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Abstract. Data from General Circulation Models (GCMs) regions. However, deviations between GCM results and
are often used to investigate hydrological impacts of climateGRDC statistics did decrease f@r, Q90 and IAV. After
change. However GCM data are known to have large biasedjias-correction consistency amongst models was high for
especially for precipitation. In this study the usefulness ofmean discharge and timin@peaR, but relatively low for
GCM data for hydrological studies, with focus on discharge inter-annual variability (IAV). This suggests that GCMs can
variability and extremes, was tested by using bias-correctede of use in global hydrological impact studies in which
daily climate data of the 20CM3 control experiment from a persistence is of less relevance (e.g. in case of flood rather
selection of twelve GCMs as input to the global hydrological than drought studies). Furthermore, the bias-correction
model PCR-GLOBWAB. Results of these runs were comparednfluences mean discharges more than extremes, which
with discharge observations of the GRDC and dischargedas the positive consequence that changes in daily rainfall
calculated from model runs based on two meteorologicaldistribution and subsequent changes in discharge extremes
datasets constructed from the observation-based CRU TS2Mill also be preserved when the bias-correction method is
and ERA-40 reanalysis. In the first dataset the CRU TSapplied to future GCM datasets. However, it also shows
2.1 monthly timeseries were downscaled to daily timeserieghat agreement between GCMs remains relatively small for
using the ERA-40 dataseERA619). This dataset served discharge extremes.
as a best guess of the past climate and was used to analyzeBecause of the large deviations between observed and
the performance of PCR-GLOBWAB. The second dataset wasimulated discharge, in which both errors in climate forcing,
created from the ERA-40 timeseries bias-corrected with themodel structure and to a lesser extent observations are
CRU TS 2.1 dataset using the same bias-correction methodccumulated, it is advisable not to work with absolute
as applied to the GCM datasetSRACLM. Through this  discharge values for the derivation of future discharge
dataset the influence of the bias-correction method wagprojections, but rather calculate relative changes by dividing
quantified. The bias-correction was limited to monthly the absolute change by the absolute discharge calculated for
mean values of precipitation, potential evaporation andthe control experiment.
temperature, as our focus was on the reproduction of inter-
and intra-annual variability.

After bias-correction the spread in discharge results of1 |ntroduction
the GCM based runs decreased and results were similar
to results of the ERA-40 based runs, especially for riversBecause runoff regimes might change significantly due to
with a strong seasonal pattern. Overall the bias-correctiortlimate change, strategies for water management are sought
method resulted in a slight reduction of global runoff and for that either mitigate the undesired effects of a changing
the method performed less well in arid and mountainousclimate or gain from the positive effects. The search for
these strategies relies on reliable assessment of the effect

Correspondence to: of climate change on river discharge. Consequently much
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Lettenmaier, 2007; Prudhomme and Davies, 2008; Buytaertlecrease, while intensity will increase resulting in heavier
et al.,, 2009), regional (Lehner et al., 2006; Strzepek andain events (Trenberth et al., 2003; Allan and Soden, 2008;
Yates, 1997; Hagemann et al., 2009) and global scale (ArnellMeehl et al., 2000). Therefore, corrections based on
1999, 2003; Alcamo et al., 2000; Alcamo and Henrichs, past deviations between modeled and observed variability,
2002; Milly, 2006). although often applied (Leaner and Buishand, 2007; Ines and
Future projections can be calculated using changeHansen, 2006; Wood et al., 2004), may not hold in future.
factors; long-term average changes derived from climateApplying variability corrections might even mask important
model data which are applied to observed meteorologicathanges, since changes in rainfall distributions may have a
time-series to obtain future meteorological time-series aanuch larger effect on the hydrological cycle than changes
input for hydrological models (Alcamo and Henrichs, in mean precipitation (Allen and Ingram, 2002). Second, as
2007; Nijssen et al., 2001; d&fdosmarty et al.,, 2000). discussed before, the very goal of this study is to examine
However, with this method changes in temporal variability the effect of GCM variability on modeled hydrological
are ignored. Therefore climate datasets from Generabariability, thereby assessing the usability of GCM data for
Circulation Models (GCM) are often directly used as water management related climate effect studies. Replacing
input for hydrological models when investigating possible the differences in variability between GCMs to a single
changes. Unfortunately, different GCM datasets producecurrent observed variability (i.e. CRU) would rule out such
varying and even contradicting results (Varis et al., 2004).an analysis.
GCM results of the current climate control run (20CM3)  Our evaluation of the ability of a GCM-forced hydrologi-
do not always agree with the observed climate, deviationsal model to reproduce global discharge variability consists
are especially apparent for precipitation (Covey et al., 2003,of three steps. First, the performance of PCR-GLOBWB is
Perkins and Pitman, 2009). Often too many days withassessed when forced directly with the CRU TS 2.1 monthly
light rain are simulated and the frequency and amount oftimeseries (New et al., 2000) which are downscaled to daily
heavy rain events are underestimated (Dai, 2006). Becausealues with the ERA-40 re-analysis (Uppala et al., 2005)
of the variance amongst GCMs many studies concludedor the period 1961 to 1990. The CRU TS 2.1 timeseries
that a multi-model ensemble of GCMs should be used toare derived by interpolation of monthly meteorological
obtain a reliable impression of the spread of possible regionabbservations while the ERA-40 reanalysis reflects the daily
changes and the uncertainties accompanying these changeariations in the large-scale meteorological conditions over
(Murphy et al., 2004; Boorman and Sefton, 1997; IPCC,the globe. Thus, the down-scaled data set provides a best
2007). Furthermore, it has been widely recognized (Wood eguess of the inter-annual and seasonal variability. River
al., 2004; Leander and Buishand, 2007; Fowler and Kilsby,discharge statistics resulting from the PCR-GLOBWB run
2007; Wilby et al., 1998) that precipitation data needs to bedriven with this forcing dataset are then compared with
bias-corrected before they can be used. observed river discharge statistics from the GRDC dataset
Previous studies (Milly et al.,, 2006; Nohara et al.,, (GRDC, 2007). Although this comparison is subject to any
2006) already investigated the correct reproduction oferrors in the forcing dataset, evaluation of the model results
mean discharge and runoff regimes. Therefore we focusrom this run provides the best available information on the
on the ability of a GCM-forced hydrological model to performance of PCR-GLOWB.
reproduce global discharge variability (extremes, seasonal In a second step, the ERA-40 dataset is bias-corrected
and inter-annual variation), parameters relevant for watemusing the same method as used for the GCM datasets as
management. We realize that even if we obtain a correct yearly month-by-month correction with the CRU TS2.1
reproduction of current discharge variability this is no monthly time-series, similar to step 1, is not possible for
guarantee that projected discharge variability is correct assCM datasets; GCM timeseries only provide a realization
well (Prudhomme and Davies, 2008). However, if dischargeof a given climate and do not represent the observed
variability is biased for the current period, future projections meteorology of a specific year. Rather, each monthly GCM
of discharge variability are likely to be biased as well. field is updated in a manner that scales the 30-year monthly
We restrict ourselves to a bias-correction of monthly average GCM quantity to the 30-year monthly average CRU
mean values of GCM precipitation, temperature and potentiall S2.1 quantity. With this method the inter-annual variability
evaporation (potential evaporation was derived using eitheremains similar to that of the original GCM or ERA-40
Penman-Monteith or Blaney-Criddle, depending on datatimeseries. Results of the hydrological model run driven
availability). Although a correction on monthly means with this forcing dataset are compared with results of the
does not guarantee that rainfall marginal distributions arehydrological model run of step 1 and with observed GRDC
well reproduced (Dai, 2006), no additional correction data in order to quantify the influence of the bias-correction
on GCM variability is applied for two reasons: First, method as this preserves the full temporal variability of the
because several climate change experiments have shown thaiodeled meteorological product (ERA-40, GCMs) instead
GCM variability will change, especially for precipitation. of imposing the observed seasonal and inter-annual signal of
Precipitation frequency and storm duration is likely to the CRU TS 2.1.
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Inthe last step PCR-GLOBWB is forced with the meteoro- water balance and basin runoff is represented less reliable by
logical datasets of 12 GCMs bias-corrected according to themost LSSs than by hydrological models (Gerten at al., 2004)
method described in step 2. To quantify the spread betweeand the resolution is too coarse for hydrological studies.
the results of the GCMs the coefficient of variation (CV) is A notable exception is global VIC (Nijssen et al., 2001).
calculated for a number of statistical quantities derived forVIC is designed to be a land surface scheme for climate
the ensemble of GCMs. Combined with the findings on models and solves both the energy and the water balance.
model performance (step 1) and loss of observed temporalt the global scale it currently has a resolution of 1 degrees
variability (step 2), these results will show the usability of (Sheffield et al., 2009), where vegetation, soil moisture and
meteorological GCM datasets in hydrological impact studiesthe application of precipitation are modeled using sub-grid
with a focus on extremes and discharge variability. variability schemes. Runoff, existing of baseflow from the

lower soil moisture store and fast response flow, is routed
along a routing network using a convolution approach. VIC

2 Hydrological model is one of the few LSSs that is frequently used in stand-alone
hydrological studies.
2.1 Existing global hydrological models The main focus of this study is the reproduction of

variability in runoff regimes. Therefore the hydrological

Obviously, the macro-scale hydrological model (MHM) model used should be designed to calculate this variability,
PCR-GLOBWSB follows in a long line of existing MHMs. including a good representation of hydrology. In addition
Without attempting to be complete, we refer to short reviewsto the models described above the model used in this
given by Arnell (1999) and DIl et al. (2003) describing study, PCR-GLOBWAB, contains an advanced scheme for
VIC (Nijssen et al., 2001), Macro-PDM (Arnell,1999), the subgrid parameterization of surface runoff, interflow and
WBM (Vorosmarty et al., 1998) and WGHM (Il et baseflow and an explicit routing scheme for surface water
al., 2003), four models frequently used in large-scaleflow using the kinematic wave approximation that includes
hydrological studies. Similar to PCR-GLOBWB, the last retention in and evaporation loss from wetlands, lakes and
three models calculate for each time-step the water balanceeservoirs (Van Beek and Bierkens, 2009).
of all individual grid cells. The grids of WBM and WGHM
have a resolution of 0.5 degrees, corresponding to the.2 PCR-GLOBWB
finest resolution of most climate datasets available, within ) o _
Macro-PDM grid cells can either be regular or catchmentPCR-GLOBWB is a global distributed hydrological model
shaped. All three models contain at least one soil wateMith @ resolution of 0.5degrees (Van Beek and Bierkens,
layer and total runoff consists of a fast overland and a slow2009; Bierkens and van Beek, 2009). Each model cell
groundwater component. Size and partitioning of thesetOnsists of two vertical soil layers and one underlying
fluxes depend on the degree of saturation of the soil wategroundwater reservoir. Sub-grid parameterization is used
layer(s) that is calculated either physically based or described® represent short and tall vegetation, surface water and for
by a statistical relation. The models all apply some form F:alculatlon of saturated areas for surface. rganf as well as
of routing to obtain realistic river discharge. WGHM @D interflow. Water ente_rs the cgll as precipitation and can
et al., 2003) is the sub model of the global water use and®@ Stored as canopy interception or snow. Snow melt or
availability model WaterGAP (Alcamo et al., 2003). accumulation occurs depending on temperature. Melt yvat.er

In addition to stand-alone hydrological models, global gnd throughfall are passed tp the surfac_e. Evapotr_ansplranon
water balances have also been modeled by coupleés cal_c_ulated from the potential evaporatlon_ and soil moisture
vegetation water balance models and by land surfacg&onditions. Exchange of water is possible between the
schemes (LSS) used in global climate models. Example$Cil @nd groundwater layers in both downward and upward
of global coupled vegetation water balance models ardlirection depending on so[l moisture sfta.tus a}nd groundwater
GEPIC (Liu et al., 2009) and LPJ (Gerten et al., 2004)_storagg. Total runoff consists of no_n-mﬂltratlng melt water,
GEPIC focuses on the calculation of crop yield and Crc)psaturatlon excess surface runoff, mter_flow and base flow.
water productivity. It combines the extent of crop covered FOr €ach time-step the water balance is computed per cell.
areas (with different properties for a variety of crop types), Runoff is acc.umulated and tra}nsfe(red as river dlschgrge
Hargreaves potential evaporation and soil water availability2!0nd the drainage network using kinematic wave routing.
to calculate crop water use. LPJ is a global dynamic € drainage network is taken from DDM30 gD and
vegetation model that describes the interaction between thk€hner, 2002) and lakes, wetlands and large reservoirs
terrestrial biosphere and the water cycle. Runoff is one of2€ obtained from the GLWD dataset (Lehner andllD
the outputs of this vegetation model and exists of excess ovef004)- The model calculates natural flows. Water use is
field capacity from the upper two soil layers and percolationn0t considered and only recently, in a newer version of
from the second soil layer. Runoff is translated to river PCR-GLOBWB, reservoir management has been included.

discharges using a routing scheme. At this stage the global
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2.3 Data in ERA-40 dataset. Inter-annual variability is relatively high
because the observational data included in the system vary
2.3.1 GCM data over time (Hagemann et al., 2005). This variation increased,

amongst others, the inter-annual variability of precipitation
In 1997 the IPCC developed a set of emission scenariostotals, which is relatively high after the first satellite data was
representing possible future climate change and providedncluded in the system for 1972.
boundary conditions to be used in GCM runs. These
scenarios are widely used in climate impact studies. 1n2.3.3 CRU data
addition to boundary conditions for studies based on these .
scenarios, the IPCC also provided boundary conditions fof°récipitation, temperature and the available parameters
a 20 century control experiment. Climate modelling centers'®duired to derive Penman-Monteith reference potential
around the world conducted GCM runs with this data. The€vapotranspiration have been retrieved from the monthly
Program for Climate Model Diagnosis and IntercomparisonCRU TS 2.1 timeseries (New et al., 2000). Since radiation
(PCMDI) has collected the results and made these availabl@nd wind speed are not provided as monthly timeseries,
through the PCMDI data portahttps://esg.linl.gov:8443/ the climatology from the CLIM 1.0 (New et al., 1999)
index.jsp). The PCMDI provides results on a daily time-step, Was used. The CRU data is based on station data that is
whereas the IPCC data portal only provides derived monthb)nterpolated asa fqnctlon of_Iongltude, !atltude and elevation
averages. Although it has been said that daily values ar@Pove sea level using the thin-plate spline method. The CRU
less reliable (Prudhomme et al., 2002), we prefer to use da”);I'S 2.1 timeseries have been validated in several studies.

data, since they provides more information on extremes and/nfortunately no benchmark meteorological dataset exists
climate variability. and validations are mainly based on differences between

We collected data from the GCMs for which complete historical datasets. Available historical data sources for

model datasets are provided on a daily time step for bottPrecipitation (FAO, GHCN and CRU) correspond well with
the 20C3M control experiment and the future scenario AZ’each other (Beck et aI.,_ 2004). Uncer_talnnes in precipitation
which we will analyze in future research. We selected the@Mounts and seasonality are largest in dry regions (Fekete et
period 1961 to 1990, assuming that a thirty year period wouldal" 2.094).. In Arctic regions the CRU datasets underestimate
be long enough to represent inter-annual variability, and allP"écipitation amounts due to snow undercatch problems
GCMs provide data for this period. For those GCMs with (Fiedler and Bll, 2007).

multiple runs available the first run was selected. We worked

with a 30-year period of day values assuming this period i32'3'4 Hydrological data

that long that potential biases in the selected GCM run ar&ye selected 19 large catchments to be evaluated in this study,
averaged out. Although the data portal does not provide allg\ering a variety of climate zones, latitudes and continents.
required parameters for the (state-of-the-art) Hadley centrerpe selected catchments are shown in Fig. 1, together with
climate models, HADGEM2 has been included. Data werepagin characteristics. Discharge data are obtained from

retrieved from the CERA-gatewalyitp://cera-www.dkrz.de  ihe Global Runoff Data Center (GRDC, 2007). For most

Table 1 gives an overview of the selected models. rivers daily data was available for at least part of the period
) of interest. For the Yangtze, Yellow River and Parana
2.3.2 ERA-40re-analysis data we retrieved monthly GRDC data and for the Indus we

S ) could only retrieve monthly data from the RivDis database
Precipitation, temperature and evaporation were COHeCtecEVbrbsmarty etal., 1998).

from the ERA-40 reanalysis as well. The ERA-40 dataset

is obtained with a numerical weather prediction system2 4 Derivation of potential evapotranspiration

that includes assimilation of meteorological observations.

The prediction system reasonably represents the observeivaporation is derived with the Penman-Monteith equation
climate. It has a relative high horizontal resolution (Monteith, 1965). For those GCMs where the required
(ca. 125km) and a vertical resolution of 60 levels (Uppalaatmospheric surface pressure data were not available, surface
et al.,, 2005). Still precipitation is poorly approximated pressure was derived from the pressure at sea level using
in ERA-40 data, particularly in the tropics (Troccoli and a global DEM. Air humidity fields, required to calculate
Kalberg, 2004). The ERA-40 datasets slightly overestimateshe actual vapor pressure, could not be retrieved from the
precipitation globally. Overestimations are largest in thedata portal for the complete period for some of the GCMs.
Congo basin, the southern slope of the Himalaya and théherefore we used a simplified method to calculate the
Andes region, while precipitation is underestimated in theactual vapor pressure from the minimum air temperature
Murray, Danube and Mississippi basins. In an attempt to(Allen et al., 1998). For arid regions the assumption that
eliminate the cold Arctic bias present in the ERA-15 datasetthe air is saturated when the temperature is at its minimum
a warm bias during winter is introduced in the Arctic region might not hold and therefore the minimum temperature
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Catchment Area Qavg Gauge Catchment Area Qavg Gauge

(km?) (m3fs) (km?) (m3fs)
Amazone 6.915.000 190.000 Obidos Murray 1.061.469 767  Wakool Junction
Brahmaputra 930.000 48.160 Bahadurabad Niger 2.117.700 6.000 Dire
Congo River  3.680.000 41.800 Kinshasa Orange river 973.000 365 Aliwal North
Danube 817.000 6.400 Ceatal Izmail Parana 2.582.672 18.000 Corientes
Ganges 907.000 12.015 Hardinge Bridge Rhine 65.683 2.200 Rees
Indus 1.165.000 6.600 Kotri Volga 1.380.000 8.060 Volgograd
Lena 2.500.000 17.000 Kusur Yangtze 1.800.000 31.900 Datong
MacKenzie 1.805.000 10.700 Norman Wells Yellow river 752.000 2.571 Huayuankou
Mekong 795.000 16.000 Muhdahan Zambezi 1.390.000 3.400 Katom a Mulilo

Mississippi 2.981.076  12.743 Vicksburg

Fig. 1. Selected catchments.

will not equal the dew temperature. As suggested byAsia during summer and relatively low for Africa and Asia.
Allen (1998) we subtracted 2 degrees from the minimumEspecially the overestimation in the Northern continents can
temperature in the arid regions. Arid regions have beerresult in deviations because, particularly at the beginning of
selected using the climate moisture indices of the WWDRII summer, evaporation will not be limited by water availability
(UN, 2006). For those models where time-series for otherand actual evaporation will be too high as well. However,
required parameters were missing or incomplete we usethydrological model studies are forced to use what has been
the Blaney-Criddle equation (Brouwer and Heibloem, 1986;reported by the GCMs host institutes and evaporation is not
Oudin et al.,, 2005) instead of Penman-Monteith. We provided for most models.

realize this may have introduced additional noise between

the model results (Kay and Davies, 2008). For several2.5 Bias correction of ERA-40 and GCM data with 30-
models we compared the potential evaporation we calculated  year mean month values

using Penman-Monteith with evaporation calculated with

the Blaney-Criddle equation. The full analysis has notFor the bias-correction of the GCM and ERA-40 datasets,
been included in this article for brevity, however potential monthly scaling factors were calculated from the difference
evaporation calculated with the Blaney-Criddle equation is(temperature) or ratio (precipitation and evaporation) in
relatively high for Europe, North-America and the north of 30-year average monthly means between the CRU TS 2.1
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Table 1. Overview of selected GCMs.

Model Institute Country  Acronym
BCM2.0 Bjerknes Centre for Climate Research Norway BCCR
CGCM3.1 Canadian Centre for Climate Modelling and Analysis Canada CCCMA
CGCM2.3.2 Meteorological Research Institute Japan CGCM
CSIRO-Mk3.0  Commonwealth Scientific and Industrial Research Organization Australia CSIRO
ECHAM5 Max Planck Institute Germany ECHAM
ECHO-G Freie Universitt Berlin Germany ECHO
GFDL-CM 2.1  Geophysical Fluid Dynamics Centre USA GFDL
GISS-ER Goddard institute for Space Studies USA GISS
IPSL-CM4 Institute Pierre Simon Laplace France IPSL
MIROC3.2 Center of Climate System Research Japan MIROC
CCsSM3 National Center for Atmospheric Research USA NCAR
HADGEM2 Met Office’s Hadley Centre for Climate Prediction UK HADGEM

Table 2. Descriptive statistics. Whe@dayis a daily discharge valué,corresponds to the day numbét,is the total number of days in the
30-year periodQ90 is the discharge exceeded at 10% of the days during the 30-year pefiods the discharge exceeded at 90% of the
days during the 30-year period, j corresponds to the year numvbierthe total number of years (3@year; is the mean annual discharge

for the years 1961 to 199@ is the 30 year average mean discharge @qgntn are the 30-year average mean monthly discharges.

Parameter Description Equation Unit
_ — 1 K
0 Thirty year average Q=% . Qday, m3/s
mean annual k=1
discharge

relative Q90 Discharge exceeded at 090/ Q0 -
10% of the days dur-
ing the thirty year pe-
riod relative to mean
discharge
relative Q10 Discharge exceeded at 010/ Q0 -
90% of the days dur-
ing the thirty year pe-
riod relative to mean

discharge
1 30 2
v 2 (Qyear;—0Q)
IAVrel Inter annual 1AV =11 -
variability derived Q
from yearly average
discharges
Qpeak Month of regime peak Qpeak= max(Qmonth) month
occurence

* For the stations where no daily time-series were available (Indus, Parana, Yangtze and Yellow River) the observed Q90 and Q10 values could not be calculated and are therefore
not included in the analysis.
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timeseries (New et al., 2000) and GCM/ERA-40 timerseriesWhere Tmin and Tmax are the minimum and maximum
for the period 1961 to 1990. Applying the monthly correction temperature (Kelvin) of the given month andis the total
factors also implies downscaling GCM data spatially to thenumber of days in the specific month. With this formula the
higher spatial resolution of the CRU dataset, since correctiomumber of wet GCM days per month is calculatédscm)
factors are calculated for all individual cells of the CRU and the precipitation amount for these days equals:

grid. In this section both the GCM and ERA-40 data will
be referred to as modeled datasdt]D), the bias-corrected

S , , P
ERA-40 dataset created in this section will be referred to asPqorrectedcem = CRU (6)
ERACLM For temperature an additive correction was used: Waem
Tcorrectedmob = Tmob + (Tcru— T'mob) (1) with this equation, precipitation is equally distributed over

WhereT is the daily temperature (K) anf is the 30-year the wet days and the original temporal distribution of
average month|y temperature. For evaporatiE'TR) a the GCM precipitation time-series is lost. However, this
multiplicative correction is used, to avoid the occurrence ofcorrection method only had to be applied for a limited

negative evaporation. number of cells.
ETPcru . . . .
ETPcorrectedMop = ETPMOD == (2) 2.6 Downscaling of CRU monthly timeseries to daily
ETPwoo timeseries with ERA-40

WhereETP s the daily potential evaporation (mm/day) and

ETPis the 30-year average monthly potential evaporation.tps cry 152.1 monthly timeseries are downscaled to daily
For precipitation a similar multiplicative correction is used 4 o caries with the ERA-40 re-analysis dataset. The method
as for evaporation. used, resembles the bias-correction method described in

_ Pcru Sect. 2.5. The only exception is that the 30-year average
PeorrectedmoD = PmoD Prob (3) monthly precipitation, temperature, evaporation and number

_ _ - _ of wet days @,7, ETPand W cgru) should be replaced in all

Where P is the daily precipitation (mm/day) andl is the  equations by the monthly mean values of the specific month
30-year average monthly precipitation. For some regionsy, the specific year, since for the ERA-40 dataset a year by
(North-Africa, Amazon and Himalaya) differences between year correction with the CRU TS 2.1 timeseries can be made.
the modeled monthly precipitation amount and CRU TS e resulting dataset will be referred to BRA6190and is

2.1 monthly precipitation amounts and number of wet daysy,seq in the first step of this study for the validation of the
can be very large. In these regions a simple muItlpllcat|vehydr0|ogica| model.

correction resulted in unrealistic precipitation peaks in
the bias-corrected precipitation time-series. Therefore th
bias-correction of precipitation, Eg3)( is extended with a
minimum daily precipitation amount that has to be exceeded o

by the modeled total monthly precipitation amount before the2-7-1 ~ Statistics

multiplicative correction can be used (Van Beek, 2008). The

threshold equals the monthly mean daily CRU precipitationWe calculated the thirty year average mean discharge, 10

62.7 Statistical analysis

amount: (low flow) and 90 (high flow) percentile values for each
Peru catchment for results of all model runs and the observed

Perit = = 4) discharge timeseries. From thirty year average quantities
Weru of the individual GCMs we calculated the GCM ensemble

WhereW cry is the 30-year average number of wet days for mean. When the mean modeled discharge deviates from the
the specific month. In addition a threshold value of 10 is mean observed discharge, Q90 and Q10 values are likely to
set for the maximum value of the multiplicative correction deviate as well. Therefore, instead of comparing the absolute
factor (Pcru/Pmop). If 1) the monthly precipitation sum Q10 and Q90 values, we compared the Q90 and Q10 values
of the GCM does not exceed the threshdtgi or if 2) relative to the mean discharge (see Table 2). These quantities
the multiplicative correction factor is higher than 10, the provide information on the shape of the discharge PDF, the
days with precipitation occurrence are calculated from apositions of Q90 and Q10 are given relative to the mean
temperature limit below which a day becomes wet. With thisdischarge.

method the number of wet days is increased to avoid large To compare the temporal behavior of the GCM and
I‘ain events on the feW dayS W|th ra.in in the GCM timeserieS.ERA_40 based model runs W|th ObservationS, we a|so
The temperature limit is defined by: calculated the inter-annual discharge variability for the
30 year annual average discharges and the yearly month

WeRru
(5) of regime peak occurrence (Table 2). Furthermore, the

N

TeritceM = TminceM+ (TmaxceM— Tmingem) «
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Fig. 2a. Annual mean observed discharge (GRDC), annual mean discharge calculated with PCR-GLOBWB forcedBiihgh@lataset
(PCR-GLOBWB ERA6190) and the sum of observed annual mean discharge and estimated water use (GRDC + estimated water use) as a
approximation of natural flow.
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Fig. 2b. Percentage deviation of annual mean modeled discharge (PCR-GLOBRAH190un) from 1) observed annual mean discharge
(deviation from GRDC) and 2) the sum of observed annual mean discharge and estimated water use as an approximation of natural flow
(Deviation from GRDC + estimated water use).

coefficient of variation (CV) of the ensemble of 12 GCM 2.7.2 Regime curves
results is calculated for all statistics according to:

The hydrological regime curve consists of the 30-year

c2 2 average mean monthly discharges, calculated for all twelve

MZ (Qi - QENS) months individually from modeled discharge timeseries at

CcV = ‘:1_ (7) the station locations (Fig. 1). Regime curves have been
Qens calculated from: (1) discharge simulated with 8BA6190

WhereM is the number of GCMs (12J,corresponds to one dataset, (2) discharge simulated with BRACLM dataset,

of the 12 GCMs,Q; is the 30-year a,verage discharge for (3) discharges simulated for each individual bias-corrected
the specific GCI\)I é-n@ENS s the GCM ensemble mean CCM dataset, (4) the ensemble mean of the discharges
30-year average discharge: all discharges fhsm. In calculated by these individual GCMs and for comparison (5)

Eq. 7) O is used as an exan'wple however the same equatique observed GRDC discharges. In addition to plots of the

is used for relativep10 relativeé90 Qpeakand IAV. The regime curves we calculated Nash-Sutcliffe (NS) coefficients

CV is a measure for the ensemble spread and indicates th@lFSh adr.]d lSuth(;ff'e,tﬁWO) from the 30-year average monthly
resemblance of the PCR-GLOBWB runs driven with the Y&'U€S diSpiayedin the regime curves.

different bias-corrected GCM datasets.
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Table 3. Continental runoff based on data and model based estimates’iyéan (Wada et al., 2008).

Europe Asia Africa N.-America S.-America Oceania Global Time Period

Data based estimates:

Baumgartner and Reichel (1975) 2564 12467 3409 5840 11039 2394 37713 -

Korzun et al. (1978) 2970 14100 4600 8180 12200 2510 44560 -

L'vovich (1979) 3110 13190 4225 5960 10380 1965 38830 -
Shiklomanov (1997) 2900 13508 4040 7770 12030 2400 42648 1921-1990
GRDC (2004) 3083 13848 3690 6294 11897 1722 40533 1961-1990
Average 2925 13423 3993 6809 11509 2198 40857 -

Model based estimates:

Fekete et al. (2000) 2772 13091 4517 5892 11715 1320 39319 -
Vorosmarty et al. (2000) 2770 13700 4520 5890 11700 714 39294 1961-1990
Nijssen et al. (2001) - - 3615 6223 10180 1712 36006 1980-1993
Oki et al. (2001) 2191 9385 3616 3824 8789 1680 29485 1987-1988
Daoll et al. (2003) 2763 11234 3592 5540 11382 2239 36687 1961-1990
Widén-Nilsson et al. (2007) 3669 13611 3738 7009 9448 1129 38605 1961-1990
Average 2833 12204 3933 5730 10536 1466 36566 -
PCR-GLOBWB:

ERA6190 2143 11461 5573 5249 11186 2633 36245 1961-1990
ERACLM 2159 10285 5223 4848 10174 2384 35075 1961-1990
GCM ensemble mean 2175 10572 5099 4803 10678 2371 35699 1961-1990

(*) This table with continental discharges from previous studies has been obtained from Wada et al. (2008).

2.7.3 Map comparison coarse resolution PCR-GLOBWB can reproduce observed
discharges reasonably well for most selected catchments.

PCR-GLOBWB calculates daily maps of routed accumu-Other than through the hydrological model structure, errors

lated runoff per cell. For all statistical variables (e.@, can also be introduced by the model input, in particular

relative 090 and 010, Qpeak, IAV) the GCM ensemble through the meteorological forcing.

mean results and the results of the two ERA-40 based runs

are compared. Maps with the CV are derived from the3.1.1 Continental discharges

ensemble of GCM results for all variables as well. These

maps show a spatial distribution of the spread between thén Table 3 the mean yearly continental discharges calculated

results of the bias-corrected GCM runs. with  PCR-GLOBWB, are compared with continental
discharges of previous studies calculated from both obser-
vations and model results (Wada et al., 2008). Continental

3 Results discharges vary amongst studies. For Asia, North-America,
South-America and Oceania the results of PCR-GLOBWB
3.1 PCR-GLOBWSB validation using ERA6190 are within the range of continental discharges found in

previous studies. Differences between the discharges
To assess its performance we ran the model PCR-GLOBWBnNodeled by PCR-GLOBWB and the average continental
for the period 1961 to 1990 with the monthly CRU TS 2.1 discharges of previous studies are small, globally the
timeseries, downscaled to daily values using the ERA-40average difference is only 1%. For Europe PCR-GLOBWB
re-analysis data. This forcing datasBiRA6190 provides  slightly underestimates continental discharge. For Africa
the best available guess of the current climate. Despite it$CR-GLOBWB modeled discharge is on the high side,

www.hydrol-earth-syst-sci.net/14/1595/2010/ Hydrol. Earth Syst. Sci., 14, 15232010
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represent minimum and maximum values), BERA6190run (blue points), th&RCLMrun (red points) and the GRDC observations (black
points).

with PCR-GLOBWB overestimating the discharge for many 3.1.2 Discharge statistics

African rivers. This is caused by the absence of water

withdrawals in the model and limited river bed losses, Figure 2a shows the annual mean modeled and observed

like recharge to the groundwater and evaporation (which isdischarges and Fig. 2b shows the modeled discharge as

particular relevant in the deltas of the Niger and the Nile).a2 percentage of the observed GRDC discharge. The

In addition, the density of meteorological observations isannual mean modeled discharge shows little deviation from

relatively low for this continent which limits the constraint observed annual mean discharge for the Danube, Volga,

of the CRU TS 2.1 and ERA-40 datasets (Fekete et al., 2004Rhine, Mississippi and Lena. Deviations are relatively large

Van Beek and Bierkens, 2009). for the drier basins; Murray, Niger, Zambezi and Orange.
Modeled discharge for the MacKenzie is too low due to
undercatch in the CRU snowfall amounts (Fiedler aridl,D
2007). Discharge is also relatively low for the Monsoon
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Fig. 4. Thirty year average relative Q10 valuggX0/ Q(-)) for the ensemble of non-bias corrected GCM runs (raw) and bias-corrected GCM
runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum valEB#6188run (blue points),
the ERCLMrun (red points) and the GRDC observations (black points).

influenced Asiatic rivers Brahmaputra, Indus, Mekong anddischarge and water demand, which approximates natural
Yangtze, while for the Ganges and Yellow River dischargesdischarge. Figure 2b shows that for the Murray the deviations
are on the high side. between observed and calculated discharge can partly be

To investigate the possible influence of water use, we madé@ssigned to the lack of inclusion of water use. To a lesser
the simplifying assumption that water demand equals wategXxtent this also applies for the Danube, Ganges, Yellow River
use. In reality water demand will, especially in drier regions, @1d Rhine.
be higher than water use. Water demand is estimated on Besides mean discharge statistics, the positions of
a grid of 0.5degrees. It is the sum of estimated industrial,discharge extremes (e.g. the positions @90 and Q10
agricultural and domestic water demand (Wada et al., 2008)values relative taQ) have been compared for those basins
Calculated discharge is compared with the sum of observedvhere daily GRDC time-series were available, see Figs. 3
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Fig. 5. Thirty year average relative inter-annual variability values (I&(-)) for the ensemble of non-bias corrected GCM runs (raw) and
bias-corrected GCM runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum \EER#&6).96e
run (blue points), th&ERCLMrun (red points) and the GRDC observations (black points).

and 4 where the blue dots represent the results of thepring, while the position o210 flows are overestimated
ERA6190run and black dots are GRDC values. In this due to a higher baseflow during winter.

analysis we will focus on the catchments with the largest peviations in relative inter-annual variability are small
deviations. for European catchments (Fig. 5). lAV is underestimated

The relative position of the290 discharge is higher in in the drier catchments; Murray, Orange and Niger, in the
the model results than in the GRDC observations for theArctic catchments and in the Monsoon influenced basins;
drier basins; Orange and Zambezi, the position Ofm Brahmaputra, |ndUS, Ganges and Yellow River. For the
discharge is too high as well for the Niger, Orange andremaining catchments differences are small.

Murray, but too low for the Zambezi. For the Ganges the Month of peak discharge occurrence is modeled well for
relative 090 discharge is too low and for both the Lena and the Arctic and most monsoon influenced basins (Fig. 6).
the MacKenzie, the relativ@90 is underestimated as well Large deviations in timing are present for all dry catchments.
due to the relative low snow melt driven discharge rise inFor the Rhine the discharge peak is modeled in April and
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observed in February due to a too late snow melt driven3.1.3 Regime curves

discharge peak. For both the Amazon and Congo the

modeled regime shows a discharge rise in March and April

which is not present in the observed discharges. For thd-inally, 30 year average modeled hydrological regimes are
Congo Zaitchik et al. (2010) found a similar shift in peak compared with observed regimes (GRDC) for all catchments,
timing, which they assign to the complexity of the bimodal S€€ the blueERA6190 and black (GRDC) lines in Fig. 7

runoff regime and the poor qua“ty of the GRDC gauge datablue Iine. The p|OtS ShOW that diﬁerence betWeen the
for the Congo. modeled and observed regime is especially large for the

MacKenzie as mentioned before. Although for the Lena
annual average modeled discharge is close to observed,
the regime curve shows deviations as well. The observed
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PCR-GLOBWSB run forced with the ERA6190 dataset and red line is derived from PCR-GLOBWSB run forced with the ERACLM dataset.

snowmelt driven discharge peak is steeper than modelegiear. The regime curves of monsoon influenced rivers are
and modeled baseflow is too high. Modeled discharge formodeled relatively well, except for the regime curve of the
the Murray, Niger and Zambezi is higher throughout the Indus, where the snow and glacier melt driven discharge
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Fig. 8. Boxplots obtained form the 30-year average mean discharges of the ensemble of non-bias corrected GCM runs (raw) and bias-
corrected GCM runs (cor; boxes are drawn between the quartiles and whiskers represent minimum and maximum values). The points show
30-year average mean discharges offRA6190Qun (blue),ERACLMrun (red) and GRDC observations (GRDC).

rise is too early in spring and does not coincide with thethe Yellow river. Furthermore, negative NS coefficients
monsoon influenced discharge peak, as in the observedre obtained for the Parana and Congo where the shape
regime (Immerzeel et al., 2010). For the Parana observedf the modeled regime deviates from the observed regime.
river flow is more constant through time, because of theNS coefficients of more than 0.5 are obtained for the
presence of large reservoirs. The NS coefficients (Table 4Brahmaputra, Ganges, Mekong and Yangtze and for the
show that the modelled regime curves show large deviationsMississippi and Lena.

due to biases in absolute discharge quantities, for the arid

catchments (Murray, Orange, Zambezi and Niger) and for
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Fig. 9. Thirty year average mean discharge’(s) calculated fron{a) the PCR-GLOBWB run forced with thERA6190dataset(b) the
PCR-GLOBWSB run forced with thERACLMdataset(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB runs
and(d) the CV () of the thirty year average discharges of the ensemble of GCMs.

3.2 Evaluation of the bias-correction method using the 3.2.1 Continental discharges
ERACLM dataset

_ The continental discharges of tBRRACLMand theERA6190
The results of th&RACLMrun are compared with the results  run in Table 3 are comparable in size. Globally the difference

of theERA6190un and observed GRDC discharges in orderis 0n|y 3%. The difference is especia"y small for Europe

to assess the influence of the bias-correction method appliegh.07%). For all continents, except Europe, discharge is

to the GCM datasets. lower in theERACLMrun. TheERACLMrun underestimates
the global average modeled runoff obtained from previous
studies by 4%.
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3.2.2 Discharge statistics observed GRDC discharge statistics are larger (Figs. 3-6).
High and low-flow values are more extreme in HRACLM

Differences in results of th&€RACLM and ERA6190are  run than in theERA619Qun; relativeQ90 values are higher

small, especially for mean discharge (see Fig. 8). Deviationgor 14 out of 19 basins and relativ@10 values are lower for

of both the GCM runs and the ERA-40 based runs from the
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Fig. 11. Thirty year average relative Q10 valugd10/Q (-) calculated fron{a) the PCR-GLOBWAB run forced with thHERA619ataset,
(b) the PCR-GLOBWSB run forced with tHERACLMdataset(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB
runs andd) the CV () of the thirty year average Q10 of the ensemble of GCMs.

14 out of 19 basins. Differences between the runs in boti2.1 timeseries, whereas the 1AV of tBERACLMdataset is
relative Q10 and relative Q90 are largest for Amazon andprescribed by the ERA-40 re-analysis dataset. The 1AV of
Niger. ERA-40 precipitation is known to be too high after 1972 due
Differences in relative IAV are more pronounced. For t0 gradual increasing inclusion of satellite observations in the
16 out of 19 basins thERA6190results have a lower I1AV, ~ System (Chen and Bosilovich, 2007; Hagemann et al., 2005;
The IAV of the ERA6190is prescribed by the CRU TS Troccoli and Kalberg, 2004), resulting in genrally higher 1AV
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Fig. 12. Thirty year average timing of peak discharge3(s) calculated fronfa) the PCR-GLOBWB run forced with thHERA6190dataset,
(b) the PCR-GLOBWSB run forced with tHERACLMdataset(c) the ensemble mean discharge results of the 12 GCM based PCR-GLOBWB
runs andd) the CV (-) of the thirty year average timing of peak discharge of the ensemble of GCMs.

values in theERACLMthan in theERA6190run for 16 out  3.2.3 Regime curves
of 19 basins. For 10 out of 19 basins (mainly located in

monsoon and arctic regions) the IAV of tBRACLMdataset  Timing of peak discharge and regime curves are comparable

For these basins IAV is underestimated by both runs and thgerA6199 and red ERACLM) lines in Fig. 7. Exceptions
high ERA-40 IAV compensates for this underestimation.  are (1) the Indus, where tfERA6190ataset results in a later

www.hydrol-earth-syst-sci.net/14/1595/2010/ Hydrol. Earth Syst. Sci., 14, 15232010



1614 F. C. Sperna Weiland et al.: The ability of a GCM-forced hydrological model

[Co-o0.1
Ho.1-0.
Wo.z-0.
Wo.3-
MNo.4-

[Jo-o0.1
Mo.1 -
o.2-0.
Wos3-o0.
MWo4-0
Wos-o0.
Mos-
Ho.7-0.
MWos-0
Mo9-1
| B3}

[Jo-01
Ho.1-0.
[o.z-0.
Wos3-o0
Mo4-0
MWos-o
Mos-0.
MWo7-o0
Mos-0.
MWos-1
| B3t

[Jo-0.1

Ho.t -0
Mo.z2-03
MWo3-04
Mo4-05
Mos-06
Moc-07
Mo7-08
Mo.3-09
Mos-
B3

Fig. 13. Thirty year average relative inter-annual variability: 1A% (-) calculated from(a) the PCR-GLOBWB run forced with the
ERA6190dataset(b) the PCR-GLOBWSB run forced with thERACLMdataset(c) the ensemble mean discharge results of the 12 GCM
based PCR-GLOBWSB runs arfd) the CV (-) of the 1AV of the ensemble of GCMs.

timing of peak discharge that coincides with the monsoonthe year and the seasonality of the regime, with a low end
instead of snow melt in spring, and (2) the Orange, whereof summer baseflow, is less pronounced.
the averageERA6190regime is more constant throughout
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are PCR-GLOBWB based on individulias-correctedGCM datasets, green line is ensemble mean result, blue line is derived from PCR-
GLOBWSB run forced with the ERA6190 dataset and red line is derived from PCR-GLOBWSB run forced with the ERACLM dataset.
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Table 4. Nash-Sutcliffe coefficients for the regimes curves (30-year3'3 Eyaluatmn of discharge variability obtained with
average monthly mean discharges) of 8RACLM ERA6190 bias-corrected GCM datasets

ensemble mean non bias-corrected (RAW) and ensemble mean

bias-corrected (BiasCor) GCM runs relative to the GRDC regime. 3.3.1 Continental discharges

NS RAW BiasCor ERA6190 ERAcLm Differences in continental discharges derived from the
ERA6190, ERACLMNd ensemble of GCM runs are small
Amazon —564  -0.08 0.43 0.50 (Table 3) as expected. The values of the GCM derived
Brahmaputra  —2.10 0.59 0.55 0.59 discharges are closer to tBRACLMdischarges than to the
. ERA6190globally the difference betwedfRACLMand the
Congo river 0.07 201 1.95 1.48 mean GCM discharge is less than 2%.
Danube 0.87 0.33 0.38 0.50
Ganges 0.65 0.97 0.96 086  3.3.2 Discharge statistics
Indus 0.12 0.05 0.02 0.15
Lena 0.72 0.61 0.62 0.62 After bias-correction, deviations of the GCM ensemble
Mackenzie 0.58 0.27 0.30 021 dlsc_he}rge statistics from the GRDC _ob_served discharge
statistics have decreased for the majority of catchments
Mekong 0.68 0.94 0.89 0.87  (Fig. 8). The bias-correction decreased the deviationgfor
Mississippi 0.06 0.63 0.71 0.66 for _11 out of 19 basins, for relativ@90 for 13 out of 19
basins and for the IAV for 12 out of 19 basins. However, for
Murray 003 -834 1053 -13.26 relative 010 the deviation increased for 11 out of 19 basins
Niger —461 —14.98 —28.91 —16.78 and forQpeakthe deviation increased for 10 out of 19 basins.
Orange 10611 -786 —1592 —17.75 Furthermore, the spread between the individual GCM
results decreased. The CV of the ensemble of GCMs
Parana —9.84 -23.61 1936 -19.44 decreased fo@ and Q10 for all catchments, fo@peak and
Rhine 0.54 0.39 0.15 0.25 IAV for 18 out of 19 catchments and for relativ@90for
12 out of 19 catchments, On average, after bias-correction,
Volga —0.05 0.50 0.43 0.50

the CV of Q is lower than the CV 0fQ10 for 11 out of
Yangtze 0.87 0.68 0.66 0.63 19 basins and lower than the CV of relati@@90 for 14
Yellow River  —88.06  —0.70 _1.95 _1.97 out of 19 basins (Table 5). However, within the ensemble
of bias-corrected GCM results, several GCMs still show
Zambezi —-405 -217 379  -286 deviations forQ, especially for the Orange and Zambezi.
The highest CV values are obtained for 1AV. Low CV
values and relatively small outliers @10, 090 and Q
are obtained for the Rhine, Lena, Yangtze and Brahmaputra.
For the Lena and Brahmaputra the range between minimum
and maximum values for IAV and timing of peak are also
relatively small. This indicates the bias-correction reduced
The maps withD, relative Q90 and relative210 (Figs. 9, 10  the spread between the GCMs best in these catchments. For
and 11 upper two maps) show only a few differences betweerthe dry catchments; Orange and Zambezi, CV values and
the ERACLMandERA619Quns. Both the relativegd90 and  the range between minimum and maximum GCM results for
0 are lower in western Australia f&RACLM.The south 090, 010 andQ remain large. CV values for timing of
of Africa is relatively wet in theERA6190run and relative  peak discharge occurrence are small, especially for the Arctic
090 values are higher in thERA6190run for rivers and  rivers and the Monsoon influenced rivers Brahmaputra,
streams west of the Sahara. Mean discharge is slightly lowesanges, Mekong and Yellow river.
in the dry Western USA. Spatial patterns of timing of peak The results of the ensemble of bias-corrected GCMs are
discharge are similar for the two runs (Fig. 12). Differencescloser to the GRDC statistics than the results of the ERA-40
in 1AV are also small (Fig. 13). Apparent are the relative high based runs for the majority of basins f6r 010 andQpeak
IAV values in theERACLMrun in Oman, Yemen and the (Figs. 3-6). For relativeD90 the results of th&RACLM
Northern Sahel, where precipitation variability is influenced run are closer to the discharge observations for 11 out of 19
by the African Monsoon (Cook and Vizy, 2006). In dry basins and the 1AV of both ERA-40 based runs is closer to the
regions the relative IAV values are the highest but of litle GRDC values for more than half of the basiBE&RACLMfor
importance as they are associated with mean discharge valud® andERA619Gor 11 basins). On average the 1AV is higher
that are close to zero. in discharge results of hydrological model runs based on the

3.2.4 Spatial statistics

Hydrol. Earth Syst. Sci., 14, 1595621, 2010 www.hydrol-earth-syst-sci.net/14/1595/2010/



F. C. Sperna Weiland et al.: The ability of a GCM-forced hydrological model 1617

Table 5. Ensemble coefficients of variation of the GCM results for the statistics of interest.

CcVv Qmean Q90 Q10 1AV Qpeak
ran®  cof® raw cor raw cor raw cor  raw cor
Amazon 0.56 0.08 0.21 0.13 050 012 0.83 0.72 0.17 0.12

Brahmaputra 0.54 0.04 0.10 005 026 0.05 071 0.29 0.06 0.02
Congoriver  0.45 0.06 0.14 008 0.34 006 065 0.38 0.30 0.12

Danube 0.35 0.08 0.08 0.11 0.18 0.05 0.32 0.26 0.20 0.06
Ganges 0.59 0.11 0.16 0.10 051 0.11 0.88 0.56 0.15 0.02
Indus 0.24 0.10 011 0.08 0.19 0.06 046 037 0.17 0.07
Lena 0.34 0.03 012 0.04 030 0.04 055 024 0.11 0.03
MacKenzie 0.33 0.07 0.07 0.10 0.12 0.04 043 050 0.09 0.03
Mekong 0.51 0.08 0.12 0.08 039 006 068 021 011 0.02
Mississippi 0.53 0.09 0.08 010 0.19 0.05 1.16 0.28 0.12 0.11
Murray 0.46 0.09 0.09 0.13 0.27 0.13 092 049 0.21 0.02
Niger 0.95 0.08 047 007 332 014 096 0.38 0.09 0.03
Orange 1.45 0.23 011 037 035 010 1.08 0.80 0.34 0.15
Parana 0.65 0.05 0.19 0.09 091 0.07 097 027 0.14 0.10
Rhine 0.35 0.04 0.08 0.06 0.20 0.07 044 019 0.23 0.14
Volga 0.64 0.07 0.19 0.10 050 0.12 059 034 0.14 0.14
Yangtze 0.49 0.04 0.07 006 0.12 0.06 068 020 0.10 0.05
Yellow River  0.48 0.07 0.06 0.07 020 0.05 054 0.28 0.09 0.01
Zambezi 0.78 0.16 0.10 0.15 332 256 0.73 0.26 0.12 0.03

(*) raw refers to the statistics of the non bias-corrected GCM runs and cor refers to the statistics of the bias-corrected GCM runs.

forcing datasets where the 1AV is determined by the modelcloser to the GRDC regime than the mean regime curves of
generated meteorological datasets (e.g. the datasets obtaintt bias-corrected GCMs. Still, the NS coefficient of the

by bias-correction). GCM ensemble mean is higher for 12 out of 19 basins than
the NS coefficients derived for the regimes of both ERA-40
3.3.3 Regime curves based runs.

For basins in the drier regions of the world, such as
Overall the simple monthly bias-correction reduces thethe Murray, Zambezi and Orange river, the GCM ensemble
differences between the regimes derived from the GCMmean regime curve is slightly lower and closer to the GRDC
based runs (compare Fig. 7 and Fig. 14, where greyegime than the regime curves of both ERA-40 runs. For the
lines represent individual GCM runs and the green lineremaining basins the deviations of the GCM ensemble mean
is ensemble mean regime). After bias-correction, theregime from the GRDC regime are comparable those of the
resemblance of the GCM runs is large for rivers with a ERACLMandERA6190egimes.
strong seasonal pattern, like the monsoon influenced and
Arctic rivers. For other catchments that are influenced by3.3.4 Spatial statistics
both rainfall and snowmelt, like the Amazon, Rhine, Volga,
Danube and Indus, differences in regime pattern are larger. Differences in ensemble mean spatial discharge patterns

After bias-correction the NS coefficient of the regime from both ERA-40 runs are smaliQ is relatively high in

curves decreased for 10 out of 19 basins; for several basinghe Sahara resulting in lower relative Q90 values. In the
such as the Indus, MacKenzie, Murray, Niger and Parana, théustralian desert GCM mean discharge is relatively low and
mean regime curves of the non bias-corrected GCMs is muclin the Southwestern USA the region with lower discharge
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values is slightly more extended. Ensemble uncertaintieswell for Monsoon influenced rivers but mean discharge and
(CV) are large for arid African regions, the arid southwesterninter-annual variability are underestimated for most of the
USA and for the desert region of Australia where the CV Asian monsoon rivers (Fig. 7).
of precipitation of the ensemble of GCMs is large as well Other than through model deficiencies, the biases between
(Johnson and Sharma, 2009). High CV values are alsonodeled and observed discharge statistics are caused by
obtained for mountainous regions, like the Andes ridge anderrors in 1) the observed discharges, 2) the ERA-40 dataset
parts of Asia, where the low GCM resolutions are unable toand 3) the CRU TS 2.1 dataset, which is known to be
capture the high spatial heterogeneity (Viviroli et al., 2010). inaccurate for parts of Africa and suffers from undercatch in
CV values are higher, and regions with high CV values aresnow dominated areas (Fiedler andlD2007). By using the
more extended, for relativ@90 and Q10 than forQ. For CRU dataset as reference for the bias-correction, deviations
all statistics the maps obtained from the ensemble of GCMgresent in the CRU set are introduced in the bias-corrected
resemble the maps of tHEERACLMrun most, except for the GCM datasets as well.
Northern Sahel. The influence of the bias-correction method is obtained

form the difference in results between tBERA6190and

the ERACLMruns. Differences between these two runs are
4 Discussion small, overall relative IAV and?90 values are higher in the

ERACLMrun (Fig. 3 and 5) an@ values are lower (Fig. 8).
The analysis in this study was performed in three steps, i.eThe IAV of ERA-40 precipitation is relatively high after 1972
to quantify the influence of both the hydrological model when satellite observations are gradually included in the
deficiencies and the bias-correction method before evalusystem (Chen and Bosilovich, 2007). This high precipitation
ating the discharge variability derived from bias-correctedlAV compensates for the underestimation of observed IAV
GCM datasets. In this case PCR-GLOBWB was used abtained with th&ERA6190un.
a means to assess the hydrological discharge variability The average annual continental runoff is lower for the
obtained from meteorological GCM datasets but the use 0ERACLMthan for theERA6190run, especially over Africa
any other macro-scale hydrological model probably would(Table 3). For theERACLM dataset the bias-correction is
have resulted only in minor differences. As assessed byot performed on a year-by-year basis, i.e. adjusting all
the validation exercise in the first step of this study, the usemonthly precipitation, temperature and evaporation values
of a hydrological model introduces uncertainty and bias into the monthly observations from the CRU for the specific
the discharge that propagates in the results derived from thgear. Instead, in th&eERACLM (and the GCM) dataset
bias-corrected GCM datasets. Although the model errorghe 30-year average annual mean precipitation, temperature
found here are specific for PCR-GLOBWB, they are notand evaporation quantities are equalized to the 30-year
unlike those found in other global model studies (e.@lID average observed values of the CRU observations. The
et al., 2003; Nijssen et al., 2001; Arnell, 1999). These errorsinter-annual variability for potential evaporation is relatively
can be reduced when the model is tuned or calibrated but thismall compared to precipitation. Therefore, the correction
is only possible at the expense of a loss of its physical basisf the 30-year mean potential evaporation has a similar
and the result is highly depended on data availability (Bevenjncreasing or decreasing effect on all 30 years. Yet,
2001). Calibration would also amend for errors in the inter-annual variability for precipitation is larger and the
meteorological input, thus compromising the applicability of multiplicative correction results in larger absolute changes
the model to different GCMs. for wet years. Herewith consistency between precipitation

The performance assessment is hampered by the lack @&nd evapotranspiration is lost over the wetter periods.

a perfect representation of the historical meteorology. ByEspecially in wet years, with precipitation overestimations
downscaling the CRU TS 2.1 timeseries to daily values within the ERA-40 dataset, the correction results in relatively
the ERA-40 reanalysis we created a ‘best guess’. Howevetarge precipitation decreases, while potential evaporation is
biases present in both the CRU and ERA-40 dataset®nly slightly adjusted. Here the ERACLM run will yield
will also be included in this new dataset. Nonetheless,less effective precipitation with a consequent decrease in
PCR-GLOBWSB, forced with this dataset, reproduces globaldischarge.
runoff quantities and regimes relatively well. For the Bias-correction decreases the deviations of GCM based
European continent and the rivers Danube, Rhine and Volganodel results from the observed discharges @rrelative
mean discharges and inter-annual variability are relatively090 and IAV for most basins, but increases deviations
close to the GRDC observed values. Differences in totalfor Qpeak and relativeQ10for most basins.  After
continental discharges from previous studies are smallbias-correction, continental discharges obtained from the
Globally the difference from the average of existing model ensemble of GCMs are close to tBERACLM results and
studies is less than 1% (Table 3). Sitill, for the African lower than discharges modeled with tB®RA6190dataset
continent as well as the Murray river PCR-GLOBWB (Table 3). The results of the bias-corrected GCM runs are
overestimates discharge. Regime curves are also reproduceuh average closer to the GRDC data @y 010 andQpeak
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while for 090 theERA619Qun is closer to the GRDC values preserved when the bias-correction method is applied to
and for 1AV both ERA-40 based runs are closer to the GRDCfuture GCM datasets. However it also shows that agreement
for a majority of the basins. between GCMs remains small for discharge extremes
Application of the bias-correction method to the GCM  Finally, it can be concluded that because of the large
datasets decreases the spread between the GCM ensembeviations between observed and simulated discharge in
members and lower CV values are obtained for the majoritywhich both errors in climate forcing, model structure and to
of basins for all discharge statistics. The largest ensembla lesser extent observations are accumulated, it is advisable
CV values remain for drier catchments. Furthermore,not to work with absolute discharge values for the derivation
bias-correction has less influence on extremes than on meauf future discharge projections, but rather calculate relative
discharge; CV values are lower fgr than for910 andQ90 change by dividing the absolute change by the discharge
(Table 5). The CV of the inter-annual variability decreased calculated for the control experiment.
for 17 out of 19 basins. Still, the CV values for IAV remain
the highest of all statistics. AcknowledgementsiVe acknowledge the GCM modeling groups,
Bias-correction decreased the spread between the individthe Program for Climate Model Diagnosis and Intercomparison
ual GCM derived regime curves. Especially, the resemblancéPCMDI) and the WCRP’s Working Group on Coupled Modelling
of regimes for the monsoon influenced and Arctic rivers is (WGCM) for their roles in making available the WCRP CMIP3
large (Fig. 14). The NS coefficient decreased for 10 out ofmulti-model dataset Support of this dataset is provided by the
19 basins after bias-correction. Yet, it can be questionedOffice of Science, US Department of Energy. We also want
whether this decrease is a result of better performance of th acknowledge the Global Runoff Data Centre for providing

non bias-corrected datasets or a result of biases in the néPSifvbzeglf::fszﬁr\?:r t'lrjnsisfﬁlr 'Ce;'nm\g/ﬁtsthank the two anonymous
corrected GCM datasets that compensate for inadequacies i y '

the hydrological model (Fig. 7). Edited by: A. Montanari
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