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Abstract. DEM error propagation methodology is extended become a standard functionality in any modern GIS. Re-

to the derivation of vector-based objects (stream networks)naining issue to be tackled is the computational burden of
using geostatistical simulations. First, point sampled ele-geostatistical simulations: this framework is at the moment

vations are used to fit a variogram model. Next 100 DEM limited to small data sets with several hundreds of points.

realizations are generated using conditional sequential Gausscripts and data sets used in this article are available on-line
sian simulation; the stream network map is extracted for eaclvia thewww.geomorphometry.orgiebsite and can be easily

of these realizations, and the collection of stream networksadopted/adjusted to any similar case study.

is analyzed to quantify the error propagation. At each grid
cell, the probability of the occurrence of a stream and the

propagated error are estimated. The method is illustrated us- .
; i o : ._ 1 Introduction
ing two small data sets: Baranja hill (30 m grid cell size;

16512 pixels; 6367 sampled elevations), and Zlatibor (30 M, geomorphometry, Digital Elevation Models (DEM) are

grid cell ?'Ze; 15000 plerI]S; 2051 sampled <fatlevat|c;ns).tAt_II routinely used to extract various continuous (gridded) land
gon;pu a |or:§ alr?e- run I'(n € opRe n sourcc:ietsc;.twarg ors f"‘ Ssurface parameters, and/or discrete (vector) land surface ob-
ica’ compuling. packagegeor 1S used 1o Tit variogram, jects. Assuming that DEMs are perfectly accurate, extraction
packagegstat is used to run sequential Gaussian simula-

. _ of land surface parameters and objects is a simple one itera-
tion; streams are extracted using the open sourceSAIGA

) ; . tion operation (Figla). However, in reality, DEMs are not
via theRSAGA library. The resulting stream error map (In- P (Fig1a) Y

; i ¢ faB li trial) clearly depict perfect representations of reality — DEMs suffer from sys-
ormation entropy ot a bernoufi “a.) clearly depicls areas 1o matic and random errors and DEM elevations differ from
where the extracted stream network is least precise — usuall

flow local relief and slightl 0-10 diff What we measure on the field. In fact, errors are inevitable,
areas otlow local refiet and signtly con\_/ex_(_ ~ METENCE o\ en if elevation models are produced using highly accurate
from the mean value). In both cases, significant parts of the

L i and dense sampling techniques such as LiDERafis and
s;udy area (17.3% for Bara_nja Hill; 6.2% for Zlatlbo_r) show Hudak 2007 Bater and Coops2009. Errors are inherent
high error { > 0.5) of locating streams. By correlating the

ted tainty of the derived st work .thboth in measurements of elevations, and in the DEM analy-
pro'paga} € duncfer ainty o te enve I's reafmr;: neh\;vor Withg;ig algorithms, and can possibly have a significant influence
various fand surface parameters sampiing ot neight measures,, y,q reliability of final products. By ignoring errors in the
ments can be optimized so that delineated streams satisfy th

ed level. Such tion tool shoul ﬁput layers, analysts often get disappointed when their prod-
required accuracy level. such error propagation tool SNOUlq, .15 are evaluated versus ground truth data. This is true espe-

cially for hydrological applicationsWise, 2000 Wechsler

2007).
Correspondence tol. Hengl The approach to GIS analysis that takes into account that
BY (t.hengl@uva.nl) GIS input layers are of limited accuracy, and that provides

Published by Copernicus Publications on behalf of the European Geosciences Union.


http://creativecommons.org/licenses/by/3.0/
www.geomorphometry.org

1154 T. Hengl et al.: Uncertainty of stream networks derived from DEMs

(a)
Generate Filter Extract

gridded Y/ /7 77] spurious stream
DEM 7/ /][] sinks network

(b)

Simulate Filter Extract

stream
network

spurious
sinks

gridded ' /[ ]]

DEM

semivariance

7 /
VY /([ /[ [/

distance

4 .
H . repeat m times
: Estimate
variogram
model » Save
stream
Derive network

mean and for each

starjd:?lrd realisation

deviation
<

Fig. 1. Workflow scheme for stream extraction from elevation dé&assuming that elevations carry no uncertaiy;the Monte Carlo
error propagation approach with realizations. In this case, filtering of spurious sinks is specific to the case studies and not a general
operation.

a way to assess the propagated uncertainty associated withat need to be solved before an uncertainty engine becomes
the output of the analysis, is known as “error propagation”a standard part of any Gl&éuvelink 2002 Temme et al.
(Heuvelink 1998. The potential of using error propaga- 2008. One such open issue is that the problem of assess-
tion has been first recognized Burrough (1986 and En- ing accuracy of vector-type features (watershed boundaries,
glund(1993. At that time, it seemed unlikely that stochastic stream networks, break lines, escarpments and similar) has
simulations would become routinely available in a GIS en-been under-represented in the literature, and theory to sup-
vironment. Since then, the world has evolved: computersport applications is in general missing (with few exceptions
are more powerful, statistical tools are more accessible ané.g.Poggio and Soille2008. Most of papers that suggest
more sophisticated. We are slowly reaching a point when erways to model uncertainty of vector-based objects in a GIS
ror propagation will become a standard toolbox of any GISdo not specify how to actually compute these using real data.
software Wechsley 2007). Examples of using error propa- This article proposes a methodology to assess errors of
gation methods to assess the accuracy of various scalar-typgream networks extracted from digital elevation models. It
land surface parameters derived from DEMs can be foundises two small case studies to demonstrate how to implement
in the work ofFisher(1992); Heuvelink (1998; Dutta and  geostatistical simulations and assess the propagated uncer-
Herath(2001); Raaflaub and Collin€00§ andOksanen and tainty and map the error of locating streams. Our secondary
Sarjakoski(2005. Brown and Heuvelink(2007) recently  objective is to promote the geostatistical tools implemented
produced a generic library for uncertainty modeling calledin the open source environment for computif®),(and ge-
“Data Uncertainty Engine” (DUE). A group at Aston Univer- ographical analysis tools implemented in the open source
sity has been developing the Uncertainty Markup LanguageGIS (SAGA). Scripts and data sets used in this article are
(UncertML, http://www.uncertml.oryy that could become a available on-line via thevww.geomorphometry.orgebsite.
standard for writing metadata for error propagation applica-Users and developers are encouraged to adopt, extend and
tions. However, there are still technical and conceptual issuesnprove.
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2 Methods and materials a Taylor series expansion; in the second case, stochastic sim-
. ulation is used to sample times from the input probabil-
2.1 Error propagation ity distribution and the operation is repeatecdtimes. The

) . .. Monte Carlo approach is more suited for cases where the
GIS error propagation can be defined as a set of statisticas gperatiory is so complex that it is practically impossible

procedures that model uncertainties in the input maps, ang, mathematically derive the propagated distribution model.
for a given GIS operation, estimate the (propagated) erroigince this is the case for many GIS applications, the Monte
of mapping a feature of interest. In mathematical terms, thec /1 approach has become the dominant approach to error
outp_ut map is a res_ult of an operation applied to multiple propagation\\Vechsler 2007 Poggio and Soillg2008.
spatial layerstieuvelink 1998 In the case of Monte Carlo simulation, the mean value
U(s)= g{Al(s), ...,A,,(s)} 1) (U(s_)) a_nd th.e standard deviatioag(s)) of the output fea-

ture is simply:
where A1(s),..., A, (s) are the GIS inputs (spatial layers),
U (s) is the output mapp is the number of inputs is the Z;’LlUjS'M(S)

vector of coordinates (spatial locatiany), andg is the GIS Uls)= m @
operation. The main focus of error propagation is determi- B >
nation of the mean valudJ((s)) and its standard deviation Z’}1=1<U]5'M(s)—U(s))

(02 (s)), or ideally the entire probability distribution of the ou(s) = ©)
output mapU for any locations in the area of interesh.

Note that the probability distribution of the output map is In the case of stream network extraction from DEMs, the
quite involved because it must also capture the spatial staerror propagation model (Eq) is:

tistical dependencies. In case of GIS output that is a spa-

tial object such as a streamline, the probability distribution ¢7SM =gIZS'M,b1,---,bp} (4)

is even more complex. Possibly the easiest way to charac-

terize uncertainty of discrete spatial objects is by generatingNhereZsm is the simulated elevation map;S™(s) is the
a number of those objects (especially for objects that Canno&utput value of stream (either 1 or 0, depending on whether
easily be specified): for example, river network is the outputie |ocation is part of the stream or not), ahd....b, are

from numerical algorithm that operates on the terrain datajhe yser-defined, constant, hydrological model parameters,
although the flow modeling formulas are deterministic, theq, example: minimum segment length, initiation grid, initi-

consequent uncertainty can not be specified separately fomyjon threshold etc. These parameters can be uncertain too.
the terrain on which it was generated. In faarboton and  jthough this looks like a trivial model, the functiog in-
Baker(2009 argue that it is close to impossible to integrate y,o|yes a spatial analysis with respect to flow direction on the
uncertainty in the flow-algebra. _ __ input elevation map, so that small differences in elevation at
The benefit of running an error propagation analysis is,some |ocations can result in completely different stream pat-

firstand foremost, that it quantifies the uncertainty in the GIS;qns while large differences at other locations can have no
result. If the probability distribution of the input is narrow,  afect.

then we might expect that the propagated uncertainty willbe - gyeams have several specific properties that distinguish
narrow as well, but this need not always be the case. The Sefpem for other land surface parameters and objects. Streams
sitivity of model output to small changes in the input is also 4.6 giscrete objects — a stream is composed of a set of in-
important. Also, when there are multiple uncertain inputs itterconnected points (represented as grid cells). These ob-
becomes difficult to predict the impact of error in input maps je (s have attributes such as length and curviness, Horton or
on derived products. The situation is even more difficult if g ah1er ordering. A grid cell can be part of a stream (value

errors in inputs are spatially variable —in some parts of they) or not (value 0) i.e. it becomes a Bernoulli variable with

study area they can be high, in others low — so that it becomes o p ity » being part of the stream. The majority of cells
difficult to predict where in the study area the uncertainty of \ il have a small value fop simply because streams are

the derived map becomes critical. By ignoring the fact thaty,, gefinition rare events. The mean of the Bernoulli vari-
errors in input maps exist and that they are significant, we,pje at some location is simply; its variance is given by
create a wrong idea about the precision of the derived Iandp_(l_p)_ The uncertainty of detecting streams can be alter-

surface objects. Hence the primary benefit of running €ITOMatively characterized by the Shannon entrdlygnnon and
propagation is visual and statistical assessment of errors i'UVeaver 1949:

the output maps.
In principle, there are two main approaches to error prop-g (s) = — p(s) -log(p(s)) — [1— p(s)] -log(1— p(s)) (5)
agation: (a) the analytical, and (b) the Monte Carlo approach
(Heuvelink 2002. In the first case, the propagated error where p is the probability of a grid cell being part of the
is derived using some mathematical technique such as viatream estimated by the number of times the model puts a

m—1
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this model to produce simulations &f that have the same

1.0 — .
spatial structure:

M(s0) = E{Z(s)|z(si),i =1,...,n} €)

= 0.5 + where z5M s the simulated value at location. In this
case, simulations will be conditioned on the observations at
sampling locationg(s;). Under the assumption of second-
0 ; | order stationarity, we can use for example a global exponen-
0 0.5 1.0 tial variogram with three parameters to produce a simulated
Pr(X =1) DEM. A slightly more sophisticated variogram is the Mt
variogram model, which has an additional parameter to de-
Fig. 2. The uncertainty of deriving stream can be best describedSCriP€ the smoothnesStgin 1999 Minasny and McBrat-
using the information entropyH) of a Bernoulli trial. This plot ~ NeY, 2009

is courtesy of Brona Brejova, Comenius University in Bratislava, 1 N i
Slovakia.
MN=Co-s§(W+Cq-| ——— . (=) ‘K,-[ =
i =Ccodh+ G [Zvl-Fw) (R) ' (R)}
©)

stream at the cell, divided by the total number of Monte Carlowherecy, is the nugget parametef; the sill parameterR

realizations. The prECiSion of eStimating the propagated UNthe range paramete{f’(h) is the Kronecker de|taKU is the
certainty is inversely related to the Monte Carlo sample size modified Bessel functiori; is the gamma function andis

This means that if we run 100 Simulations, and then at SomQhe smoothness parameter_ The Matvariogram model is
location detect stream 99/100 timgs=0.99), the estimated  especially suited for elevation data because the smoothness,
error will be 0.056, and we can not map uncertainty with & common for topographic features, can be nicely represented
finer precision. If the model detects streams with equal prObwnh the v-parameter. Note, however, that using the &fat
ability of stream and not-streanp£0.5), this will produce  yariogram is only sensible when the nugget variance is in-

the highest error of 1 (Fig). significant i.e. close to zero.
o ) ) When additional auxiliary maps are available that can be
2.2 Geostatistical simulations used to explain the deterministic component in the spatial

Monte Carl vsis of tial i . distribution of elevation values, more accurate simulations
onte L-arlo analysis ol spatial €rror propagation requires¢ topography can be produced using the regression-kriging
the generation of realistic simulations of elevation values.

! : . model Hengl et al, 2008. For the purpose of this article, we
The most common technique in geostatistics used to generatgy tollow a simple case and assume: (a) that the elevation

equipr(_)babl_e reali_zations of a spatial featgre iS_ the Sequentig,; e are realizations of a second-order stationary random
qussmn Slmulatlom(ooyaertleQD. To simplity matterg, function with a constant trend; and (b) that the spatial auto-
it is assumed that elevation can be modeled as a stationary, . o1ation can be modeled using a lékat variogram

random function Goovaerts 1997 Kyriakidis et al, 1999 In summary, the error propagation approach to extraction

with a constant mean: of streams from elevation data can be summarized in five

nw=E{Z(s)} (6) steps (Figlb):

1. calculate an experimental variogram from the data and
and a variogram model that only depends on distance be-  fit 3 Matern variogram model (with parametergg, C1,

tween points: R andv) to represent the variability of the input DEM;
2.-y(h)=Var{Z(s)—Z(s +h)} 2. generate multiple realizations of the DEM using condi-
2 (7 tional simulation and the variogram model fitted previ-
=E{[z() - Zs+m)?] ously (Eq.8);

whereh is the separation vector between two locations, and 3. filter spurious sinks; derive stream network for each re-
y(h) is the semivariance. A capital lettef is used be- alization, and save the temporary result (&g.

cause we assume that the m(_)de! is probabilistic, i.e. there 4. aggregate the derived maps to estimate stream occur-
is a range of equiprobable realizations of the same model. If rence frequency and error of mapping streams BEq
the variable of interest (elevation) has been sampled at a set '

of point locations £(s1), z(s2),- - ., z(s), Wheres; =(x;, y;)), 5. evaluate how the propagated error relates to various to-
then these can be used to fit a variogram model. Once we  pographic parameters; then consider improving quality
have estimated the variogram model parameters, we can use of input DEM or filtering elevations where necessary.
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A disadvantage of the Monte Carlo approach is that it re-GIS, then use the moduterid — Gridding — Spline inter-
quires a significantly large number of realizations to producepolation— Thin Plate Splines (locaBnd generate a smooth
a reliable estimate of the distribution function. The num- DEM. Then, you can preprocess the DEM to remove spuri-
ber of realizations: must be sufficiently large to obtain sta- ous sinks using the method Bfanchon and Darbou®007).

ble results, but exactly how large should be depends on SelectTerrain Analysis— Preprocessing— Fill sinks, and
how accurate the results of the uncertainty analysis shouldhen set the minimum slope parameter to 0.1.

be. Theoretically Speaking, the accuracy of the Monte-Carlo Once you have prepared a DEM, you can derive stream
method is proportional to the square root of the number ofnetworks using th€hannel Networkunction which is avail-
runsm (Temme et al.2008. Therefore, to double the ac- aple inSAGA underTerrain Analysis—> Channels This im-
curacy one must quadruple the number of runs. This meanglements the original algorithm described@onrad(2007)

that although many runs may be needed to reach stable anghd which is based on the FD8 multiple flow direction algo-
accurate results, any degree of precision can be reached kithm by Quinn et al.(1999. As a result, you should get a
taking a large enough sampie As arule of thumb, we can  map shown in Fig3. Assuming that the DEM and the stream
take 100 simulations as being large enough, and everythingxtraction model are absolutely accurate, i.e. that they per-
below 20 as insufficientH{euvelink 1998. Consequently, fectly fit the reality, this would then be the end product of the

the Monte-Carlo method is computationally demanding, par-analysis (which corresponds to the scheme in .

ticularly when the GIS operation takes much computing time
(Heuvelink 2003). 2.3.2 R and packagegstat and geoR

2.3 Software tools R is the command-based environment for statistical comput-

ing (R Development Core Tegrd009. Many spatial pack-

In this article w mbination of statistical an - . X .
s article we use a combination of statistical and geo ges have been contributed in the past 3—4 years, which allow

g;&tngﬁal g?rem;)nqugézﬁggi;? a:asosers: Eirgﬁ%?;e%ﬁ:or OZ to be also used for spatial analysis. Two important add-
g geograp puting, on packages that are used in this articleget (Pebesma

and R for statistical computing; all operations are in fact ) oo S
combined in the same script. In this caRés used to control 2004 andgeoR (Dlggle a_nd Ribeiro J;2007. In principle,
a large part of functionality ofistat andgeoR overlap. On

both internal add-on packages, but also external FAGA the other handgeoR has many original methods, including
(R "on top?) via a special link libranRSAGA. A detailed an original format for spatial data (callgdodata ). geoR

description ofR+SAGA integration can be can be found in . . ! ! ; o .
is especially powerful to fit variograms (including interactive

Brgnnmg(zooa.t f th K din this articl visual fitting), and for dealing with non-normal daigstat
ecause most ot In€ packages used in this aricle are n% somewhat more fit to run predictions and generate simula-

c_or|r|1mton to maj;)gtéRolf GIE u?ers and hyd(;c’Iog'Stfh(_G?pe'tions, even with large data setgstat also uses spatial classes
clally 1o users o -products), we consider worth intro- in R, so that conversion to GIS formats is fairly easy.

ducingSAGA, gstat andgeoR, and reviewing its main func- ) .
Once we have simulated DEMs usinggstat, we can

tionality. A small guide on how to install, set and make first dert K 1a thel N ok
steps in the two packages, is also given in the Appendix A.8€"Ve stream networks using thefiannel Networkiunc-
tion, which is available also via the command line — via the

This should help you reproduce the analysis shown in this ar- SAGA lib further A dix A). Thi
ticle with your own data. Even more detailed instructions on '@ -channels ibrary (see further Appendix A). This

how to combineR and SAGA using the same data sets can means that, through scripting R, one can automate both

be found inHeng! (2009. geographical procgssing and statisticallanalysis, anq imple-
ment the computational scheme shown in Rlgto any sim-
2.3.1 SAGA GIS ilar data set.

SAGA! (System for Automated Geoscientific Analyses) is 2.4 Study areas and data sets

an open source GIS that has been developed since 2001 at

the University of @ttingen (the group recently collectively We use two previously published examples to demonstrate
moved to the Institutifr Geographie, University of Ham- the method: the “Baranja hill” case study is of mixed low
burg), Germany, with the aim to simplify the implementation and high relief, and the “Zlatibor” case study is an area of
of new algorithms for spatial data analystSoprad 2006 high relief. In principle, the only input for both exercises is a
2007). A point data set of measured elevations can be usegoint map showing field-measured elevations (ESRI Shape-
in SAGA to generate a Digital Elevation Model (DEM), that file). These maps are used to generate multiple realizations of
can then be used to extract a stream network (see scheme igital Elevation Model, and then extract drainage network,
Fig.1a). For example, you can open the point layeB AGA as implemented in th8AGA GIS package. Vector maps
showing the actual location of streams are also available for
http://saga-gis.org both study areas.
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Fig. 3. Stream network generated 8AGA GIS using standard settings. In this case we used 40 (pixels) as the minimum length of streams.

Case study Baranja Hill; viewed from the West side.

The study area “Baranja hill” is located in eastern Croa-3 Results
tia (centered at £8816.4412 N, and 183954.198 E); it

has been extensively mapped over years and several GIS layye first result of analysis are the variogram models fitted
ers are available at various scalbkeﬁgl and Reuter200§. in geoR (Fig. 4). These show that the target variab@ i

T.he study area cor.responds approx'lmately to thg size of Yeneral varies equally in all directions in both study areas.
single 1:20000 aerial photo. Its main geomorphic featurestys is especially distinct for shorter distances500m),
include hill summits and shoulders, eroded slopes of smallyhich allows us to model the variograms using isotropic
valleys, valley bottoms, a large abandoned river channel, angl,o4els. For Baranja Hill study aregoR fits a Maérn var-
river terraces (Fig3). Elevation of the area ranges from 80 iogram model with nugget paramet€p=0, sill parameter

to 240 m with an average of 157.6 m and a standard deviation-, 1831, and range paramet®=1051m (practical range

of 44.3m. The data set consists of 6367 points of field meays 3 1 kmy; for Zlatibor case study, the elevation values are
sured heights. The complete data set is available for downy,ore variable — nugget parameter is s@j=0, the sill pa-

load from the geomorphometry dataset reposftoly simi-  rameter isC1=2173, range parameter B=761m. In both
lar error propagation exercise using the same case study calses, seems to be a relatively smooth variable — there is
be followed inTemme et al(2008. no nugget variation and spatial autocorrelation is effective

The second case study, “Zlatibor”, is located in the (practical range) up to distance of 2-3 km.
South-western part of Serbia (centered £4834.6’' N and
19°4237.8' E). The area is mainly hilly plateau, with the ex-
ception of the north-eastern part where the slopes are muc[ﬁ
steeper (see further Figb). Elevations range from 850 m to

Both are in fact typical variograms for elevation data i.e.
presentation of a land surface. Note also that, in both cases,
e target variable shows close to normal distribution so no

amaximum of 1174 m; the total size of the area is 13.5 squar transformation was necessary. As expected, the confidence

kilometers. The data set consists of 2051 height measure-ands (envelopes) are much narrower at smaller distances

ments. An additional set of 1020 very precise spot heights(F'g' 4)'. The relat|velly V\.”de confidence b ands at Igrger d.'s'
. : . tances indicate that it might be worthwhile to consider using
used for error assessment is also available. This data set S

described in detail itdengl et al (2008 and can be also ob- OC‘T"I (moving window) geostatistical analysis and adjust the
. variogram parameters locally.

tained from the geomorphometry dataset reposttory . _

In the next step, we look at the dispersion of the stream

2http://geomorphometry.org/content/baranja- hill lines derived for all simulated DEMs. Once the processing is

3http://geomorphometry.org/content/zlatibor finished, we can visualize all derived streams at top of each
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Fig. 4. Variograms fitted for Baranja hill (above) and Zlatibor case studies (below); left: anisotropy in four directions; right: isotr@git Mat
variogram model fitted using the weighted least squares (WLS) and its confidence bands.

other. The 100 realizations of stream network maps for the In both cases, significant parts of the study area — 17.3%
two study areas are shown in Fi§. The visualization of for Baranja Hill; 6.2% for Zlatibor — show relatively high er-
density of streams clearly illustrates the concept of propa+tor (H > 0.5) of locating streams (Fig6). Although high
gated uncertainty. If you zoom in into this map, you will absolute values of error can be observed in both areas of
notice several things. First, in some areas streams are isdtigh and low relief, the cumulative propagated variability
lated and hence seem to be very improbable; in other areasf detecting a stream is much higher in the terrace region
stream are densely distributed but over a wider area. Not®f the study area Baranja Hill (Fig). The errors are, in
also that the derived streams follow the gridded-structure offact, a bigger problem than we have anticipated. In addition,
the DEMs, which explains some artificial breaks in the lines.the course of many streams is dramatically different from
Some artifacts in these maps are probably a consequence afhere the streamlines are thought to be located on the ba-
the fact that we have used arbitrary input parameters for theis of DEM-streamline analysis. In the case of the Baranja
minimum length of streams (40) and initial grid. These pa- Hill study area, this is because many channels are manmade
rameters could have been find-tuned by experts familiar withand hence do not have to follow the topography (B&j. In
the study areas, but this is not relevant for this exercise. the Zlatibor study area only one or two small patches of ter-
rain seem to be problematic: both are at the beginning of the

www.hydrol-earth-syst-sci.net/14/1153/2010/ Hydrol. Earth Syst. Sci., 14, 11852010



1160 T. Hengl et al.: Uncertainty of stream networks derived from DEMs

BaranjaHill

5074000 r 240

r 220
zlatibor

r 200
5073000

+ 180
F 1150
4844500 w =
L 160 + 1100
4844000 -

5072000 r 1050

r 140

4843500 r
r 1000

120

4843000 [ - 950

100

5071000
4842500 [ 900

80 850
T T
6552000 6553000 6554000 6555000 7395000 7396000 7397000 7398000

Fig. 5. 100 realizations of stream network overlaid on top of each other: left: Baranja hill case study; right: Zlatibor case study. The greyscale
legends indicates elevations in meters.

Fig. 6. Propagated error of mapping streams estimated usingEigualized inSAGA GIS: (a) Baranja hill case studyp) Zlatibor case
study. The lines indicate theue streams — digitized from topo maps.

stream. The results from these two small case studies clearly The results from the two case studies show that some 30—
demonstrates the usefulness of the error propagation analys85% of the variability in the error maps can be explained
— by mapping the propagated error we can delineate the mostith the difference from the mean value in the Swindow
problematic areas and focus our further efforts. (Fig. 7). By knowing this, we could now allocate resources
Now that we have estimated the propagated uncertaintyand collect more accurate, more densely sampled elevations
of extracting channel networks (streams) from DEMSs, wein the areas that have similar geomorphological properties
can try to understand how this uncertainty relates to the gefin this case: slightly convex shapes). In fact, one could fur-
omorphology of terrain. It is interesting to derive a map of ther optimize elevation sampling and improve the accuracy
channel-slope and/or topographic wetness index, as it largelpf extracted streams to reach the required threshold. The al-
controls the hydrological properties, and the difference fromternative is to down-grade the effective scale of the streams
the mean value in 55 search radius, as it describes local derived using this point data. For example, it is obvious from
variability of shapes. Figs.5 (below) andbb that the model has not much problems
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Fig. 7. Bar plots showing relationship between the relative relief (difference from the mean value ir Shee&rch radius) and cumulative
errors. In both cases the highest errors of mapping streams are in slightly convex areas (positive values in range 0-10).

of locating streams in the area of relatively high relief (Zlat- certainty of stream segments is in general significant and es-
ibor), however, the spatial accuracy of derived streams doepecially high for Strahler order one or two. Some remaining
not get better thar-50 m, so that it is reasonable to consider issues and ideas for further research are discussed below.
degrading the scale of the output map e.g. from 1:15000 to In the two studies, we have have ignored many aspects of
1:50000 scale. data analysis and used model parameters that now deserve
The computational burden of this method is also an issuejustification. For example, for geostatistical simulations, we
The most costly operations are geostatistical simulations antiave set the kappa parameter for thatMern variogram rela-
extraction of stream networks. Geostatistical simulationstively high at 1.2 (se®iggle and Ribeiro Jy2007, for more
even with a search radius of only 30 closest points, takesxamples). Following the knowledge about the feature of in-
5-10 min to generate 100 simulations for these small studyterest, we assumed that a land surface is inherently smooth
areas (158 100 pixels). This means that this framework is — due to the erosional processes and permanent leveling of
at the moment limited to small data sets with few hundreds oftopography. Hence, we wanted to generate realizations of
points; it would be probably of limited use for large LIDAR DEMSs that fit our knowledge of the area. Why is the high
point data sets. kappa parameter necessary? If we run DEM simulations with
e.g. an exponential model, we noticed that realizations will
be much noisier than what we would expektefgl et al,
4 Discussion and conclusions 2008. This will happen even if we set the nugget parameters
at zero (smooth feature). There are several explanations for
The two case studies demonstrate that it is worth investing irthis. Having a non-zero grid resolution implies that the cor-
error propagation — in both cases we are able to detect somiglation between adjacent grid cells is not equal to 1, so that
difficult areas where extracted stream networks will be criti- grids may still appear to have noiseefnme et al.2008. A
cally imprecise. Figure§ and6 show two interesting things: noisy DEMs leads to completely different drainage networks
(1) the dispersion of stream networks is in some areas signif= the streams will be shorter and more random — which we
icant; (2) streams are especially difficult to map in low-relief know does not fit knowledge about the area. The évtat
areas where the difference from the mean value is positive variogram model (Ec@), on the other hand, allow us to pro-
meaning areas with convex shapes. This largely reflects ouduce smoother DEMs, while still using objectively estimated
expectation, but it is rewarding to be able to prove these ashugget, sill and range parameters. This makes it especially
sumptions using hard data. Our results correspond with th@uitable for modeling of land surface.
results ofPoggio and Soill§2008 who discovered that un-
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We have also limited the number of simulations to 100. to work with point-sampled values. For DEMs generated di-
Perhaps this number should be larger, particularly becauseectly from a scanning device (e.g. SRTM DEM) it is a se-
we are dealing with a feature that commonly has a small rious problem to get a reliable estimate of a variogram. In
It should be feasible to evaluate the increase in accuracy witkaddition, uncertainty of measured elevations is heavily de-
an increasing number, e.g. by evaluating the change in pendent on the type of land use (local spatial auto-correlation
derived probability or attribute property such as estimatedstructure), hence simulated DEMs should reflect this prop-
stream length or catchment width. If such a parameter orerty also. A solution to generate simulations of e.g. SRTM
function does not change anymore below a certain thresholdDEM is the co-kriging framework. Separate estimation of
no more simulations seem to be required. An elegant alternathe variogram and cross-variogram parameters for the error
tive can be to calculate the information content of each addi-surface and the main signal in the DEM is rather inexpensive,
tional realization. With an increasing sample size, the changdut simulations using co-kriging are even more computation-
in the ultimate probability field becomes less and less. Thisally intensive.
is certainly an idea worth further research. There is also an issue of how to represent the outputs of

We have also set the grid cell size at 30 m without anyerror propagation. Should the land surface object derived us-
real justification. The next step would be to consider someing error propagation represented as fuzzy objects? Should
statistically sound approach to select a grid cell size basedve abandon concept of absolutely discrete land surface ob-
on the accuracy of the derived stream network. This followsjects at first place? If yes, which data structure should be used
the idea ofHutchinson(1996, who use an iterative DEM to save and exchange such objects? Or is the spaghetti rep-
cell-size optimization algorithm as implemented in &éU- resentation shown in Fig more informative?Tgssebro and
DEM package. By plotting the error of mapping streams Nygard (2008 provide a probabilistic framework for com-
versus the grid spacing index, one can select the grid celputing uncertainties for simple geographic objects such as
size that shows the maximum information content in the fi- points and unstructured lines, but how could these be com-
nal map. The optimal grid cell size is the one where furtherbined with geostatistical simulations?
refinement does not change the accuracy of derived streams. Floor for discussion is open and everybody is welcome
It would be interesting to see if the optimal detection of the to contribute. For the beginning, software developers can
grid cell size for hydrological objects can be operationalized,try implementing error propagation frameworks as standard
so that the users only need to provide the point data. toolboxes to extract information from elevation data. The

Another question that needs to be addressed is how muchsers can further consider testing this framework in areas
of the analysis should be automated? Can and should erraf variable relief, surface roughness and with elevation mea-
propagation be automated so that it becomes a default operaurements from various sources. We anticipate that the mean
tion of any DEM analysis? If yes, users will not even have to challenge of the proposed framework will be processing of
see the steps behind error propagation (black-box approachjhe LiDAR data that is typically very large and requires lo-
but simply select a land surface object/parameter of interestalization of analysis. With the further advances of technol-
and the software will decide about the reasonable numbeogy (computing power) and geostatistics (local variograms),
of simulations, suitable grid cell size, depict the areas thatoth operations should become feasible.
are critical etc. The case studies shown in this paper are
fairly small in size, hence it was not expensive to run 100
simulations. How to deal with the computational complexity
of error propagation? These case studies obviously demon- ) i )
strated that such analysis provides richer picture of the spatiaf'Stallation and first steps with R+SAGA

o Coor s
variability of propagated errors, but is this always needed ‘The following text provides instructions how to obtain and

What if error propagation Is us_:eful only for small parts of install SAGA andR and implement the analysis described
the study area; is there then still a need to run such analysis

lobally? How would geostatistical simulation + error propa- fh this article with your own dataR+SAGA can be run on
gat'on ¥échn' os ergform ith LIDAR survevs that ans‘.)stsWindowsT'VI and Linux operating systems. Mac OS™ version
gf rIniIIions o;qpuointrs)? Are r\(,ewsultsI of errour \p/)r())/pagation véry of SAGA s still under development.
: , . rt with installingR and i ial k . Visit th
dependent on the type of data (field survey, LIDAR, SRTM Start with installingR and its spatial packages. Visit the

. : . .. R project homepadeand obtain the recent installation from
fIZIrEeI\:I]t’e;tc.) or will the spatial patterns of uncertainty be dif- CRAN. After you finish installingR, open the new session

and install the contributed packages: selectRhekages—

The two case studies shown in this article consists of Preinstall package(sfrom the main menu. Note that, if you

cisely measured elevations over a small and homogenou\ﬁlish to install a package on the fly, you will need to select a

area with relgtlvely constant variogram parameters. H(.)Wsuitable CRAN mirror from where it will download and un-
to generate simulated DEMs when a spatial auto-correlation

structure model (variogram) is not available or differs lo- pack a package. Another quick way to get all packages used

cally? Traditionally, geostatistical techniques are developed “http:/r-project.org

Appendix A
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in R to do spatial analysis(as explained irBivand et al, Next, we need to get the list of parameters needed to extract
2008 is to install thectv package and then execute the com- channel network from a DEM map:

mand: > rsaga.get.usage("ta_channels", 0)

> install.packages("ctv")

> library(ctv) SAGA CMD 2.04

> install.views("Spatial") library path: C:/Progra™l/saga_vc/modules
library name: ta_channels

This will allow most of thespatial packages available fér, module name : Channel Network

includingmaptools, rgdal, gstat, geoR, andRSAGA. Usage: 0 -ELEVATION <str> [-SINKROUTE <str>]
Next, if you are a Windows™ user, obtain tBAGA bi- -CHNLNTWRK <str> -CHNLROUTE <str>
naries from a Source Forge repositoBAGA GIS is a full- -SHAPES <str> -INIT_GRID <str>

fledged GIS with support for raster and vector data. It in-[-INIT_METHOD <num>] [-INIT_VALUE <str>]
cludes a large set of geoscientific algorithms (over 300 mod{-DIV_GRID <str>] [-DIV_CELLS <num>]
ules), being especially powerful for the analysis of DEMs. [[TRACE_WEIGHT <str>] [-MINLEN <num>]
With the release of version 2.0 in 2008AGA works un- -ELEVATION:<str>  Elevation

der both Windows and Linux operating systems. In addition, Grid (input) o

SAGA is an open-source package, which makes it especially “SINKROUTE:<str>  Flow Direction
attractive to users that would like extend or improve its exist- Grid_(optional input)

. . . . . . . . -CHNLNTWRK:<str> Ch | Network
ing functionality. To instalSAGA simply unzip the binaries Grid (output)sr annet Networ

to your program files directory. Then op&AGA GUI and _CHNLROUTE:<str>  Channel Direction
test its functionality using point-and-click operations. Now Grid (output)
you can consider switching to the scripting environment. Go -SHAPES:<str> Channel Network
to yourR session and load tHRSAGA library: Shapes (output)
> library(RSAGA) -INI'EB_%RI(p:<st‘[)r> Initiation Grid
rid (inpu

First check ifR is able to locat&SAGA on your machine: -|N|T_METH%D:<num> Initiation Type
> rsaga.env() Choice

Available Choices:
$workspace [O] Less than
[a] " [1] Equals

[2] Greater than
$cmd -INIT_VALUE:<str> Initiation Threshold
[1] "saga_cmd.exe" Floating point

-DIV_GRID:<str> Divergence

$path Grid (optional input)
[1] "C:/Progra™l/saga_vc" -DIV_CELLS:<num>  Tracing: Max. Divergence

Integer
$modules Minimum: 1.000000
[1] "C:/Progra™l/saga_vc/modules" -TRACE_WEIGHT:<str> Tracing: Weight
which means that you can now send operations fRno _MlN?_rllsz:(fr?Ltjlr?]r;al mpu&in Segment Length

SAGA. Open thenodules folder under thé&sAGA directory
and you will notice a large number of DLL libraries. To get Finally, you can generate a stream network shown in Fig.

an info what can a certain module do, type: using thersaga.geoprocessor

> rsaga.get.modules("ta_channels") > rsaga.geoprocessor(lib="ta_channels",

$ta channels + module=0, param=list(ELEVATION="DEM.sgrd",

code name interactive * CHNLNTWRKj'I'tmp.sgrd':',

1 0 Channel Network  FALSE *  CHNLROUTE="tmp.sgrd",

2 1 Watershed Basins FALSE + SHAPES= itlreams.shp",

3 2 Watershed Basins (extended) FALSE + INIT_GRID—_DEM.sgrd L

4 3 Vertical Distance to CN  FALSE * DIV_CELLS=3, MINLEN=40))

5 4 Overland Flow Distance to CN FALSE

6 5 D8 Flow Analysis  FALSE SAGA CMD 204

7 6 Strahler Order FALSE library path: C:/Progra™/saga_vc/modules
library name: ta_channels

g sﬁ :E:: Eﬁtgg module name : Channel Network

author : (c) 2001 by O.Conrad

5http://cran.r-project.org/web/views/SpatiaI.html
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Load grid: DEM.sgrd...
ready

Load grid: DEM.sgrd...
ready

Parameters

Grid system: 30; 128x 129y;
6551817x 5070464y

Elevation: DEM.sgrd

Flow Direction: [not set]

Channel Network: Channel Network

Channel Direction: Channel Direction

Channel Network: Channel Network

Initiation Grid: DEM.sgrd

Initiation Type: Greater than

Initiation Threshold: 0.000000

Divergence: [not set]

Tracing: Max. Divergence: 3

Tracing: Weight: [not set]

Min. Segment Length: 40

Channel Network: Pass 1
Channel Network: Pass 2
Channel Network: Pass 3
Create index: DEM.sgrd
ready

Channel Network: Pass 4
Channel Network: Pass 5
Channel Network: Pass 6
ready

ready

Save grid: tmp.sgrd...
ready

Save grid: tmp.sgrd...
ready

Save shapes: streams.shp...
ready

Save table: streams.dbf...
ready
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Edited by: P. Molnar
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