Hydrol. Earth Syst. Sci., 13, 992018 2009 Dy -K

www.hydrol-earth-syst-sci.net/13/999/2009/ Hydr°|°gy and
© Author(s) 2009. This work is distributed under Earth SYStem
the Creative Commons Attribution 3.0 License. Sciences

Analysing the temporal dynamics of model performance
for hydrological models

D. E. Reusset, T. Blumel2, B. Schaeflf, and E. Zehe

lUniversity of Potsdam, Institute for Geoecology, Potsdam, Germany

2Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany

3Delft University of Technology, Faculty of Civil Engineering and Geosciences, Water Resources Section, Delft,
The Netherlands

4TU Miinchen, Institute of Water and Environmentiihen, Germany

Received: 16 September 2008 — Published in Hydrol. Earth Syst. Sci. Discuss.: 19 November 2008
Revised: 12 June 2009 — Accepted: 12 June 2009 — Published: 7 July 2009

Abstract. The temporal dynamics of hydrological model 1 Introduction

performance gives insights into errors that cannot be ob-

tained from global performance measures assigning a singlélydrological modelling essentially includes — implicitly or
number to the fit of a simulated time series to an observed refexplicitly — five steps: 1) Deciding on the dominating pro-
erence series. These errors can include errors in data, modegsses and on appropriate concepts for their description. This
parameters, or model structure. Dealing with a set of perfords ideally based on data and process observations as it re-
mance measures evaluated at a high temporal resolution inffuires a thorough understanding of how the catchment func-
plies analyzing and interpreting a high dimensional data settions. 2) Turning these concept into equations. For the more
This paper presents a method for such a hydrological modetommon concepts in hydrology, equations are readily avail-
performance assessment with a high temporal resolution andble. 3) Coding and numerically solving these equations.
illustrates its application for two very different rainfall-runoff Again, we think that it is of great advantage to use existing
modeling case studies. The first is the Wilde Weisseritzwork if code is availableRuytaert et al.2008. 4) Once the
case study, a headwater catchment in the eastern Ore Moumrodel structure is defined, usually a number of model param-
tains, simulated with the conceptual model WaSiM-ETH. eters have to be estimate@ypta et al.2009. 5) Finally the

The second is the Malalcahuello case study, a headwatgnodel has to be tested usually based on an independent data
catchment in the Chilean Andes, simulated with the physics-set and we have to decide whether the model is acceptable or
based model Catflow. The proposed time-resolved perfornot. In the latter case we have to revise the initially chosen
mance assessment starts with the computation of a large seoncepts and repeat steps 2-5 (Seeicia et al.2008 for an

of classically used performance measures for a moving win€xample of how to stepwise improve a model). However, a
dow. The key of the developed approach is a data-reductiomievision of our model concept requires a clear understanding
method based on self-organizing maps (SOMs) and clusteef the model’s structural deficits: what is going wrong, when
analysis to classify the high-dimensional performance ma-does it go wrong and which part of the model is the origin?
trix. Synthetic peak errors are used to interpret the resulting Model evaluation is usually carried out by determining
error classes. The final outcome of the proposed method isertain performance measures, thus quantitatively compar-
a time series of the occurrence of dominant error types. Foing simulation output and measured data. Various meth-
the two case studies analyzed here, 6 such error types hawsls of model evaluation have been developed over time:
been identified. They show clear temporal patterns, whichStarting with visual inspection (usually used implicitly or
can lead to the identification of model structural errors. explicitly during manual calibration) more objectivity was
achieved with the calculation of performance measures, of
which the most widely used in hydrology is certainly the
Nash-Sutcliffe-Efficiency fash and Sutcliffe1970. Au-
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measure is not able to catch all the features that should b& characterize different error types, b) synthetic peak errors
reproduced by the hydrological modébijpta et al. 1998. to support error type characterization and c) the time series
As a result, multi-objective calibration methods based on aof the obtained error types to analyse their occurrence with
range of performance measures have been and are still beirrgspect to observed and modelled flow dynamics.
developedGupta et al.1998 Yapo et al, 1998 Vrugt et al, We use multiple performance measures to capture differ-
2003. ent types of model structural deficiencies, similar to multi-
Probably because of the development of automatic cali-objective calibration (e.gGupta et al. 1998 Yapo et al,
bration procedures and their focus on the entire calibrationl998 Boyle et al, 2000 Vrugt et al, 2003. Dawson et al.
period, the study of theemporal dynamicef model perfor- (2007 assembled a list of 20 performance measures com-
mance — which is implicitly used during visual inspection — monly used in hydrology. In addition, we use several per-
did not undergo the same process of formalization. formance measures introduced bgchner et al(2007) to
However, we suggest that identification of temporal dy- test the agreement between time series in the field of ecol-
namics of performance measures can be very useful for deegy and which, as we will discuss, are promising for the use
tecting model structural errors as a first step of model im-in the field of hydrological model calibration.
provement. This is of particular importance for operational Synthetic peak errors with known characteristics will be
flood forecasting because detailed knowledge about the domdsed to better understand the model performance measures.
inant processes is necessary for credible predictions. Globdhterpreting the values of performance measures based on
performance measures are only of little use in this contextmodified natural reference time series has for example been
because lead times for operational forecasts are typicallyproposed byKrause et al(2005; Dawson et al(2007). In
very short i.e. in the order of 2 to 36h. To our knowl- contrast to the modified natural time series, we use an artifi-
edge, there are no studies on high resolution temporal dyeially generated peak as it is easier to control its properties.
namics of model performance for longer simulation periods. As mentioned before, hydrological modelling studies do
Pebesma et a{2005 analyzed the temporal dynamics of the generally not analyse the temporal dynamics of model per-
difference between observed and predicted time series foformance. However, a similar approach to the one suggested
single events and used linear models to predict these differhere but referring to parameter uncertainties, has been used
ences. For longer simulation periods, it has been shown thdor the dynamic identifiability analysid{agener et a]2003
it might be useful to split time series (for example in sea- and the multi-period model conditioning approa€lnfi and
sons) to obtain some minimum temporal resolution of per-Beven 2007), where the temporal dynamics of parameter un-
formance measuresChoi and Beven(2007 showed with  certainty is analysed. The temporal dynamics of model struc-
their model conditioning procedure that performance mea-ure uncertainties have been analysedigrk et al.(2008),
sures calculated on a seasonal scale give some additional invho used 79 models from a model family for their study.
dication about model structure deficiencies when compared The large amount of data produced in such an analysis
to global performance measures. SimilalBhamir et al.  quickly becomes overwhelming. Therefore an appropriate
(2005 were able to improve identifiability of model param- data reduction technique is essential to reduce the dimension
eters when looking at model performance on different timeof the data while at the same time loosing as little informa-
scales. tion as possible. The number of simulated time steps (
The rationale behind this study is that we can obtain ais usually large and multiple performance measuié} gre
much clearer picture of structural model deficiencies if we used at each time step, therefore a set tifiNalues has to
know be interpreted.
We propose self-organizing maps (SOM) (e<ghonen
— during which periods the model is or is not reproducing 1995 Haykin, 1999, which have already been used in sev-
observed quantities and dynamics; eral hydrological studies (se¢erbst and Caspg008§ for
a short overview) and also in a comparable meteorological
application where the bias of model results was determined
conditional to the climatological input datal§ramowitz
— which parts/components of the model are causing thisSt &, 2008. The use of SOMs leads to a reduction of the
error. dimension of a data set while preserving the topology of the
data in a two dimensional space (i.e. similar data sets are
A methodology to answer the first two questions is sug-close to each other). During this step some of the variabil-
gested here while the third topic will be the subject of a sub-ity is lost as the number of set€ is drastically reduced (to
sequent publication (see Se8). The main objective of this  be further explained in Sec2.3). From the SOM we will
paper is thus to present a new method to analyse the temidentify typical combinations of model performance mea-
poral dynamics of the performance of hydrological modelssures, i.e. error types/error classes. This then leads to the
and to be more specific about the type of error. We proposassessment of the temporal dynamics of these typical combi-
to use a combination of a) vectors of performance measuresations.

— what the nature of the error in times of bad model per-
formance is;
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Classical methods exist to redukg e.g. principle compo- 2.1 Performance measures
nent analysis, use of scatter plo@dke and Pappenberger
2008, or removal of highly correlated measures (&gpta  Dawson et al(2007) assembled 20 performance measures
et al, 1999. In this study the analysis is performed using used in hydrology into a test suite. This test suite includes
the full set of measures. However, only a subset of the meathe Nash-Sutcliffe coefficient of efficiency CE, several mea-
sures is reported for readability, excluding highly correlatedsures based on the absolute or squared error e.g. the mean
measures. absolute error MAE and the root mean squared error RMSE.
In the present study we propose a novel combination off e number of sign changes of the residuals NSC was in-
key aspects of the mentioned studies as well as the use dfoduced byGupta et al(199§. Itis low if there is a bias.
high resolution performance measure time series and providdNese and more measures are listed in TabBetailed de-
evidence that this is a suitable approach for model evaluatior$Criptions are available fronD@wson et a|.2007) or https:
for two very different model structures. /Ico-public.Iboro.ac.uk/cocwd/HydroTest/Details.htmithe

We first present a detailed description of the methodologyMeasures have been implemented in the R packeeesser
(Sect.2) and then show its application for two case studies. 2009

These two case studies differ a) in catchment characteristics MOSt of these measures are designed to capture the de-
(topography, land use, soils etc.; Se@tand b) in the hy- gree of exact agreement between modelled and observed val-

drological model selected for simulation (process-orientedU€S- However, we are also interested to measure the degree
vs. physically based; Seat). The results for the case stud- ©f qualitative agreementJachner et al(2007) proposed a
ies are presented in Sectand6 and discussed in Sedt. number of performance measures determining such a qual-

Main findings and suggested future tasks are summarized iffative agreementvan den Boogaart et alimplemented in
Sect 8. R;). Their measures are mainly based on MAE, MSE and

RMSE defined as follows:

1
2 Methods MAE = ;l Z | Xobs—Xsiml (1)
. 1
The proposed methodology can be summarized as follows: MSE = — Z (Xobs—Xsim)> (2)
n
1. determination of a large set of different performance 1
measures; RMSE = \/ ~ > (Xobs—xsim)? ®)

2. evaluation of the set of performance measures for aWherexops is the observed time series angm the corre-
moving time window; this yields a vector of perfor- sponding simulated time series. Depending on the desired
mance measures for each time step; qualitative comparison, they used data transformation to al-

low for shifts and/or changes in scaling. To obtain measures

3. use of synthetic peak errors to interpret the values ofwhich are insensitive to shifts, data are centred (denoted by
the performance measures, i.e. to assess their error r& “C”). In order to ignore scaling, data are standardized

Sponse; with a linear transformation, minimizing the deviance mea-
sure (*S”).
4. use of SOMs and cluster analysis for data reduction and In addition, Jachner et al(2007) provide performance
classification of error types; measures for different scales of interest. The absolute scale

is most often used and applies to the measures defined above.
5. analysis of temporal dynamics of error types with re- If the difference calculated as a ratio is of more interest (e.g.
spect to measured and modelled time series; simulating twice the observed discharge, regardless of the
absolute value), a relative scaleP(" from percentage), log
6. removal of performance measures that have time serie§ansformed data €") or geometric transformed datac”)
showing a high correlation with other time series for re- are more appropriate (sdachner et al2007 for more de-
porting the results; tails). Finally they define performance measures using an or-
dinal scale (‘O” — after transformation of the data to ranks).
7. analysis and characterization of error types using boxThey also define the longest common sequence (LCS) mea-
plots and synthetic peak errors. sure: The discharge time series is reduced to a sequence of
letters indicating increasesI(*), constant values "), or
The analysis was performed with R (Development Core decreases O”). This sequence for the observed discharge
Team 2008 and the code is available as R-packageysser  (e.g. [lINICCDDDDDDCCCIII) is then compared to the se-
2009. A detailed description of the steps of the method is quence of the simulated discharge. LCS then is defined as
given below. the longest accumulation of characters with the same order in
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Table 1. List of performance measures, their abbreviations, error response group (ERG — sée2Secinore details), lower (LB) and
upper theoretical bound (UB) as well as the value obtained for a perfect match between model and measurement (no error).

Abr. Full Name ERG LB UB No Error
from Dawson et al(2007)

MSE mean squared error 1 -Inf Inf 0
RMSE root mean squared error 1 0 Inf 0
IRMSE inertia root mean squared error 1 0 Inf Anf
R4AMS4E  fourth root mean quadrupled error 1 0 Inf 0
CE Nash-Sutcliffe efficiency 1 -Inf 1 1
Pl coefficient of persistence 1 -Inf 1 1
AME absolute maximum error 1 0 Inf 0
PDIFF peak difference 2 -Inf Inf 0
MAE mean absolute error 1 0 Inf 0
ME mean error 3 -Inf Inf 0
NSC number of sign changes 9 0 LbT 0
RAE relative absolute error 1 0 Inf 0
PEP percent error in peak 2 0 Inf 0
MARE mean absolute relative error 1 0 Inf 0
MdAPE median absolute percentage error 1 0 Inf 0
MRE mean relative error 3  —Inf Inf 0
MSRE mean squared relative error 3 0 Inf 0
RVE relative volume error 3 0 Inf 0
Rsqr the square of the Pearson correlation 5 -1 1 1
loAd index of agreement 1 0 1 1
MSDE mean squared derivative error 6 0 Inf 0
ttest value of the paired t-test statistics 3 —Inf Inf 0
from Jachner et al2007)

CMAE centred mean absolute error 7 0 Inf 0
CMSE centred mean squared error 6 0 Inf 0
RCMSE root centred mean squared error 7 0 Inf 0
RSMSE root scaled mean squared error 5 0 Inf 0
MAPE mean absolute percentage error 1 0 Inf 0
MALE mean absolute log errbr 1 0 Inf 0
MSLE mean squared log error 1 0 Inf 0
RMSLE root mean squared log error 1 0 Inf 0
MAGE mean absolute geometric error 1 1 Inf 1
RMSGE root mean squared geometric error 1 1 Inf 1
RMSOE root mean squared ordinal error 5 0 Inf 0
MAOE mean absolute ordinal error 5 0 Inf 0
MSOE mean squared ordinal error 5 0 Inf 0
SMAE scaled mean absolute error 5 0 Inf 0
SMSE scaled mean squared error 4 0 Inf 0
SMALE scaled mean absolute log error 1 0 Inf 0
SMSLE scaled mean squared log error 7 0 Inf 0
SMAGE scaled mean absolute geometric error 1 1 Inf 1
RSMSGE root scaled mean squared geometric error 1 1 Inf 1
RSMSLE root scaled mean squared log error 1 0 Inf 0
LCS longest common sequence 5 0 1 1
additional measures

tr lag time 8 —LOT LOT 0

Tk recession error 1 0 Inf 1

rd slope error 7 0 Inf 1
DE direction error 8 0 LOT 0

2 |JRMSE becomes infinite for perfect match between model and observation. If the match is not perfect, small values are preferable
b determined by the length of the time series
€ error of the log-transformed data.
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both sequences. Thereby the method allows for deletions in The vectorp® of the M performance measures was used
one of the two series, i.e. characters can be ignored or missedak finger print of the model performance for a given time step
(Jachner et 312007 van den Boogaart et alfor more de-  ¢. Of course the initial selection of the performance measures
tails). is likely to influence the result of the analysis. We regard our
For this study, we complemented the above list of perfor-set of 48 measures as sufficiently large to cover the important
mance measures with the following set of four measures taspects of deviations between two time series. Therefore we
obtain additional information: 1) The lag timg defined as  do not expect the results to change substantially if additional
the lag of the maximum in cross correlation, 2) the directionmeasures were added.
error DE, which is obtained by counting the number of times  In order to avoid strong influence from extreme values, we
the sign of the slope differs for the observed and the mod-+transformed the values for each performance measure over
elled time series, 3) the slope erngr and 4) the recession all time windows to a uniform distribution in the range 0 to
errorr, based on the recession constant as derivesliye 1. In this transformed space, some performance measures

et al.(2007). r; andry are defined as: are equivalent (e.g. MSE and RMSE). Because of this and
dXops as some performance measures behave very similarly and re-
o= dfstim (4) porting 48 measures would make the study difficult to fol-

low, we will report results only for a selection of the perfor-
mance measures. Only one measure was used from each set
rkzk(xflbs) with k(x)= — dx 1 (5)  of highly correlated performance measurgs|-0.85 — see

k(xsim) dt x Sect.5.1).

The two measures were calculated as average over the timf2 Synthetic errors
window used to calculate the other measures (see below).

Measures 2—4) work best for “smoothed” time series whereThere is a need to better understand performance measures
noise from the measurement on short time scales has beegh their relationship. Two approaches exist in the literature
removed. to get familiarized with unknown measures: the first option
One way to use these measures would be to translate thg tg calculate benchmark values for reference simple models
modelling goal into some criteria (e.g. “reproduce timing and (Schaefli and Gupt®2007). The second option is to create
amplitude of extreme events well”) and to select the mostgytificial errors Cloke and Pappenberg@008 Krause et al.
suitable performance measures to assess them. However, w05 Dawson et a].2007. We used the second approach

prefer a different approach. All 48 measures are calculateghy generating synthetic errors for a single peak event as test
for a moving time window of a certain length and the vec- ¢ases (Fig2). The peak was modelled as

tor of performance measure values for a window at a given

time stepr is then used as a finger print of the model perfor- Q» P~ <lo

mance during this time step. The finger print will be similar 2= Qo *e" 27 (et 0 =Tmax ®)

for time windows where the difference between model and Qut (@ » emote = Qp) s T i<t

observation has similar characteristics. Identifying and char\Wherek, is the recession constant (negative)js the con-
acterizing periods with comparable finger prints gives a toolstant for the rise phase an@, is the base flow.7, 7o and

to: fmax are the time, event starting time and the peak time, re-
spectively. We varied the timing, baseflow, the size of the
event and the recession constant to obtain the combinations

shown in Fig.2. Each synthetic error was generated in both
— identify characteristics that are not easily found by vi- Possible directions of deviation (e.g. under- and overestima-

dt

— objectively separate periods of differing model perfor-
mance;

sual inspection; tion) and with three different levels (small, medium and large
deviation).
— find recurrent patterns of differences between model
and observation in longer time series. 2.3 Data reduction with SOM

The selection of window size depends on the process offhe dimensionality of the simulated time steyss reduced
interest and the data qualitMagener et al.2003. For ex-  with self-organizing maps (SOMs). A SOM (for an example
ample slow recession processes require wider windows. Ikee Fig5) is a method to produce a (typically) two dimen-
data quality is suboptimal, large windows will help to reduce sjonal, discretized representation of a higher-dimensional in-
the influence of data errors. After some preliminary tests wepyt space Kohonen 1995. The topological properties of
selected the window size large enough to capture large eventge input space are preserved in the representation of the
(Fig. 1). The selection is a compromise between looking for SOM. Here, the SOM helps to generate and visualize a ty-
the local properties in the time series and having enough datgology of the model performance finger prints. The matrix
to actually compute the values. P=(p®),—1._n of all performance measures is used as an
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Fig. 2. Examples of synthetic errors for a single peak event: Peak over- or underestirfigfibaseflow over- or underestimati¢g),
recession too fast or too slof8), timing: too late or too earlg4), maximum peak flow over- or underestimation but with correct total volume
(5), peak too wide (start too early, recession too slow) or too na(Bwerroneously simulated pegk) or missing peak8), and over- or
underestimation during a late recession phH@3eThe dark grey peaks will be labelled 1 to 3 with decreasing error in the remainder of this
paper while light grey peaks will be labelled 4 to 6 with increasing error.

input to the SOM. The SOM is an artificial neural network 2. The weight for BM and its neighbours on the map are

with a numbertrmax * ymax Of cells (or neurons) correspond- updated:

ing to the dimension of the magnax, ymax- Each cell has a

position on the map, y and a weight vectos=(v;) j—1,.m vt Y=y 4o (x, y, BM, i) xa(i) % (p(”—v") ., (D
with the same dimension as the input vegté? . The weight

vectors are initialized with random values. Then the train- wherex, y are the cell coordinateg,(i) is the learning
ing phase takes place with the following two steps cycling coefficient, which monotonically decreases with itera-
multiple times through alp® until the weight vectors are tioni ando (x, y, BM, i) is the neighbourhood function
stable: — often a Gaussian function.

1. The cell most similar (best match, short BM) to the in-  The resulting map arranges similar vectors of performance
put vectorp® is determined using a Euclidean distance measuregp'”) close together while dissimilar are arranged
to the weight vectop. apart. After the training phase, new input vectors can be

placed on the map by finding the corresponding BM. The
synthetic peak errors are placed on the map in this way in
order to get a better understanding of the map.
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We trained a SOM with a hexagonal and Gaussian neigh3 Study areas
bourhood with 220 cells with the matrixP as input data
(Yan, 2004 Weihs et al. 2005. As mentioned before, all 3.1 The Weisseritz catchment
measures where transformed to a uniform distribution in the

range [0, 1] in order to reduce effects from the differing dis- For the first case study, the catchment of the Wilde Weis-
tribution shapes and scales. . seritz, situated in the eastern Ore Mountains at the Czech-
The representation of the SOM (e.g. F&i).is based on  German border was used (Fi§). The lowest gauging sta-
work by Cottrell and de Bod{19969. Each cell of the neu-  tjon used in the study was Ammelsdorf (49.3%m The
ral network is represented as a polygon. The intensity of thesy,gy area has an elevation of 530 to about 900 ma.s.l. and
colouring represents the number pf’ associated with the slopes are gentle with an average 6f 99% are<20°; cal-
cell (i.e. the cell weight vectos was the best match BM t0 ¢ jjated from a 90m digital elevation mod@RTM, 2002).
the input vectorp®). The shape of the polygon represents sojis are mostly cambisols. Land use is dominated by forests
the distance (Euclidean distance) to the eight neighbourinq%30%) and agriculturex50%). The climate is moderate
cells. Large polygons indicate a small distance to the neighyith mean temperatures of ¢ and ®C for the periods
bour while if the _polygon_shri_nks_in one direction_, the dis- April-September and October—March, respectively. Annual
tance to the cell in this direction is large. Colouring of the precipitation for this catchment is 1120 mm/year for the two
cells can also be used to show the distribution of a specificyears of the simulation period from 1 June 2000 until 1 June
performance measure on the map. 2002. During winter, the catchment usually has a snow cover
of up to about 1 m for 1 to 4 months with high flows during
the snow melt period (Fig® shows the pronounced peaks
éjuring spring). High flows can also be induced by convective
events during summeWASY (2006 conclude from their
analysis based on topography, soil types and land use that
2008. As in all clustering algorithms, the are divided into subsurface stormflow is likely to be the dominant process.

clusters, such that they are as similar as possible within thé\/leteorological data for 11 surrounding climate stations was

same cluster and as different as possible between clusters. %{Jtalr:]ed frgrr; the Gerlrlnan (;N(taathgr St(Trw(lj‘)éMD, 20dOD. i
fuzzy clustering, the can belong to multiple clusters with IScharge data, as well as data about land use and soll was

all the fuzzy membership valugg summing up to L. In c- obtained from the state office for environment and geology

means clustering the cluster memberships are found by (LUG, 2007).
minimizing the function

T= > )" llve—w; |2 8
k=1i=1

where thew; are the cluster centres, are the weight vectors
of the SOM, andn is a parameter modifying the weight of
each fuzzy membership, afd |2 is the Euclidean distance.

As suggested bghoi and Bever§2007), the validity index
Vx g from Xie and Beni(1991]) can be used to determine the
optimal number of clusters:

2.4 ldentification of regions of the SOM

To further summarize the results, characteristic regions of th
SOM with similar weight vectory were determined using
fuzzy c-means clusterind3ézdek 1981 Dimitriadou et al,

3.2 The Malalcahuello catchment

As a second case study the Malalcahuello catchment (Chile)
was used. This research area is located in the Reserva Fore-
stal Malalcahuello, on the southern slope of \icLon-
quimay. The catchment covers an area of 6.2 kEleva-
tions range from 1120 m to 1856 m a.s.l., with average slopes
of 51%. 80% of the catchment is covered with native forest.
There is no anthropogenic intervention.
The soils are young, little developed and strongly layered
Y ket Zf:l(uk,-)mnvk—w,»uz 9 volcanic ash soils (Andosols, in Chile known as Trumaos)
= (MmN llwi—wi ) ) (iroume, 2003 Blume et al, 2008. High permeabilities (sat-
urated and unsaturated), high porosities and low bulk densi-
The number of clusters is thereby optimized in correspon-ties are typical for volcanic ash soils. Soil hydraulic con-
dence with the goal of the cluster analysis to haveutas  ductivities for the soils in the Malalcahuello catchment range
similar a possible within a cluster (compactness — numerafrom 1.22:10° to 5.53«10~3 m/s for the top 45 cm. Porosi-
tor in Eq.9) and as dissimilar as possible between classesies for all horizons sampled range from 56.8% to 82.1%.
(separation — denominator in E®). The optimal number of  Layer thickness is also highly heterogeneous, and can range
clusters is the one that minimizé% . from 2—4 cm to several meters. For a more detailed descrip-
For the interpretation of the SOM, box plots of the per- tion of the Malalcahuello catchment sBeime et al (2008.
formance measures for each cluster, the occurrence of the The climate of this area is humid-temperate with altitudi-
clusters in the time series and a visual inspection of the SOMa| effects. There is snow at higher elevations during win-
are used. ter and little precipitation during the summer months Jan-
uary and February. Annual rainfall amounts range from 2000

Vxs
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to over 3000 mm, depending on elevation. An overview of number of applicationgGraeff et al, 2009 Lee et al, 2007,
catchment topography and basic instrumentation is given irLindenmaier et a).2005 Zehe et al.2001, 2005 2006.

Fig. 3. For this investigation the hillslope module was used to
simulate a single hillslope. As the outflow at the lower end
of the slope is compared with stream hydrographs measured
at the main stream gauging station, this carries the inherent
assumption that the structure and physical characteristics of
this single slope are representative of all slopes in the catch-

As subsurface storm flow is deemed to be a dominant proces®€nt: While this is a strong assumption it is not completely
in the Weisseritz catchment, the Topmodel appro@gven  Unrealistic for the Malalcahuello catchment. _

and Kirby, 1979 appears suitable to conceptualise runoff Fo_r_s_0|l paramgt_rlzatlon values of satgrated hydraulic con-
generation. We therefore selected WaSiM-ETH, which is aduct|V|t|es, porosities, pF cu_rves and fitted Van Genut_:htep
modular, deterministic and distributed water balance modeParameters were used. Details on set-up and parametrization
based on the Topmodel approa&ithulla and Jaspe2003). can'be .found mﬁlume 2008. 2004 data from a c.Ilmalte'

It was used for the Weisseritz catchment with a regularly St&tion just outside the catchment was used as climatic in-
spaced grid of 100 m resolution and an hourly time step. m_put_data with a tempqral resolution of 30 min. Rainfall time
terception, evapotranspiration (Penman-Monteith), and infil-Series stem from a rain gauge close to the catchment outlet.
tration (Green and Ampt approach) as well as snow dynam-

ics are also included as modules. The unsatur_ated Zone 5 \neisseritz case study —
described based on the Topmodel approach with the topo-

graphic index Beven and Kirby 1979, which determines 51 Performance measures

flow based on the saturation deficit and its spatial distribu-

tion, instead of modelling the soil water movement explicitly. The performance measures introduced in Saédtwere cal-

For the exact formulations of WaSiM-ETH s&ehulla and  culated for the entire simulation period with a moving 10 day
Jaspef2001). We used an extension iehoff et al.(2002), window (hourly time steps, 240 data points for each window,
which includes macropore flow, siltation and water retention N=14 827). We repeated this case study also with window
in the landscape. Direct flow and interflow are calculated assizes of 5days and 15days in order to test the sensitivity
linear storage per grid cell while baseflow is calculated asof the method with respect to the selected window length
linear storage for the entire subcatchment. The snow cove(Sect.5.5. We will report only 19 performance measures
dynamics are simulated with a temperature index approaclisee Sect2.1 and Table2). The summary of the measures
(Rango and Martinecl995. The routing of streamflow is shows that the ranges of the measures vary considerably (Ta-
computed with the kinematic wave approabhghoff et al, ble 3).

2002.

4 Hydrological models

4.1 WaSiM-ETH

results

5.2 Synthetic errors

4.2 Catflow
The synthetic peak errors are used to improve our under-

The hillslope module of the physically based model Catflow standing of the performance measures. In Bjgiine plots
(Zehe and Fluhle20031; Zehe and Bbsch| 2004 Zehe et al. show the response of some representative measures (y-axis)
2005 was used to model runoff generation in the Malalc- to the synthetic peak errors, each of which is shown with a
ahuello catchment. It relies on detailed process represendifferent symbol. On the x-axis, no error would be in the cen-
tation such as soil water dynamics with the Richards equatre and the severity of the error increases to each side. Note
tion, evapotranspiration with the Penman-Monteith equationthat synthetic errors are generated to match the peaks of the
and surface runoff with the convection diffusion approxima- case study (size, width, base flow). Therefore, Eitg. valid

tion to the 1D Saint Venant equation. The processes satufor the Weisseritz case study and looks slightly different for
ration and infiltration excess runoff, reinfiltration of surface the other case study. However, the following summary of the
runoff, lateral subsurface flow and return flow can be sim-results also applies to the Malalcahuello case study. Some
ulated. Macropores were included with a simplified effec- performance measures are very specific to a certain type of
tive approachZehe et al.2001). The simulation time step error. 23 out of 48 measures react to all peak errors, which is
is dynamically adjusted to achieve a fast convergence of theimilar to the Nash-Sutcliffe efficiency CE in Fig. We call
Picard iteration. The hillslope is discretized as a 2-D verti- this error response group (ERG) 1 (Talke This grouping

cal grid along the main slope line. This grid is defined by is obtained by visual inspection of Figand similar plots for
curvilinear coordinatesZghe et al.2007). As the hillslope  all performance measures. The ERGs give a qualitative as-
is defined along its main slope line, each element extendsessment of the measures used in this study. Measures from
over the whole width of the hillslope, making the represen-ERG 2 (e.g. PDIFF in Fig4) are insensitive to the error in
tation quasi-3-D. Catflow has proved to be successful for aecession (error 3), lag (error 4) and width (error 6). These
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Fig. 3. Maps of both research catchments (scales in m).

three error types do not change the maximum of the peakcoded using white for no error and black for the highest devi-
Measures from ERG 3 (e.g. ME in Fig) show no or only  ation from the optimal value. For performance measures with
little sensitivity to the lag time error (error 4) and the error in a central optimal value, no error is — again — shown in white
peak size with correct total volume (error 5). SMSE (the only while errors are displayed in red in one direction and blue in
measure from ERG 4) is insensitive to errors related to shiftsthe other direction. A careful inspection of the SOMs (Felg.

the false peak, and peak size (errors 1, 2, 7, 9). Measureallows identification of patterns that are related to certain er-
from ERG 5 (e.g. Rsqr in Figl) are insensitive to errors re- rors. For example, positive lag times are found in the top
lated to shifts and peak size (errors 1, 2, 9). Measures fromiight corner of the SOM. In the center on the right hand side
ERG 6 (e.g. MSDE in Fig4) are insensitive to errors related the model strongly overestimates observed peaks as indicated
to shifts and shifts during the late recession phase (errors d)y negative values fofes; and ME, PEP, and PDIFF. How-

9). Measures from ERG 7 (e.g. SMALE in Fig) are not  ever, a clear interpretation is difficult. Hence, a further con-
sensitive for the shift only (error 2). Measures from ERG 8 densation of the SOMs is necessary to identify how different
(e.g. 1z in Fig. 4) are only sensitive to the lag time and the criteria cluster into different error classes and how we can
missing/false peak (errors 4, 7, 8). NSC (the only measurénterpret these error classes with respect to model failure.
from ERG 9) has a value of 0 for most synthetic peak errors.

Values above zero occur only if the sign of the error changes; 4 |dentification of regions of the SOM

along the time series (errors 4, 5, 7, 8). The plots for all mea-
sures for both case studies are available from the first author,

th order to identify error classes on the SOM, fuzzy c-means
homepage.

clustering was applied to the weight vectersf the SOM.
The validity indexVy g for the identification of the optimal
cluster number is shown in Fig.. Based on thd/xp, we
chose the solution with 6 clusters for further analysis. Note
Based on the transformeel”) of the model performance, a that the 2 and 5 cluster solutions have similar values/os.
SOM was created. The representation accordingdtirell  The 2 cluster solution combines clusters A-C and D-F from
and de Bod{(1999 is shown in Fig.5. Remember that the the 6 cluster solution while the 5 cluster solutions combines
shape of the polygons indicates the distance between the cellgusters B and D from the 6 cluster solution. Therefore, the 6
and that the intensity of the colour is proportional to the num-cluster solution also represents the 2 and 3 cluster solutions.
ber of p represented by a cell. No”) are associated with W also checked if the clustering algorithm could be applied
white cells. to the p® directly. For the two case studies presented here,
The 19 representations of the SOM in Féghelp to iden-  we obtained equivalent results without SOMs. However, sev-
tify a typology of the model performance finger prints. It eral test cases used during the development of the methodol-
is noteworthy that not all performance measures are showigy suggested that the raw data is highly likely to not enable
(see Sects.]). The value associated with each cell is colour an identification of error clusters. In addition, the planned

5.3 Data reduction with SOM
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Table 2. Performance measures to remove based on high correlation for the Weisseritz study. The table does not list all the remaining
measures.

Measure to keep Correlated measyf £0.85) to be removed
RMSE root mean squared error AME, MAE, CMAE, RAMS4E, MSE

CE Nash-Sutcliffe efficiency RAE

PI coefficient of persistence IRMSE

MARE bsolute relati MdAPE, MRE, MSRE, RVE, MSLE,
mean absolute refative error -\, \ <= ‘\ia| E MAPE. RMSGE RMSLE

MSDE mean squared derivative error CMSE, RCMSE, RSMSE, SMAE, SMSE
MAOE mean absolute ordinal error MSOE, RMSOE

root scaled mean squared

geometric error RSMSLE, SMAGE, SMALE, SMSLE

RSMSGE

Table 3. Summary of performance measures for the Weisseritz simulation.

Measure Min 1stQ Median Mean 3rdQ Max

PDIFF peak difference —-0.355 —-0.059 -0.014 -0.015 0.014 0.364

ME mean error —0.1052 -0.0287 -0.0119 -0.0172 -0.0020 0.0614

RMSE root mean squared error 0.000 0.012 0.020 0.032 0.050 0.125
NSC number of sign changes 0.0 0.0 1.0 1.9 4.0 11.0

PEP percent error in peak —343 —86 =27 -37 20 88

MARE mean absolute relative error 6.1e-02 2.9e-01 5.0e-01 7.4e-01 1.1e+00 2.6e+00
Rsqr square of the Pearson correlation 1.9e-08 3.1e-01 6.1e-01 5.5e-01 8.2e-01 9.8e-01
CE Nash-Sutcliffe efficiency —Inf —18.27 —2.53 —Inf -0.29 0.91

loAd index of agreement 0.00 0.27 0.48 0.48 0.71 0.98

PI coefficient of persistence —Inf —-1008.8 —269.3 —Inf —-83.4 -5.3

MSDE mean squared derivative error 1.2e-09 8.2e-07 3.1e-06 1.1e-05 9.4e-06 1.6e-04
ftest value of the paired t-test statistics —3240.8 —-44.6 -20.3 —-39.7 -5.2 54.2

173 lag time —20.0 0.0 1.0 2.2 5.0 20.0

rq slope error -1.02 0.00 0.00 0.27 0.62 12.41

DE direction error 0 10 24 29 41 134

Tk recession error 0.00 0.48 1.36 1.89 2.62 14.16
MAOE mean absolute ordinal error 0.000 0.066 0.123 0.150 0.217 0.502
LCS longest common sequence 4.2e-03 5.4e-01 6.8e-01 6.8e-01 8.3e-01  1.0e+00
RSMSGE root scaled mean squared geometric error 1.0 1.2 1.2 1.3 1.4 25

combination of the present method with a parameter sensitivplained in the subsequent paragraphs. Cluster A (best fit,
ity analysis (see also Se®). will require an appropriate data includes most synthetic peak errors) occurs mainly during
reduction technique. We, thus, present here the full methodlate spring/early summer. Cluster B (underestimation, false
ology including SOMs for data reduction. peaks, differences for smaller values but good agreement for
The 6 clusters are represented with colour coding in thepeaks) and C (dynamics well reproduced but overestimation)
SOM in Fig.8 . Uncoloured cells do not have any associatedoccur during snow melt events. Cluster D (bad reproduc-
p® vectors As expected, the clusters form connected regiongon of dynamics but small RMSE and maximum error) oc-
on the SOM, since similar performance “finger prints” are curs mainly during late summer, fall and early winter. Clus-
placed close together on the SOM. ter E (very bad agreement in terms of dynamics and volume,
The temporal occurrence of the error classes is shown irftrong underestimation of peaks due to shift) occurs only a

Fig. 9 as colour bars in the discharge time series. The colouféw times, mainly during the initial simulation period. Fi-
coding is equivalent to Fig8 . The plot shows clear pat- nally, cluster F (overestimation due to shift and false peaks,

terns in the occurrence of the error classes, which are ident€cession periods do not agree well, relative dynamics repre-

tified by visual inspection and described hereafter. Note thagented well) occurs during times where the model overesti-
the cluster descriptions in parentheses will be further ex-mates the observed data, mainly during summer and fall.
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Fig. 4. Performance measures for synthetic peak errors. Along the x-axes, the degree of error varies, with index 1 to 3 indicating a peak that
is much (some, little) too large (shift to too high discharges, too slow recession, too late, too wide) and 4 to 6 indicating too small peaks. The
black line indicates the position of “perfect fit".

In order to associate the synthetic peak errors (Seg).
with the error clusters, the synthetic peak errors were placed
on the SOM by finding the best matching cell (BM). Tallle
shows, to which clusters the synthetic peak errors are associ-
ated. Levels 1 to 3 correspond to overestimated values by the
model compared to the observed data (the darker grey peaks
in Fig. 2) while levels 4 to 6 correspond to underestimated
values (to the lighter grey peaks). Cluster A includes most
of the synthetic peak errors and especially the synthetic peak
errors with small deviations. Cluster B includes the strong
underestimation with a false peak. Cluster C includes strong.. . : e
g. 5. Self organizing map of the performance ,,finger prints” (con

overestimation due to the peak size error and errors due to Unaining 48 measures) for al=14 827 10-day time windows (Weis-
detected peaks. None of the errors were placed within Clusgeyit; case study).

ter D. Cluster E includes the strong underestimation of the

peak due to shift. Cluster F corresponds to peaks with strong\,eight vectore do not span the entire range from 0 to 1 be-
overestimation due to a shift and a shift during the late re-c5,,se each cell in the SOM only represents the centre of the
cession phase and due to false peaks. Note that cluster F bfssociateq;(’). The box plots are read the following way:
clearly related to overestimatio_n, and Clusters B and E arg-q, example, looking at PDIFF, the black line indicating a
clearly related to underestimation. Clusters A and C correerfect match between observation and model falls within the
spond to either over- or underestimation and no informaﬁoninterquartile range for clusters A, B and D. Therefore, peaks
is available about Cluster D from the synthetic peak errors. g generally matched well for these clusters. However, as

Looking at the behavior of the performance measuresthe interquartile range is large for cluster B, this cluster also
within each cluster will provide us with more information. includes cases with strong differences between peaks. Clus-
We therefore analyze box plots of the preformance measurter E is found slightly below the black line, which indicates
values for each cluster. The box plots (Fif) ) were cre-  that peaks are generally slightly overestimated in this cluster.
ated from the normalized weight vectar®f the cellsinthe  Clusters C and F are found far below the black line, which
SOM. The value for a perfect match between observation anghows that peaks are strongly overestimated for these clus-
model is shown as black line in the box plot. The normalizedters.

www.hydrol-earth-syst-sci.net/13/999/2009/ Hydrol. Earth Syst. Sci., 13,198%-2009



1010

D. E. Reusser et al.: Temporal dynamics of model performance

The findings from the box plots are summarized in Ta-
ble 5. If the cluster median value was closest or the most
distant from the perfect match value (no error), this cluster

Table 4. Cluster allocation of synthetic peak errors. For details on was entered into the table as “best” or “worst”, respectively.

peak characteristics see Figsand4. Levels 1-3 generally overes-

timate flow while levels 4—6 underestimate it.

Weisseritz Case Study

Cluster  Error Levels

A peak size (1) 23456
shift (2) 2345
recession (3) 23456
lag (4) 123456
size./integr (5) 23456
width (6) 123456

undeteced peak (8) 23456
shift w/o peak (9) 23456

B false peak (7) 6

C peak size (1) 1
recession (3) 1
size./integr (5) 1
false peak (7) 45
undeteced peak (8) 1

E shift (2) 6

F shift (2) 1
false peak (7) 123

shift w/o peak (9) 1
Malalcahuello Case Study

Cluster  Error Level

A peak size (1) 12
shift (2) 123
recession (3) 3
width (6) 12
false peak (7) 123
shift w/o peak (9) 123

B shift (2) 56
recession (3) 1256
lag (4) 6
size./integr (5) 1
width (6) 6
false peak (7) 45
undeteced peak (8) 123456

C shift w/o peak (9) 56

D peak size (1) 56
shift (2) 4
recession (3) 4
lag (4) 12345
size./integr (5) 2356
width (6) 345

E false peak (7) 6

F peak size (1) 34
size./integr (5) 4

shift w/o peak (9) 4

Hydrol. Earth Syst. Sci., 13, 992018 2009

“Worst” was replaced by “high” and “low” if the deviation
occurred to both sides of the optimal value. If the median of
the second highest/lowest cluster was within the inner quar-
tiles and on the same side of the value for no error, it was also
highlighted in the table. For the example from above, PDIFF
is rated best for clusters B, D and E, and low for clusters C
and F.

From the box plots (Figl0) and Tableb we find that clus-
ter A shows the best fit according to 9 performance measures.
In this cluster there is thus a good agreement in (high flow)
dynamics (CE, PI) and amounts (ME, RMSE, MAREs)
of simulated and observed stream flows. Peaks aredate (
above target values) and the derivative is sometimes overes-
timated. LCS is the worst for cluster A. Since LCS is quite
far from the optimal value for all clusters, this fact is negligi-
ble.

Cluster B has a good match between the observed and
modelled time series in terms of high flows (PDIFF, CE, PI,
tiesp). Dynamics are not represented very well by the model
(Rsqr, DE, MSDE), and data do not agree well after rescaling
and ordering (MAOE, RSMSGE). Overall, this indicates dif-
ferences for smaller values but good agreement for large val-
ues. For Cluster C, dynamics are matched reasonable (best
values for PEP,Rsqr, 10AD, LCS, MAOE) but levels do not
agree well (PDIFF). Also RMSE is high. For Cluster D on
the other hand, the agreement is reasonable in terms of level
(PDIFF, PEP, RMSE) but dynamics are not reproduced well
(Rsqr,tr, MAOE, LCS). Cluster E shows bad agreement be-
tween model and observation in terms of dynamics (Rsqr,
CE, l0Ad, Pl,ry, LCS) and level fesp). The observed best
values for PDIFF,RMSE, MSDE; , DE and RSMSGE are
initially somewhat surprising but can be explained by the fact
that this cluster is related to low flow periods with little dy-
namics. In Cluster F, the level is not well represented as indi-
cated by bad values for ME, RMSE, CE, PI, PDIFF and, PEP.
Also, recession periods do not match well)( Good values
for r;, DE and RSMSGE indicate that the relative dynamics
are matched relatively well for cluster F.

5.5 Sensitivity for the size of the moving window and the
size of the SOM

The entire case study was repeated two more times with a
moving window of 5days and 15days, in order to test the
sensitivity of the method for this choice. In short, the alter-
native window sizes resulted also in 6 clusters. The identified
clusters had very similar error types and the temporal occur-
rence of the clusters was comparable to the 10 days window,
the solution we retained for the present paper. In general,
with smaller window sizes, the temporal occurrence of the
error clusters becomes more fragmented.
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The entire case study was also repeated with SOM size§ Malalcahuello case study — results
of 10x10, 15x 15, 25x 25, 30x 30, and 16 20. In this case, _
solutions were found for 5 or 6 clusters. The solutions with 6.1 Performance measures and synthetic errors

5clusters (3&30) combined two of the clusters presented ) ,
above to a single cluster. Again, descriptions of the error”©r the Malalcahuello case study a time window of 120h

types and temporal occurrence of the clusters were similak® days; hourly time step, 120 points) was chosen as stream-
The validity index and the interquartile ranges on the boxflow here is faster in response and dynamics than in the Weis-

plots (comparable to FiglO ) were generally smaller for seritz catchment. After excluding correlated measures, a
SOMs with a smaller number of cells because more variabil-S€t of 16 performance measureé3241) remained. All of
ity was reduced during the generation of the SOM. these measures were also used in the Weisseritz case study.

Detailed results (plots and tables) are available on the cor] "€ 9 synthetic errors proposed in S&c2were adapted for

responding authors homepage Hatp://iwww.uni-potsdam. (1€ time window as well as the range in flows.
de/u/Geooekologie/institut/wasserhaushalt/hésstdep
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Fig. 7 . Validity index for the identification of the optimal cluster
number for c-means clustering (Weisseritz case study).

6.2 SOM and fuzzy clustering
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Cluster A (good correlation but overestimation) was at-
tributed to a longer period in April. Again, the descrip-
tions in parenthesis will be further explained below. Clus-
ter B (strong differences in peak width — including reces-
sion errors, false and undetected peaks — large errors also
for rescaled data, bad performance in terms of derivatives)
is allocated to a series of peaks in June. Times attributed to
cluster C (small RMSE but dynamics not reproduced well,
underestimation of recession phase) are the late recessions in
May and August. These periods have very little dynamics
and the model does indeed show a general underestimation
of flow. Cluster D (dynamics well reproduced, low mean er-
rors, time lags) occurs in shorter time blocks in May and late
June/beginning of July. Cluster E (worst performance, under-
estimation with false peaks) is attributed to the late recessions
in June and August. Some of the discrepancies in dynamics,
especially in August, are the result of snow melt. As Catflow
does not contain a snow model, these dynamics cannot be

As in the Weisseritz case study, data reduction was achievetbproduced in the simulation. The early recession phases in
by producing a self-organizing map. 6error clusters wereMay and July/August are attributed to cluster F (good repro-
identified. Looking at the distribution of the error clusters duction of long term behaviour/balance, bad scores for the

over the time series (Fi ) we find a distinct pattern of
errors, which mainly occur in larger blocks.

Hydrol. Earth Syst. Sci., 13, 992018 2009

ratio of the recession constant).
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Table 5. Characterization of performance measures clusters derived from visual inspection of the box plot&@raRigd10 b.

Cluster  Description

Weisseritz Case Study

A best: ME, RMSE, MARE, CE, IoAd, Plest; DE, rp, RSMSGE
worst: tr,rq, LCS
B best: PDlFF[test, tr, rk
worst: RMSE, NSC, Rsqgr, MSDE,, DE, MAOE, LCS, RSMSGE
C best: PEP, Rsqr, loAd, MAOE, LCS
worst: RMSE s,
low: PDIFF
D best: PDIFF, RMSE, PEP
worst: Rsqr¢z, rq, MAOE, LCS
E best: PDIFF, RMSE, NSC, MSDE;,, DE, RSMSGE
worst: MARE, Rsqr, CE, 10Ad, Plest g, MAOE, LCS
low: PEP
F best: NSCr,, DE, RSMSGE
worst: ME, RMSE, CE, PI, LCS
low: PDIFF, PEP
high: Tk
Malalcahuello Case Study
A best: Rsqr, DE, MAOE, LCS
worst: MARE
low: PDIFF, ME, ttest
B best: ME ttest
worst: RMSE, MSDEy, ry, RSMSGE
C best: RMSE, NSC, Rsqr, MSDH,, rq4, ry, MAOE, RSMSGE
worst: CE, DE, LCS
high: PDIFF, ME ttest
D best: ME, MARE, CE
worst: NSCry, r¢
high: PDIFF,;
E best: NSC
worst: MARE, Rsqr, DE, MAOE
low: 173
high: PDIFF, ME
F best: PDIFF, ME, RMSE, MARE, Rsqr, MAOE
worst: rq

Locating the synthetic peak errors (corresponding to
Fig. 4) on the SOM (see TabW) leads to the following char-
acterization: Cluster A contains most of the overestimating
synthetic errors. Cluster B includes the slight underestima-
tion due to a false peak (error 7) and the extreme peaks re-
lated to wrong recessions (error 3). In addition, the most
extreme too early lag time error (error 4) and the most ex-
treme overestimating errors due to peak size with correct in-
tegral and undetected peaks are found in this cluster. Most
of these synthetic errors are related to a strong difference in
peak width. Cluster C contains the most extreme error shift-
ing the modelled below the measured time series in absence
of a peak (error 9). Cluster D includes a number of inter-
mediate/underestimating errors and all but one error related
to lag times. Cluster E includes the underestimating error
due to a false peak (baseline shifted far below the referencekig. g . self organizing map with color coded error cluster assign-
Cluster F contains the intermediate errors related to peak sizgent (see Sech.4)
with and without correct total volume and shift during the
late recession phase.
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Fig. 9 . Simulated and observed discharge series. The colour bars indicate the error class during this time period.

The box plots for each performance measures and clustersession periods with little dynamics, therefore CE values are
are shown in Figl0. A summary of the specific character- only intermediate. Scores are good for mean and mean rel-
istics of each cluster is given in Tabte Cluster A shows ative errors (ME, MARE) and RMSE. However, the deriva-
the best performance for those measures looking at the cotivesr; do not match well.
relation of the time series (Rsqr, DE, LCS, MAOE) but has
the characteristic values for overestimating the time series in
general (ME andiest below aim). Peaks are also overesti- 7 Discussion
mated (PDIFF below aim). Cluster B strongly overestimates
the peaks (RMSE, PDIFF low) and fits the worst after rescal-n both case studies we found 6 classes or clusters of model
ing (RSMSGE). Also, derivative based measures are worsperformance (Figl0). A temporal pattern of the occurrence
for this cluster ¢, r4 MSDE). Good values fofestand ME could be identified in both cases, indicating that the model
and intermediate values for CE and Rsqr indicate that théas different deviations during different phases. For the
dynamics are still reproduced quite well. Cluster C showsWeisseritz simulation we found the following weaknesses:
good performance for derivative based measures and a small i y ., .

RMSE but dynamics (CE, LCS) and peaks (PDIFF, ME and ~ Times of “best p.erfp_rmance (cluster'A) still show a

tiesp are badly reproduced. For Cluster D, dynamics (CE) great range Qf vana bility (most synthetic peak errors at-

and overall volume (MEzes) agree well. However, deriva- tributed to this period).

tive based measuresg;( r;) show bad values. A high NSC

indicates that the modelled time series changes often between

lying above and below the measured time series. Cluster D

thus describes times where the model has only slight over

and underestimation in peaks, quite good correlation and low

mean errors. Cluster E can easily be identified as having the

worst performance measures (scores worst on 7 of the perfor-

mance measures and best only for the NSC). Peaks as well _ pajor snow melt events are generally overestimated.

as the overall time series are underestimated (PDIFF and ME

above target value). The correlation between modelled and — Periods during summer/fall, where observed peaks are

measured time series is low as it has the worst scores on Rsqr,  completely missing.

MARE, MAOE, and DE. Finally, cluster F might be regarded

as the best performing cluster. However, it corresponds to re- — Strong underestimation of low flow during late summer,
together with

— Completely missing peaks during snow season (clus-
ter B). More detailed analysis showed that these were
events occurring at times with reported temperatures
well below freezing — which must be clearly radiation
induced melt events. This process is missing in the
model.
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Fig. 10 . Matrix of box plots comparing the normalized error measure vaduggee Sect2.3). The black line indicates the “perfect fit” for
each of the performance measures.
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— strong overestimation of recession periods occurringdiagnosis of current environmental models. Instead, multi-
during autumn, which indicates that soil and interflow ple diagnostic signatures should be derived from theory and
storage is not well parametrized. used to compare modelled and observed behavior. This cor-

) ) . responds to the main idea of the performance finger prints
From this analysis, we suggest to test the following modelpresented in this paper.

improvements. The snow melt component may be better The developed methodology combining time-resolved
suited for this catchment after including radiation induced performance analysis and data reduction techniques is ap-
snow melt. We will check the data again very carefully for plied successfully in two case studies. These two case studies
the peaks that are completely missing during summer perigiffer strongly in both, model type and runoff generation pro-
ods. If the data is valid, we are likely to miss an important cesses and thus the method seems to be applicable for a wide
process in the model. We will also try to further improve the range of research areas and modelling approaches.
parametrization of the soil and interflow storage. However, |, the two case studies, a set of uncorrelated performance
as model runs take about 20 min, classical calibration methyeasures calculated for a moving 5 or 10 day window is used
ods with more than 1000 required runs are time consumingtq characterize the temporal dynamics of the model perfor-
Strong storage parameter interactions in WaSiM-ETH with mance (model performance finger print). As the results show,
the Topmodel soil storage additionally complicate calibra-the combination of multiple measures provides a better char-
tion attempts. acterization of the performance compared to any single mea-

For the Malacahuello case study the main findings are:  gyre, which agrees with the basic idea of multi-objective cal-
ibration.

Self organizing maps (SOM) are used to reduce the
amount of data and in a subsequent step, different clusters
of performance finger prints are identified. These clusters
— In the recession period in August, the model completely&r€ in fact npt readily identifiable in the raw data data (before

fails to reproduce stream flow dynamics. datareduction).

To test the sensitivity of the performance measures as well
— The three major events in June form a distinct groupas to characterize the error clusters, the presented model di-
as they are strongly overestimated by the model. Bothagnostics methodology includes synthetic peak errors. They

the missed dynamics in August as well as this strongshow that some performance measures are very specific for a

overestimation are likely to be the result of the lacking certain type of errors while others react to all types of error.

representation of snow dynamics in the model. Some of these errors are visible in visual inspection of the
simulated and the observed reference time series. However,
— Flow was found to be underestimated during the longeras illustrated for the two case studies, analyzing the temporal
recession periods. patterns of the identified error types gives valuable additional
insights into model structural deficiencies.

In summary, the proposed methodology has the following

main benefits:

— During the first month, the model overestimates the ob-
served discharge, indicating too high initial filling of the
soil storage.

The first step for model improvement will be to include a
snow module. The long-term storage behaviour could proba
bly be improved by coupling the model with a ground water

model. Moreover, the evaluation exercise shows that the ob- — Identification and separation of time periods with dif-
served discharge data needs to be preprocessed in order to ferent model performance characteristics are achieved
remove variability/noise on the very short time scales. in an objective way.

While some of the identified errors are already apparent . _ . . _ _
in a first visual inspection of the model output, others are — Long simulation periods, for which analysis of single
less obvious and might be overlooked — especially for longer ~ €vents becomes almost impossible can be processed.

— Subtle but important differences between observation

and model can be detected.
8 Conclusions

Especially the patterns of error repetition are likely to con-
This paper presents a new method to analyse the tempor&hin valuable information if they can be connected to pa-
dynamics of the performance of hydrological models and torameter sensitivities. The next step will thus be to combine
characterize the types of errors. This new method is conihe analysis of the temporal dynamics of model performance
sistent with the diagnostic evaluation approach presented bwith the analysis of the temporal dynamics of parameter sen-
Gupta et al(2009. They suggest to use “signature indices sitivity in order to enhance our understanding of the model.
that measure theoretically relevant system process behawhe model performance will tell us, during which periods the
iors” and argue that a single criterion is not sufficient for model is failing while the parameter sensitivity will show,

Hydrol. Earth Syst. Sci., 13, 9920618 2009 www.hydrol-earth-syst-sci.net/13/999/2009/



D. E. Reusser et al.: Temporal dynamics of model performance 1017

which model component is the most important during theseCottrell, M. and de Bodt, E.: A Kohonen map representation to
periods. Overall the methodology presented here proves to avoid misleading interpretations, in: 4th European Symposium
be viable and valuable for the analysis of the temporal dy- ©on Artificial Neural Networkshttp://www.dice.ucl.ac.be/esann/

namics of model performance. proceedings/papers.php?ann=19506.
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