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Abstract. Optimal spatial assessment of short-time step pre+ainfall estimation. Regarding the required sensitivity of the
cipitation for hydrological modelling is still an important re- potential rain sensors in cars it could be shown, that often
search question considering the poor observation networka few classes for rainfall observation are enough for satis-
for high time resolution data. The main objective of this pa- factory areal rainfall estimation. The findings of the study
per is to present a new approach for rainfall observation. Thesuggest also a revisiting of the rain gauge network optimisa-
idea is to consider motorcars as moving rain gauges withtion problem.

windscreen wipers as sensors to detect precipitation. This
idea is easily technically feasible if the cars are provided with
GPS and a small memory chip for recording the coordinates,

car speed and wiper frequency. This study explores theoretl Introduction

ically the benefits of such an approach. For that a valid re-

lationship between wiper speed and rainfall rate consideringRainfall is the most important input information for hydro-
uncertainty was assumed here. A simple traffic model is aplogical planning and water resources management. Espe-
plied to generate motorcars on roads in a river basin. Radagially the modelling of highly dynamic and nonlinear pro-
data are used as reference rainfall fields. Rainfall from thes€esses like floods, erosion or wash out of pollutants relies
fields is sampled with a conventional rain gauge network andheavily on good information about precipitation. Due to its
with several dynamic networks consisting of moving motor- high variability in space and time observation of rainfall is
cars, using different assumptions such as accuracy levels fdtill a challenging task. While the classical networks of non-
measurements and sensor equipment rates for the car ndgcording rain gauges with a daily observation interval have
works. Those observed point rainfall data from the differentreached a sufficient density and a good standard, the avail-
networks are then used to calculate areal rainfall for differentability and density of recording rain gauges for the observa-
scales. Ordinary kriging and indicator kriging are applied tion of short time step rainfall is still inadequate. Even for de-
for interpolation of the point data with the latter consider- veloped European countries like Germany the network den-
ing uncertain rainfall observation by cars e.g. according to aSity of recording rain gauges considering stations with longer
discrete number of windscreen wiper operation classes. Theecords from the German Weather Service (DWD, MI net-
results are compared with the values from the radar observawork) is only about one station per 1800 kwompared to a
tions. The study is carried out for the 3300%kBode river ~ density of about one station per 90krfor non-recording
basin located in the Harz Mountains in Northern Germany.rain gauges. Weather radar is a very important new data
The results show, that the idea is theoretically feasible andgource for measuring rainfall. However, despite the high spa-
motivate practical experiments. Only a small portion of the tial resolution of radar data there is often a large space-time
cars needed to be equipped with sensors for sufficient areafariable bias in radar rainfall estimates (Smith et al., 2007;
Krajewski and Smith, 2002). So, a sufficient point precipi-
tation network is still needed for calibration. Other special
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links (Leijnse et al., 2007; Messer et al., 2006) or rain gauge.2 Rainfall observation by cars

aboard moving ships to measure rainfall at sea (Hasse et al.,

1998; Yuter and Parker, 2001). Utilising rainfall information Rainfall observation by cars could be realised using the wind-
from different sources together and applying sophisticatedscreen wipers as sensors. The cars need to be equipped with
interpolation or merging methods can further improve pre-a& GPS system to obtain the geographical position. In addi-
cipitation estimation for hydrological applications (Gouden- tion @ memory chip is necessary to register time, location,

hoofdt and Delobbe, 2009; Chiang et al., 2007; Goovaertscar speed and wiper frequency. A crucial task for this sys-
2000; Haberlandt, 2007; Ehret et al., 2008). tem to work is the derivation of a relationship between wiper

The main objective of this paper is to present a new ideaSP€ed W) and rainfall intensity g). This relationship will
for measuring precipitation using moving cars as rain gauge®€ called in the following W-R relationship. In general the
with windscreen wipers as sensors to detect precipitation@infall intensity to be estimated depends on the wipers fre-
This idea would easily be technically feasible if the cars weredUency, ”?e car speed, the specific properties of the car and
provided with a GPS and a small memory chip for recordingthe driver's preferences operating the car. The influence of
time, car velocity and wiper frequency. Alternatively, also the latter could be avoided if photocell rain detectors installed
an online transmission of the sensed information via mobilglN Modern cars for automatic set up of wiper speed are used
phones could be realized. The potential of such a concepfirectly as sensors.. _ _ o
becomes immediately clear considering the high and ever N order to establish a W-R relationship calibration is re-
increasing traffic density worldwide with a huge number of Auired. The calibration of the W-R relationships using ob-
cars; e.g. in Germany exist more than 40 million cars (EU_served data from rain gauges would have some similarities
ROSTAT, 2009). to the procedure for calibration of radar data using the Z-R

This study explores theoretically the benefits of such anrelationship. The main difference is that each car has its own

approach. A simple statistical traffic model is applied to gen_specn‘lc W-R relatlor)sh|p which is primarily related to the .
erate car traffic on main roads in a river basin. Radar rain-"'P€" system, th? driver, the cars speeq anq the local condi-
fall data are used as reference rainfall fields. Rainfall fromt'ons' Totestthe idea of areal rainfall estimation by cars W-R

these fields is sampled with a conventional rain gauge net[elationships are needed. In the following possible ways to

work and with a dynamic network consisting of moving mo- establish W-R relationships are briefly discussed:

torcars. Those observed point rainfall data from the two net- 3. Assuming error free W-R relationships.

works are then used to calculate areal rainfall for different As base line scenario a correct W-R re|ationship with
scales using geostatistical interpolation methods. The results  exact rainfall measurement by cars is assumed. The
are compared with the reference values from radar observa-  point error for rainfall observation by cars is zero in this
tions. case. This allows assessing the impact of point obser-
vation errors on the total uncertainty of areal rainfall es-
timation by comparison of this base line scenario with
the following cases, where point errors are taken into
account. For this reference case the total error differ-
ences in areal rainfall estimation from gauges and cars
depends only on the interpolation error from the dif-
ferent observation networks. Note, that for this and all
other cases error free observation of rainfall at the rain
gauges is assumed.

2 Methodology
2.1 Traffic generation model

The traffic flow of the moving cars is determined in a sim-

ple stochastic simulation process. The necessary data for the

traffic flow model is geometric information about roads with

associated information about traffic density at differenttimes b. Assuming W-R relationships with uncertainty.

of the day. Furthermore, assumptions about the relative num-  Simple W-R relationships with uncertainty will be as-

ber of cars that is equipped with a rain sensor are needed. Fi-  sumed. Here, the point observation error is taken into

nally, a factor determines the sampling rate, i.e. the frequency  account by considering only a limited number of rainfall

of measurements in time. classes with constant observed wiper speed for the cer-
Based on these assumptions, cars are randomly generated tain ranges of rainfall. For instance rainfall observations

for each road segment. From their starting position, the cars  based on 4 classes, corresponding to less accurate mea-

virtually drive with the given velocity towards the end-node

of the road segment. Their position is interpolated according
to the given sampling rate, here in intervals of 5 minutes.
This leads to a collection of car positions on the roads in the
form: x, y and time. Subsequently, rainfall observations are

assigned to the car positions and areal rainfall is estimated

using interpolation (see below).
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surements (“more old fashioned cars”) and 10 classes,
corresponding to rather precise measurements (“more
modern cars”) could be considered. The assumed point
error is uniformly distributed within the classes and can
be taken into account e.g. by taking mid class values as
observed car rainfall or by using indicator kriging for
interpolation (see below).
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c. Estimating W-R relationships from laboratory 2.3 Areal rainfall assessment
experiments.
A set of basic W-R relationships for different cars and Rainfall interpolation is required to estimate raster based

wiper systems might be derived in laboratory exper- continuous rainfall fields in space from point observations
iments. Climate-wind tunnels may be employed for and to calculate areal rainfall for regions or catchments.

that allowing exact definition of rainfall intensities, car For rainfall interpolation two geostatistical methods ordinary

speed, etc. A simple model for the point errors could kriging (OK) and indicator kriging (IK) are employed. OK
be assumed considering e.g. normal distribution for thels used for the interpolation of rainfall from the stationary
errors. Those errors can be estimated from average angiauge network and as reference method assuming continu-
variance of the single relationships derived as outcomeous observation ability of the moving rain gauges. IK is used
of the experiments. To consider this point error in the for the interpolation of rainfall measured by the cars con-
simulation experiments realisations of wiper frequen- sidering their discrete observation ability in practice. It is
cies belonging to the truth rainfall are drawn from nor- assumed, that using the moving cars as rain gauges only a
mal distributions providing in return the uncertain point limited accuracy is possible providing rainfall observations
estimations of rainfall for Subsequent interp0|ation_ in discrete classes. In the fO”OWiﬂg a brief overview of the
o i ) . i interpolation methods OK and IK and their implementation
d. Estimating W-R relationships from field experiments. ¢ this investigation is given. A more detailed description
For field experiments some cars could be equipped withyj,6,t the theory of the methods can be found in geostatisti-
GPS and devices for recording car speed, location angy| texthooks (e.g. Goovaerts, 1997; Isaaks and Srivastava,
wiper frequency. If rainfall intensities are available a 1989).
c'al|bra.1t|on of the W—R relat.|onsh'|ps 3|r'n.|Iar to Z-Rrela- Ordinary Kriging (OK) is the best known and most used
tionships can be tried. Rainfall intensities can be takengeostatistical interpolation method (Matheron, 1971). For
from nearby rain gauges or from radar observations.sing OK the requirements of the intrinsic hypothesis have

However, both methods involve also significant uncer-, he met. That means, first, the expected value of the vari-
tainties to estimate the reference rainfall for the car 10- 3pje 7 is constant in the whole domain

cations. When using nearby rain gauges as reference the

interpolation errors have to be considered. In case ofE[Z(u)]=m for all uweD 1)
using radar as reference the uncertain transformation of d d th : f the diff & n
reflectivity into rain rate needs to be taken into account,2"d, second, the vanance of the ditierenc $“[+ ) -
Also a merged precipitation product could be used aSZ(u)] between two pomtg depends only on the distance vec-
reference (e.g. Goudenhoofdt and Delobbe, 2009). Théorh and not on the locationsandu +k

calibration can be carried out in a re-analysis mode us- 1

ing “historic” data or in an on-line mode using rainfall v = EVar[Z(u+h)—Z(u)] ueD. 2)

rates obtained _fro_m nearb;t/)_?gtom?rt;]c r?m gaugels dW'thhe functiony (h) is called here variogram (exact semivar-
remote transmission capabilities. The latter would al-;, 050y characterising the spatial variability of the target
low a dynamic updating of the transformation functions variable. The linear estimator for the unknown paigtis

aqd an adaptation to different conditions like dlﬁergnt a weighted sum of the observations from theurrounding
drivers of the cars. Such a system could be further 'm'point3u~'
it

proved by allowing a communication between the cars

propagating such information through the whole “sen- __ 1

sor network” (Stefanidis and Nittel, 2004). Z"(uo) = ;kfz(”f)' ®3)
1=

Investigations for establishing valid relationships between
wiper frequency and rain rate from laboratory or field exper-
iments (cases c. and d.) are beyond the scope of this pilot”
study and need quite an amount of further research. Herejzl)‘ﬂ’(”i —uj)+pu=yWui—u)
it will be assumed, that such relationships exist, either er- n ; (4)
ror free as reference (case a.) or with assumed uncertainty Z rj=1
based on a restriction of the continuous rainfall intensities to :
some discrete observable classes (case b.) The uncertainiyherei are the variogram values andis a Lagrange pa-
in the W-R relationship is one important source or errors forrameter. Considering that time series of precipitation need to
areal rainfall estimation by car networks. The other impor- be processed a variance weighted average experimental vari-
tant source is the interpolation error mainly related to the lim-ogram is calculated assuming isotropy
ited number of observation points to estimate areal rainfall,
which is discussed in the following and which is the main 5 () = 1 i 1
focus of the paper.

The weightsi are calculated using the OK kriging system

i=1..n

n(h)

2
20 2 22) ;[zwl,o—zmh,n] . (5
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wherem is the number of time stepsands? is the vari-  where N is the number of raster cells within the area and
ance for each time step. In this case only one experimental is the time step. For evaluation of the areal precipitation
variogram is obtained, for which the fitting of the theoretical estimates the following performance criteria are used:
model can be done manually. The combination of a nugget ”

effect Wlth an _exponent|al model is used here uniformly asi,q total bias Biasi[Zj(t)—ZA (t)], (10)
theoretical variogram model: pr

3h i i i

() =co+e- | 1—exp( =2 )|, ©6) the relative standard error normalised with the average of the
ae reference areal value

whereq, is the effective range; is the partial sill andg is 1 1

the nugget variance. RSE=—. | = Z [Z% (1) — ZA(t)]2 (11)

For indicator kriging (IK) (Journel, 1983) the observed Za ™A

variableZ (u) is first transformed into a binary indicator vari- o ]

able, according to and the coefficient of correlation

L { 1 if Z(u) <a (7) Cor= COI‘[ZA (t)s ZA (t)] , (12)

o 0 otherwise \/Var[ZA ()] -Var[ 2% ()]

Using several thresholdg, with k=1,..., K gives a vector

of indicator variabled, ;. Variograms have to be inferred

for all indicator variables separately. Considering ordinary

indicator kriging the interpolation is done for each indicator

using the OK framework, which gives in the end an estima-

t(')oz of tTi.CurSUIatlg./e distribution iur&ctlon (thT) .dlf(ﬁ)' . network and the car network the following kernel density es-

rder relation deviations are corrected a posteriori following . .0 ic applied to all cells=1,..., N of the 1 kmx 1 km

the approach of Deutsch and Journel (1992, p. 81). The mearig : : )
. o . rid (Silverman, 1986):

of the cdf approximated by its discrete sum provides then al

estimate for the observed variable:

where Z7; is the estimated areal precipitatiodiy the ref-
erence areal precipitation amd the number of time steps
considered for error calculation.

The performance of the areal rainfall estimation depends
on the network density. To quantify the density of the station

n d22
D,:iszj with k,:{?’(l—(?)) ford=<r (13
Of41— Ok Tr =1 0 ford >r

5 .(8)

K
2% () = Iop a0+ Y [1;k+1(u) —1 (u)] .
k=0 wheren is the number of stations within the search radius

whereag anday 1 are the minimum the maximum values of andk is a quartic kernel weighting the stations according to

the Z-range, respectively. their distancel from the cell centre. The total network den-
sity for one specific area or subbadin, is then calculated
2.4 Performance assessment by averagingD; over all raster cells within the considered

_ catchment. The kernel density is chosen here as estimator
To compare the performance of the moving car networkio consider all appropriate stations, also those located out-
with the performance of conventional rain gauges for estima-side the catchment boundaries and to weigh the individual

tion of areal precipitation space-time high resolution rainfall stations differently according to their distance from the sub-
fields are required as reference or “true” rainfall. Stochasti-pasin.

cally generated rain fields could be employed for this purpose
(e.g. Seo et al., 1990). However, here it is preferred to use€.5 General steps for analysis

weather radar rainfall, since those data are probably closer

to reality regarding space-time dynamics, and avoid the adFor the analysis the following steps are carried out based on
ditional introduction of a stochastic weather generator. Arealrainfall time series with a temporal discretisation of 5 min:
rainfall estimates based on moving car networks and based
on a stationary gauge network are then compared against
“true” areal rainfall calculated from the reference radar data.

Precipitation from both networks is interpolated on a regu- o Point precipitation time series are extracted for a sta-
lar raster for each time step using the methods described in tionary rainfall gauge network from the radar rainfall
Sect. 2.2 and then aggregated to areal averaggs) con- fields.

sidering different spatial scales

1. Areal reference rainfall time series are calculated for se-
lected catchments from radar rainfall fields.

N 3. Cars are randomly generated on roads according to tem-
75 =—=S"Z"t.u), 9) poral_ traffic d_engty vquatlons but with u_nlform spatial
4 N
= density considering different sensor equipment rates.
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4. Point precipitation time series are extracted for the mov-
ing car networks from the radar rainfall fields consider-
ing the discrete observation ability of the car sensors.
Rainfall from that raster cell in which the gauge is lo-
cated or which the car is just crossing at the observation N
time interval is taken as observed point value. A

5. The point rainfall time series from the gauge net-
work are interpolated using ordinary kriging (OK) on a
1kmx 1 km raster for the whole study area and are sub-
sequently aggregated over selected catchments to aree

rainfall time series. .T/'.‘ A Radar_Ummendorf

@ Rainfall (Summer)
@ Rainfall (All year)

. . . . . Gr. Grab
6. The point rainfall time series from the different car net- oo
works are interpolated using ordinary kriging (OK), in- Selke
dicator kriging with 4 rainfall classes (IK4) and in- o 5 10 20 30 40 I Trautenstein
Kilometers —— Highways/ Federal Roads

dicator kriging with 10 rainfall classes (IK10) on a
o vy e SUbSEUEes 1. Sty oo showing e selcted o catchmens o e
. . estimation of areal rainfall, the stationary raingauge network and

fall time series. the location of highways and freeways used for the simulation of
the car network.
7. Error statistics are calculated by comparisons of the

areal rainfall time series from gauge and car networks ,

each with the reference areal radar rainfall time series?"2 Traffic data

for the selected catchments. Traffic statistics were taken from a study related to noise

propagation (R.-D. Mummenthey, Trade Office Hildesheim,
personal communication, September 2008). Table 1 shows

3 Study region and data the traffic data which are used in this study. Assumed aver-
age speed of the cars on major roads is 80 km/h. Three dif-
3.1 Study region ferent classes of traffic density with respect to different times

of the day are used. For simplification all traffic statistical
data are applied uniformly within the whole study area. This

The study is carried out for the 3300knBode river . .
is motivated by the fact, that only one type of road, namely

basin located in the Harz Mountains in Northern Germany > " d d lect I I ds. If oth
(Fig. 1). The considered Bode region has elevations betwee'JO" roads, are used negiecting afl smailer roads. 1 other
1140ma.s.l. at the top of the Brocken Mountain and aboutroads were also included it would increase the spatial traf-

80ma.s.l. Mean annual rainfall varies between 1700 mm/yrﬂc variability but it would also further increase the potential

and 500 mm/yr. Four mesoscale catchments of different sizegf the c?_r network for |mp[[_oved ra|m;all gstlrpitlfn, (')'el' our
are selected for areal rainfall estimation, which comprise the2Ssumptions are conservative (see also Sect. 4.1). Only acer
Trautenstein (40kA), the Selke (102 k#), the Holtemme tain fraction of all cars will be prepared to measure precip-

(167kn?) and the Gr. Graben (812 Kncatchments. The itation. For that four different sensor equipment rates be-
stationary rainfall observation network consists of 14 record-tWeen 0.5% and 4% are assumed here (see Table 1). The

ing rain gauges with 6 stations operated all year and 8 Sta\_Nlndscreen wipers are used as sensors to detect and measure

tions operated only during the summer time. The all yearprecipitation. The rainfall intensity can be derived from the

station network represents a typical recording rain gauge net!/IPErs frequency. A_‘S currently there is no kn_own r_e'a“of"
work density in Germany. In addition, a weather radar stationShlp between the wiper frequency and the rainfall intensity

is located at Ummendorf covering the whole area within its simple assumonns are ”.‘ade-. The .fII’St one is to have an
observation range. exact observation of the rainfall intensity as reference for po-

For th work d data f the't hic inf tential maximum accuracy (case a. from Sect. 2.2). The other
t(')r N ctar nehwor tshrog ata ;\c')l'?l Se opogrzp IrC1 n OtL'assumptions are to use different rainfall observation classes,
mation system (here, the German ) are used, where %.g. corresponding to the wiper frequency intervals that can

roads are given according to different road categories rangin%e manually set in the cars (case b. from Sect. 2.2)
from highways to side roads. In order to make conservative ' T

estimations, only the highest road categories, namely high-
ways and federal roads are considered here (see Fig. 1).

www.hydrol-earth-syst-sci.net/14/1139/2010/ Hydrol. Earth Syst. Sci., 14, 11332010
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Table 1. Traffic data used for car generation.

Road types Highways, Federal Roads
Velocity 80km/h
Density Day (6a.m.—5p.m.) Evening (5p.m.—10p.m.) Night (10 p.m.—6a.m.)
1100 cars/h 700 cars/h 180cars/h
Sampling rate 5min
Sensor equipment rates 0.5%, 1%, 2%, 4%
3.3 Rainfall data 16/07/2002 17/07/2002

25.0 100.

L 20.0 L 80.0

To provide reference rainfall fields for the simulation experi-

ments radar data from the C-band instrument at Ummendorf.- e N 000
are utilised. The data were provided by the German Weather * | e il 0
Service (DWD) as raw reflectivities with a spatial polar res- : ' o o
olution of 1 kmx 1° and a time discretisation of 5min. The X ‘ X '
reflectivities are converted into rainfall intensities applying
the Marshall-Palmer Z-R relationship (Marshall and Palmer, 18;7/2002 100 19/07/2002 5o
1948) "8

4.0

Z =200- R0, 14) -

2.0

1.0

whereZ is the reflectivity in mri/m? and R the rainfall in-

tensity in mm/h. The rainfall intensities are interpolated to a < 00 < 00

1kmx 1 km rectangular grid. Here a simple a nearest neigh-

bour approach is used for those raster cells containing neig. 2. Spatial distribution of the reference radar rainfall in mm/d

more than one radar point; otherwise the mean value fronfor the Bode river basin accumulated over the four days of the storm

all available radar points within a raster cell is taken. Theevent.

radar data have been corrected for attenuation and clutter er-

rors (Kramer, 2008), although this was not really necessary

for this exercise. A bias correction of the radar data e.g. using

the observations has not been applied here. —
The heavy summer storm lasting from 16 July 2002 to selke

19 July 2002 has been selected for this analysis. It is charac- 27| —Hotemme [~====~fr=mm=rmrmommmrmmmooommmom oo

terised by high temporal and spatial rainfall variability with —Cr Graben

“observed” rainfall sums over the four days between 31 mm

and 125 mm sampled at the 14 rainfall station locations from

the radar fields. Rainfall data are used at a temporal reso-

lution of 5min for this analysis. Figures 2 and 3 illustrate

the spatial and temporal variability of the event based on the s

radar precipitation data. Most rainfall occurs at the second

day of the event, however with a high temporal variability. 0l A VAT W

Note also that there are quite pronounced differences be-  * 1%0 20 Timesssotep - min‘l‘s" 850 650

tween the time series of areal rainfall for the four selected

catchments. For further analyses only the _tlme step_s from 51:ig. 3. Time series of areal rainfall derived from the reference radar

to 700 of the event are considered (see Fig. 3), which COVEfie|gs for the selected four catchments considering only the time pe-

the most significant rainfall period. riod of the event with significant rainfall over the particular catch-
ments between time steps 51 and 700.

1.5

el
©

Rainfall [mm/5min]
o
o
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Table 2. Number of cars (i.e. number of car positions accumulated
over 5 minute intervals per hour) for the whole Bode river basin
considering highways and federal roads and a sensor equipment rate

of 1%.
Time of day Absolute number Specific number
of cars [T}] of cars [T 1km=2]
Day (6a.m.-5p.m.) 2174 0.66
Evening (5p.m.—10p.m.) 1423 0.43
Night (10 p.m.—6 a.m.) 360 0.11

visualized in Fig. 4, where on the left panels the real number
of cars is shown and on the right panels the integration of car
positions used for observations over one hour.

Only the highways and federal roads having a total length
Fig. 4. Example for car distributions considering traffic with a sen- of about 1300 km within the Bode river basin are used in
sor equipment rate of 1% on the road network during day (upperthis study. To the minor roads, which are not considered
row) and night (lower row). On the leftis the situation at one partic- here, belong the state and district roads with a total length
ular sampling time (5 min.time step), on the right is the information of 3100km as well as the side roads with a total length of
of an accumulated sampling result of one hour. 10300 km. Those figures give an impression what potential
would be available additionally for measuring rainfall with
car networks in this region.

4 Application and results

41 Car networks 4.2 Rainfall sampling and variogram inference

Figure 4 shows examples of the distribution of cars consid-Rainfall for the stationary gauge and moving car networks
ering a sensor equipment rate of 1% during day and night ats sampled every 5min from the reference radar field from
one time step and accumulated over 1h, respectively. Théhose raster cells were rain gauges and cars, respectively, are
different car densities between day and night time are clearlyocated (cp. Fig. 1, Fig. 4). For the stationary gauges an ex-
visible. The figure also suggests that with a dynamic networkact rainfall measurement without errors is postulated. For
the number of observation points in space can be virtuallyrainfall observations by cars imprecision is assumed, which
increased if measurements are integrated over time. Assunis related to various factors e.g. a restricted number of wind-
ing that the change of the car locations with time (i.e. thescreen wiper frequency classes, non-unique features for dif-
speed of the cars) is greater than the change of the rainfafierent car types, calibration uncertainties etc. This is taken
intensity with time at one location a moving network would into account by a limited number of rainfall classes for which
provide advantages compared to a stationary network of thé&he sampling can be made. Rainfall observations based on 4
same density. In fact one car could measure rainfall at severallasses, corresponding to less accurate measurements (“more
locations before the rainfall intensity changes. old fashioned cars”) and 10 classes, corresponding to rather
If the roads are now travelled by cars equipped with rainPrecise measurements (‘more modern cars”) are analysed
sensors at a rate of 1% and rainfall is Samp'ed every Sminhere. The definition of the rainfall intervals has been done
the absolute car densities for the Bode river basin can be caPere quite subjectively based on simple assumptions about
culated as given in Table 2. The values in this table are theviper frequencies and a rough examination of several ob-
result of empirical counting of discrete car positions in the Served storms in the Bode region. Table 3 lists the assumed
whole area within a time interval of one hour for three time rainfall ranges for the two classification schemes.
phases of the day (day, evening, night). The values in the sec- Prior to the application of the geostatistical interpolation
ond column are computed by normalizing the first values bymethods variograms have to be estimated, which characterise
the whole area, resulting in an average car position densityhe spatial variability of the rainfall fields. The variograms
per hour and krh For different equipment rates the values are inferred here a priori from the radar data. This is a certain
in Table 2 have to be multiplied with these rates. Note, thatsimplification as the radar data represent the truth, which is
the figures in Table 2 are in fact the number of car locationsusually not known. However, since the focus of the analysis
(and not the number of cars) counted within one hour for ais on relative comparisons of the performance between the
discrete observation time interval of 5 min. The difference is stationary gauge network and different dynamic car networks
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Table 3. Rainfall discretisation into classes, thresholds used for interpolation with indicator kriging (IK) and corresponding variogram
parameters. For ordinary kriging (OK) the variogram No. 0 without threshold is applied. The upper bounds are included in the classes.

No Classes for IK Classes for IK  Threshold Nugget Sill Effective
with 10 intervals  with 4 intervals  [mm/5min] [ [ Range
[mm/5 min] [mm/5 min] [km]
0 - - None 0.0 11 30
1 0.0 0.0 0.0 0.1 0.9 60
2 0.0-0.1 - 0.1 0.1 0.9 30
3 0.1-0.3 - 0.3 0.1 0.95 20
4 0.3-0.5 0-0.5 0.5 0.1 0.9 12
5 0.5-1.0 - 1.0 0.1 0.8 8
6 1.0-1.5 - 15 0.1 0.65 6
7 1.5-2.0 0.5-2.0 2.0 0.1 0.35 5
8 2.0-3.0 2.0-5.0
9 3.0-4.0
10 4.0-5.0
Original variable Threshold 1: alpha=0.0 Threshold 2: alpha=0.1
t20] e, 1.20 wl et
'\{ 0.80_{ 'Y 0.80{
0.40] / 0.40]
0.00 ; . . ; . ) ; ; . . ; . 0.00 . ; ; . ; .
00 100 200 300 400 500 60.0 0.0 100 200 300 400 500 60.0 0.0 100 200 300 400 500 60.0
Distance [km] Distance [km] Distance [km]
Threshold 3: alpha=0.3 Threshold 4: alpha=0.5 Threshold 5: alpha=1.0
1.20] 1.20]
'Y 0.80_{ 'Y 0.80{ - .
0.40_{ 0.40{
0.00 . . ; . ; . ; . . . . . 0.00 . . . . ; )
00 100 200 300 400 500 60.0 00 100 200 300 400 500 60.0 0.0 100 200 300 400 500 60.0
Distance [km] Distance [km] Distance [km]
Threshold 6: alpha=1.5 Threshold 7: alpha=2.0
1.20] 1.20]
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040]f 040] reeeeveeenttatetee,
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00 100 200 300 400 500 60.0 00 100 200 300 400 500 60.0
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Fig. 5. Average standardized variogram of the original variable rainfall and indicator variograms for 7 rainfall thresholds given in mm/5 min
estimated from observed radar data.

and the variograms are used uniquely for both networks thigal and fitted theoretical variograms fa@i(u) and I (u) for
is tolerable. all selected thresholds. Table 3 lists the estimated variogram
Average experimental variograms are calculated based oRarameters and indicates which variograms are used for OK
Eq. (5) for rainfall as continuous variablé(u) and for dif- ~ @nd for IK considering either 4 classes or 10 classes. Com-
ferent rainfall indicator variableg, (u) with k=1,...,k.  Paring the indicator variograms it can be seen that the range
For the estimation of the indicator variograms radar rainfall Ut @lso the sill decrease with increasing rainfall thresholds.
is discretised into seven classes taking into account the pre=arger rainfall intensities have smaller extent which explains
defined rainfall observation intervals. The combination of ath® decreasing range. For the highest thresholds there are
nugget effect with an exponential model is fitted manually to ©Nly & féw observed values beyond the threshold, which ex-

all experimental variograms. Figure 5 shows the experimenPlains the low variance. For that reason variograms with
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Fig. 6. Areal rainfall time series for the Gr. Graben catchment estimated from the stationary gauge network using ordinary krigidg)stats
and estimated from the car network with 4% sensor equipment rate using indicator kriging with 4 rainfall classé&jcarsing IK with
10 rainfall classes (cark10) and using OK without rainfall classification (ca@K). Reference areal rainfall is from radar data (true).
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Fig. 7. Areal rainfall time series for the Holtemme catchment estimated from the stationary gauge network using ordinary krigio¢jstats
and estimated from the car network with 4% sensor equipment rate using indicator kriging with 4 rainfall classk&ljcarsing 1K with
10 rainfall classes (car¥K10) and using OK without rainfall classification (ca@K). Reference areal rainfall is from radar data (true).

higher thresholds tham = 2.0 mm/5 min are not estimated. sensor equipment rate. For the 800%ktarge Gr. Graben
For interpolation of indicator variables with higher thresh- catchment the areal rainfall estimation using the stationary
olds the last estimated indicator variogram is then appliedrain gauge network is poor. All approaches employing the
car network provide significantly better areal rainfall esti-
mation. This is not surprising considering that no station-

(see Table 3).

4.3 Comparisons of areal rainfall estimation

Figures 6 and 7 show exemplarily areal rainfall time series

ary gauges are available within the basin boundaries for that
catchment. For the Holtemme catchment areal rainfall esti-

mation from the car network using IK4 provides slightly bet-

for the Gr. Qraben and the Holtemme catchments e;timatefler results compared to the estimation from the rain gauge
from the rain gauge network and the car network with 4%
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Fig. 8. Performance of areal rainfall estimation from the rain gauge network (horizontal red line) and from the 4 car networks with different
sensor equipment rates (bars). For interpolation of the car rainfall observations IK4 (heavy dotted bars), IK10 (medium dotted bars) and OK
(light dotted bars) are used. In addition the average network denBitjgfor the station network (blue triangles) and the car networks (blue
squares) for each subbasin are provided.

network. Using IK10 however improves significantly the ment rates which are greater or equal to 1%. One reason

areal rainfall estimation. OK used as reference method asfor that could be that the locations of the rain gauges in the

suming no errors in rainfall observation from car observato-Selke basin are optimal compared to the locations of the cars,

ries gives here only an additional rather small improvement.which are forced on roads with possibly disadvantageous po-
sitions e.g. in valleys.

In Table 4 all calcul rformance m res for areal . . o
. ab © & al caieu gted perormance measures for area From Table 4 it can bee seen, that the bias for the indicator
rainfall estimation are listed considering the four catchments,

approaches is usually higher compared to OK. This comes

the different car sensor equipment rates and interpolation. ) X e .
methods. Table 5 shows the corresponding kemnel densitr)?kely from the suboptimal rainfall classification, required by

calculations of the networks. In addition, a visual com- h_e fixed ralnfa_ll obser_vatlo_n clas_ses c.9. _accordlng to the
wiper frequencies. This rainfall discretisation does neither

parison of the relative standard errors for areal rainfall es-
uarantee an equal number of values per class nor an equal

timation and the associated network densities is given | distribution of the values within the classes. Especially the
Fig. 8. For the largest test catchment Gr. Graben all &l aximum limit of the highest interval is a c.ritical assump-
networks perform significantly better compared to the Sta_tion (cp. Table 3). All this leads to a biased estimation of the
tion network no matter what sensor equipment rate or inter- p.l f .th lative distribution functi hich
polation approach is used. The error from the station net-hmeag va ueb rom dfecumhu atve ISI riou |ofn hun_c (';.m’ whic
work is highest (RSE =0.66) and the station density is low-, as been obtained from the interpolation of the indicators us-

est (Dsub= 0.6) compared to the other catchments. For the!N9 Eq. (8). This bias decreases usually witr_] increasing num-
smallest catchment Trautenstein the error from the statiorper of classes (cp. results for IK4 and IK10 in Table 4).
network (RSE =0.6) is still almost always higher than the er- Cars can only travel on roads. So the car precipitation net-
rors from the car networks, which is also related to a very lowwork is restricted to roadways. Considering the preferred lo-
station density Dsyp=1.5). For the Holtemme catchment cation of road lines e.g. in valleys and the relation of rainfall
the error from the station network is smaller (RSE =0.34) asto elevation (i.e. on average higher rainfall for higher loca-
consequence of a higher rain gauge dendiyf=7.7). For  tions) the car network forced on roads might e.g. underesti-
that catchment, the car networks perform better only for themate precipitation. For that reason one additional computer
larger sensor equipment rates of 2% and 4% although thexperiment is carried out generating cars anywhere within
car network density is always superior compared to the stathe catchment area ignoring roadways. The results are shown
tion density. The car network for the Selke catchment canexemplarily for two sensor equipment rates in Fig. 9. It be-
hardly do better than the traditional rain gauge network al-comes clear, that a random positioning of the cars within the
though the average car density is higher for all sensor equipeatchments does not improve the estimation performance for
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Table 4. Performance of areal rainfall estimation based on the rain gauge network (Stations) and the car networks (Cars) with different
sensor equipment rates (SER) in comparison with the radar reference rainfall. For interpolation ordinary kriging (OK) and indicator kriging
(IK) with 4 and 10 rainfall classes are used. All values between time steps 51 and 700 with reference rainfall intensity greater or equal to 0.1
mm/5min are considered for error calculations.

Stations OK Cars IK4 Cars IK10 Cars OK

SER Bias RSE Cor Bias RSE Cor Bias RSE Cor Bias RSE Cor
%]  [mm] [] -] [mm]  [-] -] [mm]  [-] - [mm]  [-] -]
Catchment Trautenstein (39 Kin

4 -6.7 060 058 151 049 087 -59 022 09 0.0 0.15 0.98
2 —6.7 0.60 0.58 12.1 0.50 0.80 —-7.7 034 0.90 -1.4 0.30 0.91
1 -6.7 060 058 135 056 078 -6.0 037 087 -07 035 0.87
0.5 -6.7 060 058 120 063 069 -6.7 046 080 -32 044 0381
Catchment Selke (102 km

4 0.1 023 095 169 046 090 —-47 022 09 -09 0.15 0.98
2 0.1 0.23 0.95 17.1 0.56 0.80 —-4.8 0.35 0.88 —-0.9 0.33 0.89
1 0.1 023 095 145 054 078 —-45 038 086 04 0.30 0.90
0.5 0.1 023 095 158 060 076 —-3.1 042 081 04 0.44 0.81
Catchment Holtemme (167 Km

4 -15.8 034 086 175 028 095 -103 018 097 -16 0.16 0.97
2 —-15.8 0.34 0.86 12.6 0.29 0.92 —-15.2 0.25 0.94 —-49 024 0.93
1 —-15.8 0.34 086 4.4 034 088 —-20.2 034 089 -81 034 0.87
0.5 -15.8 034 08 -6.6 040 079 -281 044 082 -157 043 0.78
Catchment Gr. Graben (812 ¥n

4 -41 066 016 129 030 091 -69 018 095 -11 014 0.95
2 —-4.1 0.66 0.16 12.3 0.33 0.84 -7.2 0.23 0.89 -1.2 0.19 0.90
1 —-4.1 0.66 0.16 7.7 0.34 0.75 -10.7 0.32 0.80 —-41 024 0.86
0.5 —-4.1 0.66 0.16 3.4 0.45 0.50 —-13.3 047 0.52 —-6.2 0.45 0.53

Table 5. Kernel network densitied,;, for the stationary rain locations are optimal compared to a random distribution of
gauge network (Stations) and averaged over time for the dynami@auges.
car networks (Cars) for the four selected catchments considering The error for areal rainfall estimation from the car net-

different sensor equipment rates (SER). works seems not strongly related to the catchment size at
least for considering the interpolation approaches IK10 and

Catchment li%‘ﬂfktaﬂ_ozns 23@3?(“3_ with SER of OK. The interpolation based on only 4 rainfall intervals using
[ el m] IK4, however, tends to give smaller estimation errors for the
4% 2% 1%  0.5% two larger catchments, Gr. Graben and Holtemme, compared
Trautenstein 1.5 107.3 53.9 284 133 to the two smaller ones, Selke and Trautenstein. Although
Selke 20.1 1276 644 315 171 for the largest basin (Gr. Graben) IK4 produces higher errors
Holtemme 71 1531 77.3 383 193 compared to the second largest basin (Holtemme).
Gr. Graben 0.6 124.7 620 310 154

Figure 10 shows the absolute number of cars together with
observed and estimated areal rainfall time series for the Selke
basin. It becomes clear, that there is a high variability in the
car network density with changing levels for day, evening
areal rainfall. For the Selke basin even the opposite seemand night times. The figure shows also, that the car network
true. For those four catchments it can be concluded that usingensity is poor for the largest peak of the event (during night
the roadways for measuring rainfall is not suboptimal com-time) which leads to a significant underestimation of rainfall.
pared to a pure random network of the same density. Still,This could also contribute to the superiority of the actual sta-
this does not disprove the possibility that the existent statiortion network in this catchment.
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0.8 cars. Calculated areal rainfall for four different catchments
0.5% Sensor equipment rate using ordinary kriging and indicator kriging was compared
0.6 - against the reference values from radar observations. The

main results can be summarised as follows:

1. In general, the idea of using cars as rain gauges is theo-
retically feasible and would improve the assessment of
areal rainfall compared to stationary gauge networks.

Selke Holtemme  Gr.Graben Trautenstein 2. The error for areal rainfall estimation depends on the
network density and decreases with growing number of

08 cars. Considering the current traffic density obtained
2% Sensor equipment rate from statistical data a small sensor equipment rate be-

tween 0.5 and 4% was sufficient for areal rainfall es-
timation in the selected mesoscale catchments of the
Bode river basin.

3. The imprecision in rainfall observation by the cars can
be considered in areal estimation using indicator krig-
ing based on rainfall classes. For the Gr. Graben and the

Selke Holtemme  Gr.Graben  Trautenstein Trautenstein catchments even as little as 4 discrete inter-

vals for rainfall observation provide better areal rainfall

estimation then the stationary gauge network with con-
tinuous observations. Using 10 rainfall intervals gives

often almost as good results as with assumed continu-
ous rainfall observation by the car network.

Fig. 9. Relative standard errors for areal rainfall estimation using
OK interpolation with regular moving cars on roads (heavy dotted)
and randomly redistributed cars (light dotted) for two sensor equip-
ment rates.

[~ no. of cars —true — cars_ik10 4. A problem with the imprecision of rainfall observation
14 using cars is the prior definition of suitable rainfall inter-
vals according to the expected range of the event. This
leads likely to an additional bias in rainfall estimation.

]
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. A simulation study has shown that locations of the main
roads have no disadvantageous effect on the position of
cars regarding rainfall observation compared to a the-
oretical random distribution of cars in space with the
same network density.
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Time step [5 min] 6. The results for the Selke catchment indicate that there
might be optimal positions for rain gauges which reduce

Fig. 10. Absolute number of cars (no. of cars) generated on roads  the required network density significantly compared to

in the Selke catchment with 4% sensor equipment rate in compari-  an arbitrary location of the gauges.
son with time series of observed (true) and estimated areal rainfall o ] i ] )
(carsik10). For this pilot study valid relationships between wiper speed

and rainfall rate were assumed considering the point obser-
vation error only in a very simple way. So, the focus of the
5 Summary and conclusions study was on interpolation uncertainty given different net-
work densities (e.g. how many cars are needed) and regard-
The main objective of this paper was to present a new aping the required discretisation of the rainfall sensors in cars.
proach for rainfall observation. The idea was to considerln order to quantify point measurement errors using the cars
motorcars as moving rain gauges with windscreen wipers ass rain gauges and to confirm assumed discretisation accura-
sensors to detect precipitation. This study has explored theeies for car rainfall observations practical experiments have
oretically the benefits of such an approach. A simple traf-to be carried out in the next step.
fic model was applied to generate motorcars on roads in the Future investigations should also consider different rain-
3300 kn? Bode river basin. Rainfall from radar data fields fall events, other regions and complete road networks to fur-
were sampled with a conventional rain gauge network andher test the presented ideas. Especially higher sampling
with several dynamic networks consisting of moving motor- rates for the cars and the integration of observations over time
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need to be explored. The findings also suggest a revisitingdasse, L., Grossklaus, M., Uhlig, K., and Timm, P.: A Ship Rain
of the rain gauge network optimisation problem. Future re- Gauge for Use in High Wind Speeds, J. Atmos. Ocean. Tech., 15,
search might also consider a merging of rainfall information 380-386, 1998.

from the three sources radar, stations and cars. Eventuall)b,saaksy E. H. and Srivastava, R. M.: Applied Geostatistics, Oxford

practical feasibility studies are required to answer questions UniVersity Press, New York, 1989. o
about applicability of the ideas in praxis Journel, A. G.: Non parametric estimation of spatial distributions,

Math. Geol., 15, 445-468, 1983.
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