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Abstract. Data from General Circulation Models (GCMs)
are often used to investigate hydrological impacts of climate
change. However GCM data are known to have large biases,
especially for precipitation. In this study the usefulness of
GCM data for hydrological studies, with focus on discharge
variability and extremes, was tested by using bias-corrected
daily climate data of the 20CM3 control experiment from a
selection of twelve GCMs as input to the global hydrological
model PCR-GLOBWB. Results of these runs were compared
with discharge observations of the GRDC and discharges
calculated from model runs based on two meteorological
datasets constructed from the observation-based CRU TS2.1
and ERA-40 reanalysis. In the first dataset the CRU TS
2.1 monthly timeseries were downscaled to daily timeseries
using the ERA-40 dataset (ERA6190). This dataset served
as a best guess of the past climate and was used to analyze
the performance of PCR-GLOBWB. The second dataset was
created from the ERA-40 timeseries bias-corrected with the
CRU TS 2.1 dataset using the same bias-correction method
as applied to the GCM datasets (ERACLM). Through this
dataset the influence of the bias-correction method was
quantified. The bias-correction was limited to monthly
mean values of precipitation, potential evaporation and
temperature, as our focus was on the reproduction of inter-
and intra-annual variability.

After bias-correction the spread in discharge results of
the GCM based runs decreased and results were similar
to results of the ERA-40 based runs, especially for rivers
with a strong seasonal pattern. Overall the bias-correction
method resulted in a slight reduction of global runoff and
the method performed less well in arid and mountainous
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regions. However, deviations between GCM results and
GRDC statistics did decrease forQ, Q90 and IAV. After
bias-correction consistency amongst models was high for
mean discharge and timing (Qpeak), but relatively low for
inter-annual variability (IAV). This suggests that GCMs can
be of use in global hydrological impact studies in which
persistence is of less relevance (e.g. in case of flood rather
than drought studies). Furthermore, the bias-correction
influences mean discharges more than extremes, which
has the positive consequence that changes in daily rainfall
distribution and subsequent changes in discharge extremes
will also be preserved when the bias-correction method is
applied to future GCM datasets. However, it also shows
that agreement between GCMs remains relatively small for
discharge extremes.

Because of the large deviations between observed and
simulated discharge, in which both errors in climate forcing,
model structure and to a lesser extent observations are
accumulated, it is advisable not to work with absolute
discharge values for the derivation of future discharge
projections, but rather calculate relative changes by dividing
the absolute change by the absolute discharge calculated for
the control experiment.

1 Introduction

Because runoff regimes might change significantly due to
climate change, strategies for water management are sought
for that either mitigate the undesired effects of a changing
climate or gain from the positive effects. The search for
these strategies relies on reliable assessment of the effect
of climate change on river discharge. Consequently much
research has been conducted investigating the hydrological
response to climate change, both on local (Christensen and

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1596 F. C. Sperna Weiland et al.: The ability of a GCM-forced hydrological model

Lettenmaier, 2007; Prudhomme and Davies, 2008; Buytaert
et al., 2009), regional (Lehner et al., 2006; Strzepek and
Yates, 1997; Hagemann et al., 2009) and global scale (Arnell,
1999, 2003; Alcamo et al., 2000; Alcamo and Henrichs,
2002; Milly, 2006).

Future projections can be calculated using change
factors; long-term average changes derived from climate
model data which are applied to observed meteorological
time-series to obtain future meteorological time-series as
input for hydrological models (Alcamo and Henrichs,
2007; Nijssen et al., 2001; V̈orösmarty et al., 2000).
However, with this method changes in temporal variability
are ignored. Therefore climate datasets from General
Circulation Models (GCM) are often directly used as
input for hydrological models when investigating possible
changes. Unfortunately, different GCM datasets produce
varying and even contradicting results (Varis et al., 2004).
GCM results of the current climate control run (20CM3)
do not always agree with the observed climate, deviations
are especially apparent for precipitation (Covey et al., 2003;
Perkins and Pitman, 2009). Often too many days with
light rain are simulated and the frequency and amount of
heavy rain events are underestimated (Dai, 2006). Because
of the variance amongst GCMs many studies concluded
that a multi-model ensemble of GCMs should be used to
obtain a reliable impression of the spread of possible regional
changes and the uncertainties accompanying these changes
(Murphy et al., 2004; Boorman and Sefton, 1997; IPCC,
2007). Furthermore, it has been widely recognized (Wood et
al., 2004; Leander and Buishand, 2007; Fowler and Kilsby,
2007; Wilby et al., 1998) that precipitation data needs to be
bias-corrected before they can be used.

Previous studies (Milly et al., 2006; Nohara et al.,
2006) already investigated the correct reproduction of
mean discharge and runoff regimes. Therefore we focus
on the ability of a GCM-forced hydrological model to
reproduce global discharge variability (extremes, seasonal
and inter-annual variation), parameters relevant for water
management. We realize that even if we obtain a correct
reproduction of current discharge variability this is no
guarantee that projected discharge variability is correct as
well (Prudhomme and Davies, 2008). However, if discharge
variability is biased for the current period, future projections
of discharge variability are likely to be biased as well.

We restrict ourselves to a bias-correction of monthly
mean values of GCM precipitation, temperature and potential
evaporation (potential evaporation was derived using either
Penman-Monteith or Blaney-Criddle, depending on data
availability). Although a correction on monthly means
does not guarantee that rainfall marginal distributions are
well reproduced (Dai, 2006), no additional correction
on GCM variability is applied for two reasons: First,
because several climate change experiments have shown that
GCM variability will change, especially for precipitation.
Precipitation frequency and storm duration is likely to

decrease, while intensity will increase resulting in heavier
rain events (Trenberth et al., 2003; Allan and Soden, 2008;
Meehl et al., 2000). Therefore, corrections based on
past deviations between modeled and observed variability,
although often applied (Leaner and Buishand, 2007; Ines and
Hansen, 2006; Wood et al., 2004), may not hold in future.
Applying variability corrections might even mask important
changes, since changes in rainfall distributions may have a
much larger effect on the hydrological cycle than changes
in mean precipitation (Allen and Ingram, 2002). Second, as
discussed before, the very goal of this study is to examine
the effect of GCM variability on modeled hydrological
variability, thereby assessing the usability of GCM data for
water management related climate effect studies. Replacing
the differences in variability between GCMs to a single
current observed variability (i.e. CRU) would rule out such
an analysis.

Our evaluation of the ability of a GCM-forced hydrologi-
cal model to reproduce global discharge variability consists
of three steps. First, the performance of PCR-GLOBWB is
assessed when forced directly with the CRU TS 2.1 monthly
timeseries (New et al., 2000) which are downscaled to daily
values with the ERA-40 re-analysis (Uppala et al., 2005)
for the period 1961 to 1990. The CRU TS 2.1 timeseries
are derived by interpolation of monthly meteorological
observations while the ERA-40 reanalysis reflects the daily
variations in the large-scale meteorological conditions over
the globe. Thus, the down-scaled data set provides a best
guess of the inter-annual and seasonal variability. River
discharge statistics resulting from the PCR-GLOBWB run
driven with this forcing dataset are then compared with
observed river discharge statistics from the GRDC dataset
(GRDC, 2007). Although this comparison is subject to any
errors in the forcing dataset, evaluation of the model results
from this run provides the best available information on the
performance of PCR-GLOWB.

In a second step, the ERA-40 dataset is bias-corrected
using the same method as used for the GCM datasets as
a yearly month-by-month correction with the CRU TS2.1
monthly time-series, similar to step 1, is not possible for
GCM datasets; GCM timeseries only provide a realization
of a given climate and do not represent the observed
meteorology of a specific year. Rather, each monthly GCM
field is updated in a manner that scales the 30-year monthly
average GCM quantity to the 30-year monthly average CRU
TS2.1 quantity. With this method the inter-annual variability
remains similar to that of the original GCM or ERA-40
timeseries. Results of the hydrological model run driven
with this forcing dataset are compared with results of the
hydrological model run of step 1 and with observed GRDC
data in order to quantify the influence of the bias-correction
method as this preserves the full temporal variability of the
modeled meteorological product (ERA-40, GCMs) instead
of imposing the observed seasonal and inter-annual signal of
the CRU TS 2.1.
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In the last step PCR-GLOBWB is forced with the meteoro-
logical datasets of 12 GCMs bias-corrected according to the
method described in step 2. To quantify the spread between
the results of the GCMs the coefficient of variation (CV) is
calculated for a number of statistical quantities derived for
the ensemble of GCMs. Combined with the findings on
model performance (step 1) and loss of observed temporal
variability (step 2), these results will show the usability of
meteorological GCM datasets in hydrological impact studies
with a focus on extremes and discharge variability.

2 Hydrological model

2.1 Existing global hydrological models

Obviously, the macro-scale hydrological model (MHM)
PCR-GLOBWB follows in a long line of existing MHMs.
Without attempting to be complete, we refer to short reviews
given by Arnell (1999) and D̈oll et al. (2003) describing
VIC (Nijssen et al., 2001), Macro-PDM (Arnell,1999),
WBM (Vörösmarty et al., 1998) and WGHM (D̈oll et
al., 2003), four models frequently used in large-scale
hydrological studies. Similar to PCR-GLOBWB, the last
three models calculate for each time-step the water balance
of all individual grid cells. The grids of WBM and WGHM
have a resolution of 0.5 degrees, corresponding to the
finest resolution of most climate datasets available, within
Macro-PDM grid cells can either be regular or catchment
shaped. All three models contain at least one soil water
layer and total runoff consists of a fast overland and a slow
groundwater component. Size and partitioning of these
fluxes depend on the degree of saturation of the soil water
layer(s) that is calculated either physically based or described
by a statistical relation. The models all apply some form
of routing to obtain realistic river discharge. WGHM (Döll
et al., 2003) is the sub model of the global water use and
availability model WaterGAP (Alcamo et al., 2003).

In addition to stand-alone hydrological models, global
water balances have also been modeled by coupled
vegetation water balance models and by land surface
schemes (LSS) used in global climate models. Examples
of global coupled vegetation water balance models are
GEPIC (Liu et al., 2009) and LPJ (Gerten et al., 2004).
GEPIC focuses on the calculation of crop yield and crop
water productivity. It combines the extent of crop covered
areas (with different properties for a variety of crop types),
Hargreaves potential evaporation and soil water availability
to calculate crop water use. LPJ is a global dynamic
vegetation model that describes the interaction between the
terrestrial biosphere and the water cycle. Runoff is one of
the outputs of this vegetation model and exists of excess over
field capacity from the upper two soil layers and percolation
from the second soil layer. Runoff is translated to river
discharges using a routing scheme. At this stage the global

water balance and basin runoff is represented less reliable by
most LSSs than by hydrological models (Gerten at al., 2004)
and the resolution is too coarse for hydrological studies.
A notable exception is global VIC (Nijssen et al., 2001).
VIC is designed to be a land surface scheme for climate
models and solves both the energy and the water balance.
At the global scale it currently has a resolution of 1 degrees
(Sheffield et al., 2009), where vegetation, soil moisture and
the application of precipitation are modeled using sub-grid
variability schemes. Runoff, existing of baseflow from the
lower soil moisture store and fast response flow, is routed
along a routing network using a convolution approach. VIC
is one of the few LSSs that is frequently used in stand-alone
hydrological studies.

The main focus of this study is the reproduction of
variability in runoff regimes. Therefore the hydrological
model used should be designed to calculate this variability,
including a good representation of hydrology. In addition
to the models described above the model used in this
study, PCR-GLOBWB, contains an advanced scheme for
the subgrid parameterization of surface runoff, interflow and
baseflow and an explicit routing scheme for surface water
flow using the kinematic wave approximation that includes
retention in and evaporation loss from wetlands, lakes and
reservoirs (Van Beek and Bierkens, 2009).

2.2 PCR-GLOBWB

PCR-GLOBWB is a global distributed hydrological model
with a resolution of 0.5 degrees (Van Beek and Bierkens,
2009; Bierkens and van Beek, 2009). Each model cell
consists of two vertical soil layers and one underlying
groundwater reservoir. Sub-grid parameterization is used
to represent short and tall vegetation, surface water and for
calculation of saturated areas for surface runoff as well as
interflow. Water enters the cell as precipitation and can
be stored as canopy interception or snow. Snow melt or
accumulation occurs depending on temperature. Melt water
and throughfall are passed to the surface. Evapotranspiration
is calculated from the potential evaporation and soil moisture
conditions. Exchange of water is possible between the
soil and groundwater layers in both downward and upward
direction depending on soil moisture status and groundwater
storage. Total runoff consists of non-infiltrating melt water,
saturation excess surface runoff, interflow and base flow.
For each time-step the water balance is computed per cell.
Runoff is accumulated and transferred as river discharge
along the drainage network using kinematic wave routing.
The drainage network is taken from DDM30 (Döll and
Lehner, 2002) and lakes, wetlands and large reservoirs
are obtained from the GLWD dataset (Lehner and Döll,
2004). The model calculates natural flows. Water use is
not considered and only recently, in a newer version of
PCR-GLOBWB, reservoir management has been included.
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2.3 Data

2.3.1 GCM data

In 1997 the IPCC developed a set of emission scenarios,
representing possible future climate change and provided
boundary conditions to be used in GCM runs. These
scenarios are widely used in climate impact studies. In
addition to boundary conditions for studies based on these
scenarios, the IPCC also provided boundary conditions for
a 20 century control experiment. Climate modelling centers
around the world conducted GCM runs with this data. The
Program for Climate Model Diagnosis and Intercomparison
(PCMDI) has collected the results and made these available
through the PCMDI data portal (https://esg.llnl.gov:8443/
index.jsp). The PCMDI provides results on a daily time-step,
whereas the IPCC data portal only provides derived monthly
averages. Although it has been said that daily values are
less reliable (Prudhomme et al., 2002), we prefer to use daily
data, since they provides more information on extremes and
climate variability.

We collected data from the GCMs for which complete
model datasets are provided on a daily time step for both
the 20C3M control experiment and the future scenario A2,
which we will analyze in future research. We selected the
period 1961 to 1990, assuming that a thirty year period would
be long enough to represent inter-annual variability, and all
GCMs provide data for this period. For those GCMs with
multiple runs available the first run was selected. We worked
with a 30-year period of day values assuming this period is
that long that potential biases in the selected GCM run are
averaged out. Although the data portal does not provide all
required parameters for the (state-of-the-art) Hadley centre
climate models, HADGEM2 has been included. Data were
retrieved from the CERA-gateway,http://cera-www.dkrz.de.
Table 1 gives an overview of the selected models.

2.3.2 ERA-40 re-analysis data

Precipitation, temperature and evaporation were collected
from the ERA-40 reanalysis as well. The ERA-40 dataset
is obtained with a numerical weather prediction system
that includes assimilation of meteorological observations.
The prediction system reasonably represents the observed
climate. It has a relative high horizontal resolution
(ca. 125 km) and a vertical resolution of 60 levels (Uppala
et al., 2005). Still precipitation is poorly approximated
in ERA-40 data, particularly in the tropics (Troccoli and
Kålberg, 2004). The ERA-40 datasets slightly overestimates
precipitation globally. Overestimations are largest in the
Congo basin, the southern slope of the Himalaya and the
Andes region, while precipitation is underestimated in the
Murray, Danube and Mississippi basins. In an attempt to
eliminate the cold Arctic bias present in the ERA-15 dataset,
a warm bias during winter is introduced in the Arctic region

in ERA-40 dataset. Inter-annual variability is relatively high
because the observational data included in the system vary
over time (Hagemann et al., 2005). This variation increased,
amongst others, the inter-annual variability of precipitation
totals, which is relatively high after the first satellite data was
included in the system for 1972.

2.3.3 CRU data

Precipitation, temperature and the available parameters
required to derive Penman-Monteith reference potential
evapotranspiration have been retrieved from the monthly
CRU TS 2.1 timeseries (New et al., 2000). Since radiation
and wind speed are not provided as monthly timeseries,
the climatology from the CLIM 1.0 (New et al., 1999)
was used. The CRU data is based on station data that is
interpolated as a function of longitude, latitude and elevation
above sea level using the thin-plate spline method. The CRU
TS 2.1 timeseries have been validated in several studies.
Unfortunately no benchmark meteorological dataset exists
and validations are mainly based on differences between
historical datasets. Available historical data sources for
precipitation (FAO, GHCN and CRU) correspond well with
each other (Beck et al., 2004). Uncertainties in precipitation
amounts and seasonality are largest in dry regions (Fekete et
al., 2004). In Arctic regions the CRU datasets underestimate
precipitation amounts due to snow undercatch problems
(Fiedler and D̈oll, 2007).

2.3.4 Hydrological data

We selected 19 large catchments to be evaluated in this study,
covering a variety of climate zones, latitudes and continents.
The selected catchments are shown in Fig. 1, together with
basin characteristics. Discharge data are obtained from
the Global Runoff Data Center (GRDC, 2007). For most
rivers daily data was available for at least part of the period
of interest. For the Yangtze, Yellow River and Parana
we retrieved monthly GRDC data and for the Indus we
could only retrieve monthly data from the RivDis database
(Vörösmarty et al., 1998).

2.4 Derivation of potential evapotranspiration

Evaporation is derived with the Penman-Monteith equation
(Monteith, 1965). For those GCMs where the required
atmospheric surface pressure data were not available, surface
pressure was derived from the pressure at sea level using
a global DEM. Air humidity fields, required to calculate
the actual vapor pressure, could not be retrieved from the
data portal for the complete period for some of the GCMs.
Therefore we used a simplified method to calculate the
actual vapor pressure from the minimum air temperature
(Allen et al., 1998). For arid regions the assumption that
the air is saturated when the temperature is at its minimum
might not hold and therefore the minimum temperature
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1

Catchment Area

 (km2)

Qavg

(m3/s)

Gauge  Catchment Area

(km2)

Qavg

(m3/s)

Gauge

Amazone 6.915.000 190.000 Obidos  Murray 1.061.469 767 Wakool Junction

Brahmaputra 930.000 48.160 Bahadurabad  Niger 2.117.700 6.000 Dire

Congo River 3.680.000 41.800 Kinshasa  Orange river 973.000 365 Aliwal North

Danube 817.000 6.400 Ceatal Izmail  Parana 2.582.672 18.000 Corientes

Ganges 907.000 12.015 Hardinge Bridge  Rhine 65.683 2.200 Rees

Indus 1.165.000 6.600 Kotri  Volga 1.380.000 8.060 Volgograd

Lena 2.500.000 17.000 Kusur  Yangtze 1.800.000 31.900 Datong

MacKenzie 1.805.000 10.700 Norman Wells  Yellow river 752.000 2.571 Huayuankou

Mekong 795.000 16.000 Muhdahan  Zambezi 1.390.000 3.400 Katom a Mulilo

Mississippi 2.981.076 12.743 Vicksburg

Figure 1: Selected catchments2
Fig. 1. Selected catchments.

will not equal the dew temperature. As suggested by
Allen (1998) we subtracted 2 degrees from the minimum
temperature in the arid regions. Arid regions have been
selected using the climate moisture indices of the WWDRII
(UN, 2006). For those models where time-series for other
required parameters were missing or incomplete we used
the Blaney-Criddle equation (Brouwer and Heibloem, 1986;
Oudin et al., 2005) instead of Penman-Monteith. We
realize this may have introduced additional noise between
the model results (Kay and Davies, 2008). For several
models we compared the potential evaporation we calculated
using Penman-Monteith with evaporation calculated with
the Blaney-Criddle equation. The full analysis has not
been included in this article for brevity, however potential
evaporation calculated with the Blaney-Criddle equation is
relatively high for Europe, North-America and the north of

Asia during summer and relatively low for Africa and Asia.
Especially the overestimation in the Northern continents can
result in deviations because, particularly at the beginning of
summer, evaporation will not be limited by water availability
and actual evaporation will be too high as well. However,
hydrological model studies are forced to use what has been
reported by the GCMs host institutes and evaporation is not
provided for most models.

2.5 Bias correction of ERA-40 and GCM data with 30-
year mean month values

For the bias-correction of the GCM and ERA-40 datasets,
monthly scaling factors were calculated from the difference
(temperature) or ratio (precipitation and evaporation) in
30-year average monthly means between the CRU TS 2.1
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Table 1. Overview of selected GCMs.

Model Institute Country Acronym

BCM2.0 Bjerknes Centre for Climate Research Norway BCCR

CGCM3.1 Canadian Centre for Climate Modelling and Analysis Canada CCCMA

CGCM2.3.2 Meteorological Research Institute Japan CGCM

CSIRO-Mk3.0 Commonwealth Scientific and Industrial Research Organization Australia CSIRO

ECHAM5 Max Planck Institute Germany ECHAM

ECHO-G Freie Universiẗat Berlin Germany ECHO

GFDL-CM 2.1 Geophysical Fluid Dynamics Centre USA GFDL

GISS-ER Goddard institute for Space Studies USA GISS

IPSL-CM4 Institute Pierre Simon Laplace France IPSL

MIROC3.2 Center of Climate System Research Japan MIROC

CCSM3 National Center for Atmospheric Research USA NCAR

HADGEM2 Met Office’s Hadley Centre for Climate Prediction UK HADGEM

Table 2. Descriptive statistics. WhereQdayis a daily discharge value,k corresponds to the day number,K is the total number of days in the
30-year period,Q90 is the discharge exceeded at 10% of the days during the 30-year period,Q10 is the discharge exceeded at 90% of the
days during the 30-year period, j corresponds to the year number,N is the total number of years (30),Qyearj is the mean annual discharge
for the years 1961 to 1990,Q is the 30 year average mean discharge andQmonthare the 30-year average mean monthly discharges.

Parameter Description Equation Unit

Q Thirty year average
mean annual
discharge

Q =
1
K

K∑
k=1

Qdayk m3/s

relative Q90 Discharge exceeded at
10% of the days dur-
ing the thirty year pe-
riod relative to mean
discharge

Q90/Q –

relative Q10 Discharge exceeded at
90% of the days dur-
ing the thirty year pe-
riod relative to mean
discharge

Q10/Q –

IAVrel Inter annual
variability derived
from yearly average
discharges

IAV =

√
1
N

30∑
j=1

(
Qyearj −Q

)2

Q
–

Qpeak Month of regime peak
occurence

Qpeak= max(Qmonth) month

∗ For the stations where no daily time-series were available (Indus, Parana, Yangtze and Yellow River) the observed Q90 and Q10 values could not be calculated and are therefore
not included in the analysis.
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timeseries (New et al., 2000) and GCM/ERA-40 timerseries
for the period 1961 to 1990. Applying the monthly correction
factors also implies downscaling GCM data spatially to the
higher spatial resolution of the CRU dataset, since correction
factors are calculated for all individual cells of the CRU
grid. In this section both the GCM and ERA-40 data will
be referred to as modeled dataset (MOD), the bias-corrected
ERA-40 dataset created in this section will be referred to as
ERACLM. For temperature an additive correction was used:

TcorrectedMOD = TMOD +(T CRU−T MOD) (1)

WhereT is the daily temperature (K) andT is the 30-year
average monthly temperature. For evaporation (ETP) a
multiplicative correction is used, to avoid the occurrence of
negative evaporation.

ETPcorrectedMOD = ETPMOD
ETPCRU

ETPMOD
(2)

WhereETP is the daily potential evaporation (mm/day) and
ETP is the 30-year average monthly potential evaporation.
For precipitation a similar multiplicative correction is used
as for evaporation.

PcorrectedMOD = PMOD
P CRU

P MOD
(3)

WhereP is the daily precipitation (mm/day) andP is the
30-year average monthly precipitation. For some regions
(North-Africa, Amazon and Himalaya) differences between
the modeled monthly precipitation amount and CRU TS
2.1 monthly precipitation amounts and number of wet days
can be very large. In these regions a simple multiplicative
correction resulted in unrealistic precipitation peaks in
the bias-corrected precipitation time-series. Therefore the
bias-correction of precipitation, Eq. (3), is extended with a
minimum daily precipitation amount that has to be exceeded
by the modeled total monthly precipitation amount before the
multiplicative correction can be used (Van Beek, 2008). The
threshold equals the monthly mean daily CRU precipitation
amount:

Pcrit =
P CRU

WCRU
(4)

WhereWCRU is the 30-year average number of wet days for
the specific month. In addition a threshold value of 10 is
set for the maximum value of the multiplicative correction
factor (P CRU/P MOD). If 1) the monthly precipitation sum
of the GCM does not exceed the thresholdPcrit or if 2)
the multiplicative correction factor is higher than 10, the
days with precipitation occurrence are calculated from a
temperature limit below which a day becomes wet. With this
method the number of wet days is increased to avoid large
rain events on the few days with rain in the GCM timeseries.
The temperature limit is defined by:

Tcrit GCM = TminGCM+(TmaxGCM−TminGCM) ·
WCRU

N
(5)

Where Tmin and Tmax are the minimum and maximum
temperature (Kelvin) of the given month andN is the total
number of days in the specific month. With this formula the
number of wet GCM days per month is calculated (WGCM)

and the precipitation amount for these days equals:

PcorrectedGCM =
P CRU

WGCM
(6)

With this equation, precipitation is equally distributed over
the wet days and the original temporal distribution of
the GCM precipitation time-series is lost. However, this
correction method only had to be applied for a limited
number of cells.

2.6 Downscaling of CRU monthly timeseries to daily
timeseries with ERA-40

The CRU TS 2.1 monthly timeseries are downscaled to daily
timeseries with the ERA-40 re-analysis dataset. The method
used, resembles the bias-correction method described in
Sect. 2.5. The only exception is that the 30-year average
monthly precipitation, temperature, evaporation and number
of wet days (P ,T , ETPandWCRU) should be replaced in all
equations by the monthly mean values of the specific month
in the specific year, since for the ERA-40 dataset a year by
year correction with the CRU TS 2.1 timeseries can be made.
The resulting dataset will be referred to asERA6190and is
used in the first step of this study for the validation of the
hydrological model.

2.7 Statistical analysis

2.7.1 Statistics

We calculated the thirty year average mean discharge, 10
(low flow) and 90 (high flow) percentile values for each
catchment for results of all model runs and the observed
discharge timeseries. From thirty year average quantities
of the individual GCMs we calculated the GCM ensemble
mean. When the mean modeled discharge deviates from the
mean observed discharge, Q90 and Q10 values are likely to
deviate as well. Therefore, instead of comparing the absolute
Q10 and Q90 values, we compared the Q90 and Q10 values
relative to the mean discharge (see Table 2). These quantities
provide information on the shape of the discharge PDF, the
positions of Q90 and Q10 are given relative to the mean
discharge.

To compare the temporal behavior of the GCM and
ERA-40 based model runs with observations, we also
calculated the inter-annual discharge variability for the
30 year annual average discharges and the yearly month
of regime peak occurrence (Table 2). Furthermore, the
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1
Figure 2a: Annual mean observed discharge (GRDC), annual mean discharge calculated with2

PCR-GLOBWB forced with the ERA6190 dataset  (PCR-GLOBWB ERA6190) and the sum3

of observed annual mean discharge and estimated water use (GRDC + estimated water use)4

as an approximation of natural flow.5

6

7
Figure 2b: Percentage deviation of annual mean modeled discharge (PCR-GLOBWB,8

ERA6190 run) from 1) observed annual mean discharge (deviation from GRDC) and 2) the9

sum of observed annual mean discharge and estimated water use as an approximation of10

natural flow (Deviation from GRDC + estimated water use).11
12

13

Fig. 2a.Annual mean observed discharge (GRDC), annual mean discharge calculated with PCR-GLOBWB forced with theERA6190dataset
(PCR-GLOBWB ERA6190) and the sum of observed annual mean discharge and estimated water use (GRDC + estimated water use) as an
approximation of natural flow.

1
Figure 2a: Annual mean observed discharge (GRDC), annual mean discharge calculated with2

PCR-GLOBWB forced with the ERA6190 dataset  (PCR-GLOBWB ERA6190) and the sum3

of observed annual mean discharge and estimated water use (GRDC + estimated water use)4

as an approximation of natural flow.5

6

7
Figure 2b: Percentage deviation of annual mean modeled discharge (PCR-GLOBWB,8

ERA6190 run) from 1) observed annual mean discharge (deviation from GRDC) and 2) the9

sum of observed annual mean discharge and estimated water use as an approximation of10

natural flow (Deviation from GRDC + estimated water use).11
12

13

Fig. 2b. Percentage deviation of annual mean modeled discharge (PCR-GLOBWB,ERA6190run) from 1) observed annual mean discharge
(deviation from GRDC) and 2) the sum of observed annual mean discharge and estimated water use as an approximation of natural flow
(Deviation from GRDC + estimated water use).

coefficient of variation (CV) of the ensemble of 12 GCM
results is calculated for all statistics according to:

CV =

√
1
M

12∑
i=1

(
Qi −QENS

)2

QENS
(7)

WhereM is the number of GCMs (12),i corresponds to one
of the 12 GCMs,Qi is the 30-year average discharge for
the specific GCM andQENS is the GCM ensemble mean
30-year average discharge; all discharges in m3

·s−1. In
Eq. (7) Q is used as an example, however the same equation
is used for relativeQ10, relativeQ90, Qpeakand IAV. The
CV is a measure for the ensemble spread and indicates the
resemblance of the PCR-GLOBWB runs driven with the
different bias-corrected GCM datasets.

2.7.2 Regime curves

The hydrological regime curve consists of the 30-year
average mean monthly discharges, calculated for all twelve
months individually from modeled discharge timeseries at
the station locations (Fig. 1). Regime curves have been
calculated from: (1) discharge simulated with theERA6190
dataset, (2) discharge simulated with theERACLMdataset,
(3) discharges simulated for each individual bias-corrected
GCM dataset, (4) the ensemble mean of the discharges
calculated by these individual GCMs and for comparison (5)
the observed GRDC discharges. In addition to plots of the
regime curves we calculated Nash-Sutcliffe (NS) coefficients
(Nash and Sutcliffe, 1970) from the 30-year average monthly
values displayed in the regime curves.
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Table 3. Continental runoff based on data and model based estimates in km3/year (Wada et al., 2008).

Europe Asia Africa N.-America S.-America Oceania Global Time Period

Data based estimates:

Baumgartner and Reichel (1975) 2564 12467 3409 5840 11 039 2394 37 713 –

Korzun et al. (1978) 2970 14 100 4600 8180 12 200 2510 44 560 –

L’vovich (1979) 3110 13 190 4225 5960 10 380 1965 38 830 –

Shiklomanov (1997) 2900 13 508 4040 7770 12 030 2400 42 648 1921–1990

GRDC (2004) 3083 13 848 3690 6294 11 897 1722 40 533 1961–1990

Average 2925 13 423 3993 6809 11 509 2198 40 857 –

Model based estimates:
Fekete et al. (2000) 2772 13091 4517 5892 11 715 1320 39 319 –

Vörösmarty et al. (2000) 2770 13 700 4520 5890 11 700 714 39 294 1961–1990

Nijssen et al. (2001) – – 3615 6223 10 180 1712 36 006 1980–1993

Oki et al. (2001) 2191 9385 3616 3824 8789 1680 29 485 1987–1988

Döll et al. (2003) 2763 11234 3592 5540 11382 2239 36 687 1961–1990

Widén-Nilsson et al. (2007) 3669 13 611 3738 7009 9448 1129 38 605 1961–1990

Average 2833 12204 3933 5730 10536 1466 36 566 –

PCR-GLOBWB:

ERA6190 2143 11 461 5573 5249 11 186 2633 36 245 1961–1990

ERACLM 2159 10 285 5223 4848 10 174 2384 35 075 1961–1990

GCM ensemble mean 2175 10 572 5099 4803 10 678 2371 35 699 1961–1990

(∗) This table with continental discharges from previous studies has been obtained from Wada et al. (2008).

2.7.3 Map comparison

PCR-GLOBWB calculates daily maps of routed accumu-
lated runoff per cell. For all statistical variables (e.g.,Q,
relative Q90 andQ10, Qpeak, IAV) the GCM ensemble
mean results and the results of the two ERA-40 based runs
are compared. Maps with the CV are derived from the
ensemble of GCM results for all variables as well. These
maps show a spatial distribution of the spread between the
results of the bias-corrected GCM runs.

3 Results

3.1 PCR-GLOBWB validation using ERA6190

To assess its performance we ran the model PCR-GLOBWB
for the period 1961 to 1990 with the monthly CRU TS 2.1
timeseries, downscaled to daily values using the ERA-40
re-analysis data. This forcing dataset (ERA6190) provides
the best available guess of the current climate. Despite its

coarse resolution PCR-GLOBWB can reproduce observed
discharges reasonably well for most selected catchments.
Other than through the hydrological model structure, errors
can also be introduced by the model input, in particular
through the meteorological forcing.

3.1.1 Continental discharges

In Table 3 the mean yearly continental discharges calculated
with PCR-GLOBWB, are compared with continental
discharges of previous studies calculated from both obser-
vations and model results (Wada et al., 2008). Continental
discharges vary amongst studies. For Asia, North-America,
South-America and Oceania the results of PCR-GLOBWB
are within the range of continental discharges found in
previous studies. Differences between the discharges
modeled by PCR-GLOBWB and the average continental
discharges of previous studies are small, globally the
average difference is only 1%. For Europe PCR-GLOBWB
slightly underestimates continental discharge. For Africa
PCR-GLOBWB modeled discharge is on the high side,

www.hydrol-earth-syst-sci.net/14/1595/2010/ Hydrol. Earth Syst. Sci., 14, 1595–1621, 2010



1604 F. C. Sperna Weiland et al.: The ability of a GCM-forced hydrological model

1
Figure 3: Thirty year average relative Q90 values ( 90 /Q Q  (-) ) for the ensemble of non-bias2

corrected GCM runs (raw) and bias-corrected GCM runs (cor; boxes are drawn between the3

quartiles and whiskers represent minimum and maximum values), the ERA6190 run (blue4

points), the ERCLM run (red points) and the GRDC observations (black points).5

Fig. 3. Thirty year average relative Q90 values (Q90/Q (–)) for the ensemble of GCMs (boxes are drawn between the quartiles and whiskers
represent minimum and maximum values), theERA6190run (blue points), theERCLMrun (red points) and the GRDC observations (black
points).

with PCR-GLOBWB overestimating the discharge for many
African rivers. This is caused by the absence of water
withdrawals in the model and limited river bed losses,
like recharge to the groundwater and evaporation (which is
particular relevant in the deltas of the Niger and the Nile).
In addition, the density of meteorological observations is
relatively low for this continent which limits the constraint
of the CRU TS 2.1 and ERA-40 datasets (Fekete et al., 2004;
Van Beek and Bierkens, 2009).

3.1.2 Discharge statistics

Figure 2a shows the annual mean modeled and observed
discharges and Fig. 2b shows the modeled discharge as
a percentage of the observed GRDC discharge. The
annual mean modeled discharge shows little deviation from
observed annual mean discharge for the Danube, Volga,
Rhine, Mississippi and Lena. Deviations are relatively large
for the drier basins; Murray, Niger, Zambezi and Orange.
Modeled discharge for the MacKenzie is too low due to
undercatch in the CRU snowfall amounts (Fiedler and Döll,
2007). Discharge is also relatively low for the Monsoon
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3
Figure 4: Thirty year average relative Q10 values ( 10 /Q Q  (-) ) for the ensemble of non-bias4

corrected GCM runs (raw) and bias-corrected GCM runs (cor; boxes are drawn between the5

quartiles and whiskers represent minimum and maximum values), the ERA6190 run (blue6

points), the ERCLM run (red points) and the GRDC observations (black points).7

Fig. 4. Thirty year average relative Q10 values (Q10/Q(–)) for the ensemble of non-bias corrected GCM runs (raw) and bias-corrected GCM
runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum values), theERA6190run (blue points),
theERCLMrun (red points) and the GRDC observations (black points).

influenced Asiatic rivers Brahmaputra, Indus, Mekong and
Yangtze, while for the Ganges and Yellow River discharges
are on the high side.

To investigate the possible influence of water use, we made
the simplifying assumption that water demand equals water
use. In reality water demand will, especially in drier regions,
be higher than water use. Water demand is estimated on
a grid of 0.5 degrees. It is the sum of estimated industrial,
agricultural and domestic water demand (Wada et al., 2008).
Calculated discharge is compared with the sum of observed

discharge and water demand, which approximates natural
discharge. Figure 2b shows that for the Murray the deviations
between observed and calculated discharge can partly be
assigned to the lack of inclusion of water use. To a lesser
extent this also applies for the Danube, Ganges, Yellow River
and Rhine.

Besides mean discharge statistics, the positions of
discharge extremes (e.g. the positions ofQ90 and Q10
values relative toQ) have been compared for those basins
where daily GRDC time-series were available, see Figs. 3
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1
Figure 5: Thirty year average relative inter-annual variability values ( /IAV Q  (-)  )  for  the2

ensemble of non-bias corrected GCM runs (raw) and bias-corrected GCM runs (cor; boxes3

are drawn between the quartiles and whiskers represent minimum and maximum values), the4

ERA6190 run (blue points), the ERCLM run (red points) and the GRDC observations (black5

points).6

Fig. 5. Thirty year average relative inter-annual variability values (IAV/Q(–)) for the ensemble of non-bias corrected GCM runs (raw) and
bias-corrected GCM runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum values), theERA6190
run (blue points), theERCLMrun (red points) and the GRDC observations (black points).

and 4 where the blue dots represent the results of the
ERA6190run and black dots are GRDC values. In this
analysis we will focus on the catchments with the largest
deviations.

The relative position of theQ90 discharge is higher in
the model results than in the GRDC observations for the
drier basins; Orange and Zambezi, the position of theQ10
discharge is too high as well for the Niger, Orange and
Murray, but too low for the Zambezi. For the Ganges the
relativeQ90 discharge is too low and for both the Lena and
the MacKenzie, the relativeQ90 is underestimated as well
due to the relative low snow melt driven discharge rise in

spring, while the position ofQ10 flows are overestimated
due to a higher baseflow during winter.

Deviations in relative inter-annual variability are small
for European catchments (Fig. 5). IAV is underestimated
in the drier catchments; Murray, Orange and Niger, in the
Arctic catchments and in the Monsoon influenced basins;
Brahmaputra, Indus, Ganges and Yellow River. For the
remaining catchments differences are small.

Month of peak discharge occurrence is modeled well for
the Arctic and most monsoon influenced basins (Fig. 6).
Large deviations in timing are present for all dry catchments.
For the Rhine the discharge peak is modeled in April and
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1
Figure 6: Thirty year average month of peak discharge occurrence ( Qpeak (-) ) for the2

ensemble of non-bias corrected GCM runs (raw) and bias-corrected GCM runs (cor; boxes3

are drawn between the quartiles and whiskers represent minimum and maximum values), the4

ERA6190 run (blue points), the ERCLM run (red points) and the GRDC observations (black5

points).6

Fig. 6. Thirty year average month of peak discharge occurrence (Qpeak(–)) for the ensemble of non-bias corrected GCM runs (raw) and
bias-corrected GCM runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum values), theERA6190
run (blue points), theERCLMrun (red points) and the GRDC observations (black points).

observed in February due to a too late snow melt driven
discharge peak. For both the Amazon and Congo the
modeled regime shows a discharge rise in March and April
which is not present in the observed discharges. For the
Congo Zaitchik et al. (2010) found a similar shift in peak
timing, which they assign to the complexity of the bimodal
runoff regime and the poor quality of the GRDC gauge data
for the Congo.

3.1.3 Regime curves

Finally, 30 year average modeled hydrological regimes are
compared with observed regimes (GRDC) for all catchments,
see the blue (ERA6190) and black (GRDC) lines in Fig. 7
blue line. The plots show that difference between the
modeled and observed regime is especially large for the
MacKenzie as mentioned before. Although for the Lena
annual average modeled discharge is close to observed,
the regime curve shows deviations as well. The observed
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Figure 7: Hydrological regimes for all 19 catchments derived from discharges calculated for2

the period 1961-1990, with the average monthly discharge (m3/s) on the y-axis and the month3

numbers on the x-axis. Black line is annual mean observed discharge (GRDC), grey lines are4

PCR-GLOBWB based on individual non bias-corrected GCM datasets, green line is5

ensemble mean result, blue line is derived from PCR-GLOBWB run forced with the6

ERA6190 dataset and red line is derived from PCR-GLOBWB run forced with the ERACLM7

dataset.8

Fig. 7. Hydrological regimes for all 19 catchments derived from discharges calculated for the period 1961–1990, with the average monthly
discharge (m3/s) on the y-axis and the month numbers on the x-axis. Black line is annual mean observed discharge (GRDC), grey lines
are PCR-GLOBWB based on individualnon bias-correctedGCM datasets, green line is ensemble mean result, blue line is derived from
PCR-GLOBWB run forced with the ERA6190 dataset and red line is derived from PCR-GLOBWB run forced with the ERACLM dataset.

snowmelt driven discharge peak is steeper than modeled
and modeled baseflow is too high. Modeled discharge for
the Murray, Niger and Zambezi is higher throughout the

year. The regime curves of monsoon influenced rivers are
modeled relatively well, except for the regime curve of the
Indus, where the snow and glacier melt driven discharge
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1
Figure 8: Boxplots obtained form the 30-year average mean discharges of the ensemble of2

non-bias corrected GCM runs (raw) and bias-corrected GCM runs (cor; boxes are drawn3

between the quartiles and whiskers represent minimum and maximum values). The points4

show 30-year average mean discharges of the ERA6190 run (blue), ERACLM  run (red) and5

GRDC observations (GRDC).6

Fig. 8. Boxplots obtained form the 30-year average mean discharges of the ensemble of non-bias corrected GCM runs (raw) and bias-
corrected GCM runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum values). The points show
30-year average mean discharges of theERA6190run (blue),ERACLMrun (red) and GRDC observations (GRDC).

rise is too early in spring and does not coincide with the
monsoon influenced discharge peak, as in the observed
regime (Immerzeel et al., 2010). For the Parana observed
river flow is more constant through time, because of the
presence of large reservoirs. The NS coefficients (Table 4)
show that the modelled regime curves show large deviations,
due to biases in absolute discharge quantities, for the arid
catchments (Murray, Orange, Zambezi and Niger) and for

the Yellow river. Furthermore, negative NS coefficients
are obtained for the Parana and Congo where the shape
of the modeled regime deviates from the observed regime.
NS coefficients of more than 0.5 are obtained for the
Brahmaputra, Ganges, Mekong and Yangtze and for the
Mississippi and Lena.
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1
Figure 9: Thirty year average mean discharge (m3/s) calculated from a) the PCR-GLOBWB2

run forced with the ERA6190 dataset, b) the PCR-GLOBWB run forced with the ERACLM3

dataset, c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB runs4

and d) the CV (-) of the thirty year average discharges of the ensemble of GCMs.5

Fig. 9. Thirty year average mean discharge (m3/s) calculated from(a) the PCR-GLOBWB run forced with theERA6190dataset,(b) the
PCR-GLOBWB run forced with theERACLMdataset,(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB runs
and(d) the CV (–) of the thirty year average discharges of the ensemble of GCMs.

3.2 Evaluation of the bias-correction method using the
ERACLM dataset

The results of theERACLMrun are compared with the results
of theERA6190run and observed GRDC discharges in order
to assess the influence of the bias-correction method applied
to the GCM datasets.

3.2.1 Continental discharges

The continental discharges of theERACLMand theERA6190
run in Table 3 are comparable in size. Globally the difference
is only 3%. The difference is especially small for Europe
(0.07%). For all continents, except Europe, discharge is
lower in theERACLMrun. TheERACLMrun underestimates
the global average modeled runoff obtained from previous
studies by 4%.
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1
Figure 10: Thirty year average relative Q90 values: Q90 / Q  (-) calculated from a) the PCR-2

GLOBWB run forced with the ERA6190 dataset, b) the PCR-GLOBWB run forced with the3

ERACLM dataset,  c)  the  ensemble  mean  discharge  results  of  the  12  GCM  based  PCR-4

GLOBWB runs and d) the CV (-) of the thirty year average Q90 of the ensemble of GCMs.5

Fig. 10. Thirty year average relativeQ90 values:Q90/Q (–) calculated from(a) the PCR-GLOBWB run forced with theERA6190dataset,
(b) the PCR-GLOBWB run forced with theERACLMdataset,(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB
runs and(d) the CV (–) of the thirty year averageQ90 of the ensemble of GCMs.

3.2.2 Discharge statistics

Differences in results of theERACLM and ERA6190are
small, especially for mean discharge (see Fig. 8). Deviations
of both the GCM runs and the ERA-40 based runs from the

observed GRDC discharge statistics are larger (Figs. 3–6).
High and low-flow values are more extreme in theERACLM
run than in theERA6190run; relativeQ90 values are higher
for 14 out of 19 basins and relativeQ10 values are lower for
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1
Figure 11: Thirty year average relative Q10 values: Q10 / Q  (-) calculated from a) the PCR-2

GLOBWB run forced with the ERA6190 dataset, b) the PCR-GLOBWB run forced with the3

ERACLM dataset,  c)  the  ensemble  mean  discharge  results  of  the  12  GCM  based  PCR-4

GLOBWB runs and d) the CV (-) of the thirty year average Q10 of the ensemble of GCMs.5

Fig. 11. Thirty year average relative Q10 values:Q10/Q (–) calculated from(a) the PCR-GLOBWB run forced with theERA6190dataset,
(b) the PCR-GLOBWB run forced with theERACLMdataset,(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB
runs and(d) the CV (–) of the thirty year average Q10 of the ensemble of GCMs.

14 out of 19 basins. Differences between the runs in both
relative Q10 and relative Q90 are largest for Amazon and
Niger.

Differences in relative IAV are more pronounced. For
16 out of 19 basins theERA6190results have a lower IAV.
The IAV of the ERA6190is prescribed by the CRU TS

2.1 timeseries, whereas the IAV of theERACLMdataset is
prescribed by the ERA-40 re-analysis dataset. The IAV of
ERA-40 precipitation is known to be too high after 1972 due
to gradual increasing inclusion of satellite observations in the
system (Chen and Bosilovich, 2007; Hagemann et al., 2005;
Troccoli and K̊alberg, 2004), resulting in genrally higher IAV
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Figure 12: Thirty year average timing of peak discharge (month) calculated from a) the PCR-4

GLOBWB run forced with the ERA6190 dataset, b) the PCR-GLOBWB run forced with the5

ERACLM dataset,  c)  the  ensemble  mean  discharge  results  of  the  12  GCM  based  PCR-6

GLOBWB runs and d) the CV (-) of the thirty year average timing of peak discharge of the7

ensemble of GCMs.8

Fig. 12. Thirty year average timing of peak discharge (m3/s) calculated from(a) the PCR-GLOBWB run forced with theERA6190dataset,
(b) the PCR-GLOBWB run forced with theERACLMdataset,(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB
runs and(d) the CV (–) of the thirty year average timing of peak discharge of the ensemble of GCMs.

values in theERACLMthan in theERA6190run for 16 out
of 19 basins. For 10 out of 19 basins (mainly located in
monsoon and arctic regions) the IAV of theERACLMdataset
is closer to the IAV of the GRDC than theERA6190dataset.
For these basins IAV is underestimated by both runs and the
high ERA-40 IAV compensates for this underestimation.

3.2.3 Regime curves

Timing of peak discharge and regime curves are comparable
for the two forcing datasets, see for comparison the blue
(ERA6190) and red (ERACLM) lines in Fig. 7. Exceptions
are (1) the Indus, where theERA6190dataset results in a later
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2
Figure 13: Thirty year average relative inter-annual variability: IAV/ Q  (-) calculated from a)3

the PCR-GLOBWB run forced with the ERA6190 dataset, b) the PCR-GLOBWB run forced4

with the ERACLM dataset,  c)  the  ensemble  mean  discharge  results  of  the  12  GCM  based5

PCR-GLOBWB runs and d) the CV (-) of the IAV of the ensemble of GCMs.6

Fig. 13. Thirty year average relative inter-annual variability: IAV/Q (–) calculated from(a) the PCR-GLOBWB run forced with the
ERA6190dataset,(b) the PCR-GLOBWB run forced with theERACLMdataset,(c) the ensemble mean discharge results of the 12 GCM
based PCR-GLOBWB runs and(d) the CV (–) of the IAV of the ensemble of GCMs.

timing of peak discharge that coincides with the monsoon
instead of snow melt in spring, and (2) the Orange, where
the averageERA6190regime is more constant throughout

the year and the seasonality of the regime, with a low end
of summer baseflow, is less pronounced.
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1
Figure 14: Hydrological regimes for all 19 catchments derived from discharges calculated for2

the period 1961-1990, with the average monthly discharge (m3/s) on the y-axis and the month3

numbers on the x-axis. Black line is annual mean observed discharge (GRDC), grey lines are4

PCR-GLOBWB based on individual bias-corrected GCM datasets, green line is ensemble5

mean result, blue line is derived from PCR-GLOBWB run forced with the ERA6190 dataset6

and red line is derived from PCR-GLOBWB run forced with the ERACLM dataset.7

Fig. 14. Hydrological regimes for all 19 catchments derived from discharges calculated for the period 1961–1990, with the average monthly
discharge (m3/s) on the y-axis and the month numbers on the x-axis. Black line is annual mean observed discharge (GRDC), grey lines
are PCR-GLOBWB based on individualbias-correctedGCM datasets, green line is ensemble mean result, blue line is derived from PCR-
GLOBWB run forced with the ERA6190 dataset and red line is derived from PCR-GLOBWB run forced with the ERACLM dataset.
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Table 4. Nash-Sutcliffe coefficients for the regimes curves (30-year
average monthly mean discharges) of theERACLM, ERA6190,
ensemble mean non bias-corrected (RAW) and ensemble mean
bias-corrected (BiasCor) GCM runs relative to the GRDC regime.

NS RAW BiasCor ERA6190 ERACLM

Amazon −5.64 −0.08 0.43 0.50

Brahmaputra −2.10 0.59 0.55 0.59

Congo river −0.07 −2.01 −1.95 −1.48

Danube 0.87 0.33 0.38 0.50

Ganges 0.65 0.97 0.96 0.86

Indus 0.12 0.05 0.02 0.15

Lena 0.72 0.61 0.62 0.62

MacKenzie 0.58 0.27 0.30 0.21

Mekong 0.68 0.94 0.89 0.87

Mississippi 0.06 0.63 0.71 0.66

Murray 0.03 −8.34 −10.53 −13.26

Niger −4.61 −14.98 −28.91 −16.78

Orange −106.11 −7.86 −15.92 −17.75

Parana −9.84 −23.61 −19.36 −19.44

Rhine 0.54 0.39 0.15 0.25

Volga −0.05 0.50 0.43 0.50

Yangtze 0.87 0.68 0.66 0.63

Yellow River −88.06 −0.70 −1.25 −1.27

Zambezi −4.05 −2.17 −3.79 −2.86

3.2.4 Spatial statistics

The maps withQ, relativeQ90 and relativeQ10 (Figs. 9, 10
and 11 upper two maps) show only a few differences between
theERACLMandERA6190runs. Both the relativeQ90 and
Q are lower in western Australia forERACLM.The south
of Africa is relatively wet in theERA6190run and relative
Q90 values are higher in theERA6190run for rivers and
streams west of the Sahara. Mean discharge is slightly lower
in the dry Western USA. Spatial patterns of timing of peak
discharge are similar for the two runs (Fig. 12). Differences
in IAV are also small (Fig. 13). Apparent are the relative high
IAV values in theERACLM run in Oman, Yemen and the
Northern Sahel, where precipitation variability is influenced
by the African Monsoon (Cook and Vizy, 2006). In dry
regions the relative IAV values are the highest but of little
importance as they are associated with mean discharge values
that are close to zero.

3.3 Evaluation of discharge variability obtained with
bias-corrected GCM datasets

3.3.1 Continental discharges

Differences in continental discharges derived from the
ERA6190, ERACLMand ensemble of GCM runs are small
(Table 3) as expected. The values of the GCM derived
discharges are closer to theERACLMdischarges than to the
ERA6190, globally the difference betweenERACLMand the
mean GCM discharge is less than 2%.

3.3.2 Discharge statistics

After bias-correction, deviations of the GCM ensemble
discharge statistics from the GRDC observed discharge
statistics have decreased for the majority of catchments
(Fig. 8). The bias-correction decreased the deviation forQ

for 11 out of 19 basins, for relativeQ90 for 13 out of 19
basins and for the IAV for 12 out of 19 basins. However, for
relativeQ10 the deviation increased for 11 out of 19 basins
and forQpeakthe deviation increased for 10 out of 19 basins.

Furthermore, the spread between the individual GCM
results decreased. The CV of the ensemble of GCMs
decreased forQ andQ10 for all catchments, forQpeak and
IAV for 18 out of 19 catchments and for relativeQ90for
12 out of 19 catchments, On average, after bias-correction,
the CV of Q is lower than the CV ofQ10 for 11 out of
19 basins and lower than the CV of relativeQ90 for 14
out of 19 basins (Table 5). However, within the ensemble
of bias-corrected GCM results, several GCMs still show
deviations forQ, especially for the Orange and Zambezi.
The highest CV values are obtained for IAV. Low CV
values and relatively small outliers ofQ10, Q90 andQ

are obtained for the Rhine, Lena, Yangtze and Brahmaputra.
For the Lena and Brahmaputra the range between minimum
and maximum values for IAV and timing of peak are also
relatively small. This indicates the bias-correction reduced
the spread between the GCMs best in these catchments. For
the dry catchments; Orange and Zambezi, CV values and
the range between minimum and maximum GCM results for
Q90, Q10 andQ remain large. CV values for timing of
peak discharge occurrence are small, especially for the Arctic
rivers and the Monsoon influenced rivers Brahmaputra,
Ganges, Mekong and Yellow river.

The results of the ensemble of bias-corrected GCMs are
closer to the GRDC statistics than the results of the ERA-40
based runs for the majority of basins forQ, Q10 andQpeak
(Figs. 3–6). For relativeQ90 the results of theERACLM
run are closer to the discharge observations for 11 out of 19
basins and the IAV of both ERA-40 based runs is closer to the
GRDC values for more than half of the basins (ERACLMfor
10 andERA6190for 11 basins). On average the IAV is higher
in discharge results of hydrological model runs based on the
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Table 5. Ensemble coefficients of variation of the GCM results for the statistics of interest.

CV Qmean Q90 Q10 IAV Qpeak

raw(∗) cor(∗) raw cor raw cor raw cor raw cor

Amazon 0.56 0.08 0.21 0.13 0.50 0.12 0.83 0.72 0.17 0.12

Brahmaputra 0.54 0.04 0.10 0.05 0.26 0.05 0.71 0.29 0.06 0.02

Congo river 0.45 0.06 0.14 0.08 0.34 0.06 0.65 0.38 0.30 0.12

Danube 0.35 0.08 0.08 0.11 0.18 0.05 0.32 0.26 0.20 0.06

Ganges 0.59 0.11 0.16 0.10 0.51 0.11 0.88 0.56 0.15 0.02

Indus 0.24 0.10 0.11 0.08 0.19 0.06 0.46 0.37 0.17 0.07

Lena 0.34 0.03 0.12 0.04 0.30 0.04 0.55 0.24 0.11 0.03

MacKenzie 0.33 0.07 0.07 0.10 0.12 0.04 0.43 0.50 0.09 0.03

Mekong 0.51 0.08 0.12 0.08 0.39 0.06 0.68 0.21 0.11 0.02

Mississippi 0.53 0.09 0.08 0.10 0.19 0.05 1.16 0.28 0.12 0.11

Murray 0.46 0.09 0.09 0.13 0.27 0.13 0.92 0.49 0.21 0.02

Niger 0.95 0.08 0.47 0.07 3.32 0.14 0.96 0.38 0.09 0.03

Orange 1.45 0.23 0.11 0.37 0.35 0.10 1.08 0.80 0.34 0.15

Parana 0.65 0.05 0.19 0.09 0.91 0.07 0.97 0.27 0.14 0.10

Rhine 0.35 0.04 0.08 0.06 0.20 0.07 0.44 0.19 0.23 0.14

Volga 0.64 0.07 0.19 0.10 0.50 0.12 0.59 0.34 0.14 0.14

Yangtze 0.49 0.04 0.07 0.06 0.12 0.06 0.68 0.20 0.10 0.05

Yellow River 0.48 0.07 0.06 0.07 0.20 0.05 0.54 0.28 0.09 0.01

Zambezi 0.78 0.16 0.10 0.15 3.32 2.56 0.73 0.26 0.12 0.03

(∗) raw refers to the statistics of the non bias-corrected GCM runs and cor refers to the statistics of the bias-corrected GCM runs.

forcing datasets where the IAV is determined by the model
generated meteorological datasets (e.g. the datasets obtained
by bias-correction).

3.3.3 Regime curves

Overall the simple monthly bias-correction reduces the
differences between the regimes derived from the GCM
based runs (compare Fig. 7 and Fig. 14, where grey
lines represent individual GCM runs and the green line
is ensemble mean regime). After bias-correction, the
resemblance of the GCM runs is large for rivers with a
strong seasonal pattern, like the monsoon influenced and
Arctic rivers. For other catchments that are influenced by
both rainfall and snowmelt, like the Amazon, Rhine, Volga,
Danube and Indus, differences in regime pattern are larger.

After bias-correction the NS coefficient of the regime
curves decreased for 10 out of 19 basins; for several basins,
such as the Indus, MacKenzie, Murray, Niger and Parana, the
mean regime curves of the non bias-corrected GCMs is much

closer to the GRDC regime than the mean regime curves of
the bias-corrected GCMs. Still, the NS coefficient of the
GCM ensemble mean is higher for 12 out of 19 basins than
the NS coefficients derived for the regimes of both ERA-40
based runs.

For basins in the drier regions of the world, such as
the Murray, Zambezi and Orange river, the GCM ensemble
mean regime curve is slightly lower and closer to the GRDC
regime than the regime curves of both ERA-40 runs. For the
remaining basins the deviations of the GCM ensemble mean
regime from the GRDC regime are comparable those of the
ERACLMandERA6190regimes.

3.3.4 Spatial statistics

Differences in ensemble mean spatial discharge patterns
from both ERA-40 runs are small.Q is relatively high in
the Sahara resulting in lower relative Q90 values. In the
Australian desert GCM mean discharge is relatively low and
in the Southwestern USA the region with lower discharge
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values is slightly more extended. Ensemble uncertainties
(CV) are large for arid African regions, the arid southwestern
USA and for the desert region of Australia where the CV
of precipitation of the ensemble of GCMs is large as well
(Johnson and Sharma, 2009). High CV values are also
obtained for mountainous regions, like the Andes ridge and
parts of Asia, where the low GCM resolutions are unable to
capture the high spatial heterogeneity (Viviroli et al., 2010).
CV values are higher, and regions with high CV values are
more extended, for relativeQ90 andQ10 than forQ. For
all statistics the maps obtained from the ensemble of GCMs
resemble the maps of theERACLMrun most, except for the
Northern Sahel.

4 Discussion

The analysis in this study was performed in three steps, i.e.
to quantify the influence of both the hydrological model
deficiencies and the bias-correction method before evalu-
ating the discharge variability derived from bias-corrected
GCM datasets. In this case PCR-GLOBWB was used as
a means to assess the hydrological discharge variability
obtained from meteorological GCM datasets but the use of
any other macro-scale hydrological model probably would
have resulted only in minor differences. As assessed by
the validation exercise in the first step of this study, the use
of a hydrological model introduces uncertainty and bias in
the discharge that propagates in the results derived from the
bias-corrected GCM datasets. Although the model errors
found here are specific for PCR-GLOBWB, they are not
unlike those found in other global model studies (e.g., Döll
et al., 2003; Nijssen et al., 2001; Arnell, 1999). These errors
can be reduced when the model is tuned or calibrated but this
is only possible at the expense of a loss of its physical basis
and the result is highly depended on data availability (Beven,
2001). Calibration would also amend for errors in the
meteorological input, thus compromising the applicability of
the model to different GCMs.

The performance assessment is hampered by the lack of
a perfect representation of the historical meteorology. By
downscaling the CRU TS 2.1 timeseries to daily values with
the ERA-40 reanalysis we created a ‘best guess’. However,
biases present in both the CRU and ERA-40 datasets
will also be included in this new dataset. Nonetheless,
PCR-GLOBWB, forced with this dataset, reproduces global
runoff quantities and regimes relatively well. For the
European continent and the rivers Danube, Rhine and Volga
mean discharges and inter-annual variability are relatively
close to the GRDC observed values. Differences in total
continental discharges from previous studies are small.
Globally the difference from the average of existing model
studies is less than 1% (Table 3). Still, for the African
continent as well as the Murray river PCR-GLOBWB
overestimates discharge. Regime curves are also reproduced

well for Monsoon influenced rivers but mean discharge and
inter-annual variability are underestimated for most of the
Asian monsoon rivers (Fig. 7).

Other than through model deficiencies, the biases between
modeled and observed discharge statistics are caused by
errors in 1) the observed discharges, 2) the ERA-40 dataset
and 3) the CRU TS 2.1 dataset, which is known to be
inaccurate for parts of Africa and suffers from undercatch in
snow dominated areas (Fiedler and Döll, 2007). By using the
CRU dataset as reference for the bias-correction, deviations
present in the CRU set are introduced in the bias-corrected
GCM datasets as well.

The influence of the bias-correction method is obtained
form the difference in results between theERA6190and
the ERACLMruns. Differences between these two runs are
small, overall relative IAV andQ90 values are higher in the
ERACLMrun (Fig. 3 and 5) andQ values are lower (Fig. 8).
The IAV of ERA-40 precipitation is relatively high after 1972
when satellite observations are gradually included in the
system (Chen and Bosilovich, 2007). This high precipitation
IAV compensates for the underestimation of observed IAV
obtained with theERA6190run.

The average annual continental runoff is lower for the
ERACLMthan for theERA6190run, especially over Africa
(Table 3). For theERACLM dataset the bias-correction is
not performed on a year-by-year basis, i.e. adjusting all
monthly precipitation, temperature and evaporation values
to the monthly observations from the CRU for the specific
year. Instead, in theERACLM (and the GCM) dataset
the 30-year average annual mean precipitation, temperature
and evaporation quantities are equalized to the 30-year
average observed values of the CRU observations. The
inter-annual variability for potential evaporation is relatively
small compared to precipitation. Therefore, the correction
of the 30-year mean potential evaporation has a similar
increasing or decreasing effect on all 30 years. Yet,
inter-annual variability for precipitation is larger and the
multiplicative correction results in larger absolute changes
for wet years. Herewith consistency between precipitation
and evapotranspiration is lost over the wetter periods.
Especially in wet years, with precipitation overestimations
in the ERA-40 dataset, the correction results in relatively
large precipitation decreases, while potential evaporation is
only slightly adjusted. Here the ERACLM run will yield
less effective precipitation with a consequent decrease in
discharge.

Bias-correction decreases the deviations of GCM based
model results from the observed discharges forQ, relative
Q90 and IAV for most basins, but increases deviations
for Qpeak and relativeQ10for most basins. After
bias-correction, continental discharges obtained from the
ensemble of GCMs are close to theERACLM results and
lower than discharges modeled with theERA6190dataset
(Table 3). The results of the bias-corrected GCM runs are
on average closer to the GRDC data forQ, Q10 andQpeak,
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while forQ90 theERA6190run is closer to the GRDC values
and for IAV both ERA-40 based runs are closer to the GRDC
for a majority of the basins.

Application of the bias-correction method to the GCM
datasets decreases the spread between the GCM ensemble
members and lower CV values are obtained for the majority
of basins for all discharge statistics. The largest ensemble
CV values remain for drier catchments. Furthermore,
bias-correction has less influence on extremes than on mean
discharge; CV values are lower forQ than forQ10 andQ90
(Table 5). The CV of the inter-annual variability decreased
for 17 out of 19 basins. Still, the CV values for IAV remain
the highest of all statistics.

Bias-correction decreased the spread between the individ-
ual GCM derived regime curves. Especially, the resemblance
of regimes for the monsoon influenced and Arctic rivers is
large (Fig. 14). The NS coefficient decreased for 10 out of
19 basins after bias-correction. Yet, it can be questioned,
whether this decrease is a result of better performance of the
non bias-corrected datasets or a result of biases in the not
corrected GCM datasets that compensate for inadequacies of
the hydrological model (Fig. 7).

5 Conclusions

In order to evaluate the usability of bias-corrected GCM
datasets in hydrological impact studies with a focus
on changes in extremes and variability, we calculated
hydrological regime curves and various discharge statistics
for the period 1961–1990. We did this by simulating
discharge with PCR-GLOBWB for a selection of 12
GCMs and comparison of the results with observed GRDC
discharge data and two reference runs based on the ERA-40
and CRU TS 2.1 datasets.

As expected, the spread between the results of the
different GCM based runs decreases after bias-correction,
especially for rivers with a strong seasonal pattern. Overall,
the bias-correction decreased the deviation between GCM
ensemble mean and GRDC observed statistics forQ, Q90
and IAV. However, the bias-corrected datasets result in
slightly lower mean annual discharge amounts and for arid
and mountainous basins the method performs less well.

Observed discharge statistics (Q10, Q90 andQ) are
better approximated by the bias-corrected GCM datasets
than inter-annual variability (IAV) and agreement amongst
models is higher for mean discharge and timing than for
IAV. This suggests that GCMs are mostly useful in global
hydrological impact studies in which persistence is of less
consequence (e.g. in case of flood studies rather than those
on droughts).

Furthermore, the bias-correction influences mean dis-
charges more than discharge extremes, which has the positive
consequence that changes in daily rainfall distribution and
subsequent changes in discharge extremes will also be

preserved when the bias-correction method is applied to
future GCM datasets. However it also shows that agreement
between GCMs remains small for discharge extremes

Finally, it can be concluded that because of the large
deviations between observed and simulated discharge in
which both errors in climate forcing, model structure and to
a lesser extent observations are accumulated, it is advisable
not to work with absolute discharge values for the derivation
of future discharge projections, but rather calculate relative
change by dividing the absolute change by the discharge
calculated for the control experiment.
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