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Abstract. Sensible and latent heat fluxes are often calcu-Campbell, 2005, for an overview of both types of methods),
lated from bulk transfer equations combined with the energyfrom which sensible heat flux could be derived, if values of
balance. For spatial estimates of these fluxes, a combinationet radiation and soil heat flux were available.

of remotely sensed and standard meteorological data from Field scale measurements are used to study the local wa-
weather stations is used. The success of this approach déer and energy balance and to gain process understanding,
pends on the accuracy of the input data and on the accuradyut they are often not representative of large areas. Remote
of two variables in particular: aerodynamic and surface con-sensing measurements provide a spatial coverage, but not all
ductance. This paper presents a Bayesian approach to invariables needed to estimate sensible and latent heat can be
prove estimates of sensible and latent heat fluxes by usingneasured by remote sensing.

a priori estimates of aerodynamic and surface conductance Itis common practice to combine remote sensing and field
alongside remote measurements of surface temperature. Thiata to estimate sensible heat, and latent heat fluxj E,
method is validated for time series of half-hourly measure-spatially (e.g. Su, 2002; Kustas et al., 2007; Anderson et al.,
ments in a fully grown maize field, a vineyard and a forest. It 2008). Remote sensing products used as input include bright-
is shown that the Bayesian approach yields more accurate esiess temperature and emissivity (Bastiaanssen et al., 1998),
timates of sensible and latent heat flux than traditional methreflected shortwave radiation and NDVI, which are used for
ods. the derivation of vegetation structure and aerodynamic re-
sistance (Su, 2002). Weather station variables include wind
speed, air temperature and humidity. Latent heat flux is ei-
ther solved as a residual term in the energy balance, with
H obtained from a bulk transfer equation or directly calcu-

. . I lated using the bulk transfer equation for latent heat flux. The
Sensible and latent heat (i.e. evapotranspiration) fluxes be-

. roblem with the latter approach, however, is that estimates
tween the land surface and the atmosphere are |mportar£tf

ts of the land f bal Diff ¢ specific humidity at the land surface are hard to obtain.
components ot the fand surface energy balance. DIEreNnt o0 are various sources of uncertainty associated with
techniques exist to estimate them, generally based on mi

i logical methods. including the edd . these flux estimates based on remote sensing and field data:
(I;rome eor:_) Otg'cﬁ metho gb'nﬁ’(ut Ing f ee )t/_-covafrlancethe representativeness of the weather station data, the at-
owen ratio technique and bulk transter equations, for eX'mospheric correction of satellite data, the derivation of re-

ample. Alternatively, estimates of evapotranspiration can bemote sensing products, the relationship between remote sens-

obtained from the soil water balance (see e.g. Verhoef an%g products and surface characteristics (such as roughness
length, which affects aerodynamic conductance), the model
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Table 1. Parameters and variables in the energy balance and bullg Theory

transfer equations (Egs. 1 to 3). 2.1 Energy balance

Description Symbols Units The standard energy balance equation is used, consisting of

Energy balance terms Ry, G, H, AE Wm2 four components: net radiatio®,,, soil heat flux,G, sen-

Conductances Sas 2 ms1 sible he_at ﬂux,H_and Ia_tent heat flux)_,LE (all_in Wm‘_z).

Air and surface temperature Ty, T, K En_ergy involved in meltl_ng and freezing or in chem|cal_re-
o ) ' actions, energy stored in the canopy, and energy horizon-

Vapour concentration in the air, tally transported by advection are ignored. Hence (Brutsaert,

and in soil and leaf pores Ga, gs kgm3 2005):

R,—G=H+AE (1)

Quantification of the uncertainty is an essential part of sur-Parametex is the latent heat of evaporation of water (Jkp
face energy balance modelling. One of the techniques t®NdE the evapotranspiration rate (kgrhs™).
handle uncertainty of data is data assimilation (Troch et al., Sensible and latent heat flux are the fluxes of heat and wa-
2003). Data assimilation makes it possible to quantify un-ter vapour between the surface and the atmosphere carried
certainty, and to find the best solution of a model given vari-by turbulent air flow. They are calculated as the product of
ous sources of input data with associated errors. Time seried conductance and a driving force between the surface (sub-
used for surface energy balance modelling are often incomscript s”) and the air at measurement height (subscrag},”
plete, and data are collected at different spatial scales. I®ften called “bulk-transfer equations™
such cases, data assimilation is a useful technique. It has

been used to improve the predictions of hydrological mod-H = Pcp8a (Ts — Ta) (2)
els (Schuurmans et al., 2003), to retrieve spatial and tempo- 1

ral trends in root water extraction by vegetation from remoteAE = A ——— (¢, (Ty) — qa) (3)
observations of surface temperature and ancillary data (Crow 1/8a + 1/

and Wood, 2003), and to retrieve (simulated) soil moisture by . . .
model inversion (Reichle et al., 2002). wherep is the mass density of air (kgm), ¢, the heat ca-

. . 1 -1 . . _
This paper presents a data assimilation approach to estF;]C;g (cr)r: ;{; ggrk'?r—ar:fs o)r’t i‘]‘, rl]se;?eanzec;d);ﬁrggr:?;gﬁr_
mate sensible and latent heat flux over vegetated land surfac?. P b

. —1\;
The data used to test the approach include remotely measureg . boundary layer into the atmosphege,(ms™-)is the
. ; . . surface conductance for water vapour transport from stom-
surface temperature in conjunction with ground-based mete: o . :
. L .~ _atal cavities in leaves or soil pores, to the leaf or soil surface
orological measurements. In principle, the meteorological

data are sufficient to calculate sensible and latent heat quxt.)Oundary Iayer?"s IS sqrface temperature arfd IS air tem-
erature (both in K)g, is the vapour concentration in stom-

This makes it possible to calculate the energy fluxes even i . . ;
b 9y ata or soil pores (kg i), andg, is the vapour concentration

the absence of surface temperature measurements, for exam- . 3
ple between satellite overpasses or during cloudy conditions" the air (kgnm=).
" Equations (1) to (3) contain 13 parameters and variables.

By adding remote measurements of surface temperature (b h fh b idered tant ol
means of data assimilation), the estimates of the fluxes arg ree of them can be considered constant or can accurately
e estimatedd, c, andx). Out of the other 10 (Table 1), at

improved, because information is added to the model. Thi +7 need to be m red or estimated in order t ve th
approach has already been suggested by Franks et al. (199% as eed to be measured or estimatedin orderto solve the
ree equations. Weather station data are commonly used for

A simple form of data assimilation is used in this paper:

the Bayesian theorem described in statistical handbooks (e.gﬁ

Carlin and Louis, 1996).

In Sect. 2.1 we first present the energy balance model, bulR€d under study. .

transfer equations, and discuss classic approaches to estimateThe surface; conduc.ta.nce and Fhe aerodynamic conduc-

evapotranspiraton (Sect. 2.2). Next, the Bayesian theorem igance are particularly difficult t 0 gs_tlmate.

explained in detail (Sect. 2.3). Furthermore in Sect. 3itis de- . Surface conductancg,, of individual leaves can be d_e-

scribed how the data are used to test the Bayesian approacHYed from Iea_f gas e_xc_:hange measyrements, but scaling to

and the field experiments are described. We finish with thecanopy level is n.ot tm{'al (Baldocchi et al., 1991)'. Surface .

results and discussion in Sects. 4 and 5, respectively. conductance vanes.Wlth thg actqal photosynthesis rate, soil
moisture content, air humidity, air temperature. At canopy

level, empirical and semi-empirical relationships between

surface conductance and environmental conditions are com-

monly used (Jarvis, 1976; Cowan, 1977; Ball et al., 1987,

he driving variables, such &%, g, or wind speed (required
or calculation ofr,); insofar they are representative for the
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Leuning, 1995). These relationships require vegetation- 3. Conductance-approach: evapotranspiration is calcu-
specific, a priori coefficients or local calibration against mea- lated by solving Egs. (1) to (3) witlH, AE and T;
sured fluxes of water and carbon dioxide. However, for many as unknowns. Aerodynamic conductance is estimated
applications these models are too detailed, as parameters for  from a measured wind profile or from a priori values for

the vegetation under study are often not available. a specific vegetation type, and surface conductance
The aerodynamic conductancg,, depends on the mo- is estimated with one of the combined photosynthesis-

mentum and scalar roughness length of the surtagg(m) conductance or empirical models discussed above. Val-

andzon (M), respectively, wind spead(ms™1), and stabil- ues for the parameters of such models are found from

ity of the atmosphere, as combined in the logarithmic wind calibration of the model against measurementg,adr

profile (Tennekes, 1973; Garratt, 1992). The momentum taken from the literature.

roughness length;om, is usually estimated from leaf area

index and vegetation height (e.g. Raupach, 1994; Verhoef et )

al., 1997a), whereas the scalar roughness lengih,is of-  2-3 Bayesian approach

ten taken as a constant fraction @jy; this fraction varies

widely, largely depending on canopy density (Stewart et al.,The Bayesian approach used in this paper, as an alternative

1994; Verhoef et al., 1997b). Optical remote sensing is ofterto the classic approaches described in Sect. 2.2, combines

used to estimate vegetation height and leaf area index (Suhe methods (2) and (3) discussed above. In the Bayesian ap-

2002). However, estimates of aerodynamic resistance basgaroach, neither a real distinction between “knowns” and “un-

on optical remote sensing contain a large degree of uncerknowns” is made, nor a distinction between “variables” and

tainty. “parameters”. The distinction is rather between “a priori”
Apart from the aerodynamic and surface conductance, thezariables and parameters (values for parameters and vari-

difference between surface and air temperatdte-{) is ables that were measured, estimated, or taken from the lit-

also difficult to estimate. Sensible heat flux is proportional erature), and “posterior” values (most likely values for pa-

to this difference; a relatively small difference between two rameters and variables, taking into account all a priori values

measurements. Wheh is taken from remote sensing and and their uncertainty, and using the model). A priori values

T, from weather station data, then errors in eitiigmor 7, are indicated with a tilde~) placed above a symbol. Pos-

may cause significant errors in the estimate#/of terior values are indicated with a hat (). The “real” values,
which are never known, do not have a superscript.
2.2 Classic approaches to estimate evapotranspiration It is now assumed that besidesc, andx, also7y, ga, R,

and G are accurately measured, such that their uncertainty

The difficulty in estimatinge,, g, and (T,—T,), in Egs. (1) &N be ignored. Fog,, g; andT;, uncertain, a priori esti-

to (3) has been overcome in a number of ways. This hadnates are used, and foy, the saturated humidity & is

resulted in three techniques to calculate evapotranspiratiofS€d: NO @ priori information about the fluxés and £
from the energy balance: iIs used. Doing so results in three equations (Egs. 1 to 3)

with two unknowns I andA E), which implies that the en-

1. FAO-approach: evapotranspiration is calculated by€rdy balance is over-specified. Theoretically, Eq. (1) is not
multiplying a “reference evapotranspiration” by an em- N0 longer strictly necessary (we could estimate the fluxes
pirical coefficient for a specific crop, extracted from a Without using Eq. 1), but in doing so we abandon the phys-
table based on expert knowledge. The reference evapdcally realistic and useful constraint of energy balance clo-
transpiration is calculated for a crop with known values sure. S|m||ar|y, we could calculate the fluxes without USing
for g, and g, usually the typical short, well-watered Measured’ (as in the conductance-approach), but in doing
grass of a meteoro|ogica| station. This method is dis-SO we ignore part of the data that we have available. Fina”y,
seminated by the FAO (Allen et al., 1998, 2006), and is We could calculate the fluxes without using a prigyi(as in

mainly used to calculate irrigation requirements. the 7;-approach), but in doing so we ignore thatis lim-
ited to physically realistic bounds. The fact that the model

2. Ty-approach: evapotranspiration is calculated by solv-is over-specified is not a problem, since the valuegfog;

ing Egs. (1) to (3) withH, AE and g; as unknowns. and 7, are not fixed but uncertain. They will be adjusted,

In that case, on top of the standard meteorological vari-resulting in posterior values.

ables, surface temperature measurements and estimatesin the 7;-approach of Sect. 2.2, all uncertainty of the mea-

of aerodynamic conductangg are required. This tech-  surements propagates into the unkngsynwhich may lead

nique is used in remote sensing, for example in theto unrealistic values fog,. Similarly, in the conductance-

model SEBS (Su, 2002). Surface temperature is re-approach of Sect. 2.2, all uncertainty of the measurements

trieved from thermal remote sensing, and aerodynamiqoropagates into the unknowf, which may lead to unrealis-

resistance from optical remote sensing. tic values forTy. In the Bayesian approach, all three param-
etersg,, gs and T are constrained. In this way, unrealistic
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values for any of them are avoided. It is expected that thisby calculating only the peak of the probability density func-
also leads to more accurate estimates of the fluxeand  tion:
ME.

The model (Egs. 1 to 3) is re-written such tffatis output
of the model, by eliminating and1E from Egs. (1) to (3) a 5 5
and writing 7, as the dependent variable. In other worfs, (‘Cx—l/Z (f6) - ,;)‘ + ‘(;0—1/2 o — 00)‘ )
is a function of all input variables and parameters. Hence:

9 = argmaxp (0 |X) = arg min )
0 0

whereCy andCy are the covariance matrices for the mea-

Xx=f0)+w (4) . ~
surements and the parameters, respectively. Paranfedegs
wherex represents the measured output (in this case meate posterior parameter values fgrandg, used later to cal-
suredTy), f the model equation8,a vector of a priori values  cylate sensible and latent heat flux.
of variables and parameters, andackground noise caused  The last part of Eq. (7) (between the brackets) is a cost
by the uncertainty of the model and measurements. Notgunction or the quadratic error. The quadratic error is the sum
that Eq. (4) could be expressed in terms of the parametergf two components: the quadratic error in the parametdrs (
of Egs. (1) to (3) explicitly, but this would result in a rather scaled with the uncertainty of the a priori estimates, and the
long expression. The vector notation is used if the problemquadratic error in the measurementsZof scaled with the
is solved for muItipIe time steps, muItipIe piXG'S, or for mul- uncertainty of the measurementsiof The Optimum param-
tiple measurements and parameters. This aspect is discussggbr values are located at the minimum total error. If both

later in this paper. p(¥10) and p(#) are Gaussian, then the solution is exact

Parameter valueg{ andgy) have an a priori probability  (and Egs. (6) and (7) will give equal results), otherwise it is
density functionp(#), and measurements @ a probabil-  an approximation. In this study, Gaussian distributions for
ity density functionp (i\ #). Note thatg, andgs are vari-  poth functions are assumed.

ables. In this study we will calculate them for each time step  The key issues are to estimate a priori value® oind
independently. For an individual time ste@, andgs can  to estimate the two covariance matrices. These matrices de-
be considered as model parameters. The probability denscribe the uncertainty of all input (measurements and the a
sity function of the parameter values is determined by thepriori values), and determine the contribution of different in-
accuracy of a priori estimates, whereas the probability denput variables to the posterior estimates. These issues are ad-
sity function of the measurementsGfis determined by the  dressed in detail in Sect. 3.1.

accuracy and representativeness of the measurements. The

implementation of these probability density functions for the

data used in this study is discussed in Sect. 3. The poste3 Methodology

rior probability density of the parameters (i.e. the parameter )
values, given the measurementspy, is calculated with the 3.1 Modelinput

classic Bayes’ theorem (Carlin and Louis, 1996): The Bayesian approach is applied using meteorological time

. p (JZ\ 0)-p@) series for three land cover types: maize, a vineyard and a for-

p(0]x) = [p &|6) p@)ds (®)  est, measured during intensive field campaigns (Sect. 3.2).
Measured values of four variables are directly used as input

The numerator in Eq. (5) is a multiplication of the two prob- tor the model:R,, G, T, andg,. Itis assumed that these
ability density functions, whereas the denominator is a nor-a|yes were accurately measured and that the measurements
malization term. A low probability of a value fdf; (@ 7;  were representative of the land covel, &R,, etc.). This
that deviates significantly from the measured value), or alowimpjies that for these four variables, a priori and posterior
probability of a value for the parameters (a conductance thay|ues are equal to each other. In contrast, uncertainty is at-
deviates significantly from the a priori value), results in a yiputed to the other variables,, g, andT;. Posterior values
low probability of the posterior parameter values. The ex-fqr 24, gs andT, were calculated with the Bayesian approach
pected values of the parameters are given by the minimumgeq. 7). The posterior values were used to calculate sensible
least square error estimate of the parameters. These expectgf( |atent heat fluxes with Egs. (1) to (3). Measured sensible
values can be calculated by integrating the probability den—4nd |atent heat fluxes were used for validation only.

sity function: It is necessary to estimate the a priori valuesgpandgy,
B B as well as the uncertainty of a priqggi,, g; andT;. Hence,

0 = E®|x) = /0 -p(01%)do (6) the following equations fog,, g, and7; are introduced:
The expected values are the posterior (or the optimum), = g, = (él + wl) u (8)

values for the parameters. The posterior values are the -
weighted average (weighted over their probability) of all pos-  8s = 62 = 62 + w2
sible parameter values. The integration in Eq. (6) is avoided Ty = Ty + w3

Hydrol. Earth Syst. Sci., 13, 74958 2009 www.hydrol-earth-syst-sci.net/13/749/2009/
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Table 2. A priori values for61 andf», and standard deviations féi, 6, andTy.

oTy 91X].03 0'91X103 92><10?’ (‘)'gleo3

(K) (=) =) (mmsh (mms?
Sonning (maize) 0.74 9.8 3.6 14.3 8.8
Barrax (vineyard) 2.47 5.7 3.6 14.3 8.8
Speulderbos (forest) 1.37 44.6 14.2 14.3 8.8
LAl active

where w indicates noisef; is a dimensionless parameter ¢ —
which includes the effects of surface roughness and stabil- 100

ity of the boundary layen is wind speed (ms"), and pa- where LAlgiive is the leaf area index (fieaf m—2surface)

rameterd, is surface conductance (m%. The expression . - .
for g, is an additional model, that enables us to estimate_that contributes to transpiration. For the upper and lower lim-

aerodynamic conductance a priogi, (is a function of wind I:;SSOfr?é g-e} 8s) tf(lje r\/alueSti(\llorlreS_IF_)r?ndlng trO iéa;éﬁ\\//ve C;flimit
speed). The a priori estimate for parameierfor neutral > a are used, respectively. The upper and lowe S

conditions is calculated using the logarithmic wind profile of 7; are estimated by applying Stefan-Boltzmann equation

: ' ) for two extreme values of emissivity (0.90 and 0.99 for the
following Tennekes (1973) and Goudriaan (1977): vineyard and 0.95 and 0.99 for the fully grown maize). For

(10)

~ K2 the forest site, the standard deviation of the readings of nine
01 = In (=4 d ©) thermistors is used as a proxy for the standard deviation of
n <M) (E) T,. Table 2 presents the a priori values and standard devia-

tionsoy1, og2 andor derived in this way.

It is further assumed that the covariances (6ev@2),
cov(@1, Ty), cov@,, Ty)) are zero, and that the errorsén,
6, andT, of consecutive time steps of a time series are uncor-
related. The latter assumption may not be realistic: estimates
of roughness parameters and surface temperature measure-
is used for all three study sites. Values fgrare computed ments.may be b|a§eq and errors@ma_nd T‘? are therefore

dnost likely to be similar for consecutive time steps. How-

from Stefan-Boltzman equation, using measured outgoin X .
longwave radiation and an emissivity of 0.98. For the forestoVer It appears that reasonable results can be obtained even
when these effects are ignored. Assuming that all covari-

site, no reliable measurements of outgoing longwave radia- . i
nces are zero makes it possible to solve Eq. (7) for every

tion were available. For this site, surface temperature waé

measured with small Negative Temperature Coefficient ther-t'_me step indwvidually. This is computationally more effi-

mistors (NTC) attached to needles (referred to as “contacf:'e_nt than ;olvmg E_q. (7). for the whole “T“e seres -at_ once,
temperatures” in this paper). which requires manipulation of large matrices containing the

The uncertainty of the a priori estimates and measurefarameters of all (half-hourly) time s.tep.s.. .
ments, which determine the matric8s andC, in Eq. (7) The posterior parameters for an individual time step are

are estimated as follows. It is assumed that the probability oftow calculated with Eq. (7), using:

whered=0.67, zom=0.131, zon=0.1z0Mm, & is the vegetation
height, z the measurement height of wind speed (all in m),
andk (=0.4) is Von Karman’s constant. Equation (9) does not
include a correction term for non-neutral atmospheric condi-
tions. For the a priori estimate of parametgrthe FAO stan-
dard value for short, well watered grassg#0.0143m st

01, 02 and Ty have normal distributions with a standard de- g

viation of one quarter of the difference between their upperf = ( 1) and g = <~1) (12)
and lower limits found in the literature. The upper and lower 2

limit of 6, for crops (in this case maize and vineyard) and

for forest are based on minimum and maximum values for o2 0 )

zom reported in a review paper of Garratt (1993). For theseCo = ( 8 0922> and Cx = o7 (12)

extreme values ofgy, corresponding extreme crop heights

(h=z0m/0.13) and zero plane displacement height2/31)  The posterior (optimum) parameter sétjs calculated with

are calculated. The upper and lower limitséafare calcu-  gq. (7). The minimum of the square error (the term between

lated from the corresponding valueszef, z, h andd with  the brackets of Eq. 7) is found with the Nelder-Mead method.

Eqg. (9). An empirical equation fog, of Allen et al. (1998)  These posterior values are used to calculate sensible and la-

is used to estimate the upper and lower limit® gf tent heat flux with Egs. (1) to (3). For comparison, sensi-
ble and latent heat fluxes are also calculated using the latter
two methods presented in Sect. 2.2. That is, Method 2: the

www.hydrol-earth-syst-sci.net/13/749/2009/ Hydrol. Earth Syst. Sci., 13,7582009
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Ts-approach, using Eqgs. (1) to (3) wifth, AE andg, as un- Sensible and latent heat fluxes were obtained using a com-
knowns, and using the a priori expression fqr(g,=61u) bination of a Solent R3 sonic anemometer (Gill Instruments
and measured; and Method 3: the conductance-approach, Ltd, Lymington, Hampshire, UK) and a differential closed-
using Egs. (1) to (3) withH, LE and Ty as unknowns, and path infrared gas analyser (LI-7500, LICOR Inc., Lincoln,
using a priori values fog, andg;. NE, USA), with appropriate correction procedures applied.

3.2 Experimental setup 3.2.2 The vineyard

The Bayesian approach is applied using micrometeorologijjeteorological input variables and fluxes were obtained over
cal time series obtained for a maize crop (Sonning, UK), ag vineyard (row spacing was 3.35m, the within-row spacing
vineyard (Barrax, Spain) and a Spruce forest (Speulderbosyas approximately 1.5 m, LAl was 0.52m~2, fractional
The Netherlands). For the maize crop, 9 days, for the vineyegetation cover 0.33 and vegetation height about 2 m) lo-
yard, 6 days and for the forest, 3.5 days worth of half-hourly cated at the Barrax agricultural test site in Spain (39M06
data are used. 02.10 W), where various crops were grown, some of them
. irrigated. Data were collected between 14 and 21 July 2004
3.2.1 The maize field during an intensive field campaign (SPARC). The experiment

Meteorological input variables and fluxes were obtained overhaS been dgspribed in detail by Su et ai. (2008).
a fully grown maize field (row spacing was 0.75m, the Net radiation was measured using a CNR1 four-

within-row spacing was about 0.12 m) located at the CropsComloonent net radio_meter at a mounting heigiit of 4.8m
Research Unit at Sonning farm (a research facility ownedabove the ground. Soil heat flux was measured with 3 Hukse-

by the University of Reading, UK). It is located 4 km from flux HFPO1 heat flux plates (Campbell Scientific Inc., USA)
Reading in Sonning (UK), at 51.281, 0.90 W, elevation at 0.5cm depth. Heat storage above the sensors was ne-

35m above sea level (see Houldcroft, 2004): the soil type isglected. Air temperature and relative humidity were mea-

loamy sand. Data from 7 to 16 September 2002 were usecfUred with a HMP45 sensor (Vaisala, Finland) at 4.78m
when the leaf area index was 3.4m~2 and the canopy height, wind speed with a cup anemometer (Vector Instru-
height 1.9 m. ments, Ltd., United Kingdom) at 4.88 m height. Surface tem-

Net radiation was measured using a CNRL four- perature was estimated by inverting Stefan-Boltzmann'’s law,
component net radiometer (Kipp and Zonen, Delft, Theusing outgoing longwave radiation measured with the CNR1

Netherlands) at a mounting height of 2.5 m above the groundiadion_ieier and an emissivity of 0.98. All data were collected
Soil heat flux was calculated using a Fourier analysis on mea2t 1 Min intervals, and 10-min averages were stored, and half
sured soil temperatures, combined with estimates of thermaf©Ur!y averages were used in this study. _
diffusivity and heat capacity, the so-called analytical or exact Sensible and latent heat fluxes were obtained using a com-
method (see e.g. Verhoef, 2004). The soil temperatures wer@ination of a Solent R3 sonic anemometer (Gill Instruments
acquired with type-NT 10® thermistors (RS, UK) that had Ltd, L_ymington, Hampshire, UK) and a differential c_Iosed-
been encapsulated with a stainless steel housing, accura®@th infrared gas analyser (LI-7500, LICOR Inc., Lincoln,
of £0.2°C, installed at nominal depths of 2 and 5cm. Soil E, U.SA) installed at 3.4in h(_aight. Further details about the
heat flux at the surface0), i.e. G, was calculated by us- €xPeriment can be found in Timmermans et al. (2009).

ing a negative; (i.e. —0.02m) in the analytical equation of
soil heat flux. Thermal diffusivity was calculated using the

Arctangent method (Verhoef et al., 1996), using soil temper- o ) ,
ature signals at both depths, and heat capacity was CaICulaté\geteorological input variables and fluxes were obtained over

from the soil moisture content at 5 cm depth, measured using?l Di? ug[;\llashfir lstagd péazné&d igslzngin t_?ﬁ Veluwe fohres_;t ri_d ge
a Thetaprobe (Delta-T Devices). n the Netherlands (52.85N, 05. ). The research site is

Wind speed was measured using an AN1 cup anemomet quipped with a 47 m high measurement tower maintained
(Delta-T Devices, UK), air temperature and humidity were y the Dutch National Institute for Public Health and the En-
measured with a,RHTé psychrometer, all at a height of 4 mvironment (RIVM). The tree density is 785 trees per hectare

above the surface. Surface temperature was estimated rgzth?;r?ri height 32?' _Le?_f ﬁrlea in(;jelx i.S apprﬁﬁima:]ely
inverting Stefan-Boltzmann's law, using outgoing longwave ° ™ M °. The topograpny is slightly undulating with height

radiation measured with the CNR1 radiometer and an emis?21ations of 10 to 20 m within distances of 1 km. Data were

sivity of 0.98. Although contact temperature measurements‘?o:lc?aed bgtweeEnAg)Lanél J_ilineb2006r:1 u;inlg dan Intensive
of the surface were available as well, these were not used iﬂe campaign ( ). Details about the field campaign

order to approximate remote sensing measurements as mudt® degcribed by S“, etal. (2009). ) o
as possible. The instrumentation at the forest site was similar to that

at the vineyard. Net radiation was measured at a height of
35m. Soil heat flux was measured with Hukseflux heat flux

3.2.3 The forest

Hydrol. Earth Syst. Sci., 13, 74958 2009 www.hydrol-earth-syst-sci.net/13/749/2009/



C. van der Tol et al.: Bayesian approach to estimate sensible and latent heat 755

plates at 0.5cm depth below the litter layer. Temperature, Sonning (maize) Barax (vineyaro) Speuiderbos (foresy
humidity and wind speed were measured at 35 m height. Be-
cause of an issue with the CNR1 radiometer (the temperature !
of the instrument was not correctly measured), the outgo- .
ing longwave radiation could not be used to estimate surface 2 .,
temperature. Instead, contact temperatures were measure & =
with Negative Temperature Coefficient (NTC) sensors, 9 of - *
which were attached to needles and branches and 8 place j: )
on the soil. The average temperature of the 9 NTC’s con- & |
nected to the vegetation was used as an estimate of surfacs o

temperature. Because of the dense vegetation, the contri £
bution of soil temperature was neglected. Contact temper- ¢,
ature measurements were only available between 15 and 2:”; 400

200

June 2006. Meteorological measurements were carried ou'#  °
and data stored at 1 min intervals. Half-hourly averages were o e 52 a8 20 6 i a0 e a2 o

) . Time of day (hrs) Time of day (hrs) Time of day (hrs)
used in this study.

Sensible and latent heat flux were measured with a CSAT3:|g 1. Measured and modelled values @f {7,), aerodynamic
sonic anemometer (Campbell Scientific, USA) and an operconductance,, surface conductanqg, sensible heat flu¥, and
path infrared gas analyser (LI-7500, LICOR Inc., Lincoln, latent heat flux. E, versus time. The data represent example days
NE, USA) installed at 47 m height. The data were processedor a fully-grown maize field in Sonning (UK) on 13 September
with the software package ECpadittp://www.met.wau.nl/ 2002, a vineyard in Barrax (Spain) on 15 July 2004, and a forest

cording to Van Dijk et al. (2004). line represents thé&-approach, the dashed line the conductance-

approach, the bold solid line the Bayesian approach, and the symbol
“X” represents a field measurement.

4 Results

Figure 1 shows plots of a number of key variables versudhe forest and the maize site. These patterns emerge even

time, measured and calculated with the three above menthough a priori values fog; are constant and equal for all
tioned methods, for one example day with clear sky con-three sites. The patterns agree with conceptual understand-

ditions, for each of the three field sites. The plotted vari-iNg: semi-empirical models often predict a decreasing
ables are the difference between surface and air temperatuf@used by stomatal closure during the afternoon. The lower
(T,—T,), the aerodynamic and surface conductargeand gs for the vineyard can be explained b)_/ the lower vegetat_|0n
g5, and the sensible and latent heat flé&andx E. cover (0.33) than that of the other two sites (closed canopies).
The concuctance-approach by definition follows the a pri- Figure 2 shows surface conductageeersus vapour pres-
ori values for bothg, and g,, without making use of the sure deficit for the four sites. This figure shows a negative
measurements df,. For the Barrax site, this approach re- correlation betweeg, and vapour pressure deficit similar to
sults in much lower modelled than measurgd-7,. The  thatdescribed in the literature (e.g. Leuning, 1995).
Ts-approach, by definition, follows the measurementsior During the night, due to the small vapour gradient
irrespective of the corresponding valuesgor The modelled  (¢5—44), 75 is relatively insensitive t@,. As a result, poste-
vales forg, are often outside the range of values found in therior g, returns to the a priori value during the night. This has
literature, even negative or infinitely high. The Bayesian ap-little consequences for the calculated fluxes, since these are
proach compromises between following measured values fosmall during the night.

T, and following the a priori values for the conductanggs Figure 1 also shows that the conductance-approach and
andg,. The advantage of the Bayesian approach is that, irthe Bayesian approach are unable to reproduce night time
this way, extreme values df, g, or g, are avoided. surface temperatures of the vineyard and the forest. Dur-

The Bayesian approach has a second advantage: the pasg the night, stable, stratified air conditions are formed, in
terior values of, andg, reveal actual information about the which the aerodynamic conductance strongly reduces (Mass-
surface which is neither present in the a priori values, norman and Lee, 2002). We do not find this strong reduction of
in the model. Posterior aerodynamic conductapgaloes g, in the posterior values. The reason is that the chosen stan-
not deviate much from a priori, but surface conductagice dard deviation foi91 (oy1) is too low to include night time
shows a clear diurnal pattern. The highest valueg,cdire  stable conditions. Increasing the standard deviatiofy oh
found in the late morning for the maize and the forest. Inorder to account for stability is possible, but this would mean
the afternoong; decreases until a minimum at 19:00. Dur- that the assumption of a Gaussian distributiorp fis no
ing daytime hoursg, at the vineyard is lower thag, at longer valid.
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Fig. 3. For the maize field (Sonning), for all half-hourly data in Fig. 5. Similar to Fig. 3, but for the forest (Speulderbos).
the measurement period, modelled versus measured sensible heat

flux H (upper graphs) and latent heat flu (lower graphs), for
the conductance-approach (left), theapproach (middle) and the

: . Figures 3 to 5 show the results for the whole measure-
Bayesian approach (right).

ment period as scatter plots of modelled versus measured
variables, for the three sites. For all three sites, the Bayesian

Concerning the fluxed! and AE, the following is ob- 55516ach results in the lowest root mean square error for the
served. The conductance-approach performs well during theyes. The Bayesian approach reduces both the bias and the

night and in the morning, but underestimatésand overes- ¢ atter compared to the other two approaches.

timatesA E during the afternoon. The reason is, that the a Both theT,-approach and the Bayesian approach overes-
priori values forg, are constant, and that no stomatal ClosuretimateAE of the vineyard. This may be caused by an eddy

is included in the .conductance—approach. 'ﬂlgneapprqach covariance flux measurement error rather than a model error.
performs well during the afternoon, but poorly during the rq \inevard was relatively small and surrounded by bare
mght and in the_mornmg. The values of the fluxes caIcuIated|and, stubble fields and irrigated crops, which contaminated
with the Bayesian approach always vary between that of 8¢ oqqy covariance signal (Timmermans et al., 2009). The

priori and theT-approach, and closely follow the Superior pioh measured. £ values may be attributed to an adjacent
approach: the conductance-approach in the morning, and theio ateq maize field. A different problem with the measure-

Ty-approach in the afternoon. Consequently, the Bayesianens is apparent in the forest, where measiedas 10%
approach closely follows the measurements. higher than the sum off, AE andG. Because the model
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forces energy balance closure (Eq. 1), it is possibleXtiat ~ were partly financed by the EU 6FP Project, SRON EO-071, and
is overestimated, whil&f is not underestimated (Fig. 5). the ITC International Institute for Geo-Information Science and
It is difficult to reproduce measurdd and)E when these  Earth Observation. The Sonning field campaign was funded by
measurements are not used for calibration. Obviously, alfhe Natural Environment Research Council (NERC, UK) and a

of the three approaches would perform significantly better if ©ASE award from the Environment Agency (UK). We thank Dr
the measured fluxes were used for calibration. However ir{Sruce Main for his technical assistance in the field. The authors
" “thank Jan Elbers, Wim Timmermans, Remco Dost, and Li Jia for

practice, measured fluxes are rarely available. Without Me8g1dwork and data processing and coordination during the SPARC

sured fluxes for calibration, both the CondUCtance'approacgnd EAGLE campaigns, and Wout Verhoef for fruitful discussion.

and theT;-approach may perform poorly (see, for example, The authors also thank the two anonymous reviewers for their
the conductance-approach in the vineyard (Fig. 3) orfthe  yseful comments.

approach at the forest site, Fig. 5). The Bayesian always per-
forms better than the other two approaches (a lower RMSE)Edited by: J. Wen
Moreover, unrealistic parameter values are avoided.
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