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Abstract. Runoff estimation in ungauged catchments is
probably one of the most basic and oldest tasks of hydrol-
ogists. This long-standing issue has received increased at-
tention recently due to the PUB (Prediction in Ungauged
Basins) initiative. Given the challenges of predicting runoff
for ungauged catchments one might argue that the best course
of action is to take a few runoff measurements. In this study
we explored how implementing such a procedure might sup-
port predictions in an ungauged basin. We used a number
of monitored Swedish catchments as hypothetical ungauged
basins where we pretended to start with no runoff data and
then added different sub-sets of the available data to con-
strain a simple catchment model. These sub-sets consisted
of a limited number of single runoff measurements; in other
words these data represent what could be measured with lim-
ited efforts in an ungauged basin. We used a Monte Carlo ap-
proach and predicted runoff as a weighted ensemble mean of
simulations using acceptable parameter sets. We found that
the ensemble prediction clearly outperformed the predictions
using single parameter sets and that surprisingly little runoff
data was necessary to identify model parameterizations that
provided good results for the “ungauged” test periods. These
results indicated that a few runoff measurements can contain
much of the information content of continuous runoff time
series. However, the study also indicated that results may
differ significantly between catchments and also depend on
the days chosen for taking the measurements.

Correspondence to:J. Seibert
(jan.seibert@geo.uzh.ch)

1 Introduction

1.1 Prediction of Ungauged Basins (PUB)

The PUB initiative of the International Association of Hy-
drological Scientists is a 10 year project seeking to improve
the prediction of catchment responses in ungauged basins by
improving the scientific basis of hydrology (Sivapalan et al.,
2003b). As recognised in the PUB Science Plan (Sivapalan
et al., 2003a), this is essentially an exercise in the constraint
of uncertainty since any approach to extrapolate process or
parameter information from gauged sites to ungauged sites
must inevitably result in uncertainty in the representation of
the responses of the ungauged site of interest. Raising the
“awareness for the value of data, especially the gauging of
hydrologic variables” has therefore been listed as one of the
objectives of PUB (Sivapalan et al., 2003a).

Beven (2007) has suggested that this can be treated as a
problem of learning about places in the context of “models of
everywhere”. In the near future it will be possible to have hy-
drology and water quality models for large catchments (or all
the catchments in a country) that can be used for a variety of
decision making processes. In the first instance, nearly all the
places being represented in such models will be “ungauged”
and subject to (perhaps considerable) uncertainty. Since such
uncertainty can be a serious issue for risk-assessment deci-
sion making, it will be important to limit uncertainty by tak-
ing additional measurements. In this way, the appropriate
ways of representing different places will gradually improve,
with scope for using different model structures in different
places, and different (uncertain) parameter sets in apparently
similar places, as part of the learning strategy.
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This raises the question of how many measurements might
be necessary to achieve a desired and cost-effective reduc-
tion in uncertainty. Unfortunately, there is little guidance
in the hydrological modelling literature about the worth of
measurements in model identification, except for some sug-
gestions about how long a discharge record is necessary to
obtain an optimal model calibration (of the order of several
years of data) (Sorooshian et al., 1983; Yapo et al., 1996).
If these suggestions are correct then it is unlikely that fund-
ing for long term data collection in an ungauged catchment
would be made available, except perhaps for high capital ex-
penditure projects such as dams. An alternative approach is
to investigate how far one comes with a limited number of
observations. Obviously, this will not provide as good fits as
a “full” calibration using several years of data, but it might
be a pratical approach when one has to make predictions for
an ungauged catchment.

Perrin et al. (2007) investigated how many streamflow ob-
servations are needed to obtain calibrations similar to those
of a full calibration. They found that calibrating a simple
runoff model using about 100–350 observation days spread
randomly over a longer time period provided robust parame-
ter estimates and that results hardly improved when including
more days for calibration. Using a similar approach it was
also shown that good parameter estimates could be obtained
by combining the information of a few observation days with
using prior knowledge in the form of regionalised parameter
estimates (Rojas-Serna et al., 2006).

The value of a limited number of observations might fur-
ther be increased if the observations are scheduled in a clever
way. McIntyre and Wheater (2004) tested the effect of us-
ing different subsets of data for the calibration of an in-
river phosphorus model. They found that a relatively small
amount of all data was necessary to obtain good results as
long as these data were taken in an event-based way rather
than at fixed intervals. Juston et al. (2009) demonstrate that,
if selected in an intelligent way, a small fraction of data
points in a longer time series might contain almost all infor-
mation of the entire data series. Eng and Milly (2007) found
that “a single pair of strategically timed streamflow measure-
ments” considerably improved the estimation of base flow
recession coefficients compared to estimates based on catch-
ment area. Rode et al. (2007) applied a water quality model
to the Elbe River and found that a subset of the entire cali-
bration data provided good results. Binley and Beven (2003)
also showed that a single set of geophysical measurements
of a deep soil water profile contained most of the informa-
tion from 18 months of weekly measurements in condition-
ing a model of groundwater recharge. This is an indication
of the potential value of limited observation data for con-
straining model prediction uncertainties even for ungauged
basins. More generally, during such a learning process, we
would seek to constrain prediction uncertainties of models
with prior estimates of model parameters based on much
more limited or more readily available data sets, such as na-

tional databases of model parameter values (e.g., Yadav et
al., 2007; Zhang et al., 2008).

1.2 Gauging the ungauged basin

One option for making predictions at an ungauged site is
to take discharge measurements there. The costs of such
measurements will decrease as the new generation of float-
ing acoustic doppler velocity measurement devices becomes
available. Even a small number of discharge estimates using
current metering methods may be feasible for some applica-
tions if it can be shown that the measurements have value
in reducing uncertainties for decision making. In this paper
we explore the effects of different numbers of site specific
discharge measurements taken within a one year period on
the quality of the predictions using the HBV runoff model
for 11 catchments in one region of Sweden treated as if they
were ungauged. We used a Monte Carlo approach and pre-
dicted runoff as a weighted ensemble mean of simulations
using acceptable parameter sets. This approach is similar to
that suggested by McIntyre et al. (2005), who computed the
runoff for ungauged basins as an ensemble mean of accept-
able parameter sets derived for a number of different gauged
catchments, for which each 10 000 different parameter sets
were evaluated. For our study, however, we used a small por-
tion of the data from the “ungauged” catchments to select
acceptable parameter sets instead of using information from
other catchments.

2 Methods

2.1 The test catchments

This study was based on the eleven catchments from Seib-
ert (1999). The catchments are located in central Sweden
north of Uppsala. Elevation differences are generally small
(about 100 m) and coniferous forest is the prevailing land use
(Table 1). Seibert (1999) found relationships between cali-
brated values of HBV model parameters and three catchment
characteristics: catchment area and the percentages of lake
and forest. It should be noted that in this region the land
cover can be used as a proxy for the distribution of differ-
ent soil types. In general the areas with till soils are forested
while clay soils underlie agricultural lands. Based on data
from a total of 17 stations, the areal, corrected precipitation
for each catchment was calculated by Seibert (1994) using
the Thiessen polygon method with correction factors given
by Eriksson (1983). Temperature data were interpolated
from four measurement stations. The monthly long-term
mean potential evaporation was taken from Eriksson (1981).
The simulation period of September 1981 to August 1990
was preceded by a warming-up period of eight months. For
all 11 catchments good simulations can be achieved (Seib-
ert, 1999); calibration to the entire 10-year series resulted in
model efficiency (Nash and Sutcliffe, 1970) values of about
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Table 1. Characteristics of the study catchments.

Area Forest Field or meadow Lake
River Station Abbrev. (km2) (%) (%) (%)

Lill ån Gr̈anvad GR 168 41.0 59.0 0
Örsundåan Ḧarnevi HA 305 55.0 44.0 1.0
Hågåan Lurbo LU 124 77.7 27.0 0.3
Sävåan Ransta RA 198 66.1 33.0 0.9
Sävjåan S̈avja SA 727 64.0 34.0 2.0
Sag̊an S̈ors̈atra SO 612 61.0 37.9 1.1
Stabbyb̈ackenn Stabby ST 6.6 87.0 13.0 0
Stalbob̈acken T̈arnsj̈o TA 14 84.5 14.0 1.5
Fyrisån Ulva Kvarn UL 950 61.0 36.0 3.0
Vatthomåan Vattholma 2 VA 284 71.0 24.2 4.8
Svart̊an Åkesta Kvarn AK 730 69.0 27.0 4.0

0.8 for most catchments, with the exception of three catch-
ments with values above 0.85 (AK, SA and VA) and the two
smallest catchments (ST, TA) with values around 0.7.

2.2 The HBV model

The HBV model (Bergstr̈om, 1992; Lindstr̈om et al., 1997)
is a conceptual model of catchment hydrology that simulates
daily discharge based on time series of daily rainfall and air
temperature as well as monthly estimates of potential evap-
oration. The long-term mean evaporation rates are modified
based on deviations of the actual daily temperature from the
long-term mean temperature for the respective month. Dif-
ferent routines are used to represent the major components of
catchment hydrology: a snow routine where snow accumu-
lation and snow melt is computed by a degree-day method,
a soil routine where groundwater recharge and actual evap-
oration are simulated as functions of actual water storage, a
response routine with three linear reservoir equations, and a
routing routine using a triangular weighting function. More
detailed descriptions of the model can be found elsewhere
(Bergstr̈om, 1992, 1995; Harlin and Kung, 1992; Seibert,
1999).

In this study the “HBV light” version (Seibert, 1997, 1999)
was used that corresponds to the HBV-6 version described by
Bergstr̈om (1992) with two slight changes. Instead of start-
ing the simulation with some user-defined initial state values,
HBV light uses a warming-up period during which state vari-
ables evolve from standard initial values to their appropriate
values according to meteorological conditions and parameter
values. Furthermore, the restriction that only integer values
are allowed for the routing parameter MAXBAS had been re-
moved. In this study the HBV model was applied using only
one land use and one elevation zone. Furthermore, to reduce
the number of parameters in the response routine, the upper
outflow from the upper groundwater box was excluded (i.e.,

the parameters UZL andK0 were not used and the response
routine, thus, consisted of two linear boxes).

2.3 Modelling approach

In order to test the value of a limited number of stream gaug-
ings taken during one year we posed three questions:

1. Can a limited number of stream gaugings help to distin-
guish between “good” and “poor” parameter sets?

2. How does the performance of runoff simulated by a
weighted mean of the 100 “best” parameter sets depend
on the number of streamflow gaugings?

3. Can we identify good strategies to select a certain num-
ber of measurement dates within one year?

These questions were addressed within a GLUE-type model
conditioning framework (e.g., Beven and Binley, 1992;
Beven et al., 2008; Beven, 2009) assuming that a time se-
ries of model input data were available to drive the model
but that only a small number of discharge observations were
available to evaluate model performance. We started by gen-
erating 10 000 random parameter sets sampled from uniform
distributions, for which upper and lower limits were speci-
fied. We used the same limits as in previous studies (Seibert,
1997, 1999), which are defined based on model applications
in different parts of Sweden (Bergström, 1990). By using a
uniform distribution it is assumed that there is no prior in-
formation and that all values within the possible prior ranges
are equally possible. Different subsets of the entire 10-year
series of runoff data were used to evaluate these model sim-
ulations. With these subsets it was assumed that runoff had
been observed only at a certain number of days during a one
year period.
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For each hydrological year during the 10-year period, sub-
sets were generated by randomly selecting 1, 2, 4, 8, 16, 32,
64, 128, or 256 observation days. These random selections
of a certain number of observation days were each repeated
100 times. For each of these subsets the following steps were
taken to produce constrained runoff simulation:

1. The model performance was evaluated based on the sub-
set using the sum of squared errors (SSE) as objective
function. According to their performance the 10 000 pa-
rameter sets were ranked and the best 100 sets were se-
lected for further analysis.

2. The performance of each of the 100 parameter sets was
evaluated based on the entire 10-year period using the
model efficiency,Reff, as objective function and the me-
dian model efficiency was computed.

3. Based on the ensemble of 100 runoff simulations one
series of simulated runoff was computed as weighted

ensemble mean,Qensemblemean(t)=
100∑
i=1

wi Qi(t). The

weightswi were taken from a linear decreasing func-
tion so that the “best” parameter set received a weight
of 0.02 and the 100th parameter set received a weight of
zero.

4. The time series computed in this way were evaluated
based on the entire 10-year period using the model effi-
ciency,Reff, as objective function.

Please note that the same ranking would have been obtained
for using the model efficiency rather than the SSE in step 1
with the exception that the model efficiency can not be cal-
culated for cases where there is only one observation. For
comparison we also performed this analysis for the case of
zero observations days; in this case 100 of the 10 000 param-
eter sets were randomly selected and ranked. We assumed
a random selection of gauging dates to address the first two
questions. Additionally we compared a number of strategies
to select 6 gauging dates within one year. The number of 6
dates was chosen based on initial information indicating that
good results might be obtained with this number of observa-
tions. With fewer observations there would be too little infor-
mation regardless of strategy and with an increasing number
of observations the strategy becomes less important. In this
study we tested the following strategies:

– 6 days with the bimonthly maxima (MAX6)

– 6 days with bimonthly minima (MIN6)

– 6 days with bimonthly mean flows (here the day with the
flow least different from the mean flow was selected; in
case of several days with a zero difference the first one
was used) (MEAN6)

– The day with the annual maximum flow and 5 days
along the recession (10, 20, 30, 40, and 50 days after
peak flow) (MAX1REC5)

– The 2 days with maximum flow in spring and fall and
for both cases 2 days during the recession (10 and 20
days after peak flow) (MAX2REC4)

As two benchmark strategies we also selected 6 days evenly
distributed over the year (the first and 15th days of each two-
month period) (BENCH1 and BENCH15).

Similarly to the randomly selected dates, we tested each
strategy for the 10 different hydrological years for each
catchment, i.e., the simulations were evaluated based on
runoff at 6 selected days during one year and an ensemble of
good parameter sets was compiled. The weighted ensemble
mean was then evaluated based on its fit with the observed
runoff during the entire 10-year period.

The issue of formal statistical and informal methods for
model calibration has been receiving considerable attention
in the hydrological literature (e.g., Beven, 2006; Mantovan
and Todini, 2006; Beven et al., 2008; Smith et al., 2008).
Here, using daily data from small catchments there is an
expectation that rainfall input errors and timing, and model
structural errors may make it difficult to formulate a formal
statistical model of the residual errors. We have therefore
chosen to examine the issue of the value of data within a
more traditional, efficiency based, calibration framework in
this initial study, but intend to explore some of these issues
in future work.

3 Results

First we analyzed the ability of a limited number of runoff
observations to select parameter sets that performed better
than others for the entire 10-year period. The distribution
of model efficiency values for individual parameter sets se-
lected as the top one percent of parameter sets clearly moved
towards better model performances with an increasing num-
ber of runoff observations. The median model performance
increase was highest when the number of runoff observa-
tions increased by 2 to 16 observations while a plateau was
reached at about 32 observations when additional observa-
tions did not greatly improve the average model performance
(Fig. 1).

For the further analyses, weighted ensemble means were
used to predict runoff for the entire 10-year period instead
of simulations using individual parameter sets. The results
clearly showed that the ensemble mean outperformed the in-
dividual simulations. Most convincing was that the ensemble
mean was better than the prediction using only the one best
parameter set in almost all cases (Fig. 2).

As could be expected from the shift of the distribution of
model performance of individual parameter sets (Fig. 1), the
performance of the ensemble mean also increased with an
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Fig. 1. Median (solid line) and percentiles (10 and 90%, dashed
line) for the performance of the 100 best parameter sets according
to nQ measurements for simulating the entire time series (median
values for the different catchments, different years and different se-
lection of then days).

increasing number of runoff observations. The agreement of
the runoff series computed as ensemble mean with the ob-
served 10-year series was low when less than 4 runoff ob-
servations were used to evaluate the parameter sets (Fig. 3).
On the other hand, the performance was significantly better
when 8 or more observations were used to select the 100 best
parameter sets. There was a considerable variation among
the catchments as to how good the ensemble mean was when
not being constrained by any measurement and the catch-
ments also varied in how much the additional measurements
helped to increase the efficiency (Fig. 4). In general the in-
crease in performance was largest for those catchments for
which the difference between the “non-informed” (i.e. using
only prior parameter estimates with no conditioning observa-
tions) performance of the ensemble mean and the efficiency
that could be achieved by calibration to the entire 10-year
period was largest. However, for each catchment there was a
large variation of the ensemble mean performance depending
on the year in which observation days were selected (spread
of lines in Fig. 4).

In some cases constraining the model by a small number
of runoff observations actually caused a decrease in model
performance. This is especially evident when we look at
the variation of the different realisations to different selec-
tions of n observations (Fig. 5). Depending on which days
were selected to constrain the model, the agreement of the
ensemble mean with the observed runoff varied significantly
(percentiles in Fig. 5). It is interesting to note that while
constraining the model on average helps to increase model
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Fig. 2. Performance of the ensemble mean compared to the perfor-
mance of the single one best parameter value. Each dot represents
the average of the 100 realizations ofn observation days during one
year and in one catchment.
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Fig. 3. Model efficiencies for the entire 10-year period of the
weighted ensemble mean where the ensemble has been selected
based onn measurements during one year. The solid line and the
circles represent the median over all years, catchments and random
realisations of the selection of then days. The dashed lines show
the percentiles (10 and 90%) for the different catchments and years.

performance, a poor (random) selection of observation days
can actually result in worse model predictions. This sug-
gests that the observations can be in conflict with the model
representation of a catchment. This could be due to model
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Fig. 4. Model efficiencies for the entire 10-year period of the weighted ensemble mean where the ensemble has been selected based onn

measurements during one year. Each line represents one year used for this selection. Calibration to the entire 10-year series results in model
efficiency (Nash and Sutcliffe, 1970) values of about 0.8 for most catchments, with the exception of three catchments with values above 0.85
for three catchments (AK, SA and VA) and around 0.7 for the two smallest catchments (ST, TA) (Seibert, 1999).
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Fig. 5. Model efficiencies for the entire 10-year period of the
weighted ensemble mean where the ensemble has been selected
based onn measurements during one year. The solid line and the
circles represent the median over all years, catchments and random
realisations of the selection of then days. The dashed lines show
the medians of the percentiles (10% and 90%) for the different re-
alisations of the selection of then days.

structural error, but may also occur if the observations (by
chance) are not representative of the longer term catchment
response, such as when either the particular discharge ob-
servations or the associated rainfall event data are in error
or when a particular selection is only representative of the
low flow response. When only a small number of discharge
observations are assumed available, such errors will take on
a greater significance than when a full time series is avail-
able. This has been seen, for example, in the identification
of rainfall multipliers for individual events in full calibra-
tion (Kavetski et al., 2006; Kuczera et al., 2006; Vrugt et
al., 2008). These multipliers will reflect the influence of
model structural errors and discharge measurement errors but
in some cases take on values far from unity. Selection of an
observation point for discharge in one of those events might
then not be that informative (and might indeed be disinfor-
mative) in model conditioning (Beven et al., 2008).

The different tested strategies resulted in different model
fits. There was a considerable scatter in the achieved model
performances for the different catchments (evaluated as an
average over the 10 different years for each catchment)
(Fig. 6). On average the strategies that included sampling of
maximum flows (MAX6, MAX1REC5, MAX2REC4) per-
formed better than the benchmark strategies for the efficiency
measure, whereas the strategies involving minimum or mean
flows resulted in poorer model simulations on this measure.
These results of course depend on the chosen objective func-
tion. With the two benchmark strategies efficiency values of
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Fig. 6. Performance of the different strategies to select 6 days dur-
ing one year. Each black dot represents the median of 10 years
for one catchment, the square symbol represents the median of all
catchments.

0.59 (median) were obtained, which can be compared to the
average median efficiency for the different realisations se-
lecting 4 or 8 random days of 0.54. The averages computed
from the different catchments for different years showed that
the same strategy provided varying results depending on the
year used for the 6 gaugings. It can be noted that the three
years for which the 6 measurements resulted in the poorest
results were the three years with the least snow accumulation
during winter (Fig. 7). There also was a tendency toward
poorer results for the two smallest catchments and for the
catchments with highest percentage of lakes.

While this study has demonstrated that a limited num-
ber of streamflow observations can be sufficient to constrain
a model it remains an open question how these measure-
ments should be distributed in time to maximise the infor-
mation content. Certainly, the guided, hydrologically intelli-
gent sampling that covers both high and low flows performs
as well as the random sampling of a larger number of obser-
vations.

4 Discussion

The results in this paper suggest that for the type of daily
runoff modelling studied, a limit to the information content
in a series of observations is reached after a relatively small
number of measurements are used in constraining model pre-
dictions, although some parts of the time series appear to
be more informative in conditioning the model than others.
With a very small number of samples, however, it has been
shown that the weighted ensemble model performance might
possibly decrease in both calibration and, more so, in pre-
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Fig. 7. Performance of the three best strategies applied in different
years. Each point represents the median of all catchments when
dates from one year were used. The three years 1982, 1988 and
1989 were the years with particularly little snow accumulation.

diction, relative to prior parameter estimates. While these
results are based on a few catchments in Sweden and results
might be different in other regions, our results are encourag-
ing and motivate further studies on the question of how to
gauge the ungauged catchment.

This type of assessment of data information content needs
to be explored in other catchments. A number of issues might
lead to different conclusions. The first is the representativ-
ity of a discharge measurement in relation to the time scale
of the response of a catchment. Here we have taken the
already available daily discharge observations from gauged
sites (treated as ungauged for the purposes of the analysis),
as if they were “point” measurements of flow. Recognising
that any “point” measurement extends over a period of time
that depends on the measurement technique and size of the
river, this is more representative of catchments where flow is
changing relatively slowly than of small flashy catchments.
For this particular set of mesoscale Swedish catchments di-
urnal variability of stream flow is small because of the flat to-
pography and the dampening effect of lakes along the stream
network.

Second, the results will be dependent on the interaction
of input errors (primarily precipitation and temperature in
this case) and model structural error. As in any hydrological
modelling study this is one reason why we expect results in
model evaluation to be more uncertain than in model calibra-
tion where the effective values of the parameters will in part
reflect the particular sequence of estimated inputs rather than
the true inputs to the system. It is also perhaps one reason
why the performance of a single “best” calibrated param-
eter set is generally worse in evaluation than the ensemble
weighted mean of the top 100 parameter sets. The ensemble
of models might be more robust to any particular sequence
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of input errors than a single good model fit. Here it can be
mentioned that most previous studies looking on the neces-
sary amount of data for model calibration relied on using
one single best parameter set rather than allowing for sev-
eral suitable parameter sets (Sorooshian et al., 1983; Yapo et
al., 1996; Perrin et al., 2007).

It is encouraging, although it perhaps should not be sur-
prising, that a hydrologically intelligent choice of a small
number of observations performs well relative to either reg-
ularly or randomly chosen measurement times. Choosing
days with the highest discharge followed by days during the
recession provided similar results to using the 6 days with
highest discharge during a two-month period. One could ex-
pect that the latter should result in better calibrations since
the different observations provide more independent infor-
mation. However, sampling days during the recession allows
constraining the model not only based on absolute discharge
but also on rates of change. It is worth noting that in this
study we have assumed that one can pick the day with the
highest discharge to make a measurement. Our results should
therefore be seen as a best-case scenario; in reality the obser-
vation days will be distributed less optimally for logistic rea-
sons. This problem poses interesting questions which could
be addressed by adding some prediction uncertainty in mak-
ing decisions about which days to select for gauging. This
could also be studied as an iterative problem. Once we have
a few gaugings to constrain our model, our ability to predict
suitable days for further measurements might improve.

The intelligent choice should reflect what we expect the
model to do. There may also be other hydrologically intel-
ligent sampling strategies in addressing the ungauged basin
problem. It has, for example, become much less expensive
to install a networked transducer that can provide continuous
level measurements in real time, and that can easily be moved
from site to site (Hughes et al., 2006). A small number of ob-
servations could then be used to produce a rating curve and
hence a continuous estimate of discharge. The rating curve
derived in this way would be expected to have significant un-
certainty, but more complete time coverage and temporal res-
olution might more than compensate for allowing for rating
curve uncertainty in model calibration. Another type of in-
formation for ungauged catchments are parameter estimates
based on regionalisation approaches. A few streamflow ob-
servations may then be used to further constrain these param-
eter estimates. The value of the streamflow measurements
obviously will depend on how well the parameter values had
been estimated initially.

5 Concluding remarks

In some situations, a solution to the ungauged basin problem
will be to take some (a small number) discharge measure-
ments to help constrain model predictions. However, very
little guidance is to be found in the literature about the value

of different measurement strategies in this context. This pa-
per provides a framework for looking at different choices
of numbers and selection of measurements in model condi-
tioning. We have shown, by applying the HBV model to a
number of small Swedish catchments, that only a few mea-
surements can be effective in constraining prediction uncer-
tainties. There is, however, always the possibility that as the
number of measurements is reduced the real information con-
tent becomes more sensitive to particularities of the time the
measurement is taken, especially the possibility of rainfall
input errors and model structural errors even if the discharge
measurement is itself accurate.

Thus, many more studies similar to the one presented here
are needed to develop guidelines on what to measure and
when to measure in ungauged basins. Well-instrumented
catchments are needed for this type of approach where the
basic idea is to pretend that there is only a subset of these
data available. This situation has been mentioned as the
PUB-paradox (Bonell et al., 2006): data-rich catchments are
needed to test methods for data-poor environments. The re-
sults in this study differed for different catchments and dif-
ferent years, demonstrating that misleading results might be
obtained if one would test the value of data based on only one
or few cases. In a real application for one particular case it is
impossible to know exactly whether good simulations could
be obtained based on a certain number of observations, but
using many test cases, as in this study, allows some proba-
bility distribution of errors to be assessed as an index of the
uncertainty that might be expected in a real application. This
suggests that the ungauged basin problem must be treated as
a learning process, with more data being added if the applica-
tion requires it, either because it appears that predictions are
wrong, or because more constraint of uncertainty is required
for decision making (Beven, 2007).

An interesting outcome of this study is that a hydrologi-
cally intelligent choice of when the measurements are made
might help to maximise the information content of the obser-
vations, although much more work is required on identifying
the most useful observations. It was also shown that mean
ensemble predictions generally produced better results than
any single model prediction after conditioning on a small
number of observations.

We intend to explore additional sampling strategies in fu-
ture. For practical applications the cost of the measurements
must be considered. This includes posing questions such as:
Are more but less accurate measurements or fewer but more
accurate measurements more useful? For more remote catch-
ments where travel to the site is the major cost of a single
discharge measurement the optimal strategy might be differ-
ent from an easily accessible catchment, where the cost is
more determined by the actual measurement. It is also pos-
sible that the accuracy or frequency of discharge measure-
ments in the model calibration process might be dominated
by poor knowledge of catchment inputs. Here, as is com-
mon in rainfall-runoff modelling, we have assumed that the
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estimated inputs to the catchment are sufficiently accurate
that model performance over the 10 year evaluation period is
not overly constrained. Similar issues arise in regionalisation
approaches to the ungauged basin problem but we contend
that the eventual solution to constraining predictions of un-
gauged basins will be to have rapid ways of feeding in more
observations to the modelling and learning process.
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