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Abstract. The coefficient of L-variation (L-CV) is com-
monly used in statistical hydrology, in particular in regional
frequency analysis, as a measure of steepness for the fre-
quency curve of the hydrological variable of interest. As op-
posed to the point estimation of the L-CV, in this work we
are interested in the estimation of the interval of values (con-
fidence interval) in which the L-CV is included at a given
level of probability (confidence level). Several candidate dis-
tributions are compared in terms of their suitability to provide
valid estimators of confidence intervals for the population L-
CV. Monte-Carlo simulations of synthetic samples from dis-
tributions frequently used in hydrology are used as a basis for
the comparison. The best estimator proves to be provided by
the log-Student t distribution whose parameters are estimated
without any assumption on the underlying parent distribu-
tion of the hydrological variable of interest. This estimator is
shown to also outperform the non parametric bias-corrected
and accelerated bootstrap method. An illustrative example of
how this result can be used in hydrology is presented, namely
in the comparison of methods for regional flood frequency
analysis. In particular, it is shown that the confidence inter-
vals for the L-CV can be used to assess the amount of spatial
heterogeneity of flood data not explained by regionalization
models.

1 Introduction

It is well known that the sample coefficient of variation (CV),
i.e., the ratio of standard deviation to the mean of a series
of data, exhibits substantial bias and variance when samples
are small or belong to highly skewed populations (Vogel and
Fennessey, 1993). This is the problem that is normally en-
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countered in hydrology when dealing with floods or extreme
rainfall events. The coefficient of L-variation (L-CV) is an-
other – more efficient in many cases – measure of data dis-
persion introduced byHosking(1990). It has hence replaced
the conventional CV in various applications of statistical hy-
drology. In particular, the use of the L-CV as a measure of
steepness of the flood frequency curve has become a stan-
dard in regional flood frequency analysis (see e.g.,Pearson,
1991; Hosking and Wallis, 1993; Stedinger and Lu, 1995;
Fill and Stedinger, 1998; Hosking and Wallis, 1997; Rob-
son and Reed, 1999; Castellarin et al., 2001). Many sta-
tistical procedures of regionalization of floods are based on
the hypothesis that the L-CV is informative enough to repre-
sent the differences among the flood frequency distributions
at different sites. For example, the sample L-CV is used to
designate “homogeneous regions”, where it is assumed that
the frequency distribution of flood peaks for different sites is
the same, except for a site-specific scale factor (Dalrymple,
1960, Index-Flood method). Other studies state that the slope
of the flood frequency curves (or, equivalently, their L-CV)
should be taken as the statistical descriptor to be related to
catchment attributes such as area or mean elevation (see e.g.,
Robinson and Sivapalan, 1997; Allamano et al., 2009).

Instead of estimating the L-CV by a single value, in this
work we are interested to provide an interval estimation of
the L-CV, i.e., to infer the range (the confidence interval) in
which the population L-CV is included at a given level of
probability (the confidence level). The most immediate ad-
vantage of using confidence intervals, as opposed to point
estimates, is that they clearly indicate the reliability of the
estimate, given by the confidence level. But the advantages
are more than that. For example, in regional frequency anal-
ysis, L-CV confidence intervals could be used to compare on
a single basis very different approaches such as those based
on site grouping and those that allow for the continuous vari-
ability of L-CV. In the first case it is assumed that the popu-
lation L-CV is constant along a homogeneous region (group
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of sites). In the second case it is assumed that a model to
describe the variability of the population L-CV applies to the
whole analysed region, for example based upon a linear or
non-linear functional relationship between the L-CV and cli-
matic/physiographic characteristics. These two assumptions
can be compared by counting how often the at-site L-CV
confidence intervals actually include the regionally estimated
L-CV. The spatial variability of the L-CV is essentially due
to sample variability and spatial heterogeneity. If the confi-
dence intervals include the regional model in less cases than
specified by the confidence level, this is because of unex-
plained spatial heterogeneity. Different models can therefore
be compared in terms of their ability to explain the spatial
heterogeneity of the data. An illustrative example is provided
at the end of the paper.

The more natural way to estimate confidence intervals for
a parameter is by deriving them from its sampling distribu-
tion (e.g.,Kottegoda and Rosso, 1997, Sect. 5.3). In asymp-
totic theory, approximate estimates of the sampling distri-
bution of the L-CV are derived for large samples and for
specific underlying parent distributions (see e.g.,Hosking,
1986, 1990). In the hydrological literature some attempts to
extend the asymptotic results to shorter samples exist. For
example,Chowdhury et al.(1991) assume that the sample
L-CV is normally distributed and use a first-order estimate
of its asymptotic variance corrected, for small samples, with
coefficients obtained through a Monte-Carlo procedure. In
their analysis a Generalized Extreme Value parent distribu-
tion is assumed.Sankarasubramanian and Srinivasan(1999)
consider, in a similar work, the Generalized Normal, Log-
Normal and Pearson type III distributions.

In this work we estimate the sampling distribution of the
L-CV for short samples and independently of the underly-
ing parent distribution. To meet this aim, we exploit the re-
sults of a distribution-free approach, recently proposed by
the statistical community, to derive estimators for variances
and covariances of sample L-moments (Elamir and Seheult,
2004). The estimators of the sample L-CV and its variance
are used to fit several two-parameters candidate sampling
distributions (Sect.2). Through Monte-Carlo simulations,
we check if these sampling distributions are suitable to derive
confidence intervals for the L-CV, e.g., if the 90% confidence
limits (i.e., the end points of a confidence interval) obtained
for different samples encompass the true population parame-
ter 90% of the times. This property is referred as “validity”
of the estimator of the confidence intervals (in our case the
estimator is provided by the candidate sample distribution of
the L-CV). We use a graphical goodness-of-fit method that
is able to show for which confidence levels the estimator can
be considered valid and to evidence the reasons for the lack
of validity of it, in particular the effects of bias of estimation
of the sample L-CV and its variance. We also use a synthetic
goodness-of-fit measure, the Anderson-Darling test statistic,
which checks the validity of the estimator for all confidence
levels en bloc (Sect.3). The candidate distributions are com-

pared for a wide range of sample lengths and underlying par-
ent distributions, whose type is selected among those more
frequently used in hydrological applications: the Generalized
Extreme Value, the Pearson type III, the Log-Normal with 3
parameters, the Generalized Pareto and the Generalized Lo-
gistic distributions. The results are shown in Sect.4 where:
(i) a correction for the bias of estimation of the sample L-CV
and its variance is proposed (Sect.4.1); (ii) the method is
compared to the non-parametric bias-corrected and acceler-
ated BCa bootstrap, an appealing computer-based alternative
method (Sect.4.2); and (iii) the goodness of estimation of the
90% confidence intervals for the L-CV is analysed in more
detail.

The outcome of this study for hydrological applications
is shown through an example (Sect.5) in which differ-
ent regionalization techniques (the index-flood technique
with “fixed regions”, the “region of influence” approach
and a “region-free” simple regression method) are compared
against a given data-set of flood peaks. Their performance is
assessed by counting how often the L-CV confidence inter-
vals actually include the regionally estimated L-CV.

2 Sampling distribution of the L-CV

L-moments were introduced byHosking(1990) and are lin-
ear combinations of the Probability Weighted Moments de-
fined by Greenwood et al.(1979) (see alsoSillitto, 1969).
Sample Probability Weighted Moments, computed from the
order statisticsX1:n,X2:n,...Xn:n, are given by

bk = n−1
(

n−1

k

)−1 n∑
j=k+1

(
j −1

k

)
Xj :n, (1)

wheren is the sample length andk is the order of the proba-
bility weighted moment. Sample L-moments are defined as

lr =

r−1∑
k=0

p∗

r−1,kbk, (2)

where the coefficients

p∗

r,k = (−1)r−k

(
r

k

)(
r +k

k

)
(3)

are those of the “shifted Legendre polynomials” (seeHosk-
ing and Wallis, 1997). Since L-moment estimators are linear
functions of the sample values, they are virtually unbiased
and have relatively small sampling variance.

2.1 Variance of the sample L-CV

The asymptotic variances and covariances of the sample L-
momentsl1,l2,...,ln are derived byHosking (1990), who
also demonstrate that their distribution is asymptotically nor-
mal. Elamir and Seheult(2004) derive the exact variance
structure of sample L-moments in the non-asymptotic case
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without formulating assumptions on the underlying parent
distributions. Let’s call the variances and covariances of
the sample Probability Weighted Momentsθkk = var(bk) and
θkl = cov(bk,bl), respectively. Elamir and Seheult(2004)
demonstrate that a distribution-free unbiased estimator ofθkl

is

θ̂kl = bkbl −
1

n(k+l+2)

∑
1≤i<j≤n

[(i −1)(k)(j −k−2)(l) +

+(i −1)(l)(j − l−2)(k)
]Xi:nXj :n, (4)

wheren(r)
= n(n−1)...(n− r +1). Observing that Eq. (2)

can also be expressed asl = bCT , wherel = (l1,...,ln), b =

(b0,...,bn−1) andCT is the transponse of then×n lower tri-
angular matrix with entriesp∗

r−1,k given in Eq. (3), the vari-
ance matrix of the L-moments is given by

var(l) = C2CT (5)

where2 = var(b) is the variance matrix of the probability
weighted moments with elementsθkl . The matrix2̂, ob-
tained withθ̂kl given in Eq. (4), is then an unbiased estimator
of the variance matrix2. On these basis, it descends from
Eq. (5) that an unbiased estimator of var(l) is:

v̂ar(l) = C2̂CT . (6)

The sample L-CV, i.e., the coefficient of L-variation, is
defined by the ratio of the first two sample L-moments,

t = l2/l1 , (7)

wherel1 is the sample mean andl2 is a measure of the disper-
sion around the mean value. The variance of the L-moment
ratio t can be related to the variance structure of sample L-
moments given in Eq. (6) using a Taylor-series-based approx-
imation to the variance of the ratio of two random variables
(see e.g.,Kendall and Stuart, 1961):

v̂ar(t) ∼=

[
v̂ar(l1)

l21

+
v̂ar(l2)

l22

−2
̂cov(l1,l2)

l1l2

][
l2

l1

]2

. (8)

The functions to calculate (4), (6) and (8) are provided in the
R packagensRFA (Viglione, 2010).

2.2 Candidate distributions for the sample L-CV

According toHosking(1990), the L-moment ratio estimators
are asymptotically normally distributed and have small bias
and variance, specially if compared with the classical coeffi-
cients of variation, skewness and kurtosis (Hosking and Wal-
lis, 1997). Keeping the hypothesis of normality, formulated
in the asymptotic theory, the first candidate distribution for
the sample L-CV considered here is

t +

√
v̂ar(t) ·N(0,1), (9)

whereN(0,1) is the standard normal distribution. Because
for short samples the normal distribution could be too nar-
row, inspired by the definition of the distribution of the mean
of a sample when its real variance is unknown (see e.g.,Kot-
tegoda and Rosso, 1997), we also consider

t +

√
v̂ar(t) ·Tn−1 (10)

as an alternative distribution, whereTn−1 is a Student t distri-
bution withn−1 degrees of freedom. Note that the variance
of the distribution defined by Eq. (10) is greater than̂var(t),
since the variance ofTn−1 is greater than 1.

Both the normal and the Student t distribution are symmet-
ric. On the other hand, given that in hydrology random vari-
ables are typically non-negative (e.g.,Koutsoyiannis, 2005),
some sampling distributions should be asymmetric. There-
fore, we consider also the distribution

G

(
k =

t2

v̂ar(t)
, φ =

v̂ar(t)

t

)
, (11)

whereG is a gamma distribution with shape parameterk and
scale parameterφ, whose density function is

fG(x;k,φ) =
1

φk0(k)
xk−1e−(x/φ). (12)

Among the asymmetric distributions, we also consider the
log-normal and the log-Student t distributions, i.e., we as-
sume that the logarithm of the sample L-CV is normally or
Student t distributed. In the first case, the sampling distribu-
tion of the logarithm of the L-CV can be approximated by

log(t) −
1

2
log

(
1+

v̂ar(t)

t2

)
+

+

√√√√log

(
1+

v̂ar(t)

t2

)
·N(0,1), (13)

which follows from the definition of mean and variance of a
log-normally distributed random variable. Analogously, as-
suming that the same relationships hold for the log-Student t
distribution, which is a reasonable approximation due to the
similarity of the two distributions,

log(t) −
1

2
log

(
1+

v̂ar(t)

t2

)
+

+

√√√√log

(
1+

v̂ar(t)

t2

)
·Tn−1. (14)

The log-Student’s t distribution is a generalization of the log-
normal distribution that has heavier tails but approaches log-
normality as the sample lengthn increases.

In the following we present the method used to verify if
these approximations provide valid estimators of the confi-
dence intervals for the L-CV for samples of lengthn and sev-
eral underlying parent distributions. It is important to notice
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that we do not check if these distributions fit well the sam-
pling distribution oft , but if they provide a good estimate of
the range in whichτ (the population L-CV) is included at
a given level of probability. For instance, ift is biased, its
“real” sampling distribution is not suitable to derive confi-
dence intervals for the population L-CV.

3 Validity of the confidence interval estimators

Monte-Carlo simulations are used to verify if the candidate
distributions provide valid confidence interval estimators for
the population L-CV. Here a confidence interval estimator
is said to be valid if the(1− α) · 100% confidence limits
obtained for different samples encompasses the true L-CV
value in(1−α) ·100% of the times; we want the estimator
to be valid for everyα ∈ (0,1). In other words, a confidence
interval estimator is valid if it provides unbiased confidence
limits. Given a parent distribution whose characteristics (and
real L-CV τ ) are known,N = 10 000 samples of lengthn are
randomly extracted from it. For each of them, the estimates
of the sample L-CVt and its variancêvar(t) are calculated as
shown in Sect.2. By applying the approximations of Eqs. (9–
14), we obtainN estimates of the distribution oft for each
model. The candidate distributionP of t can be consistently
used to estimate the confidence intervals forτ if the probabil-
ity of non-exceedanceP(τ) is uniformly distributed between
0 and 1 (which is a consequence of the fact thatP(τ) is the
probability integral transform ofτ ; see e.g.,Kottegoda and
Rosso, 1997, Sect. 8.2.1). Therefore we test the uniformity
of P(τ) through goodness-of-fit methods.

Many goodness-of-fit tests for the uniform distribution ex-
ist (e.g.,D’Agostino and Stephens, 1986). As in Laio and
Tamea(2007) we adopt here a less formal but more reveal-
ing graphical method, based on a probability plot represen-
tation. Given, for one candidate distribution oft , the sample
P1(τ ),P2(τ ),P3(τ ),...,PN (τ ) resulting from theN Monte-
Carlo simulations, the probability plot represents thePi(τ )

values versus their empirical cumulative distribution func-
tion, Ri/N . The shape of the resulting curve reveals if the
sample of probabilities is approximately uniform, in which
case the (Pi(τ ), Ri/N ) points are close to the bisector of the
diagram.

The graphical method allows one to investigate which are
the reasons for a lack of validity of a candidate distribution
as a tool to estimate the confidence interval forτ , in par-
ticular evidencing the effects of bias of estimation fort and
v̂ar(t). In fact, the shape of the curves in the probability plot
is suggestive of the encountered problem, since the steepness
of the curves is larger where morePi(τ ) points concentrate
(see Fig. 2 inLaio and Tamea, 2007). If the curve is over
the bisector in the left part of the graph and under it in the
right part, thePi(τ ) points are concentrated in the vicinity
of the end points 0 and 1, which corresponds to have theτ

value that falls, more frequently than expected, on the tails
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Fig. 1. L-CV–L-CA diagram. Lines are:(a) numerical constraint
given byHosking and Wallis(1997); (b) bisector band identified
usingVogel and Wilson(1996) samples (seeViglione et al., 2007).
Points A, B, C and D have L-CVτ=0.2, 0.3, 0.4, 0.5 and L-CA
τ3=0.1, 0.2, 0.3, 0.4, respectively.

of the distributions. TheN estimated variances are then too
small. In the opposite case, when the curve has an S shape
and crosses the bisector in the middle of the graph, the cho-
sen variances are too high because thePi(τ ) points are con-
centrated in the vicinity of the middle value 0.5. When the
curves are always over or under the bisector, then the scale
parameter of the distribution (which relates tot) has been
overestimated or underestimated, respectively. In the first
case the realτ value falls, more frequently than expected,
on the low tail of the distributions, then the estimatedt are
too high, and viceversa.

In addition to the graphical method, we use the Anderson-
Darling statistic in order to synthetically quantify the discrep-
ancy between the cumulative distribution function (CDF) of
P1(τ ),P2(τ ),P3(τ ),...,PN (τ ) and the uniform distribution
U between 0 and 1. The Anderson-Darling statistic is a
measure of the mean squared difference between the em-
pirical and hypothetical CDF, in practice estimated as (e.g.,
D’Agostino and Stephens, 1986; Laio, 2004):

A2
= −N −

1

N

N∑
i=1

[(2i −1)ln(U [Pi(τ )])+

+(2N +1−2i)ln(1−U [Pi(τ )])]. (15)

The best fit corresponds to the minimum value ofA2. The
Anderson-Darling test statistic measures the validity of the
estimator for all confidence levels en bloc (∀α ∈ (0,1)),
which is the property we are looking for.
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Fig. 2. Probability plot representation ofP(τ) when using the log-Student t distribution of Eq. (14) to estimate the confidence intervals of
τ . Different situations are considered:(a) GEV parent distributions with different asymmetry (point A, B, C, D of Fig.1); (b) P3 parent
distributions with different asymmetry;(c) GEV parent distribution and samples of different lengthn; (d) P3 parent distribution and samples
of different lengthn; (e) different parent distributions with low asymmetry (point A);(f) different parent distributions with high asymmetry
(point D).

4 Results

To check the robustness of our approximations, many dif-
ferent situations are considered: we vary the lengthn

of the samples, the underlying parent distribution and its
parameters. The considered parent distributions are: GEV
(Generalized Extreme Value), P3 (Pearson type III), LN
(Log-Normal with 3 parameters), GP (Generalized Pareto)
and GL (Generalized Logistic). As inViglione et al.(2007)
we choose the parameters of these distributions by reference
to the L-CV–L-CA space (coefficients of L-variation and L-
skewness) represented in Fig.1 (the mean is taken equal to

1 without loss of generality) that is a reasonable space where
the majority of hydrological (extreme value) samples falls
(Vogel and Wilson, 1996; Viglione et al., 2007).

Some of the uniform probability plots ofP(τ) are shown
in Fig. 2, where the log-Student t distribution of Eq. (14)
is the candidate distribution fort . In panel (a) samples are
extracted from a GEV distribution with increasing asymme-
try (from point A to point D of Fig.1). It is evident that the
log-Student t approximation works better for moderate asym-
metry of the parent distribution (point A) than in the highly
asymmetric cases (points C and D). In all cases the curves
lie below the bisector, meaning that the estimatet is too low
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Fig. 3. Biases oft andst =

√
v̂ar(t): (a) n · (τ − t̄ ) vs. the sample L-CĀt3; (b) n · (σt − s̄t )/s̄t vs. the sample L-CĀt3. Every point rises

from 1 000 simulated samples and corresponds to a grey point in Fig.1. The proposed corrections of Eqs. (16) and (17) are indicated with
continuous black lines.

compared toτ , specially in the right part of the graph, which
implies that the upper tail of the distribution is too narrow.
In panel (b) the parent distribution is Pearson Type III (P3).
In this case the log-Student t approximation fits much better
than in panel (a).

Similar conclusions can be derived from panels (c) and (d),
that present the sensitivity of the log-Student t approximation
to the lengthn of the samples (the parent distributions have,
in this case, the same asymmetry, correspondent to point C
of Fig. 1). As expected, for highn the goodness-of-fit of
the candidate distribution increases. For very short samples
(n = 10), in some few cases (1% of the cases for GEV and
3% for P3), the estimatêvar(t) of Elamir and Seheult(2004)
is negative. In those cases, the Monte-Carlo simulations have
been discarded when producing the curves in Fig.2c and d.

Panels (e) and (f) show the uniform probability plots for
different parent distributions in points A (low asymmetry)
and D (high asymmetry). The behavior of the curves, spe-
cially in D, visibly depends on the underlying parent distri-
bution. Considering high asymmetries (point D), the approx-
imation of the sample L-CV distribution with momentst and
v̂ar(t) provides particularly bad confidence intervals forτ for
the GEV and GL distributions.

Similar plots (not shown here) have been produced for the
other candidate distributions. The Normal and Student t dis-
tributions perform slightly better in the central part of the
graph for small asymmetry (point A) and for the P3 parent
distribution. Anyway the underestimation of the width of
the upper tail is more marked than in the case of the asym-
metric candidate distributions (gamma, log-Normal and log-
Student). For all candidate distributions the shape of the
curves are similar (below the bisector, specially for the up-

per right corner of the uniformity plots), meaning that, par-
ticularly for the GEV and GL parent distributions and for
large asymmetries (point D), the estimatorst andv̂ar(t) un-
derestimate the true values. We consider this problem in the
following subsection, where a distribution-free correction of
these biases is proposed.

4.1 Bias correction

No matter what type of distribution is chosen, in many cases
the sampling distribution of the L-CV does not provide a
valid estimator of the confidence intervals for the population
L-CV. This could be expected since it is known that the sam-
ple L-CV is slightly biased for high asymmetry of the parent
distribution (Hosking and Wallis, 1997, page 28) and since
v̂ar(t) is obtained from the Taylor-series-based approxima-
tion of Eq. (8). To provide a valid estimator, these biases
should be corrected.

A simple bias correction fort and st =

√
v̂ar(t) can

be obtained from Monte-Carlo simulations. Samples
are generated for each combination ofτ and τ3 (grey
points in Fig. 1), for each parent distribution (GEV, P3,
LN, GP and GL) and for different sample lengths (n =

10,15,20,25,30,40,50,70,100). Given one simulation
(N=1 000 samples, in this case), the bias oft is estimated as
t̄ −τ , wheret̄ is the arithmetic mean overN values oft and
τ is the known L-CV of the parent distribution. In panel (a)
of Fig.3, we show how the bias oft , opportunely scaled with
n (see e.g.,Kendall and Stuart, 1961, Sect. 17.10), increases
for increasing asymmetry of the samples (t̄3 is the mean of
theN sample L-skewness). Analogous results are obtained
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Fig. 4. Probability plot representation ofP(τ) when assuming the log-Student t distribution of Eq. (14) and applying the corrections of
Eqs. (16) and (17). The same cases(a–f) of Fig. 2 are considered here.

for the standard deviation of the sample L-CV (panel (b) of
Fig. 3). The bias ofst is evaluated as̄st − σt , where we

assumeσt =

√
(
∑N

i=1(ti − t̄ )2)/N as the true standard devia-
tions of the sample L-CV.

In both cases, the bias depends on the type of distribution:
the P3 distribution shows the lowest bias and the GL distri-
bution the largest, confirming the behavior in Fig.2. Given
one distribution, the scatter of the estimated biases for a fixed
t3 is mostly determined by the variability of the considered
L-CV (grey points on vertical lines in Fig.1) while the influ-
ence of the variability of sample lengths is highly reduced by
the aforementioned scaling withn. Despite this effect of the
variance of the parent distribution, we deem that the biases
of t andst are substantially functions ofn andt3, along with
the distribution type.

Using these Monte Carlo results in a pragmatic way, we
propose the following simple corrections for the sample L-
CV and its standard deviation:

t (c) =

{
t +3· t2.5

3 /n , if t3 > 0
t , if t3 ≤ 0,

(16)

and

s
(c)
t = st ·(1+35· t2

3/n), (17)

that are obtained with a non-linear regression approach (non
linear least-squares). The curves corresponding to these cor-
rections are represented in Fig.3 as solid black lines. These
corrections intentionally do not take into account the type of
distribution because this is unknown in operational applica-
tions. It is important to stress again that the objective of this

www.hydrol-earth-syst-sci.net/14/2229/2010/ Hydrol. Earth Syst. Sci., 14, 2229–2242, 2010
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Table 1. Anderson-Darling statistic of discrepancy between the CDF of 10 000 values ofP(τ) and the uniform distributionU . The columns
show the value of the statistic for the five candidate distributions with parameters corrected by Eqs. (16) and (17). The best fit is indicated
by the bold font. Different situations are considered:(a) GEV parent distributions with different asymmetry (point A, B, C, D of Fig.1); (b)
P3 parent distributions with different asymmetry;(c) GEV parent distribution and samples of different lengthn; (d) P3 parent distribution
and samples of different lengthn; (e)different parent distributions with low asymmetry (point A);(f) different parent distributions with high
asymmetry (point D).

normal Student t gamma log-normal log-Student t

(a) A 33.2 23.6 21.9 23.2 16.6
GEV B 53.8 42.3 43.7 46.6 39.6
n = 30 C 91.6 75.4 79.0 83.1 73.4

D 226.2 191.4 209.2 212.9 189.8

(b) A 21.3 16.0 14.0 16.7 13.3
P3 B 31.1 22.0 15.9 14.0 7.9
n = 30 C 27.9 21.4 10.6 5.9 2.5

D 50.6 41.2 29.3 16.3 10.4

(c) n = 100 66.5 62.1 60.9 60.3 56.7
GEV n = 50 95.1 84.0 85.4 85.5 77.5
C n = 30 91.6 75.4 79.0 83.1 73.4

n = 10 296.8 154.7 226.5 243.5 171.1

(d) n = 100 7.3 6.5 3.2 2.3 1.7
P3 n = 50 19.5 16.1 8.3 4.5 2.2
C n = 30 27.9 21.4 10.6 5.9 2.5

n = 10 134.9 52.0 95.2 98.3 47.9

(e) GEV 33.2 23.6 21.9 23.2 16.6
n = 30 P3 21.3 16.0 14.0 16.7 13.3
A LN 34.0 26.4 26.9 30.2 25.2

GP 45.5 39.2 40.2 39.2 31.4
GL 140.4 115.4 122.2 124.2 107.8

(f) GEV 226.2 191.4 209.2 212.9 189.8
n = 30 P3 50.6 41.2 29.3 16.3 10.4
D LN 85.5 67.4 70.4 70.4 59.4

GP 46.3 33.4 28.6 23.3 15.7
GL 328.2 283.9 309.9 315.9 286.0

study is to derive an interval estimator ofτ which is indepen-
dent of the underlying (and unknown) parent distribution of
the original variable, so to provide an operational tool.

As can be seen in Fig.4, which is analogous to Fig.2 but
considers the adjustments of Eqs. (16) and (17), the correc-
tions generally improve the results of the uniformity tests for
highly asymmetric distributions. Some problems remain for
very short samples (n = 10) and some parent distributions,
but the fit generally improves. Similar results are obtained
for the other candidate distributions. A synthetic compari-
son of these results is shown in Table1, where the values
of the Anderson-Darling statistic is shown for the cases of
Fig. 4. In most of the cases, theA2 statistic is lower when
the log-Student t distribution is assumed. Therefore, among
the considered candidates, we select the log-Student t as the
best approximated distribution to derive confidence intervals
for the population L-CV.

4.2 The bootstrap approach

The parametric strategy is not the only possibility to con-
struct confidence intervals. As an alternative, non-parametric
bootstrap procedures can be used to make inference ont

without making assumption on its distribution. The boot-
strap is a computer-based method for assigning measures of
accuracy to statistical estimates. It was first introduced in the
context of non parametric analysis of independent and iden-
tically distributed samples (Efron, 1979), but much research
into its use in more complicated settings followed (see e.g.,
Davison and Hinkley, 1997, as a reference). The basic idea
behind the non-parametric bootstrap is to replicate the orig-
inal sample many times, sampling it with replacement, and
to analyse the behavior of the statistic of interest calculated
on these replicates. Many aspects of the behavior of the se-
lected statistic can be measured with bootstrap, for example
its confidence intervals.
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Fig. 5. Probability plot representation ofP(τ) for different situations if the BCa distribution is used (Eq.18). The same cases(a–f) of Fig. 2
are considered here.

One of the most recommended bootstrap techniques to
evaluate confidence intervals is the so called bias-corrected
and accelerated (BCa) bootstrap method. The algorithm (see
e.g.,Efron and Tibshirani, 1993, for a formal definition) is
available in many software packages. Given the definition
of BCa intervals inEfron and Tibshirani(1993, pages 184–
188), if P ∗(τ ) is the probability of non exceedance ofτ on
the bootstrap distribution oft , the corrected probability given
by the BCa method is

P(τ) = 8

[
−

â · ẑ2
0+(−â ·8−1

[P ∗(τ )]−2) · ẑ0+8−1
[P ∗(τ )]

â · ẑ0− â ·8−1[P ∗(τ )]−1

]
, (18)

where8[.] is the standard normal cumulative distribution
function, 8−1

[.] is the percentile point on a standard nor-
mal distribution and the values of the bias correctionẑ0 and

the acceleration̂a can be computed as indicated inEfron and
Tibshirani(1993, page 186).

The uniformity plot introduced in Sect.3 has been applied
to check if the calculated BCa distribution of Eq. (18) pro-
vides a valid confidence interval estimator forτ . As shown
in Fig. 5, the bias of the central part of the curves indicates
a significant overestimation ofτ , i.e., the bias correction of
the BCa method is too strong. Moreover some of the curves,
specially those correspondent to high asymmetry and small
sample length, are “reverse S” shaped, meaning that the vari-
ance of the distribution is underestimated. The comparison
between Figs.5 and4 confirms the better performance of the
parametric method proposed in this paper.
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Table 2. Coverage of the 90% confidence intervals forτ using the following candidate distributions: corrected parametric model with normal,
Student t, gamma, log-normal and log-Student t distribution, bootstrap BCa model with 2000 replicates.P05 andP95 are the percentage of
trials (that are 10 000) that the indicated interval missed the true valueτ on the left or right side of the confidence interval. The same cases
(a–f) of Table1 are considered here.

normal Student t gamma log-normal log-Student t bootstrap BCa
P05 P95 P05 P95 P05 P95 P05 P95 P05 P95 P05 P95

(a) A 4.2 8.0 3.7 7.5 4.9 7.3 5.2 7.0 4.8 6.5 8.6 5.2
GEV B 3.5 8.6 3.1 8.0 4.2 7.8 4.5 7.5 4.0 6.9 8.8 5.8
n = 30 C 3.2 9.3 2.8 8.8 3.9 8.6 4.0 8.3 3.6 7.7 8.2 7.9

D 3.1 11.9 2.7 11.2 3.9 11.0 3.9 10.6 3.4 9.9 7.7 9.4

(b) A 4.0 7.2 3.5 6.6 4.8 6.4 5.1 6.1 4.6 5.5 8.5 4.9
P3 B 4.4 7.9 3.9 7.2 5.0 7.1 5.3 6.7 4.7 6.2 9.5 5.0
n = 30 C 4.7 7.4 4.1 6.8 5.3 6.7 5.3 6.3 4.8 5.8 9.8 5.8

D 5.8 7.1 5.1 6.6 6.4 6.5 6.2 6.2 5.6 5.6 10.5 7.1

(c) n = 100 3.7 8.9 3.5 8.6 4.2 8.3 4.4 8.1 4.2 7.9 7.0 6.8
GEV n = 50 3.2 9.8 2.9 9.5 3.8 9.2 4.0 8.8 3.7 8.5 7.5 6.7
C n = 30 3.2 9.3 2.8 8.8 3.9 8.6 4.0 8.3 3.6 7.7 8.2 7.9

n = 10 3.4 12.4 2.4 10.5 4.1 11.2 4.0 10.6 3.2 8.5 11.8 12.2

(d) n = 100 4.5 6.2 4.2 6.0 4.7 5.8 4.8 5.7 4.7 5.5 7.7 4.8
P3 n = 50 4.6 6.7 4.3 6.4 5.3 6.2 5.3 5.9 5.0 5.6 8.6 5.0
C n = 30 4.7 7.4 4.1 6.8 5.3 6.7 5.3 6.3 4.8 5.8 9.8 5.8

n = 10 5.6 10.1 4.6 8.4 6.5 9.0 6.1 8.5 5.0 6.6 13.2 8.7

(e) GEV 4.2 8.0 3.7 7.5 4.9 7.3 5.2 7.0 4.8 6.5 8.6 5.2
n = 30 P3 4.0 7.2 3.5 6.6 4.8 6.4 5.1 6.1 4.6 5.5 8.5 4.9
A LN 3.9 7.6 3.5 7.1 4.5 7.0 4.8 6.6 4.4 6.1 8.5 5.5

GP 7.0 4.7 6.4 4.2 7.6 4.1 8.0 4.0 7.2 3.5 10.1 3.2
GL 2.8 10.5 2.5 9.9 3.7 9.7 4.0 9.3 3.6 8.7 7.9 6.6

(f) GEV 3.1 11.9 2.7 11.2 3.9 11.0 3.9 10.6 3.4 9.9 7.7 9.4
n = 30 P3 5.8 7.1 5.1 6.6 6.4 6.5 6.2 6.2 5.6 5.6 10.5 7.1
D LN 3.6 9.7 3.1 9.2 4.2 9.1 4.1 8.6 3.7 7.9 8.3 8.9

GP 4.3 8.5 3.8 8.0 4.9 7.9 4.8 7.5 4.3 7.0 9.2 7.7
GL 3.0 13.0 2.7 12.3 3.7 12.1 3.7 11.5 3.3 10.6 7.1 10.2

4.3 90% confidence intervals

As was shown in Table1, in most of the cases the log-Student
t distribution gives the best approximation to derive confi-
dence intervals of the L-CV in general, considering all con-
fidence levels. Since the Anderson-Darling statistic gives
more weight to the tails of the distribution than to the cen-
tral part of it, the log-Student t distribution is expected to
be the best choice when calculating the confidence intervals
for the sample L-CV at high confidence levels. Here we
check the goodness of the 90% confidence intervals forτ

using different candidate distributions in the corrected case,
where the corrections of Eqs. (16) and (17) are applied tot
andst , and using the BCa non-parametric bootstrap. Table2
shows the percentage of trials (which are 10 000) in which
the true valueτ was not comprised into the 90% confidence
intervals on the left or right side. The target miscoverage
is 5% on each side:P05 andP95 are the probabilities that
τ is lower than the 0.05 or greater than the 0.95 quantiles
of the corrected candidate distributions (we expect that both

P05 andP95 equal 5%). Among all the considered situations,
Table2 shows the cases considered already in Table1 and
Figs.2, 4 and5.

When using the parametric method, independently of the
chosen candidate distribution,P05 is often slightly lower than
5% andP95 is also higher than 5%. This means that the con-
fidence intervals forτ are a little too large for the left tail
and too narrow for the right tail. This problem is particu-
larly evident for large asymmetries of the parent distribution
and for small sample sizes, as was already evident in Fig.4.
The log-Student t approximation generally outperforms the
others, i.e., the confidence intervals are better centered (both
P05 andP95 are close to the ideal value 5%). The BCa inter-
vals (2000 replicates have been used) have a different behav-
ior: P05 is always higher than 5% and in many cases higher
thanP95, which is a consequence of the overestimation ofτ

shown in Fig.5. Despite its greater computational demand,
the bootstrap performs in most of the cases worse than the
corrected parametric method.
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Fig. 6 extends the results of Table2 to other points of the
L-CV–L-CA plain, when the log-Student t distribution is as-
sumed. The contour lines give the coverage frequency of the
90% confidence intervals when considering 10 000 samples
of length 30 for each of the grey points in Fig.1. The cover-
age frequency in Fig.6 is the average obtained by extracting
samples from all the five parent distributions considered in
this work (GEV, P3, LN, GP, GL). In the upper-right part
of the figure the results are not optimal (i.e., the values are
below 90%), due to the biases of the sample L-CV and its
variance shown in Fig.3, which still affect the results after
correctingt and st with Eqs. (16) and (17). However, not
many sample values encountered in hydrology lie in that re-
gion of the L-CV–L-CA space. For instance, if one considers
the UK flood peak data available with the Flood Estimation
Handbook (Robson and Reed, 1999), only 60 out of 696 se-
ries have sample L-CV and L-CA values lying in an area of
the diagram where the coverage is lower than 85% and only
2 in an area where the coverage is lower than 80%.

5 An application

In order to demonstrate that the possibility to estimate con-
fidence intervals for the L-CV is relevant for hydrological
applications, here we show, in a simplified way, how these
confidence intervals could be used to analyse and compare
the outcome of different regionalization methods. Following
Hosking and Wallis(1997), cluster analysis can be used to
define homogeneous disjoint regions whose samples should
have the same L-CV. On the other hand one can use the re-
gion of influence (ROI) approach (Burn, 1990), or allow for
the continuous variability of L-CV (Robinson and Sivapalan,
1997), by estimating it with linear or non-linear regressions,
or use geostatistical approaches (Merz and Bl̈oschl, 2005;
Skøien et al., 2006). All these different approaches can be
compared using confidence intervals in an intuitive way.

Here we use the UK data available with the Flood Esti-
mation Handbook (Robson and Reed, 1999). For every re-
gionalization technique, morphoclimatic variables should be
used to pool the sites. For simplicity, we suppose that the
mean annual rainfall alone (indicated as SAAR) may ex-
plain the difference of the at-site flood frequency distribu-
tions, and that this difference is completely reflected by the
coefficient of L-variation. Fig.7 shows in a simple way how
four methods of estimation of the regional L-CV can be com-
pared. Mean annual precipitation is plotted against the sam-
ple L-CV. The modeled regional L-CV is plotted as a black
line. Gray circles have 90% confidence intervals that con-
tain the modeled regional L-CV while black crosses do not
– we use the log-Student t distribution with parameters cor-
rected using Eqs. (16) and (17). In panel (a) only one region
is considered with a unique regional L-CV, here calledtR,
given by the arithmetic mean of allt . Assuming that the con-
fidence intervals are correctly estimated, if the region is ho-
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Fig. 6. L-CV–L-CA diagram analogous to Fig.1. The contour lines
give the average coverage frequency of the 90% confidence inter-
vals when considering 10 000 samples of length 30, extracted from
the five considered parent distributions (GEV, P3, LN, GP and GL),
for each of the grey points in Fig.1. The log-Student t distribution
of Eq. (14) with corrected parameters (Eqs.16and17) provides the
estimator for the confidence intervals forτ .

mogeneous the percentageP05 of sites for which the modeled
tR is below the confidence intervals forτ should be equal to
5%, as well asP95, i.e., the percentage of sites for which
the modeledtR is above the confidence intervals for the pop-
ulation L-CV. In panel (a)P05 = 17% andP95 = 26%, i.e.,
100%−(P05+P95) = 57%� 90%, which means that the re-
gion is heterogeneous.

If one subdivides the sites in 3 regions using a clustering
method, as in panel (b), the values ofP05 andP95 decrease
(P05 = 14% andP95 = 24%). Still the regional model does
not explain properly the heterogeneity of the data, because
of its structure and/or because the chosen parameter (SAAR)
does not explain completely the variability of the L-CV. Any-
way the model is more appropriate than the previous one, i.e.,
it can explain some more spatial heterogeneity of the data.
With a region of influence approach (panel c), one obtains
P05= 14% andP95= 21%. In this case, for simplicity, a sim-
plified ROI approach has been used, that assigns to each site
the average of the L-CV of the most similar 20 sites in terms
of SAAR. Finally, in panel (d) a linear regression betweent

and SAAR is shown. The result (P05= 13% andP95= 23%)
is comparable to what we got with the three regions and ROI
clustering methods.

It is important to note that the high discordance between
P05 andP95 and the theoretical value of 5% is not only due to
the approximation of the confidence intervals, for which we
would expect uncertainties of the same order of those in Ta-
ble 2 and Fig.6 (seemingly, the fact thatP95 > P05 is partly
due to the underestimation of the upper confidence limit for
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Fig. 7. Sample L-CVt versus mean annual precipitation SAAR in UK (data from the Flood Estimation Handbook,Robson and Reed, 1999).
The black continuous line is the modeled regional valuetR ; grey circles (◦) are sites for which the modeledtR is inside the 90% confidence
interval forτ , when assuming the log-Student t sampling distribution of Eq. (14) and applying the corrections of Eqs. (16) and (17); black
crosses (+) are sites for which it is outside of it. Four models are considered:(a) one unique region wheretR = t̄ ; (b) three regions with
different SAAR;(c) regions obtained with a simplified ROI approach;(d) linear regression model.

highly asymmetric parent distributions). This discordance
is mainly due to the fact that the data are heterogeneous,
that SAAR is not sufficient to explain the regional variabil-
ity of L-CV, that the regional methods are approximated, etc.
Lower values ofP05 and P95 would be obtained by using
more catchment descriptors (not only SAAR), more sophis-
ticated techniques or combining different sources of hydro-
logical information (Merz and Bl̈oschl, 2008). In the extreme
case, considering models with a number of parameters that
approach the number of stations, one could reduceP05 and
P95 also below the nominal value of 5%, which would clearly
indicate overparametrisation.

The simple examples provided here intend to illustrate the
method. They show that L-CV confidence intervals allow
one to analyse in a consistent way very different approaches
such as those based on site grouping and those that allow for
the continuous variability of L-CV, for which standard tech-
niques as homogeneity tests would be meaningless. Also,
they provide a way to identify those sites that are “problem-
atic” for the validity of the assumptions made (in the example
looking at the position of crosses and circles) and that should
be further checked.

6 Conclusions

One of the most important concerns of Flood Frequency
Analysis is the underlying distribution (or the lack of knowl-
edge on its form, to be more precise) and the desire to lose
the “distribution fetters” among hydrologists is really strong.
Anyway the distribution-dependent methodologies dominate
in practical hydrology, where distribution-free methods are
seldom used. RecentlyElamir and Seheult(2004) have
provided a method to estimate the variance of sample L-
moments without formulating assumptions on their parent
distributions. In this study, we use this result to provide esti-
mates of the confidence intervals for the L-CV. In summary,
the key steps of the work are:

– in order to provide the basis for the assessment of the
method, a Monte-Carlo procedure is used to draw many
samples from distributions commonly used in hydrol-
ogy (GEV, P3, LN, GP, GL);

– candidate sampling distributions of the L-CV are se-
lected among five distribution types (normal, Stu-
dent t, gamma, log-normal and log-Student t) whose
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parameters are estimated from the sample L-CV
and its variance, this latter given by the distribution-free
method ofElamir and Seheult(2004);

– the validity of the confidence intervals for the L-CV pro-
vided by these distributions is checked through unifor-
mity plots and the Anderson-Darling test statistic;

– no matter which candidate distribution is used, the ex-
periments show that the validity of the confidence in-
tervals is affected by biases of the sample L-CV and its
variance, particularly when the parent distribution of the
samples is highly skewed and the samples are short;

– therefore distribution-free corrections for these biases
are proposed, based on sample length and asymmetry;

– the validity of the new estimators of the confidence in-
tervals for the L-CV, obtained using the corrected sam-
ple L-CV and variance, is checked again and the log-
Student t distribution proves to be the best distribution
type in most of the cases.

Even if in some circumstances the validity of the confidence
interval estimator still depends on the underlying parent dis-
tribution, this paper shows that the proposed approximation
is in most of the cases reasonably good (and better than the
bias-corrected and accelerated non-parametric bootstrap) and
can be recommended for practical hydrological applications.
For example, the confidence intervals for the L-CV have been
used here to compare different regional models in terms of
their capability to explain the spatial heterogeneity of flood
peak data in UK.

Acknowledgements.Financial support for the project “Mountain
floods – regional joint probability estimation of extreme events”
from the Austrian Academy of Sciences is acknowledged. I would
like to thank Bj̈orn Guse and an anonymous reviewer for their
useful comments on the manuscript in HESSD. I would also like to
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