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Abstract. Atmospheric circulation models predict an
irrigation-rainfall feedback. However, actual field evidences
for local evaporation recycling (moisture feedback) are weak.
We present strong field evidence for an increase in rainfall
at the mountains located downwind of irrigated zones. We
chose two regions, located in semiarid southern Spain, where
irrigation started at a well defined date, and we analyzed
rainfall statistics before and after the beginning of irrigation.
Analyzed statistics include the variation of (1) mean rain-
fall 1P , (2) ratio of monthly precipitation to annual precip-
itation 1r, and (3) number of months with noticeable rain-
fall episodes1Pmin after a shifting from unirrigated to irri-
gated conditions. All of them show statistically significant
increases.1P and 1r show larger and more statistically
significant variations in June and July than in August. They
also tend to increase with the annual volume of water applied
in the neighbouring upwind irrigation lands. Increases in
1Pmin are statistically significant during the whole summer.
That is, the number of noticeable rainfall events displays a
relevant increase after irrigation. In fact, it is this number,
rather than sporadic large rainfall episodes what makes the
summers wetter. The increase in rainfall, while statistically
significant, is distributed over a broad region, so that it is of
little relevance from a water resources perspective, although
it may enhance vegetation yield.

1 Introduction

Irrigation-precipitation feedback may play an important role
in modulating changes in the hydrologic cycle at different
scales. Irrigation represents arguably the most dramatic land-
use change from the perspective of rainfall (Pielke et al.,
2007). The net addition of water moisture to the air in the
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boundary layer due to evaporation triggers convection, and
should be reflected in a net increase of rainfall, during the
irrigation season.

Theoretical and modelling studies indeed predict that ir-
rigation may cause a variation in rainfall due to the soil
moisture-atmosphere interactions. A few studies have found
that local recycling of evaporated moisture is not impor-
tant when compared to large scale moisture fluxes (Giorgi
et al., 1996; Paegle et al., 1996). In fact, very dry soil con-
ditions may favour increases in rainfall (i.e., negative soil
moisture feedback). However, a far larger number of studies
and model experiments support positive moisture feedback
(e.g. Eltahir, 1998; Zheng and Eltahir, 1998; Boucher et al.,
2004; Guo et al., 2006; to name some of them). Further-
more, Atmospheric General Circulation Models (AGCMs)
have predicted the existence of regional “hot spot” feedback
zones, regions that concentrate moisture feedback. This is
manifested in precipitation during the boreal summer (June
through August) in the Great Plains of North America, the
Sahel, equatorial Africa and India (Koster et al., 2004). All
AGCMs predict variations in rainfall as a net result of the
irrigation-precipitation feedback. However, they also show a
great deal of variation, both in terms of patterns and the over-
all strength of feedback. That is, model simulation outputs
are highly variable and uncertain. The uncertainty might be
reduced if the feedback was properly characterized by field
measurements (Koster et al., 2006).

Despite of the above results, actual field evidences sup-
porting irrigation-rainfall feedback are surprisingly weak.
Earliest studies were performed at the Columbia River basin.
Stidd (1975) found an increase in rainfall not only down-
wind but also upwind of irrigation fields, while Fowler and
Helvey (1974) found no evidence of feedback. The tradi-
tional reference for feedback is the work of Barnston and
Schickedanz (1984) who found an increase in precipitation
associated to nearby irrigated lands in the Texas Panhandle
region of the Great Plains over the time period of 1931–1970.
The result was obtained by a principal component analysis of
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warm-season precipitation and irrigation data. Nevertheless,
Moore and Rojstaczer (2001) performed the same principal
component analysis for the same region over a different time
period (1948 to 1997) and found no statistically significant
evidence for a consistent irrigation effect in the monthly pre-
cipitation data. Moore and Rojstaczer (2002) revisited the
Texas Panhandle region, analysing precipitation patterns in
the summer months of 1996 and 1997. In their study no dis-
tinct spatial trends in precipitation intensity were observed
either. Nevertheless, they observed that storms show larger
coherence and size within an “anomaly area” about 90 km
downwind of the irrigation area, indicating elongated storms,
greater storm duration, or both. Unfortunately, the duration
of the observation interval is too short and the impact too far
away to draw a strong conclusion.

Our conjecture is that the feedback should concentrate in
the mountains downwind the irrigation fields because the adi-
abatic cooling of moist air caused by upwards flow should
promote condensation and rainfall (Smith, 1979; Smith et al.,
1997; Lin et al., 2001). The objective of this paper is to test
the above conjecture at two areas, where rainfall records are
available both before and after the beginning of irrigation.

2 Methods

2.1 Study zones

The main premise of the study is that irrigation in the plains
causes an increase in summer precipitation at the adjacent
downwind mountains. Therefore, we sought irrigation areas
meeting the following requirements:

a. Located in semiarid watersheds.

b. Undergo a well defined change from unirrigated to
heavily irrigated conditions.

c. Availability of weather stations with long rainfall
records located at the downwind (mean summer wind
direction) adjacent mountains (see Fig. 1).

d. Display a homogeneous irrigation scheme (i.e., similar
temporal distribution of irrigation water volumes for the
whole area) with a high irrigation water demand in sum-
mer.

We found two irrigation areas meeting these require-
ments: (1) Upper and Lower Vegas (ULV), and (2) Lower
Guadalquivir (LG). These zones are separated by the Sierra
Morena range, which stretches for 400 km East-West across
southern Spain, forming the border of the central plateau
(Meseta Central) of Iberia, and acting as a divide between
the valleys of the Guadiana River to the north and the
Guadalquivir River to the south.

The ULV irrigated land is located in the province of Bada-
joz, along the main course of the Guadiana River (Fig. 1).
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Figure 1. Map of the study areas showing the location of the Upper and Lower Vegas (ULV), 1 

and Lower Guadalquivir (LG) irrigation lands (IL) and their corresponding summer wind 2 

rose. Diamond and circle symbols mean ULV and LG meteorological stations, respectively. 3 

Red symbols stand for meteorological stations located in mountains downwind the IL. Light 4 

blue symbols correspond to reference meteorological stations located in the plains. The 5 

alphabetical codes used to identify the meteorological stations are provided in Tables 1 and 2. 6 
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Fig. 1. Map of the study areas showing the location of the Upper
and Lower Vegas (ULV), and Lower Guadalquivir (LG) irrigation
lands (IL) and their corresponding summer wind rose. Diamond
and circle symbols mean ULV and LG meteorological stations, re-
spectively. Red symbols stand for meteorological stations located in
mountains downwind the IL. Light blue symbols correspond to ref-
erence meteorological stations located in the plains. The alphabet-
ical codes used to identify the meteorological stations are provided
in Tables 1, 2 and 3.

Irrigation started in 1963, as part of the “Badajoz” regional
development plan. Several reservoirs were built in the Gua-
diana River and its main tributaries. Additionally, a dense ir-
rigation network was set up. Access to large volumes of sur-
face water became easy and traditional agriculture changed
to intensive farming in the region along time, following the
field implementation of the different measures considered in
the development plan. These measures were officially com-
pleted in 1976. Some 121 000 ha are irrigated nowadays with
an endowment of 8500 m3/ha/yr, giving a mean annual ir-
rigation volume of 1.028× 109 m3. The predominant wind
direction during the summer is from northwest (Font and
I. N. M., 1983), as the Atlantic air flows towards the north
side of Sierra Morena and its minor ranges that run trans-
versely from NW to SE (i.e. mountain ranges of Monsalud,
Rinconada or Tudia to name a few). We have selected 11 me-
teorological stations (all that have long rainfall records) lo-
cated in these minor mountains ranges (dark red rhombus in
Fig. 1). Additionally, two meteorological stations located in
the plains surrounding the irrigation land will be used as ref-
erence stations (light blue rhombus). One of them (station L,
Usagres) is located downwind and the other (station K, Bada-
joz) is located upwind of the irrigation area.

The LG irrigated land belongs to the lower part of the
Guadalquivir River Basin where traditional agriculture had
been practiced for hundreds of years on small plots and
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Figure 2. Monthly distribution of precipitation and applied Irrigation Volumes in the Upper 1 

and lower Vegas (left) and the Lower Guadalquivir irrigation land (right). Solid symbols refer 2 

to the variables and empty symbols to their corresponding cumulated value. The averaging 3 

period for precipitation goes from 1890 to 2001 in the ULV, and from 1951 to 2001 in the 4 

LG. The averaging period for irrigation volume goes from 1963 to 2001 in the ULV, and from 5 

1971 to 2001 in the LG. 6 
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Fig. 2. Monthly distribution of precipitation and applied Irriga-
tion Volumes in the Upper and lower Vegas (left) and the Lower
Guadalquivir irrigation land (right). Solid symbols refer to the vari-
ables and empty symbols to their corresponding cumulated value.
The averaging period for precipitation goes from 1890 to 2001 in
the ULV, and from 1951 to 2001 in the LG. The averaging period
for irrigation volume goes from 1963 to 2001 in the ULV, and from
1971 to 2001 in the LG.

overall small volumes of water. The irrigated land is lo-
cated on the left side of the river, close to the city of Seville
(Fig. 1). Here irrigation started in 1971 over a surface of
some 60 000 ha, with a mean endowment of 9300 m3/ha/yr,
yielding a mean annual irrigation volume of 0.558× 109 m3

of surface water. The latter represents half of the irrigation
water volume applied in ULV. Wind blows predominantly
from the southwest during the summer (Font and I. N. M.,
1983), partly because of the geography and proximity of the
Guadalquivir River (Robinson, 1984). This wind direction
carries irrigation moisture towards the minor ranges that run
the south face of Sierra Morena from NW to SE transversely
(i.e. mountain ranges of Castillo, Cabras, and Alcudia among
others). Long rainfall records are available at 7 meteorolog-
ical located in these mountains downwind of the irrigation
lands (dark red circles in Fig. 1). Three reference stations
(light blue circles) have been selected in the valley. Two of
them (stations j, Seville, and h, Cordoba) are located down-
wind and one (station i, San Fernando) is located upwind of
the irrigation area.

Both areas can be considered semiarid with annual rain-
fall hardly reaching 550 mm and potential evaporation close
to 1000 mm. Irrigation demand in both areas concentrates
during the summer, which is very dry (Fig. 2).

2.2 Statistical analysis

Preliminary inspection of the observed meteorological data
provides some evidences that summer rainfall has changed
after irrigation in terms of both occurrence (Fig. 3) and vol-
ume (Fig. 4):

Temporal evolution of precipitation during the irrigation
months (June, July and August) displays a clear difference
between a reference meteorological station (BadajozK), and
BarcarrotaA, which is located in the mountains downwind
the ULV irrigation land (Fig. 3). The frequency of dry
months looks unaffected by the beginning of irrigation at the
reference station. However, a clear decrease in the frequency
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Figure 3. Temporal evolution of the cumulated precipitation for the months of June, July and 1 

August, measured in both, the reference meteorological station of Badajoz_K (left), and the 2 

meteorological station of Barcarrota_A (right), which is located in the adjacent mountains 3 

downwind  ULV. The dashed red line indicates the beginning of the irrigation period. 4 
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Fig. 3. Temporal evolution of the cumulated precipitation for the
months of June, July and August, measured in both, the reference
meteorological station of BadajozK (left), and the meteorologi-
cal station of BarcarrotaA (right), which is located in the adjacent
mountains downwind ULV. The dashed red line indicates the begin-
ning of the irrigation period.
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Figure 4. Mean summer (June, July and August) precipitation before (light blue) and after 1 

(dark blue) the beginning of the irrigation period for some reference stations (left side inside 2 

the dashed box) and other measuring points located in the mountains downwind of the ULV 3 

and LG irrigation areas. 4 

LG

ULV

N

0 30 60

km

LG

ULV

NN

0 30 60

km

0 30 60

km

0

400

800

1200

1600

2000

m.a.s.l.

0

400

800

1200

1600

2000

0

400

800

1200

1600

2000

m.a.s.l.

After Irrigation

Before Irrigation

Reference Stations

(K) Badajoz

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

(L) Usagre

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

(j) Sevilla

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

(i) San Fernando

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

(F) Malpartida
        de la Serena

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
pi

ta
tio

n 
(m

m
)

(D) Helechal

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
pi

ta
tio

n 
(m

m
)

(e) Pantano de 
           Guadalmellato

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

(G) Monterrubio 
     de la Serena

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
pi

ta
tio

n 
(m

m
)

(c) Fuenteobejuna

0

5

10

15

20

25

30

35

Jun Jul Aug

P
re

ci
p

ita
tio

n
 (

m
m

)

 5 

Fig. 4. Mean summer (June, July and August) precipitation before
(light blue) and after (dark blue) the beginning of the irrigation pe-
riod for some reference stations (left side inside the dashed box) and
other measuring points located in the mountains downwind of the
ULV and LG irrigation areas.
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Table 1. Monthly averaged values of precipitation before (P1) and after (P2) the Beginning of the Irrigation Period (BIP), and precipitation
increment1P with respect toP1, measured in the meteorological stations located in the mountains downwind of irrigation land (MSs) and
reference meteorological stations (RSs) for both the Upper and Lower Vegas (ULV) and the Lower Guadalquivir (LG) irrigation lands. NB
and NA stand for the number of meteorological stations with available data used in the analysis before and after the BIP, respectively. Code
is the meteorological station identifying letter used in Fig. 1. Grey shaded cell means that the variation is statistically significant.

P1 (mm) P2 (mm) 1P (%) =(P2−P1)/P1

Code (NB/NA) June July August June July August June July August

ULV MSs
Barcarrota A (24/37) 17.7 1.9 11.1 28.0 3.9 7.0 58% 105% −37%
Cabeza del Buey B (25/35) 23.7 4.6 5.9 30.2 9.2 5.7 27% 100% −3%
Fregenal de la Sierra C (17/38) 19.9 2.7 13.5 24.2 6.2 6.5 22%130% −52%
Helechal D (14/34) 21.3 3.1 2.7 34.1 5.0 7.2 60% 61% 167%
Los Santos de Maimona E (19/34) 17.2 5.1 6.4 24.3 8.0 3.7 41% 57% −42%
Malpartida de la Serena F (14/38) 23.4 1.0 5.3 27.3 8.7 6.0 17%770% 13%
Monterrubio de la Serena G (14/39) 20.0 2.3 3.3 32.2 8.0 5.6 61% 248% 70%
Puerto Hurraco H (20/38) 22.3 4.5 4.2 32.3 8.4 11.8 45% 87% 181%
Valle Serena I (14/39) 18.1 2.6 4.2 20.9 7.2 5.7 15% 177% 36%
Valverde de Llerena J (18/37) 15.2 5.3 3.6 28.7 3.4 3.3 89% −36% −8%
Monthly Mean value 19.9 3.3 6.0 28.2 6.8 6.3 43.5% 169.9% 32.4%

ULV RSs
Badajoz K (73/39) 22.7 3.8 5.1 19.5 2.8 4.9 −14.1% −26.3% −3.9%
Usagre L (23/39) 28.7 6.2 13.4 28.3 4.8 6.1 −1.4% −22.6% −54.5%
Monthly Mean value 25.7 5.0 9.3 23.9 3.8 5.5 −7.7% −24.4% −29.2%

LG MSs
Bélmez a (26/28) 23.9 3.8 7.6 27.6 5.6 5.5 15.5% 47.4% −27.6%
Espiel b (24/29) 23.0 1.9 7.2 24.5 7.3 6.4 6.5%284.2% −11.1%
Fuenteobejuna c (26/31) 25.6 1.1 3.2 29.6 9.1 7.5 15.6% 727.3% 134.4%
Hinojosa del Duque d (28/28) 21.7 4.2 7.3 25.8 10.2 5.4 18.9% 142.9% −26.0%
Pantano Guadalmellato e (56/23) 18.7 1.2 3.3 20.6 2.4 3.5 10.2% 100.0% 6.1%
Pẽnarroya f (53/9) 23.2 3.5 5.4 29.5 1.7 13.2 27.2% −51.4% 144.4%
Pozoblanco g (48/29) 28.6 4.6 6.7 29.5 10.2 5.4 3.1%121.7% −19.4%
Monthly Mean value 23.5 2.9 5.8 26.7 6.6 6.7 13.9% 196.0% 28.7%

LG RSs
Córdoba h (15/23) 24.5 4.4 2.7 18.7 3.1 2.8 −24% −30% 4%
San Fernando i (108/23) 12.6 1.2 2.6 9.1 0.2 1.6 −28% −83% −38%
Sevilla j (23/27) 21.4 0.4 6.1 12.6 2.6 4.8 −41% 550% −21%
Monthly Mean value 19.5 2.0 3.8 13.5 2.0 3.1 −31% 146% −19%

of dry months can be observed at BarcarrotaA, especially
after 1976.

Figure 4 displays the mean monthly precipitation for June,
July and August, before and after the beginning of the ir-
rigation period, at both reference and mountains downwind
stations. Reference stations show a slight decrease, whereas
rainfall volume tends to increase at meteorological stations
located in the mountains downwind of the irrigation lands.

In view of these observations, three different statistics will
be analyzed:

1. Change of mean monthly rainfall,1P .

2. Change in the ratio of summer to annual precipitation,
1r, to test is concentrated during irridation season.

3. Change in the number of noticeable rainfall episodes
(i.e. days with total rainfall above 2 mm),1Pmin, to test
variations are caused by a few high intensity events.

We tested whether the means ofP andr differ statistically
between the periods before and after irrigation using a stan-
dard t test (O’Mahony, 1986; Moore, 1995; Spiegel and
Stephens, 1999; to name a few) and a 95% confidence level
for the two statistics. The analysis ofPmin is based on com-
paring the frequency of noticeable rainfall episodes (i.e. days
with total rainfall above 2 mm) before and after the beginning
of the irrigation.
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Table 2. Monthly to annual precipitation ratio before (r1) and after (r2) the Beginning of the Irrigation Period (BIP), and ratio increment
1r with respect tor1, measured in the meteorological stations located in the mountains downwind of irrigation land (MSs) and reference
meteorological stations (RSs) for both the Upper and Lower Vegas (ULV) and the Lower Guadalquivir (LG) irrigation lands. NB and NA
stand for the number of meteorological stations with available data used in the analysis before and after the BIP, respectively. Code is the
meteorological station identifying letter used in Fig. 1. Grey shaded cell means that the variation is statistically significant.

r1 (−) r2 (−) 1r(%) =(r2−r1)/r1

Code (NB/NA) June July August June July August June July August

ULV MSs
Barcarrota A (24/37) 2.4 0.2 2.2 4.9 0.6 1.2 104.2% 200.0% −45.5%
Cabeza del Buey B (25/35) 5.0 1.0 0.8 6.9 1.6 0.9 38.0% 60.0% 12.5%
Fregenal de la Sierra C (17/38) 2.8 0.4 2.1 4.0 0.9 1.2 42.9% 125.0% −42.9%
Helechal D (14/34) 4.2 0.6 0.4 7.0 0.9 1.4 66.7% 50.0% 250.0%
Los Santos de Maimona E (19/34) 2.9 1.0 1.1 5.6 1.4 0.9 93.1% 40.0% −18.2%
Malpartida de la Serena F (14/38) 3.8 0.2 1.1 6.3 1.4 1.3 65.8% 600.0% 18.2%
Monterrubio de la Serena G (14/39) 3.4 0.4 0.6 6.6 1.3 1.0 94.1% 225.0% 66.7%
Puerto Hurraco H (20/38) 3.4 1.0 1.0 7.3 1.2 1.8 114.7% 20.0% 80.0%
Valle Serena I (14/39) 4.0 0.5 1.1 5.7 1.4 1.4 42.5% 180.0% 27.3%
Valverde de Llerena J (18/37) 2.6 0.9 0.6 5.7 0.6 0.7 119.2% −33.3% 16.7%
Monthly Mean value 3.5 0.6 1.1 6.0 1.1 1.2 78.1% 146.7% 36.5%

ULV RSs
Badajoz K (73/39) 4.3 0.7 1.0 4.2 0.5 1.1 −2.3% −28.6% 10.0%
Usagre L (23/39) 4.0 0.9 2.3 5.1 0.8 1.3 27.5%−11.1% −43.5%
Monthly Mean value 4.2 0.8 1.7 4.7 0.7 1.2 12.6%−19.8% −16.7%

LG MSs
Bélmez a (26/28) 4.3 0.5 1.1 5.7 0.9 0.9 32.6% 80.0% −18.2%
Espiel b (24/29) 4.1 0.2 1.0 4.8 1.1 1.1 17.1% 450.0% 10.0%
Fuenteobejuna c (26/31) 4.9 0.1 0.9 6.4 1.6 1.5 30.6% 1500.0% 66.7%
Hinojosa del Duque d (28/28) 5.4 1.1 1.5 6.2 2.2 1.2 14.8%100.0% −20.0%
Pantano Guadalmellato e (56/23) 2.7 0.2 0.4 3.7 0.3 0.5 37.0% 50.0% 25.0%
Pẽnarroya f (53/9) 4.6 0.6 1.0 7.4 0.4 1.7 60.9% −33.3% 70.0%
Pozoblanco g (48/29) 5.7 0.7 1.2 5.8 1.8 1.1 1.8%157.1% −8.3%
Monthly Mean value 4.5 0.5 1.0 5.7 1.2 1.1 27.8% 329.1% 17.9%
LG RSs
Córdoba h (15/23) 3.5 0.6 0.3 3.4 0.4 0.4 −2.9% −33.3% 33.3%
San Fernando i (108/23) 2.1 0.2 0.5 2.0 0.1 0.4 −4.8% −75.0% −20.0%
Sevilla j (23/27) 3.3 0.1 0.7 2.7 0.3 1.0 −18.2% 200.0% 42.9%
Monthly Mean value 3.0 0.3 0.5 2.7 0.3 0.6 −8.6% 30.6% 18.7%

3 Results

Tables 1, 2 and 3 summarise results of the three statistics
for ULV and LG irrigation lands. These tables provide the
mean values of the three statistics for every meteorological
station, highlighting statistically significant increments. Ad-
ditionally, monthly mean values of the statistics are provided
by grouping reference stations (RSs), and stations located in
the mountains downwind of irrigation land (MSs).

Simple inspection of these tables reveals a different be-
haviour of MSs and RSs. Mean values tend to increase at
the former, but decrease at the latter. This result suggests
that irrigation affects the way it rains in the neighbouring
downwind mountains, probably modifying the synoptic cli-
mate structure and trend at the local scale.

The mean rainfall at MSs in ULV shows a common posi-
tive change in June and July (Table 1). In August, the gen-
eral trend in1P is ambiguous, even showing statistical sig-
nificant decreases in the meteorological stations of Barcar-
rota, Freguenal de la Sierra and Santos de Maimona. Anal-
ogously, the variation at MSs in LG also implies rainfall in-
creases during June and July, and an unclear trend in August.
Nevertheless, variations at LG do not have the same statisti-
cal significance as in the case of ULV. The difference might
be explained by the smaller irrigation surface, and applied
irrigation volume in the lower Guadalquivir irrigation land.
After the beginning of the irrigation period,1P shows an al-
most general positive variation in the meteorological stations
located in the mountains downwind of both irrigation lands
(83% and 76% cases in ULV and LG, respectively). The
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Table 3. Percentage of noticeable rainfall episodes (i.e. days with total rainfall above 2 mm) respect to the total rainfall episodes registered
before (Pmin 1) and after (Pmin 2) the Beginning of the Irrigation Period (BIP). The percentagesPmin 1 andPmin2 are reffered to their
own period (i.e before and after BIP, respectively), and increment of noticeable rainfall episodes1Pmin with respect toPmin 1 computed
as (Pmin 2−Pmin 1)/Pmin 1. MSs and RSs stand for meteorological stations located in the mountains downwind of irrigation land and
reference meteorological stations, respectively. ULV and LG mean the Upper and Lower Vegas and the Lower Guadalquivir irrigation lands,
respectively. NB and NA stand for the number of meteorological stations with available data used in the analysis before and after the BIP,
respectively. Code is the meteorological station identifying letter used in Fig. 1. Grey shaded cell means that the1Pmin variation is positive.

Pmin 1 (%) Pmin 2 (%) 1Pmin(%) =(Pmin 2−Pmin 1)/Pmin 1

Code (NB/NA) June July August June July August June July August

ULV MSs
Barcarrota A (24/37) 60.0 12.0 36.0 91.8 35.1 54.0 53.0% 192.5% 50.0%
Cabeza del Buey B (25/35) 80.0 45.0 40.0 62.3 40.0 40.1 −22.1% −11.1% 0.3%
Fregenal de la Sierra C (17/38) 70.5 23.5 35.2 84.8 33.3 45.4 20.3% 41.7% 29.0%
Helechal D (14/34) 86.6 13.3 13.3 90.9 47.0 41.1 5.0% 253.4% 209.0%
Los Santos de Maimona E (19/34) 66.6 27.7 27.7 84.8 42.4 30.3 27.3% 53.1% 9.4%
Malpartida de la Serena F (14/38) 71.4 14.2 21.4 81.5 36.8 47.3 14.1% 159.2% 121.0%
Monterrubio de la Serena G (14/39) 69.2 30.7 23.0 84.2 39.4 42.1 21.7% 28.3% 83.0%
Puerto Hurraco H (20/38) 73.6 42.1 42.1 89.4 36.8 52.6 21.5% −12.6% 24.9%
Valle Serena I (14/39) 84.6 15.3 30.7 73.6 36.8 44.7 −13.0% 140.5% 45.6%
Valverde de Llerena J (18/37) 70.5 23.5 35.2 78.3 29.7 37.8 11.1% 26.4% 7.4%
Monthly Mean value 73.3 24.7 30.5 82.2 37.7 43.5 13.9% 87.1% 58.0%

ULV RSs
Badajoz K (73/39) 80.8 27.4 28.7 74.3 25.6 30.7 −8.0% −6.6% 7.0%
Usagre L (23/39) 68.9 41.3 48.2 73.6 39.4 44.7 6.8% −4.6% −7.3%
Monthly Mean value 74.9 34.4 38.5 74.0 32.5 37.7 −0.6% −5.6% −0.1%

LG MSs
Bélmez a (26/28) 76.9 19.2 20.8 80.0 29.0 40.0 4.0% 51.0% 92.3%
Espiel b (24/29) 79.1 13.0 40.0 75.0 45.1 45.1 −5.2% 246.9% 12.8%
Fuenteobejuna c (26/31) 80.7 8.3 34.7 77.4 35.4 48.3 −4.1% 326.5% 39.2%
Hinojosa del Duque d (28/28) 75.0 28.2 42.8 85.7 39.2 50.0 14.3% 39.0% 16.8%
Pantano Guadalmellato e (56/23) 57.8 12.5 19.6 60.8 30.4 30.4 5.2% 143.2% 55.1%
Pẽnarroya f (53/9) 71.7 28.3 35.8 44.4 22.2 44.4 −38.1% −21.6% 24.0%
Pozoblanco g (48/29) 77.1 27.1 41.6 82.7 48.2 51.7 7.3% 77.9% 24.3%
Monthly Mean value 74.0 19.5 33.6 72.3 35.6 44.3 −2.4% 123.3% 37.8%

LG RSs
Córdoba h (15/23) 83.3 25.0 16.6 73.3 16.6 26.6 −12.0% −33.6% 60.2%
San Fernando i (108/23) 75.9 10.1 18.5 65.2 0.0 17.4 −14.1% −100.0% −5.9%
Sevilla j (23/27) 82.6 4.0 21.7 59.2 11.1 22.2 −28.3% 177.5% 2.3%
Monthly Mean value 80.6 13.0 18.9 65.9 9.2 22.1 −18.1% 14.6% 18.9%

mean summertime difference〈1P 〉 is 4 mm/month in ULV,
and 2.6 mm/month in LG. The ratio of these two increases
is roughly proportional to the volume of water applied for
irrigation. While these numbers are relatively small,〈1P 〉

represents mean summertime increases of 82% at ULV and
80% at LG.

In the reference stations1P behaves differently, showing
mean summertime decreases of 2.3 mm in both study zones
corresponding to decreases in〈1P 〉 of 20% and 32% in ULV
and LG, respectively.

The ratio of monthly to annual precipitation,1r, at MSs in
ULV and LG increases in 86% and 76% of cases, respectively
(Table 2). Increments are larger in June and July than in
August. The average increase during summer months,〈1r〉

is 1% in ULV and 0.7% in LG. Again, while these values

are small, they represent an increase of 87% and 125%, re-
spectively, with respect to the situation prior to irrigation. In
short, summer rainfall is also increasing relative to the mean
annual precipitation. As a result, summer has become wetter
at MSs after the beginning of irrigation. Instead, RSs display
a negligible decrease in〈1r〉 in both irrigation lands (i.e.,
ULV and LG).

The statistic1Pmin investigates whether the irrigation in-
creases the frequency of noticeable rainfall episodes (i.e.,
events with precipitation above 2 mm). To obtain1Pmin we
first computePmin 1 andPmin 2 (Table 3) as the percentage
of noticeable rainfall episodes in each period (i.e., before
and after the irrigation transition time), and then1Pmin is
computed as(Pmin 2−Pmin 1)/Pmin 1. Table 3 shows posi-
tive 1Pmin at MSs in 83% and 85% of cases at ULV and LG,
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respectively. As can be shown, there are a number of positive
increments with statistically significance after the beginning
of the irrigation period, that are observed in June and July, but
also in August. The mean summertime〈1Pmin〉 is 11.6% in
ULV and 8.3% in LG, that correspond to〈1Pmin〉 = 53% in
both irrigated lands.

The results indicate that the positive variation in1P dur-
ing the summer results from a net increase in the number
of noticeable rainfall events, rather than from sporadic large
rainfall episodes.

It is unclear whether the decrease in rainfall at RSs is
mechanistically linked to the increase at MSs. On one hand,
the vertical fluxes associated to evaporation might cause a
reduction in rainfall at the valleys. On the other, the net addi-
tion of moisture to the air might have been expected to cause
a generalized increase in rainfall, which was indeed the point
made by Barnston and Schickedanz (1984). The fact is that
significant decreases in rainfall during the second half of the
XXth century have been reported for both the Guadalquivir
and Guadiana basins by Ayala-Carcedo (1996) and Esteban-
Parra et al. (1998). They linked the basin-wide decrease in
rainfall to global climate change.

4 Conclusions

Irrigation impacts rainfall at the basin scale, causing an in-
crease in precipitation at the adjacent mountains located
downwind of the Upper and Lower Vegas (ULV) and Lower
Guadalquivir irrigation lands. In the case of ULV the
mean differences in precipitation are 8.3 mm (43% increase),
3.5 mm (170%) and 0.2 mm (32%) for June, July and Au-
gust, respectively. In the case of LG the mean increases are
3.2 mm (14%), 3.7mm (196%) and 0.9 mm (29%). Incre-
ments in precipitation have greater statistical significance in
June and July than in August. The fraction of summer to an-
nual precipitation has also increased at the downwind moun-
tains after the onset of irrigation. The increase also displays
greater statistical significance in June and July than in Au-
gust.

Summers at the mountains downwind the irrigation lands
have become wetter not only in terms of total rainfall, but
also in terms of number of events with noticeable rainfall.
The increases at ULV are 14%, 87% and 58% for June, July
and August, respectively. In the case of LG the same monthly
mean1Pmin variations are−2%, 123% and 37.8%. The joint
positive variation in1P and1Pmin after the beginning of
irrigation points that the increase in rainfall is not caused by
sporadic heavy storms, but by an increase of the number of
rainfall events during the summer.

The increase in rainfall is distributed over a broad region.
Therefore, it is not sufficient to generate runoff and increase
available water resources. However, it is sufficient to in-
crease the specific weight of summer precipitation with re-
spect to the other seasons. Moreover, it may help increase

the range of shrubs and other small plants that survive the
otherwise arid summers of these mountains.

Modelling studies generally predict that irrigation causes
an increase in rainfall due to the soil moisture-atmosphere in-
teraction. Our analysis supports those findings, but does not
elucidate the small scale mechanisms of the feedback, which
should be the subject of site specific models. In this regard,
it is relevant to point that we have obtained mean variations
of rainfall (both1P and1r) in MSs that are proportional
to the mean annual water volume applied in the neighbour-
ing upwind irrigation lands. This result might help to re-
duce the modelling uncertainty in the simulated strength of
the irrigation-rainfall feedback (Guo et al., 2006), and lends
support to climate models, whose credibility is a controver-
sial issue in itself (Koutsoyiannis et al., 2009).

The different trend observed in MSs and RSs for the three
selected statistics, reveals that irrigation-precipitation feed-
back may locally induce rainfall in-homogeneities inside a
given synoptic rainfall/climate trend. It should be noted that
the values of the statistics from the reference weather stations
decreased. Such behaviour, throughout southern Spain, has
been regarded by Ayala-Carcedo (1996) and Esteban-Parra
et al. (1998) as an early warning of the predicted climate
change.
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por el posible cambio cliḿatico, Tecno ambiente, ISSN 1133-
4665, 64, 43–48, 1996.

Barnston, A. G. and Schickedanz, P. T.: The effect of irrigation on
warm season precipitation in the southern Great Plains, J. Clim.
Appl. Meteorol., 23, 865–888, 1984.

Boucher, O., Myhre, G., and Myhre, A.: Direct human influence of
irrigation on atmospheric water vapour and climate, Clim. Dy-
nam., 22, 597–603, doi:10.1007/s00382-004-0402-4, 2004.

Eltahir, E. A. B.: A soil moisture–rainfall feedback mechanism
1. Theory and observations, Water Resour. Res., 34(4), 765–776,
1998.

Esteban-Parra, M. J., Rodrigo, F. S., and Castro-Diez, Y.: Spatial
and temporal patterns of precipitation in Spain for the period
1880–1992, Int. J. Climatol., 18, 1557–1574, 1998.

Font, I. and I. N. M. (Instituto Nacional de Meteorologı́a): Atlas
climático de Espãna, Eds. Ministerio de Transportes-Turismo y
Comunicaciones and I. N. M., Madrid, 43 pp., 1983.

Fowler, W. B. and Helvey, J. D.: Irrigation increases rainfall? (re-
sponse), Science, 188, 281, 1975.

www.hydrol-earth-syst-sci.net/14/2003/2010/ Hydrol. Earth Syst. Sci., 14, 2003–2010, 2010



2010 J. J́odar et al.: Irrigation enhances precipitation at the mountains downwind

Giorgi, F., Mearns, L. O., Shields, C., and Mayer, L.: A regional
model study of the importance of local versus remote controls
of the 1988 drought and the 1993 flood over the central United
States, J. Climate, 9, 1150–1161, 1996.

Guo, Z., Dirmeyer, P. A., Koster, R. D., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C. H., Malyshev, S., Mcavaney, B., Mcgregor, J. L.,
Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A.,
Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and
Yamada, T.: GLACE: The Global Land–Atmosphere Coupling
Experiment, Part II: Analysis, J. Hydrometeorol., 7, 611–625,
2006.

Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M.,
Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of
strong coupling between soil moisture and precipitation, Science,
305, 1138–1140, doi:10.1126/science.1100217, 2004.

Koster, R. D., Guo, Z.-C., Dirmeyer, P. A., Bonan, G., Chan, E.,
Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence,
D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell,
K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.
C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Ya-
mada, T.: GLACE: The Global Land-Atmosphere Coupling Ex-
periment: Part 1: Overview, J. Hydrometeorol., 7, 590–610,
doi:10.1175/JHM510.1, 2006.

Koutsoyiannis, D., Makropoulos, C., Langousis, A., Baki, S., Ef-
stratiadis, A., Christofides, A., Karavokiros, G., and Mamassis,
N.: HESS Opinions: “Climate, hydrology, energy, water: rec-
ognizing uncertainty and seeking sustainability”, Hydrol. Earth
Syst. Sci., 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.

Lin, Y. L., Chiao, S., Wang, T. A., Kaplan, M. L., and Weglarz,
R. P.: Some common ingredients of heavy orographic rainfall,
Weather Forecast., 16, 633–660, 2001.

Moore, D. S.: The Basic Practice of Statistics, W. H. Freeman and
Co., New York, 1995.

Moore, N. and Rojstaczer, S.: Irrigation-induced rainfall and the
Great Plains, J. Appl. Meteorol., 40, 1297–1309, 2001.

Moore, N. and Rojstaczer, S.: Irrigation’s Influence on Precipita-
tion: Texas High Plains, U.S.A., Geophys. Res. Lett., 29(16),
1755, doi:10.1029/2002GL014940, 2002.

O’Mahony, M.: Sensory Evaluation of Food: Statistical Methods
and Procedures, CRC Press, New York, 492 pp., 1986.

Paegle, J., Nogues-Paegle, J., and Mo, K. C.: Dependence of simu-
lated precipitation on surface evaporation during the 1993 United
States summer floods, Mon. Weather. Rev., 124, 345–361, 1996.

Pielke Sr., R. A., Adegoke, J., Beltran-Przekurat, A., Hiemstra, C.
A., Lin, J., Nair, U. S., Niyogi, D., and Nobis, T. E.: An overview
of regional land-use and land-cover impacts on rainfall, Tellus B,
59, 587–601, 2007.

Robinson, E.: Dispersion and fade of atmospheric pollutants, in:
Air Pollution and Plant Life, edited by: Treshow, M., Wiley, New
York, 15–37, 1884.

Smith, R. B.: The influence of mountains on the atmosphere, Aca-
demic Press, Adv. Geophys., 21, 87–230, 1979.

Smith, R. B., Paegle, J., Clark, T., Cotton, W., Forbes, G., McGin-
ley, J., Pan, H. L., and Ralph, M.: Local and remote effects
of mountains on weather: Research needs and opportunities, B.
Am. Meteorol. Soc., 78, 877–892, 1997.

Spiegel, M. and Stephens, L.: Schaum’s outlines, “Statistics” Third
Edition, McGraw-Hill, New York, 538 pp., 1999.

Stidd, C. K., Fowler, W. B., and Helvey, J. D.: Irrigation increases
rainfall?, Science, 188(4185), 279–280, 1975.

Zheng, X. and Eltahir, E. A. B.: A soil moisture-rainfall feed-
back mechanism 2. Numerical experiments, Water Resour. Res.,
34(4), 777–785, 1998.

Hydrol. Earth Syst. Sci., 14, 2003–2010, 2010 www.hydrol-earth-syst-sci.net/14/2003/2010/


