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Abstract. In this study, a new analytical solution for describ-
ing the tide-induced groundwater fluctuations in oceanic is-
lands with finite length and different slopes of the beaches
is developed. Unlike previous solutions, the present solu-
tion is not only applicable for a semi-infinite coastal aquifer,
but also for an oceanic island with finite length and different
sloping beaches. The solution can be used to investigate the
effect of higher-order components and beach slopes on the
water table fluctuations. The results demonstrate the effect
of higher-order components increases with the shallow water
parameter or amplitude parameter and the water table level
increases as beach slopes decrease.

1 Introduction

Groundwater near the ocean usually fluctuates with the tides,
which will significantly affect the costal processes such as
saltwater intrusions, beach sediment transportations, chemi-
cal transformations, and biological activities. To understand
and manage the behavior of coastal aquifers, it is required
to accurately predict the dynamic groundwater hydraulics.
Most studies for groundwater fluctuations in costal aquifers
are based on Boussinesq equation with Dupuit assumption
(Freeze and Cherry, 1979). Dagan (1967) first solved the
non-linear governing equation and approximated the solu-
tion by an expansion based on a shallow flow approximation.
His solution is applicable when the oscillation of the ground-
water motion is small compared with the mean water level.
Parlange et al. (1984) extended the work of Dagan (1967)
and used a perturbation technique to derive an approximate
solution of the non-linear equation. Their solution demon-
strates that the nonlinear effects on tidal propagation are not
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negligible and the omission of the effects may lead to a sig-
nificant error in predicting water table elevation. Previous
studies for water table fluctuations in costal aquifers consid-
ered the case of vertical beach. For more realistic case of
beach slopes, Nielsen (1990) considered a movable shore-
line boundary condition and derived an analytical solution
for groundwater fluctuations in costal aquifers with a sloping
beach. Li et al. (2000) further overcame the inconsistency
of the boundary condition in Nielsen’s solution and utilized
the same parameter in Nielsen (1990) to develop a solution
for the problem using a concept of moving boundary. Since
the slope of the beach was included in the perturbation pa-
rameter in both models, their models may be applicable to a
certain range of the beach slopes. Based on the reason men-
tioned above, Teo et al. (2003) used two perturbation param-
eters, shallow water parameter and amplitude parameter, to
derive a higher-order solution for the tide-induced water ta-
ble fluctuations in coastal aquifers to a sloping beach. They
considered the costal aquifers to with infinite extension in
horizontal direction; however, for oceanic islands, the hori-
zontal domain is finite and the beach slopes may be different
in both sides of the oceanic island.

Considering the oceanic island in coastal area, Jiao et
al. (2001) investigated impact of land reclamation on ground-
water flow systems. They derived steady-state solutions to
show how the groundwater level, groundwater divide and
submarine groundwater discharge would change with land
reclamation near coastal aquifer. Hu et al. (2008) extended
the work in Jiao et al. (2001) to develop the transient solution
for groundwater flow induced by land reclamation in oceanic
land. Rotzoll et al. (2008) presented an analytical solution
derived from one-dimensional confined flow equation for hy-
draulic head distribution in a finite-length and asynchronous
dual-tide aquifer. They analyzed the tidal responses in the
unconfined central Maui Aquifer and estimated the hydraulic
parameters in the study area. Sun et al. (2008) considered an
island aquifer system comprising a confined aquifer and an
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Fig. 1. The profile of tidal water table fluctuations in an oceanic island with sloping beaches.

overlying semipermeable layer. They derived an analytical
solution for groundwater head response in the island aquifer
system subject to dual-tide and compared the solution with
the existing analytical solutions.

Motivated by the literatures mentioned above, the objec-
tive of this study is to develop a model for describing the tide-
induced groundwater fluctuations in unconfined aquifers,
which, to the best of our knowledge, have never been pre-
sented for the case of oceanic islands with dual-tide and dif-
ferent slopes of the beaches.

2 Mathematical model and analytical solution

2.1 Mathematical statement

The configuration of tidal induced groundwater flow is
shown in Fig. 1. Assuming the fluid is incompressible and
inviscid, the potential headφ satisfies the Laplace’s equation

φxx +φzz = 0, 0≤ z ≤ h(x,t) (1)

whereh(x,t) [L] is the total tidal induced water table height.
The tidal oscillations cause two moving boundary conditions
at the coasts which can be expressed as

h(x0(t),t) = D(1+αcosωt) on x0(t) = Acotβ1cosωt (2)

and

h(λ−xλ(t),t) = D(1+αcosωt) on xλ(t) = Acotβ2cosωt (3)

for left-hand side (LHS) and right-hand side (RHS) of the
oceanic island, respectively. The length of the oceanic island
is denoted asλ in Fig. 1.

The x0(t) andxλ(t) are the horizontal extent of the tidal
variation at the sloping beaches, the beach angles for LHS

and RHS of the island are, respectively, denoted asβ1 and
β2. The dimensionless amplitude parameterα=A/D repre-
sents the ratio of the maximum tidal amplitude,A [L], to the
average water table height,D[L], andω [T −1] is the tidal
frequency. At the bottom of the island, the boundary condi-
tion is
∂φ

∂z
= 0 at z = 0 (4)

The boundary at the water table can be represented as

φ = h at z = h (5)

and the flow at the water table is modeled by the following
equation (Batu, 1998)

ne

∂φ

∂t
= K

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

−K
∂φ

∂z
at z = h (6)

wherene is the effective porosity andK is the saturated hy-
draulic conductivity. Both parameters are assumed constants.

2.2 Perturbation approach

The governing equation and boundary conditions are rewrit-
ten in dimensionless forms using the following non-
dimensional variables

X =
x

L
, Z =

z

D
, H =

h

D
, 8 =

φ

D
,

ε =
D

L
, λ∗

=
λ

L
, andT = ωt (7)

whereL =

√
2KD
neω

is a decay length scale of water table fluc-

tuations andε is defined as the shallow water parameter. The
governing Eq. (1) becomes

8ZZ = −ε28XX (8)
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and the boundary conditions (Eqs. 4–6) lead to

8Z = 0 at Z = 0 (9)

8 = H at Z = H (10)

and

2ε28T = ε282
X +82

Z −8Z at Z = H (11)

where8X, 8Z and8T represent the first derivatives of8

with respect toX,Z andT , respectively. In addition,8XX

and8ZZ represent the second derivatives of8 with respect
to X andZ, respectively.

The boundary conditions in Eqs. (2) and (3), respectively,
becomes

H(X0(T ),T ) = 1+αcosT on

X0(T ) = αεcotβ1cosT (12)

and

H(λ∗
−Xλ(T ),T ) = 1+αcosT on

Xλ(T ) = αεcotβ2cosT (13)

By introducing the new variables (Li et al., 2000; Teo et al.,
2003)

X1 = X−X0(T ) and T1 = T (14)

Then

∂f

∂T
=

∂f

∂T1
+

∂f

∂X1

∂X1

∂T
=

∂f

∂T1
+αεcotβ1sinT1

∂f

∂X1
(15)

wheref is a dependent variable such as8 andH . Equa-
tions (12) and (13) can be, respectively, transformed to

H(XL(T1),T1) = 1+αcosT1 on XL(T1) = 0 (16)

and

H(XR(T1),T1) = 1+αcosT1 on XR(T1) (17)

= λ∗
−αεcotβ2cosT1−αεcotβ1cosT1

whereXL andXR denote the moving boundary on the LHS
and RHS of the island.

Assuming that the potential head8 and water table level
H can be expanded in powers ofε, respectively, as

8(X,Z,T ) =

∞∑
n=0

εn8n(X,Z,T ) (18a)

and

H(X,T ) =

∞∑
n=0

εnHn(X,T ) (18b)

The detail of derivation for Eq. (8) with boundary conditions
in Eqs. (9) and (10) is listed in Appendix A and the results
up to second-order are

O(ε0) : 2H0T1 = (H0H0X1)X1 (19a)

H0(0,T1) = H0(XR,T1) = 1+αcosT1 (19b)

O(ε1) : 2(H1T1 +αcotβ1sinT1H0X1) = (H0H1)X1X1 (20a)

H1(0,T1) = H1(XR,T1) = 0 (20b)

O(ε2) : 2(H2T1 +αcotβ1sinT1H1X1) = (21a)
1

2
(H 2

1 )X1X1 +(H0H2)X1X1 +
1

3
(H 3

0 H0X1X1)X1X1

H2(0,T1) = H2(XR,T1) = 0 (21b)

2.2.1 Zero-order (O(ε0)) approximation:

The perturbation expansion ofH0 in power ofα can be ex-
pressed as

H0 = 1+

∞∑
n=1

αnH0n (22)

Equation (19a) and (b) can be expanded in different order of
α as:

O(ε0α1) : 2H01T1 = H01X1X1 (23a)

H01(0,T1) = H01(XR,T1) = cosT1 (23b)

O(ε0α2) : 2H02T1 = H02X1X1 +(H01H01X1)X1 (24a)

H02(0,T1) = H02(XR,T1) = 0 (24b)

The derivation for the solutions of Eq. (23) is given in Ap-
pendix B and the result is

H01= e−X1 cos(T1−X1)

+a1

[
eX1 cos(T1+X1)−e−X1 cos(T1−X1)

]
+a2

[
eX1 sin(T1+X1)−e−X1 sin(T1−X1)

]
(25)

Similarly, the solution of Eq. (24) can be obtained as

H02= −
1

4
(δ11e

−2X1+δ12e
2X1+2δ13cos2X1+2δ14sin2X1)

−
1

2
e−2X1 [δ16cos2(T1−X1)+δ15sin2(T1−X1)]

−
1

2
e2X1 [δ18cos2(T1+X1)+δ17sin2(T1+X1)]

+b1X1+b2+c1e
√

2X1 cos(2T1+
√

2X1)

+c2e
√

2X1 sin(2T1+
√

2X1)

+c3e
−

√
2X1 cos(2T1−

√
2X1)

−c4e
−

√
2X1 sin(2T1−

√
2X1) (26)
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Fig. 2. Distribution of water table level (H ) versus time (T/2φ) in an oceanic island atX = 1 with beach slopesβ1 = β2 = 45◦.

The coefficientsa1, a2, δ11, δ12, δ13, δ14, b1, b2, c1, c2, c3
andc4 in Eqs. (22) and (26), defined in Table 1, are obtained
from the formula manipulation package of Mathematica 6
(Wolfram Research, Inc., 2007). For the case that the costal
aquifer has a half domain withλ → ∞, a1 anda2 approach to
zero. Equations (25) and (26) are identical to the solutions in
Teo et al. (2003) whenX1 is sufficiently small for zero-order
approximation inε for orderα1 andα2, respectively.

2.2.2 First-order (O(ε1)) approximation:

ForO(ε1), H1 can be expanded as

H1 =

∞∑
n=1

αnH1n (27)

The equation and boundary conditions can be arranged as

O(ε1α1) : 2H11T1 = H11X1X1 (28a)

H11(0,T1) = H11(XR,T1) = 0 (28b)

O(ε1α2) : 2H12T1 +2cotβ1sinT1H01X1 (29a)

= H12X1X1 +(H01H11)X1X1

H12(0,T1) = H12(XR,T1) = 0 (29b)

The solution for Eq. (28) isH11 = 0. SubstitutingH01 in
Eqs. (22) into (29), the solution of Eq. (29) is

H12=
1

2
cotβ1

{[
e−X1 (δ21cosX1−δ22sinX1)

+eX1 (δ23cosX1+δ24sinX1)
]
+(d1X1+d2)

+

[
e−X1 (δ21cos(2T1−X1)+δ22sin(2T1−X1))

+eX1 (δ23cos(2T1+X1)+δ24sin(2T1+X1))]

2
[
e
√

2X1
(
f1cos

(
2T1+

√
2X1

)
+f2sin

(
2T1+

√
2X1

))
+e−

√
2X1

(
f3cos

(
2T1−

√
2X1

)
+f4sin

(
2T1−

√
2X1

))]}
(30)

The coefficientsδ21, δ22, δ23, δ24, d1, d2, f1, f2, f3 andf4
in Eq. (30), defined in Table 1, are obtained from the for-
mula manipulation package of Mathematica 6 (Wolfram Re-
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Table 1. Definition of coefficients.

Coefficients Illustration

a1 a1 =
cosXR+exp(−XR)
2(coshXR+cosXR)

a2 a2 =
sinXR

2(coshXR+cosXR)

δ11 (1−a1)2+a2
2

δ12 a2
1 +a2

2

δ13 a1−a2
1 −a2

2

δ14 a2

δ15 −2a2(1−a1)

δ16 (1−a1)2−a2
2

δ17 2a1a2

δ18 a2
1 −a2

2

b1
1

4XR

(
δ11e

−2XR +δ12e
2XR +2δ13cos2XR +2δ14sin2XR −1

)
b2

1
4

c1
11

2(cosh2
√

2XR−cos2
√

2XR)

c2
12

2(cosh2
√

2XR−cos2
√

2XR)

c3
1
2(δ16+δ18)−c1

c4
1
2(δ15+δ17)−c2

11

1
2(δ15+δ17)sin2

√
2XR

+
1
2(δ16+δ18)(e

−2
√

2XR −cosh2
√

2XR)

+sinh
√

2XR cos
√

2XR

[
−(δ15e

−2XR −δ17e
2XR )sin2XR +(δ16e

−2XR +δ18e
2XR )cos2XR

]
−cosh

√
2XR sin

√
2XR

[
(δ15e

−2XR +δ17e
2XR )cos2XR +(δ16e

−2XR −δ18e
2XR )sin2XR

]

12

−
1
2(δ16+δ18)sin2

√
2XR

+
1
2(δ15+δ17)(e

−2
√

2XR −cosh2
√

2XR)

+sinh
√

2XR cos
√

2XR

[
(δ15e

−2XR +δ17e
2XR )cos2XR +(δ16e

−2XR −δ18e
2XR )sin2XR

]
+cosh

√
2XR sin

√
2XR

[
−(δ15e

−2XR −δ17e
2XR )sin2XR +(δ16e

−2XR +δ18e
2XR )cos2XR

]
δ21 −1+a1+a2

δ22 1−a1+a2

δ23 a1+a2

δ24 −a1+a2

d1
1

XR

[
δ21(1−e−XR cosXR)+δ22e

−XR sinXR +δ23(1−eXR cosXR)−δ24 eXR sinXR

]
d2 −(δ21+δ23)

f1
13

2(cosh2
√

2XR−cos2
√

2XR)

f2
14

2(cosh2
√

2XR−cos2
√

2XR)

f3 −
1
2 (δ21+δ23)−f1

f4 −
1
2 (δ22+δ24)−f2
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Table 1. Continued.

Coefficients Illustration

13

−
1
2(δ22+δ24)sin2

√
2XR

−
1
2(δ21+δ23)(e

−2
√

2XR −cosh2
√

2XR)

+sinh
√

2XR cos
√

2XR

[
(δ22e

−2XR −δ24e
2XR )sinXR −(δ21e

−2XR +δ23e
2XR )cosXR

]
+cosh

√
2XR sin

√
2XR

[
(δ22e

−2XR +δ24e
2XR )cosXR +(δ21e

−2XR −δ23e
2XR )sinXR

]

14

1
2(δ21+δ23)sin2

√
2XR

−
1
2(δ22+δ24)(e

−2
√

2XR −cosh2
√

2XR)

−sinh
√

2XR cos
√

2XR

[
(δ22e

−2XR +δ24e
2XR )cosXR +(δ21e

−2XR −δ23e
2XR )sinXR

]
+cosh

√
2XR sin

√
2XR

[
(δ22e

−2XR −δ24e
2XR )sinXR −(δ21e

−2XR +δ23e
2XR )cosXR

]
g1

15
3(cosh2XR−cos2XR)

g2
16

3(cosh2XR−cos2XR)

g3 −g1

g4 −g2

15 XR [cos2XR −cosh2XR −(1−2a1−2a2)sin2XR +(1−2a1+2a2)sinh2XR ]

16 XR [cos2XR −cosh2XR +(1−2a1+2a2)sin2XR +(1−2a1−2a2)sinh2XR ]

k1
17

2(cos(2
√

2XR)−cosh(2
√

2XR))(cosh
√

2XR+sinh
√

2XR)2

k2
18

2(cos(2
√

2XR)−cosh(2
√

2XR))(cosh
√

2XR+sinh
√

2XR)2

k3 −k1

k4 −k2

ϕ1
1
6(2−4a1+2a2

1 +4a2−4a1a2−2a2
2)

ϕ2 ϕ1

ϕ3
1
6(−2a2

1 +4a1a2+2a2
2)

ϕ4 ϕ3

17

−(XR(cosh((−2+
√

2)XR)+sinh((−2+
√

2)XR))(ϕ1cos((−2+
√

2)XR)

−ϕ3cos((−2+
√

2)XR)cosh(2(2+
√

2)XR)+ϕ2sin((−2+
√

2)XR)

+ϕ4sin((−2+
√

2)XR)cosh(2(2+
√

2)XR)+cosh(2
√

2XR)(−ϕ1cos((2+
√

2)XR)

+ϕ2sin((2+
√

2)XR))+cosh(4XR)(ϕ3cos((2+
√

2)XR)+ϕ4sin((2+
√

2)XR)

+ϕ3cos((2+
√

2)XR)sinh(4XR)+ϕ4sin((2+
√

2)XR)sinh(4XR)

−ϕ1cos((2+
√

2)XR)sinh(2
√

2XR)+ϕ2sin((2+
√

2)XR)sinh(2
√

2XR)

−ϕ3cos((−2+
√

2)XR)sinh(2(2+
√

2)XR)+ϕ4sin((−2+
√

2)XR)sinh(2(2+
√

2)XR)

18

−(XR(cosh((−2+
√

2)XR)+sinh((−2+
√

2)XR))(−ϕ2cos((−2+
√

2)XR)

+ϕ4cos((−2+
√

2)XR)cosh(2(2+
√

2)XR)+ϕ1sin((−2+
√

2)XR)

+ϕ3sin((−2+
√

2)XR)cosh(2(2+
√

2)XR)+cosh(2
√

2XR)(ϕ2cos((2+
√

2)XR)

+ϕ1sin((2+
√

2)XR))+cosh(4XR)(−ϕ4cos((2+
√

2)XR)+ϕ3sin((2+
√

2)XR)

+ϕ4cos((2+
√

2)XR)sinh(4XR)+ϕ3sin((2+
√

2)XR)sinh(4XR)

+ϕ2cos((2+
√

2)XR)sinh(2
√

2XR)+ϕ1sin((2+
√

2)XR)sinh(2
√

2XR)

+ϕ4cos((−2+
√

2)XR)sinh(2(2+
√

2)XR)+ϕ3sin((−2+
√

2)XR)sinh(2(2+
√

2)XR)
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Fig. 3. Comparison between tide-induced water table level (H ) in Teo et al. (2003) and the present solution for various length (λ) of the
oceanic island (ε = 0.3, α = 0.2, β1 = β2 = 45◦) (a) T = π/4; (b) T = π/2.

search, Inc., 2007). Similarly, for the special case of semi-
half costal aquifer, Eq. (30) is identical to the solutions in Teo
et al. (2003) for first-order approximation inε for orderα2.

2.2.3 Second-order (O(ε2)) approximation:

At O(ε2), H2 is expanded to

H2 =

∞∑
n=1

αnH2n

Consequently, the equation and boundary conditions in
Eq. (21) is further adapted to

O(ε2α1) : 2H21T1 = H21X1X1 +
1

3
H01X1X1X1X1 (31a)

H21(0,T1) = H21(XR,T1) = 0 (31b)

O(ε2α2) : 2H22T1 +2cotβ1sinT1H11X1 = H22X1X1

+(H01H21)X1X1 +
1

3
H02X1X1X1X1 +(H01H01X1X1)X1X1 (32a)

H22(0,T1) = H22(XR,T1) = 0 (32b)

The solutions of the boundary value problems shown above
are

H21=
1

2

[
g1e

X1 cos(T1+X1) +g2e
X1 sin(T1+X1)

+ g3e
−X1 cos(T1−X1)+g4e

−X1 sin(T1−X1)
]

+
1

3

{
−X1e

−X1 cos(T1−X1)−X1 e−X1 sin(T1−X1)

+(a1−a2)X1[e
X1 cos(T1+X1)+e−X1 cos(T1−X1)]

+(a1+a2)X1[e
X1 sin(T1+X1)+ e−X1 sin(T1+X1)]

}
(33)

H22= k1e
√

2X1 cos(2T1+
√

2X1)+k2e
√

2X1 sin(2T1+
√

2X1)

+k3e
−

√
2X1 cos(2T1−

√
2X1)+g4k

−
√

2X1 sin(2T1−
√

2X1)

+ϕ1X1e
−2X1 cos(2T1−2X1)+ϕ2X1e

−2X1 sin(2T1−2X1)

+ϕ3X1e
2X1 cos(2T1+2X1)+ϕ4X1e

2X1 sin(2T1+2X1) (34)

Table 1 also shows the coefficientsg1, g2, g3, g4, k1, k2, k3,
k4, ϕ1, ϕ2, ϕ3 and ϕ4 in Eqs. (33) and (34). The present
solutions second-order approximation inε for orderα1 and
α2 can be reduced to the solutions in Teo et al. (2003) with
the same order for a semi-half costal aquifer.

3 Results and discussion

Figure 2 shows the distribution of water table level (H) ver-
sus time (T/2π) for various order solutions at the horizon-
tal distanceX=1 andβ1 = β2 = 45◦. This figure can be used
to investigate the effects of the higher-order components on
the water table fluctuations in an oceanic island with slop-
ing beaches. In Fig. 2a, the solutions of water table level
for O(α2), O(εα2) andO(ε2α2) are close whenα = 0.2 and
ε=0.3. As demonstrated in Fig. 2b and c, the difference be-
tween zero-order and higher-order solutions increases withα

or ε and significant differences are observed in Fig. 2d when
α = 0.4 andε = 0.5.
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Fig. 4. Distribution of water table level (H ) versus horizontal distance (X) for various beach slopes (ε = 0.5, α = 0.35).

Comparisons between higher-order solution in Teo et
al. (2003) and this study are drawn in Fig. 3a and b, re-
spectively, forT = π/4 andπ/2 with various lengths of the
oceanic island. These figures indicate that the present so-
lution is getting close to Teo et al.’s solution asλ increases
for different times. Therefore, the present solution is appli-
cable for describing the water table level at short horizontal
distance in a semi-infinite costal aquifer.

Since the beach slopes may have influence on the water
table level, the distributions of water table level versus hori-
zontal distance are illustrated in Fig. 4 for different time with
various beach slopes. Graphically, the water table level in-
creases as the beach slope decreases. In other words, the
beach slope essentially affects the water table level in oceanic
islands. The solution for a semi-half costal aquifer in Teo et
al. (2003) is a special case of the present solution when the
horizontal distance is not large.

Figure 5a illustrates the differences between second-order
α and first-orderα approximations for orderε2 whenα=0.2
andε=0.3 andα=0.4 andε=0.5. As one can expect, the dif-
ference increases withα andε. Figure 5b demonstrates that
the differences between second-orderε and first-orderε for
orderα2 is smaller than that between and second-orderε and
zero-orderε for orderα2 whenT is large for bothα=0.2 and
ε=0.3 andα=0.4 andε=0.5.

4 Concluding remarks

Using the perturbation technique, an analytical solution is de-
veloped for describing the tide-induced groundwater fluctua-
tions in oceanic islands with finite length and different slopes
of the beaches. Two perturbation parameters, the shallow wa-
ter parameterε and the amplitude parameterα, were used in
the present model to derive higher-order solution.
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Fig. 5a. Differences between second-orderα and first-orderα ap-
proximations for orderε2 when (α, ε)=(0.2, 0.3) and (α, ε)=(0.4,
0.5).

Fig. 5b. Difference between second-orderε, first-orderε and zero-
orderε for orderα2 when (α, ε)=(0.2, 0.3) and (α, ε)=(0.4, 0.5).

The difference between the zero-order and higher-order
solution increases withε or α and a significant difference
is observed when bothε and α are large. It is found that
the beach slopes significantly influence the tide-induced wa-
ter table and the water table level increases as beach slopes
decreases. The present solution is more general than that of
Teo et al. (2003) and is capable of describing the case of a
infinite coastal aquifer when the horizontal distance is small.

Appendix A

Substituting Eqs. (18a) and (b) into the governing Eq. (8),
boundary conditions in Eqs. (9) and (10) leads to

80ZZ +ε81ZZ +ε282ZZ + ...

= −ε2(80X1X1 +ε81X1X1 +ε282X1X1 + ...) (A1)

80Z +ε81Z +ε282Z + ... = 0 (A2)

and

80+ε81+ε282+ ... = H0+εH1+ε2H2+ ... (A3)

Equation (A1) can be rearranged in order ofε as:

O(ε0) : 80ZZ = 0 (A4a)

80Z = 0 atZ = 0 (A4b)

80 = H0 atZ = H (A4c)

O(ε1) : 81ZZ = 0 (A5a)

81Z = 0 atZ = 0 (A5b)

81 = H1 atZ = H (A5c)

O(ε2) : 82ZZ = −80X1X1 (A6a)

82Z = 0 atZ = 0 (A6b)

82 = H2 atZ = H (A6c)

Integrating Eq. (A4a) with respect toZ twice obtains

80 = C0(X1,T1)+C∗

0Z (A7)

whereC0 and C∗

0 are constants of integration. Based on
Eqs. (A4b) and (A4c), one has

80 = H0 (A8)

Similarly, we can obtain

81 = H1 (A9)

From Eq. (A6a), one can get

82 = C2(X1,T1)+C∗

2Z−
Z2

2
80X1X1 (A10)

Substituting (A6b) into (A10) leads toC∗

2 = 0 and using
(A6c) results in

H2 = C2(X1,T1)−
H 2

2
80X1X1 (A11)

and therefore

82 = H2+
H 2

2
80X1X1 −

Z2

2
80X1X1 (A12)
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Based on Eq. (15),8T can be expressed as

8T = 8T1 +8X1αεcotβ1sinT1 (A13)

Therefore, Eq. (11) can be expressed as

2(8T1 +8X1αεcotβ1sinT1) = 82
X1

+
1

ε2
82

Z −
1

ε2
8Z (A14)

Substituting8 in Eqs. (18a), (A8), (A9) and (A12) into
(A14) result in the following equation

2
[
H0T1 +ε

(
H1T1 +αcotβ1sinT1H0X1

)
+ ε2(

H2T1 +αcotβ1sinT1H1X1

)
+ ...

]
=

[
H 2

0X1
+2εH0X1H1X1 +ε2

[
H 2

1X1
+2H0X1

(
H2X1

+ H0H0X1H0X1X1

)]
+ ...

]
+

1

ε2

(
ε4H 2

0X1X1
H 2

0 + ...
)

+
1

ε2

[
ε2H0H0X1X1 +ε3(

H1H0X1X1 +H0H1X1X1

)
+ε4(

H2H0X1X1 +H1H1X1X1 +H0H2X1X1

+2H 2
0 H0X1H0X1X1X1 +

1

3
H 3

0 H0X1X1X1X1

)
+ ...

]
(A15)

To obtain Eq. (A15) from Eq. (A14), one also needs to know
83z and84z. Then Eq. (A15) can be expressed in terms of
different order ofε as shown in Eqs. (19) to (21).

Appendix B

The general solution of Eq. (23a) can be expressed as
(Bruggeman, 1999)

H01= Im
[
31exp((1+ i)X1)exp(iT1)

+31exp(−(1+ i)X1)exp(iT1)
]

(B1)

where31 and32 are complex numbers. Since the exponen-
tial function can be expressed in forms of triangular function,
i.e., exp(iz) = cosz+ isinz, Eq. (B1) can then be written as

H01= a1exp(X1)cos(T1+X1)+a2exp(X1)sin(T1+X1)

+a3exp(−X1)cos(T1−X1)+a4exp(−X1)sin(T1−X1)

(B2)

Substituting the boundary atX1 = 0 in Eqs. (23b) into (B2),
we have

a3 = 1−a1 (B3)

and

a4 = −a2 (B4)

Equation (B2) can be therefore expressed as

H01= e−X1 cos(T1−X1)

+a1

[
eX1 cos(T1+X1)−e−X1 cos(T1−X1)

]
+a2

[
eX1 sin(T1+X1)−e−X1 sin(T1−X1)

]
(B5)

Expanding the triangular functions in Eq. (B5) and sorting
out in terms of sine and cosine functions, the relationships of
the coefficientsa1 anda2 can be obtained from the boundary
condition of Eq. (23b) atX1 = XR as

2a1cosXR sinhXR +2a2sinXR coshXR =

1−exp(−XR)cos(XR) (B6)

−2a1sinXR coshXR +2a2cosXR sinhXR

= −exp(−XR)sin(XR) (B7)

Furthermore, from Eqs. (B6) and (B7), the coefficientsa1
anda2 can be solved as

a1 =
cosXR +exp(−XR)

2[coshXR +cosXR]
(B8)

and

a2 =
sinXR

2[coshXR +cosXR]
(B9)

Based on Eq. (B5), the solution ofH01 can therefore be ex-
pressed in Eq. (25).
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