagram. D’Agostino and Stephend 986 Laio, 2004:

The graphical method allows one to investigate which are N
the reasons for a lack of validity of a candidate distribution g2 — —y — EZ[(Zi —DInU[P; (D)) +
as a tool to estimate the confidence interval forin par- N
ti/cul\ar evidencing the effects of bias of estimation fand +@2N+1-2)In(1-U[P;i (7)])]. (15)
var(z). In fact, the shape of the curves in the probability plot
is suggestive of the encountered problem, since the steepne
of the curves is larger where more(t) points concentrate
(see Fig. 2 inLaio and Tamea2007). If the curve is over
the bisector in the left part of the graph and under it in the
right part, theP;(r) points are concentrated in the vicinity
of the end points 0 and 1, which corresponds to haverthe
value that falls, more frequently than expected, on the tails

T3

g’ge best fit corresponds to the minimum valueAst The
Anderson-Darling test statistic measures the validity of the
estimator for all confidence levels en blo¢a(e (0,1)),
which is the property we are looking for.
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Fig. 2. Probability plot representation @f(r) when using the log-Student t distribution of EG4) to estimate the confidence intervals of
7. Different situations are considereth) GEV parent distributions with different asymmetry (point A, B, C, D of Fiy. (b) P3 parent
distributions with different asymmetry¢) GEV parent distribution and samples of different lengtlid) P3 parent distribution and samples
of different lengthw; (e) different parent distributions with low asymmetry (point A); different parent distributions with high asymmetry
(point D).

4 Results 1 without loss of generality) that is a reasonable space where
the majority of hydrological (extreme value) samples falls
To check the robustness of our approximations, many dif-(Vogel and Wilson1996 Viglione et al, 2007).
ferent situations are considered: we vary the length Some of the uniform probability plots df () are shown
of the samples, the underlying parent distribution and itsin Fig. 2, where the log-Student t distribution of EdL4j
parameters. The considered parent distributions are: GEVs the candidate distribution far In panel (a) samples are
(Generalized Extreme Value), P3 (Pearson type lll), LN extracted from a GEV distribution with increasing asymme-
(Log-Normal with 3 parameters), GP (Generalized Pareto)try (from point A to point D of Fig.1). It is evident that the
and GL (Generalized Logistic). As Miglione et al.(2007) log-Student t approximation works better for moderate asym-
we choose the parameters of these distributions by referenametry of the parent distribution (point A) than in the highly
to the L-CV~-L-CA space (coefficients of L-variation and L- asymmetric cases (points C and D). In all cases the curves
skewness) represented in Fig(the mean is taken equal to lie below the bisector, meaning that the estinraitetoo low
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Fig. 3. Biases oft ands; = \/\Er(\t): (@) n-(r —1) vs. the sample L-CAg; (b) n- (o —5;)/5; vs. the sample L-CAg. Every point rises
from 1000 simulated samples and corresponds to a grey point il.Fighe proposed corrections of Eq&6) and (L7) are indicated with
continuous black lines.

compared ta, specially in the right part of the graph, which per right corner of the uniformity plots), meaning that, par-

implies that the upper tail of the distribution is too narrow. ticularly for the GEV and GL parent distributions and for

In panel (b) the parent distribution is Pearson Type Il (P3).large asymmetries (point D), the estimatomndvar() un-

In this case the log-Student t approximation fits much bettergerestimate the true values. We consider this problem in the

than in panel (a). following subsection, where a distribution-free correction of
Similar conclusions can be derived from panels (c) and (d) these biases is proposed.

that present the sensitivity of the log-Student t approximation

to the length: of the samples (the parent distributions have, ] .

in this case, the same asymmetry, correspondent to point -1 Bias correction

of Fig. 1). As expected, for hig the goodness-of-fit of

the candidate distribution increases. For very short sampleblo matter what type of distribution is chosen, in many cases

(n =10), in some few cases (1% of the cases for GEV andthe sampling distribution of the L-CV does not provide a

3% for P3), the estimatear() of Elamir and Seheul2004 valid estimator of the confidence intervals for the population

is negative. In those cases, the Monte-Carlo simulations havk-CV. This could be expected since it is known that the sam-

been discarded when producing the curves in Bigand d.  Ple L-CV is slightly biased for high asymmetry of the parent

Panels (e) and (f) show the uniform probability plots for distribution Hosking and Wallis 1997, page 28) and since

different parent distributions in points A (low asymmetry) Var(s) is obtained from the Taylor-series-based approxima-
and D (high asymmetry). The behavior of the curves, spetion of Eq. ). To provide a valid estimator, these biases
cially in D, visibly depends on the underlying parent distri- should be corrected.
bution. Considering high asymmetries (point D), the approx- simple bias correction for and s, = /m can
imation of the sample L-CV distribution with momentand  pe optained from Monte-Carlo simulations. ~ Samples
var(r) provides particularly bad confidence intervalsfdor are generated for each combination ofand =3 (grey
the GEV and GL distributions. points in Fig. 1), for each parent distribution (GEV, P3,
Similar plots (not shown here) have been produced for theLN, GP and GL) and for different sample lengths =
other candidate distributions. The Normal and Student t dis-10,15,20,25,30,40,50,70,100). = Given one simulation
tributions perform slightly better in the central part of the (N=1000 samples, in this case), the bias &f estimated as
graph for small asymmetry (point A) and for the P3 parent7 — z, wherer is the arithmetic mean ove¥ values oft and
distribution. Anyway the underestimation of the width of 7 is the known L-CV of the parent distribution. In panel (a)
the upper tail is more marked than in the case of the asymef Fig. 3, we show how the bias of opportunely scaled with
metric candidate distributions (gamma, log-Normal and log-» (see e.g.Kendall and Stuartl961, Sect. 17.10), increases
Student). For all candidate distributions the shape of thefor increasing asymmetry of the samplesié the mean of
curves are similar (below the bisector, specially for the up-the N sample L-skewness). Analogous results are obtained

Hydrol. Earth Syst. Sci., 14, 2229242 2010 www.hydrol-earth-syst-sci.net/14/2229/2010/
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Fig. 4. Probability plot representation @f(r) when assuming the log-Student t distribution of Etf)(and applying the corrections of
Egs. (L6) and (L7). The same casda—f) of Fig. 2 are considered here.

for the standard deviation of the sample L-CV (panel (b) of Using these Monte Carlo results in a pragmatic way, we
Fig. 3). The bias ofs; is evaluated as; — o;, where we  propose the following simple corrections for the sample L-

assumer, = \/(Z{"zl(t,- —7)2)/N as the true standard devia- CV @nd its standard deviation:
tions of the sample L-CV. © _ { t4+3-125%/n ,if13>0

In both cases, the bias depends on the type of distribution: | ¢ ,if r3<0,
the P3 distribution shows the lowest bias and the GL distri-
bution the largest, confirming the behavior in F&y.Given
one distribution, the_ scatter of the e_stir_n_ated biases fo_r afixegt(c) —s - (1435 tg/n)’ (17)
t3 is mostly determined by the variability of the considered
L-CV (grey points on vertical lines in Fid) while the influ-  that are obtained with a non-linear regression approach (non
ence of the variability of sample lengths is highly reduced bylinear least-squares). The curves corresponding to these cor-
the aforementioned scaling with Despite this effect of the rections are represented in Fjas solid black lines. These
variance of the parent distribution, we deem that the biasegorrections intentionally do not take into account the type of
of r ands; are substantially functions efandrs, along with  distribution because this is unknown in operational applica-
the distribution type. tions. It is important to stress again that the objective of this

(16)

an
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Table 1. Anderson-Darling statistic of discrepancy between the CDF of 10 000 value&dfand the uniform distributio®’. The columns
show the value of the statistic for the five candidate distributions with parameters corrected bi/gGegad((L7). The best fit is indicated
by the bold font. Different situations are consideré):GEV parent distributions with different asymmetry (point A, B, C, D of Hig.(b)
P3 parent distributions with different asymmet(g) GEV parent distribution and samples of different lengti{d) P3 parent distribution
and samples of different length (e) different parent distributions with low asymmetry (point A&); different parent distributions with high
asymmetry (point D).

\normal Studentt gamma log-normal log-Studentt

(@) Al 332 23.6 21.9 23.2 16.6
GEV B| 538 423 437 46.6 39.6
n=30 c| 916 75.4 79.0 83.1 73.4
D| 2262 191.4  209.2 212.9 189.8
(b) Al 213 16.0 14.0 16.7 13.3
P3 B| 311 22.0 15.9 14.0 7.9
n=30 cl| 279 21.4 10.6 5.9 2.5
D| 506 41.2 29.3 16.3 10.4
©) n=100| 66.5 62.1 60.9 60.3 56.7
GEV  n=50| 951 84.0 85.4 85.5 775
c n=30| 91.6 75.4 79.0 83.1 73.4

n=10| 2968 1547 2265 243.5 171.1
(d) n=100 7.3 6.5 3.2 2.3 1.7
P3 n=50| 195 16.1 8.3 45 2.2
c n=30| 279 21.4 10.6 5.9 2.5
n=10| 134.9 52.0 95.2 98.3 47.9
() GEV | 332 23.6 21.9 23.2 16.6
n=30 P3| 213 16.0 14.0 16.7 13.3
A LN 34.0 26.4 26.9 30.2 25.2
GP| 455 39.2 402 39.2 31.4
GL | 1404 1154  122.2 124.2 107.8
® GEV | 226.2 191.4  209.2 212.9 189.8
n=30 P3| 506 41.2 29.3 16.3 10.4
D LN 85.5 67.4 70.4 70.4 59.4
GP| 463 33.4 28.6 23.3 15.7

GL | 3282 2839 309.9 315.9 286.0

study is to derive an interval estimatorofvhich is indepen- 4.2 The bootstrap approach
dent of the underlying (and unknown) parent distribution of
the original variable, so to provide an operational tool. The parametric strategy is not the only possibility to con-
As can be seen in Fig, which is analogous to Fi@ but struct confidence intervals. As an alternative, non-parametric
considers the adjustments of Egs6)and (L7), the correc-  bootstrap procedures can be used to make inference on
tions generally improve the results of the uniformity tests for without making assumption on its distribution. The boot-
highly asymmetric distributions. Some problems remain forstrap is a computer-based method for assigning measures of
very short samples:(= 10) and some parent distributions, accuracy to statistical estimates. It was first introduced in the
but the fit generally improves. Similar results are obtainedcontext of non parametric analysis of independent and iden-
for the other candidate distributions. A synthetic compari- tically distributed samplessfron, 1979, but much research
son of these results is shown in Talllewhere the values into its use in more complicated settings followed (see e.g.,
of the Anderson-Darling statistic is shown for the cases ofDavison and Hinkley1997 as a reference). The basic idea
Fig. 4. In most of the cases, th&? statistic is lower when behind the non-parametric bootstrap is to replicate the orig-
the log-Student t distribution is assumed. Therefore, amongnal sample many times, sampling it with replacement, and
the considered candidates, we select the log-Student t as tHe analyse the behavior of the statistic of interest calculated
best approximated distribution to derive confidence intervalson these replicates. Many aspects of the behavior of the se-
for the population L-CV. lected statistic can be measured with bootstrap, for example
its confidence intervals.
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Fig. 5. Probability plot representation @f(z) for different situations if the Bgdistribution is used (EdL8). The same caséa—) of Fig. 2
are considered here.

One of the most recommended bootstrap techniques tthe acceleratio can be computed as indicatedifron and

evaluate confidence intervals is the so called bias-correctedibshirani(1993 page 186).

and accelerated (B} bootstrap method. The algorithm (see  The uniformity plot introduced in Sec3.has been applied

e.g.,Efron and Tibshirani1993 for a formal definition) is  to check if the calculated Bgdistribution of Eq. 18) pro-

available in many software packages. Given the definitionvides a valid confidence interval estimator far As shown

of BCy intervals inEfron and Tibshiran{1993 pages 184— in Fig. 5, the bias of the central part of the curves indicates

188), if P*(z) is the probability of non exceedance obn a significant overestimation af, i.e., the bias correction of

the bootstrap distribution of the corrected probability given the BGg method is too strong. Moreover some of the curves,

by the BG method is specially those correspondent to high asymmetry and small
sample length, are “reverse S” shaped, meaning that the vari-

}, (18) ance of the distribution is underestimated. The comparison
between Figss and4 confirms the better performance of the

where ®[.] is the standard normal cumulative distribution parametric method proposed in this paper.

function, ®~1[.] is the percentile point on a standard nor-

mal distribution and the values of the bias correctigrand

a-25+(=a- 7 P*(1)]=2) - 2o+ P P*(7)]
a-z0—a-o-1[P*(r)]-1

P(r)=9 |:
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Table 2. Coverage of the 90% confidence intervalsfarsing the following candidate distributions: corrected parametric model with normal,
Student t, gamma, log-normal and log-Student t distribution, bootstrapnBsciel with 2000 replicatesPgs and Pgg are the percentage of
trials (that are 10 000) that the indicated interval missed the true watuethe left or right side of the confidence interval. The same cases
(a—f) of Tablel are considered here.

normal Student t gamma log-normal | log-Studentt| bootstrap BG
Pos  Pgs | Pos  Pos | Pos  Pos | Pos Pos | Pos  Pos | Pos  Pos

(a) Al 42 80|37 75|49 73|52 70| 48 6.5 8.6 5.2
GEV B| 35 86|31 80|42 78|45 75| 4.0 6.9 8.8 5.8
n=30 c|32 93|28 88|39 86| 40 83| 3.6 7.7 8.2 7.9

D| 31 119 27 112 39 110| 3.9 106 34 9.9 7.7 9.4
(b) A| 40 72|35 66|48 64|51 6.1]| 46 5.5 8.5 4.9
P3 B|l 44 79|39 72|50 71|53 67|47 6.2 9.5 5.0
n=30 c|l47 74|41 68|53 67|53 63| 438 5.8 9.8 5.8

D|58 71|51 66|64 65|62 62| 56 56 | 105 7.1
(c) n=100| 3.7 89| 35 86| 42 83| 44 81| 42 7.9 7.0 6.8
GEV n=50| 32 98|29 95|38 92|40 88| 37 8.5 7.5 6.7
C n=30| 32 93|28 88|39 86| 40 83| 36 7.7 8.2 7.9

n=10| 34 124| 24 105| 41 112| 40 106| 3.2 85 | 11.8 12.2
(d) n=100| 45 62| 42 60| 47 58| 48 57| 47 5.5 7.7 4.8

P3 n=50| 46 67| 43 64|53 62|53 59| 50 5.6 8.6 5.0
C n=30| 47 74| 41 68| 53 67|53 63| 438 5.8 9.8 5.8

n=10| 56 10.1| 46 84| 65 90| 6.1 85| 50 6.6 | 13.2 8.7
(e) GEV | 42 80|37 75|49 73|52 70| 48 6.5 8.6 5.2
n=30 P3| 40 72|35 66|48 64|51 61| 46 5.5 8.5 4.9
A LN | 39 76|35 71|45 70| 48 6.6 | 44 6.1 8.5 55

GP| 70 47|64 42|76 41|80 40| 7.2 35 | 101 3.2
GL | 28 105 25 99| 37 97| 40 93| 36 8.7 7.9 6.6

® GEV | 31 119| 27 11.2| 39 110| 39 106| 3.4 9.9 7.7 9.4
n=30 P3| 58 71|51 66|64 65|62 62| 56 56 | 105 7.1
D LN | 36 97|31 92|42 91| 41 86| 3.7 7.9 8.3 8.9

GP| 43 85|38 80|49 79|48 75| 43 7.0 9.2 7.7
GL | 3.0 130| 27 123| 3.7 121| 3.7 115 33 106 | 7.1 10.2

4.3 90% confidence intervals Pos and Pg5 equal 5%). Among all the considered situations,

As was shown in Tablg, in most of the cases the log-Student T2ble 2 shows the cases considered already in Tabéad

t distribution gives the best approximation to derive confi- F19S-2, 4 ands. _ _

dence intervals of the L-CV in general, considering all con- When using the parametric method, independently of the
fidence levels. Since the Anderson-Darling statistic giveschosen candidate distributiofgs is often slightly lower than
more weight to the tails of the distribution than to the cen- 9% andPos is also higher than 5%. This means that the con-
tral part of it, the log-Student t distribution is expected to fidence intervals forr are a little too large for the left tail

be the best choice when calculating the confidence interval@d too narrow for the right tail. This problem is particu-
for the sample L-CV at high confidence levels. Here we larly evident for large asymmetries of the parent distribution

check the goodness of the 90% confidence intervalsfor @nd for small sample sizes, as was already evident in4ig.
using different candidate distributions in the corrected case e 10g-Student t approximation generally outperforms the
where the corrections of Eqsl8) and (7) are applied ta others, i.e., the confidence intervals are better centered (both
ands;, and using the Bgnon-parametric bootstrap. Tale ~ Fos @ndPos are close to the ideal value 5%). The gidter-
shows the percentage of trials (which are 10 000) in whichVals (2000 replicates have been used) have a different behav-
the true valuer was not comprised into the 90% confidence IOF Fos is always higher than 5% and in many cases higher
intervals on the left or right side. The target miscoveragetanPos, which is a consequence of the overestimatiom of

is 5% on each sidePos and Pgs are the probabilities that shown in Fig.5. Despite its greater computational demand,

7 is lower than the @5 or greater than the.@ quantiles the bootstrap performs in most of the cases worse than the

of the corrected candidate distributions (we expect that botrForrected parametric method.
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Fig. 6 extends the results of Tab&to other points of the
L-CV-L-CA plain, when the log-Student t distribution is as-
sumed. The contour lines give the coverage frequency of the
90% confidence intervals when considering 10 000 samples
of length 30 for each of the grey points in Fig.The cover-
age frequency in Fig is the average obtained by extracting
samples from all the five parent distributions considered in
this work (GEV, P3, LN, GP, GL). In the upper-right part
of the figure the results are not optimal (i.e., the values are
below 90%), due to the biases of the sample L-CV and its
variance shown in Fig3, which still affect the results after
correctings ands, with Eqgs. (L6) and (7). However, not
many sample values encountered in hydrology lie in that re-
gion of the L-CV-L-CA space. For instance, if one considers
the UK flood peak data available with the Flood Estimation
Handbook Robson and Reed 999, only 60 out of 696 se-
ries have sample L-CV and L-CA values lying in an area of
the diagram where the coverage is lower than 85% and onlyg. 6. L-CV-L-CA diagram analogous to Fig. The contour lines
2 in an area where the coverage is lower than 80%. give the average coverage frequency of the 90% confidence inter-

vals when considering 10 000 samples of length 30, extracted from

the five considered parent distributions (GEV, P3, LN, GP and GL),
5 An application for each of the grey points in Fig- The log-Student t distribution

of Eq. (L4) with corrected parameters (Ed$ and17) provides the
In order to demonstrate that the possibility to estimate con-estimator for the confidence intervals for
fidence intervals for the L-CV is relevant for hydrological
applications, here we show, in a simplified way, how these
confidence intervals could be used to analyse and compar@ogeneous the percentafg of sites for which the modeled
the outcome of different regionalization methods. Following ¥ is below the confidence intervals fershould be equal to
Hosking and Wallig1997, cluster analysis can be used to 5%, as well asPgs, i.e., the percentage of sites for which
define homogeneous disjoint regions whose samples shouféhe modeled” is above the confidence intervals for the pop-
have the same L-CV. On the other hand one can use the rgilation L-CV. In panel (a)Pos = 17% andPgs = 26%, i.e.,
gion of influence (ROI) approactB(rn, 1990, or allow for ~ 100%— (Pos+ Pgs) = 57%< 90%, which means that the re-
the continuous variability of L-CVRobinson and Sivapalan gion is heterogeneous.
1997, by estimating it with linear or non-linear regressions, If one subdivides the sites in 3 regions using a clustering
or use geostatistical approachddefz and Bbsch| 2005 method, as in panel (b), the values Rjs and Pgs decrease
Skgien et al.2006. All these different approaches can be (Pos= 14% andPgs = 24%). Still the regional model does
compared using confidence intervals in an intuitive way. not explain properly the heterogeneity of the data, because

Here we use the UK data available with the Flood Esti- Of its structure and/or because the chosen parameter (SAAR)
mation HandbookRobson and Reed999. For every re- does not explain completely the variability of the L-CV. Any-
gionalization technique, morphoclimatic variables should beway the model is more appropriate than the previous one, i.e.,
used to pool the sites. For simplicity, we suppose that thet can explain some more spatial heterogeneity of the data.
mean annual rainfall alone (indicated as SAAR) may ex-With a region of influence approach (panel c), one obtains
plain the difference of the at-site flood frequency distribu- Pos=14% andPgs = 21%. In this case, for simplicity, a sim-
tions, and that this difference is completely reflected by theplified ROl approach has been used, that assigns to each site
coefficient of L-variation. Fig7 shows in a simple way how the average of the L-CV of the most similar 20 sites in terms
four methods of estimation of the regional L-CV can be com-0f SAAR. Finally, in panel (d) a linear regression between
pared. Mean annual precipitation is plotted against the samand SAAR is shown. The resulPgs = 13% andPgs = 23%)
ple L-CV. The modeled regional L-CV is plotted as a black is comparable to what we got with the three regions and ROI
line. Gray circles have 90% confidence intervals that con-clustering methods.
tain the modeled regional L-CV while black crosses do not It is important to note that the high discordance between
— we use the log-Student t distribution with parameters cor-Pgs and Pgs and the theoretical value of 5% is not only due to
rected using Eqs16) and (L7). In panel (a) only one region the approximation of the confidence intervals, for which we
is considered with a unique regional L-CV, here caltéd  would expect uncertainties of the same order of those in Ta-
given by the arithmetic mean of all Assuming that the con- ble 2 and Fig.6 (seemingly, the fact thalys > Pgs is partly
fidence intervals are correctly estimated, if the region is ho-due to the underestimation of the upper confidence limit for
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Fig. 7. Sample L-CVt versus mean annual precipitation SAAR in UK (data from the Flood Estimation HandRobkpn and Reed 999.
The black continuous line is the modeled regional valfiggrey circles é) are sites for which the modele is inside the 90% confidence
interval for r, when assuming the log-Student t sampling distribution of E4). énd applying the corrections of Eq4.6] and (L7); black
crosses (+) are sites for which it is outside of it. Four models are considgredne unique region wher® =7; (b) three regions with
different SAAR;(c) regions obtained with a simplified ROl approagth linear regression model.

highly asymmetric parent distributions). This discordance6 Conclusions
is mainly due to the fact that the data are heterogeneous,
that SAAR is not sufficient to explain the regional variabil- One of the most important concerns of Flood Frequency
ity of L-CV, that the regional methods are approximated, etc.Analysis is the underlying distribution (or the lack of knowl-
Lower values ofPgs and Pgs would be obtained by using edge on its form, to be more precise) and the desire to lose
more catchment descriptors (not only SAAR), more sophis-the “distribution fetters” among hydrologists is really strong.
ticated technigues or combining different sources of hydro-Anyway the distribution-dependent methodologies dominate
logical information Merz and Bbsch| 2009. In the extreme  in practical hydrology, where distribution-free methods are
case, considering models with a number of parameters thegeldom used. Recentllamir and Seheul(2004 have
approach the number of stations, one could red®geand provided a method to estimate the variance of sample L-
Pgs also below the nominal value of 5%, which would clearly moments without formulating assumptions on their parent
indicate overparametrisation. distributions. In this study, we use this result to provide esti-
The simple examples provided here intend to illustrate themates of the confidence intervals for the L-CV. In summary,
method. They show that L-CV confidence intervals allow the key steps of the work are:
one to analyse in a consistent way very different approaches ) ]
such as those based on site grouping and those that allow for — in order to provide the basis for the assessment of the
the continuous variability of L-CV, for which standard tech- method, a Monte-Carlo procedure is used to draw many
niques as homogeneity tests would be meaningless. Also, Samples from distributions commonly used in hydrol-
they provide a way to identify those sites that are “problem- ogy (GEV, P3, LN, GP, GL);
atic” for the validity of the assumptions made (in the example
looking at the position of crosses and circles) and that should
be further checked.

— candidate sampling distributions of the L-CV are se-
lected among five distribution types (normal, Stu-
dent t, gamma, log-normal and log-Student t) whose
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parameters are estimated from the sample L-CVD'Agostino, R. and Stephens, M.: Goodness-of-fit techniques,
and its variance, this latter given by the distribution-free  Statistics: textBooks and monographs, 68, Department of Statis-
method ofElamir and Seheul2004); tics, Southern Methodist University, Dallas, Texas, 1986.
Dalrymple, T.: Flood frequency analyses, Water Supply Paper,
— the validity of the confidence intervals for the L-CV pro-  1543-A, US Geological Survey, Reston, Va., 1960.
vided by these distributions is checked through unifor- Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their
mity plots and the Anderson-Darling test statistic; application, Cambridge University Press, Cambridge, 1997.
Efron, B.: Bootstrap methods: another look at the jackknife, Ann.
— no matter which candidate distribution is used, the ex- stat., 7, 1-26, 1979.
periments show that the validity of the confidence in- Efron, B. and Tibshirani, R.: An Introduction to the Bootstrap,
tervals is affected by biases of the sample L-CV and its Chapman & Hall, New York, 1993.
variance, particularly when the parent distribution of the Elamir, E. A. H. and Seheult, A. H.: Exact variance structure of

samples is highly skewed and the samples are short; sample I-moments, J. Stat. Plan. Inf., 124, 337-359, 2004.
Fill, H. and Stedinger, J. R.: Using regional regression within index

— therefore distribution-free corrections for these biases flood procedures and an empirical bayesian estimator, J. Hydrol.,
are proposed, based on sample length and asymmetry; 210(1-4), 128-145, 1998.

. . i . Greenwood, J., Landwehr, J., Matalas, N., and Wallis, J.: Probabil-
— the validity of the new estimators of the confidence in- ity weighted moments: Definition and relation to parameters of

tervals for the L-CV, obtained using the corrected sam-  several distributions expressible in inverse form, Water Resour.
ple L-CV and variance, is checked again and the log- Res., 15, 1049-1054, 1979.

Student t distribution proves to be the best distribution Hosking, J.: The theory of probability weighted moments, Tech.
type in most of the cases. Rep. RC12210, IBM Research, Yorktown Heights, NY, 1986.

- . h lidi h id Hosking, J.: L-moments: analysis and estimation of distributions
Even if in some circumstances the validity of the confidence using linear combinations of order statistics, J. Royal Statistical

interval estimator still depends on the underlying parent dis- goc. 52 105-124, 1990.

tribution, this paper shows that the proposed approximatiorHosking, J. and Wallis, J.: Some statistics useful in regional fre-
is in most of the cases reasonably good (and better than the quency analysis, Water Resour. Res., 29(2), 271-281, 1993.
bias-corrected and accelerated non-parametric bootstrap) artbsking, J. and Wallis, J.: Regional Frequency Analysis: An Ap-
can be recommended for practical hydrological applications. proach Based on L-Moments, Cambridge University Press, 1997.
For example, the confidence intervals for the L-CV have beeriendall, M. and Stuart, A.: The Advanced Theory of Statistics,
used here to compare different regional models in terms of Charles Griffin & Company Limited, London, 1961.

their capability to explain the spatial heterogeneity of flood K°ttégoda, N. T. and Rosso, R.: Statistics, Probability, and Relia-
peak data in UK. bility for Civil and Environmental Engineers, international ed.,

735 pp., McGraw-Hill Companies, 1997.
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