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Abstract. Sensible and latent heat fluxes are often calcu-
lated from bulk transfer equations combined with the energy
balance. For spatial estimates of these fluxes, a combination
of remotely sensed and standard meteorological data from
weather stations is used. The success of this approach de-
pends on the accuracy of the input data and on the accuracy
of two variables in particular: aerodynamic and surface con-
ductance. This paper presents a Bayesian approach to im-
prove estimates of sensible and latent heat fluxes by using
a priori estimates of aerodynamic and surface conductance
alongside remote measurements of surface temperature. The
method is validated for time series of half-hourly measure-
ments in a fully grown maize field, a vineyard and a forest. It
is shown that the Bayesian approach yields more accurate es-
timates of sensible and latent heat flux than traditional meth-
ods.

1 Introduction

Sensible and latent heat (i.e. evapotranspiration) fluxes be-
tween the land surface and the atmosphere are important
components of the land surface energy balance. Different
techniques exist to estimate them, generally based on mi-
crometeorological methods, including the eddy-covariance,
Bowen ratio technique and bulk transfer equations, for ex-
ample. Alternatively, estimates of evapotranspiration can be
obtained from the soil water balance (see e.g. Verhoef and
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Campbell, 2005, for an overview of both types of methods),
from which sensible heat flux could be derived, if values of
net radiation and soil heat flux were available.

Field scale measurements are used to study the local wa-
ter and energy balance and to gain process understanding,
but they are often not representative of large areas. Remote
sensing measurements provide a spatial coverage, but not all
variables needed to estimate sensible and latent heat can be
measured by remote sensing.

It is common practice to combine remote sensing and field
data to estimate sensible heat,H , and latent heat flux,λE,
spatially (e.g. Su, 2002; Kustas et al., 2007; Anderson et al.,
2008). Remote sensing products used as input include bright-
ness temperature and emissivity (Bastiaanssen et al., 1998),
reflected shortwave radiation and NDVI, which are used for
the derivation of vegetation structure and aerodynamic re-
sistance (Su, 2002). Weather station variables include wind
speed, air temperature and humidity. Latent heat flux is ei-
ther solved as a residual term in the energy balance, with
H obtained from a bulk transfer equation or directly calcu-
lated using the bulk transfer equation for latent heat flux. The
problem with the latter approach, however, is that estimates
of specific humidity at the land surface are hard to obtain.

There are various sources of uncertainty associated with
these flux estimates based on remote sensing and field data:
the representativeness of the weather station data, the at-
mospheric correction of satellite data, the derivation of re-
mote sensing products, the relationship between remote sens-
ing products and surface characteristics (such as roughness
length, which affects aerodynamic conductance), the model
itself, and the interpolation in time between satellite over-
passes.
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Table 1. Parameters and variables in the energy balance and bulk
transfer equations (Eqs. 1 to 3).

Description Symbols Units

Energy balance terms Rn, G, H , λE W m−2

Conductances ga , gs m s−1

Air and surface temperature Ta , Ts K

Vapour concentration in the air,
and in soil and leaf pores qa , qs kg m−3

Quantification of the uncertainty is an essential part of sur-
face energy balance modelling. One of the techniques to
handle uncertainty of data is data assimilation (Troch et al.,
2003). Data assimilation makes it possible to quantify un-
certainty, and to find the best solution of a model given vari-
ous sources of input data with associated errors. Time series
used for surface energy balance modelling are often incom-
plete, and data are collected at different spatial scales. In
such cases, data assimilation is a useful technique. It has
been used to improve the predictions of hydrological mod-
els (Schuurmans et al., 2003), to retrieve spatial and tempo-
ral trends in root water extraction by vegetation from remote
observations of surface temperature and ancillary data (Crow
and Wood, 2003), and to retrieve (simulated) soil moisture by
model inversion (Reichle et al., 2002).

This paper presents a data assimilation approach to esti-
mate sensible and latent heat flux over vegetated land surface.
The data used to test the approach include remotely measured
surface temperature in conjunction with ground-based mete-
orological measurements. In principle, the meteorological
data are sufficient to calculate sensible and latent heat flux.
This makes it possible to calculate the energy fluxes even in
the absence of surface temperature measurements, for exam-
ple between satellite overpasses or during cloudy conditions.
By adding remote measurements of surface temperature (by
means of data assimilation), the estimates of the fluxes are
improved, because information is added to the model. This
approach has already been suggested by Franks et al. (1999).
A simple form of data assimilation is used in this paper:
the Bayesian theorem described in statistical handbooks (e.g.
Carlin and Louis, 1996).

In Sect. 2.1 we first present the energy balance model, bulk
transfer equations, and discuss classic approaches to estimate
evapotranspiraton (Sect. 2.2). Next, the Bayesian theorem is
explained in detail (Sect. 2.3). Furthermore in Sect. 3 it is de-
scribed how the data are used to test the Bayesian approach,
and the field experiments are described. We finish with the
results and discussion in Sects. 4 and 5, respectively.

2 Theory

2.1 Energy balance

The standard energy balance equation is used, consisting of
four components: net radiation,Rn, soil heat flux,G, sen-
sible heat flux,H and latent heat flux,λE (all in W m−2).
Energy involved in melting and freezing or in chemical re-
actions, energy stored in the canopy, and energy horizon-
tally transported by advection are ignored. Hence (Brutsaert,
2005):

Rn − G = H + λE (1)

Parameterλ is the latent heat of evaporation of water (J kg−1)

andE the evapotranspiration rate (kg m−2 s−1).
Sensible and latent heat flux are the fluxes of heat and wa-

ter vapour between the surface and the atmosphere carried
by turbulent air flow. They are calculated as the product of
a conductance and a driving force between the surface (sub-
script “s”) and the air at measurement height (subscript “a”),
often called “bulk-transfer equations”:

H = ρcpga (Ts − Ta) (2)

λE = λ
1

1/ga + 1/gs

(qs(Ts) − qa) (3)

whereρ is the mass density of air (kg m−3), cp the heat ca-
pacity of air (J kg−1 K−1), ga is the aerodynamic conduc-
tance (m s−1) for transport of heat and vapour from the sur-
face boundary layer into the atmosphere,gs (m s−1)is the
surface conductance for water vapour transport from stom-
atal cavities in leaves or soil pores, to the leaf or soil surface
boundary layer,Ts is surface temperature andTa is air tem-
perature (both in K),qs is the vapour concentration in stom-
ata or soil pores (kg m−3), andqa is the vapour concentration
in the air (kg m−3).

Equations (1) to (3) contain 13 parameters and variables.
Three of them can be considered constant or can accurately
be estimated (ρ, cp andλ). Out of the other 10 (Table 1), at
least 7 need to be measured or estimated in order to solve the
three equations. Weather station data are commonly used for
the driving variables, such asTa , qa or wind speed (required
for calculation ofra); insofar they are representative for the
area under study.

The surface conductance and the aerodynamic conduc-
tance are particularly difficult to estimate.

Surface conductance,gs , of individual leaves can be de-
rived from leaf gas exchange measurements, but scaling to
canopy level is not trivial (Baldocchi et al., 1991). Surface
conductance varies with the actual photosynthesis rate, soil
moisture content, air humidity, air temperature. At canopy
level, empirical and semi-empirical relationships between
surface conductance and environmental conditions are com-
monly used (Jarvis, 1976; Cowan, 1977; Ball et al., 1987;
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Leuning, 1995). These relationships require vegetation-
specific, a priori coefficients or local calibration against mea-
sured fluxes of water and carbon dioxide. However, for many
applications these models are too detailed, as parameters for
the vegetation under study are often not available.

The aerodynamic conductance,ga , depends on the mo-
mentum and scalar roughness length of the surface,z0M (m)
andz0H (m), respectively, wind speedu (m s−1), and stabil-
ity of the atmosphere, as combined in the logarithmic wind
profile (Tennekes, 1973; Garratt, 1992). The momentum
roughness length,z0M, is usually estimated from leaf area
index and vegetation height (e.g. Raupach, 1994; Verhoef et
al., 1997a), whereas the scalar roughness length,z0H, is of-
ten taken as a constant fraction ofz0M; this fraction varies
widely, largely depending on canopy density (Stewart et al.,
1994; Verhoef et al., 1997b). Optical remote sensing is often
used to estimate vegetation height and leaf area index (Su,
2002). However, estimates of aerodynamic resistance based
on optical remote sensing contain a large degree of uncer-
tainty.

Apart from the aerodynamic and surface conductance, the
difference between surface and air temperature (Ts−Ta) is
also difficult to estimate. Sensible heat flux is proportional
to this difference; a relatively small difference between two
measurements. WhenTs is taken from remote sensing and
Ta from weather station data, then errors in eitherTs or Ta

may cause significant errors in the estimates ofH .

2.2 Classic approaches to estimate evapotranspiration

The difficulty in estimatingga , gs and (Ts−Ta), in Eqs. (1)
to (3) has been overcome in a number of ways. This has
resulted in three techniques to calculate evapotranspiration
from the energy balance:

1. FAO-approach: evapotranspiration is calculated by
multiplying a “reference evapotranspiration” by an em-
pirical coefficient for a specific crop, extracted from a
table based on expert knowledge. The reference evapo-
transpiration is calculated for a crop with known values
for ga and gs , usually the typical short, well-watered
grass of a meteorological station. This method is dis-
seminated by the FAO (Allen et al., 1998, 2006), and is
mainly used to calculate irrigation requirements.

2. Ts-approach: evapotranspiration is calculated by solv-
ing Eqs. (1) to (3) withH , λE and gs as unknowns.
In that case, on top of the standard meteorological vari-
ables, surface temperature measurements and estimates
of aerodynamic conductancega are required. This tech-
nique is used in remote sensing, for example in the
model SEBS (Su, 2002). Surface temperature is re-
trieved from thermal remote sensing, and aerodynamic
resistance from optical remote sensing.

3. Conductance-approach: evapotranspiration is calcu-
lated by solving Eqs. (1) to (3) withH , λE and Ts

as unknowns. Aerodynamic conductance is estimated
from a measured wind profile or from a priori values for
a specific vegetation type, and surface conductancegs

is estimated with one of the combined photosynthesis-
conductance or empirical models discussed above. Val-
ues for the parameters of such models are found from
calibration of the model against measurements ofgs or
taken from the literature.

2.3 Bayesian approach

The Bayesian approach used in this paper, as an alternative
to the classic approaches described in Sect. 2.2, combines
the methods (2) and (3) discussed above. In the Bayesian ap-
proach, neither a real distinction between “knowns” and “un-
knowns” is made, nor a distinction between “variables” and
“parameters”. The distinction is rather between “a priori”
variables and parameters (values for parameters and vari-
ables that were measured, estimated, or taken from the lit-
erature), and “posterior” values (most likely values for pa-
rameters and variables, taking into account all a priori values
and their uncertainty, and using the model). A priori values
are indicated with a tilde (∼) placed above a symbol. Pos-
terior values are indicated with a hat (ˆ). The “real” values,
which are never known, do not have a superscript.

It is now assumed that besidesρ, cp andλ, alsoTa , qa , Rn

andG are accurately measured, such that their uncertainty
can be ignored. Forga , gs andTs , uncertain, a priori esti-
mates are used, and forqs , the saturated humidity atTs is
used. No a priori information about the fluxesH andλE

is used. Doing so results in three equations (Eqs. 1 to 3)
with two unknowns (H andλE), which implies that the en-
ergy balance is over-specified. Theoretically, Eq. (1) is not
no longer strictly necessary (we could estimate the fluxes
without using Eq. 1), but in doing so we abandon the phys-
ically realistic and useful constraint of energy balance clo-
sure. Similarly, we could calculate the fluxes without using
measuredTs (as in the conductance-approach), but in doing
so we ignore part of the data that we have available. Finally,
we could calculate the fluxes without using a priorigs (as in
the Ts-approach), but in doing so we ignore thatgs is lim-
ited to physically realistic bounds. The fact that the model
is over-specified is not a problem, since the values forga , gs

andTs are not fixed but uncertain. They will be adjusted,
resulting in posterior values.

In theTs-approach of Sect. 2.2, all uncertainty of the mea-
surements propagates into the unknowngs , which may lead
to unrealistic values forgs . Similarly, in the conductance-
approach of Sect. 2.2, all uncertainty of the measurements
propagates into the unknownTs , which may lead to unrealis-
tic values forTs . In the Bayesian approach, all three param-
etersga , gs andTs are constrained. In this way, unrealistic
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values for any of them are avoided. It is expected that this
also leads to more accurate estimates of the fluxesH and
λE.

The model (Eqs. 1 to 3) is re-written such thatTs is output
of the model, by eliminatingH andλE from Eqs. (1) to (3)
and writingTs as the dependent variable. In other words,Ts

is a function of all input variables and parameters. Hence:

x̃ = f (θ̃) + w (4)

wherex̃ represents the measured output (in this case mea-
suredTs), f the model equations,̃θ a vector of a priori values
of variables and parameters, andw background noise caused
by the uncertainty of the model and measurements. Note
that Eq. (4) could be expressed in terms of the parameters
of Eqs. (1) to (3) explicitly, but this would result in a rather
long expression. The vector notation is used if the problem
is solved for multiple time steps, multiple pixels, or for mul-
tiple measurements and parameters. This aspect is discussed
later in this paper.

Parameter values (ga andgs) have an a priori probability
density functionp(θ), and measurements ofTs a probabil-
ity density functionp (x̃

∣∣ θ). Note thatga andgs are vari-
ables. In this study we will calculate them for each time step
independently. For an individual time step,ga andgs can
be considered as model parameters. The probability den-
sity function of the parameter values is determined by the
accuracy of a priori estimates, whereas the probability den-
sity function of the measurements ofTs is determined by the
accuracy and representativeness of the measurements. The
implementation of these probability density functions for the
data used in this study is discussed in Sect. 3. The poste-
rior probability density of the parameters (i.e. the parameter
values, given the measurements ofTs), is calculated with the
classic Bayes’ theorem (Carlin and Louis, 1996):

p(θ | x̃) =
p (x̃

∣∣ θ) · p(θ)∫
p (x̃

∣∣ θ) · p(θ)dθ
(5)

The numerator in Eq. (5) is a multiplication of the two prob-
ability density functions, whereas the denominator is a nor-
malization term. A low probability of a value forTs (a Ts

that deviates significantly from the measured value), or a low
probability of a value for the parameters (a conductance that
deviates significantly from the a priori value), results in a
low probability of the posterior parameter values. The ex-
pected values of the parameters are given by the minimum
least square error estimate of the parameters. These expected
values can be calculated by integrating the probability den-
sity function:

θ = E(θ |x̃) =

∫
θ · p

(
θ | x̃

)
dθ (6)

The expected values are the posterior (or the optimum)
values for the parameters. The posterior values are the
weighted average (weighted over their probability) of all pos-
sible parameter values. The integration in Eq. (6) is avoided

by calculating only the peak of the probability density func-
tion:
_

θ = arg max
θ

p(θ
∣∣x̃ ) = arg min

θ

(7)(∣∣∣Cx
−1/2 (

f (θ) − x̃
)∣∣∣2 +

∣∣∣C−1/2
θ (θ − θ0)

∣∣∣2)
whereCx andCθ are the covariance matrices for the mea-

surements and the parameters, respectively. Parameters
_

θ are
the posterior parameter values forga andgs used later to cal-
culate sensible and latent heat flux.

The last part of Eq. (7) (between the brackets) is a cost
function or the quadratic error. The quadratic error is the sum
of two components: the quadratic error in the parameters (θ )
scaled with the uncertainty of the a priori estimates, and the
quadratic error in the measurements ofTs , scaled with the
uncertainty of the measurements ofTs . The optimum param-
eter values are located at the minimum total error. If both
p(x̃ |θ ) and p(θ) are Gaussian, then the solution is exact
(and Eqs. (6) and (7) will give equal results), otherwise it is
an approximation. In this study, Gaussian distributions for
both functions are assumed.

The key issues are to estimate a priori values ofθ , and
to estimate the two covariance matrices. These matrices de-
scribe the uncertainty of all input (measurements and the a
priori values), and determine the contribution of different in-
put variables to the posterior estimates. These issues are ad-
dressed in detail in Sect. 3.1.

3 Methodology

3.1 Model input

The Bayesian approach is applied using meteorological time
series for three land cover types: maize, a vineyard and a for-
est, measured during intensive field campaigns (Sect. 3.2).
Measured values of four variables are directly used as input
for the model:Rn, G, Ta , andqa . It is assumed that these
values were accurately measured and that the measurements
were representative of the land cover (Rn=R̃n, etc.). This
implies that for these four variables, a priori and posterior
values are equal to each other. In contrast, uncertainty is at-
tributed to the other variables,ga , gs andTs . Posterior values
for ga , gs andTs were calculated with the Bayesian approach
(Eq. 7). The posterior values were used to calculate sensible
and latent heat fluxes with Eqs. (1) to (3). Measured sensible
and latent heat fluxes were used for validation only.

It is necessary to estimate the a priori values forga andgs ,
as well as the uncertainty of a prioriga , gs andTs . Hence,
the following equations forga , gs andTs are introduced:

ga = θ1u =

(
θ̃1 + w1

)
u (8)

gs = θ2 = θ̃2 + w2

Ts = T̃s + w3
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Table 2. A priori values forθ1 andθ2, and standard deviations forθ1, θ2 andTs .

σTs θ1×103 σ θ1×103 θ2×103 σ θ2×103

(K) (−) (−) (mm s−1) (mm s−1)

Sonning (maize) 0.74 9.8 3.6 14.3 8.8
Barrax (vineyard) 2.47 5.7 3.6 14.3 8.8
Speulderbos (forest) 1.37 44.6 14.2 14.3 8.8

wherew indicates noise,θ1 is a dimensionless parameter
which includes the effects of surface roughness and stabil-
ity of the boundary layer,u is wind speed (m s−1), and pa-
rameterθ2 is surface conductance (m s−1). The expression
for ga is an additional model, that enables us to estimate
aerodynamic conductance a priori (ga is a function of wind
speed). The a priori estimate for parameterθ1 for neutral
conditions is calculated using the logarithmic wind profile
following Tennekes (1973) and Goudriaan (1977):

θ̃1 =
κ2

ln
(

z−d
z0M

)
ln

(
z−d
z0H

) (9)

whered=0.67h, z0M=0.13h, z0H=0.1z0M, h is the vegetation
height,z the measurement height of wind speed (all in m),
andκ (=0.4) is Von Ḱarmán’s constant. Equation (9) does not
include a correction term for non-neutral atmospheric condi-
tions. For the a priori estimate of parameterθ2, the FAO stan-
dard value for short, well watered grass ofgs=0.0143 m s−1

is used for all three study sites. Values forT̃s are computed
from Stefan-Boltzman equation, using measured outgoing
longwave radiation and an emissivity of 0.98. For the forest
site, no reliable measurements of outgoing longwave radia-
tion were available. For this site, surface temperature was
measured with small Negative Temperature Coefficient ther-
mistors (NTC) attached to needles (referred to as “contact
temperatures” in this paper).

The uncertainty of the a priori estimates and measure-
ments, which determine the matricesCx andCθ in Eq. (7),
are estimated as follows. It is assumed that the probability of
θ1, θ2 andTs have normal distributions with a standard de-
viation of one quarter of the difference between their upper
and lower limits found in the literature. The upper and lower
limit of θ1 for crops (in this case maize and vineyard) and
for forest are based on minimum and maximum values for
z0M reported in a review paper of Garratt (1993). For these
extreme values ofz0M, corresponding extreme crop heights
(h=z0M/0.13) and zero plane displacement height (d=2/3h)

are calculated. The upper and lower limits ofθ1 are calcu-
lated from the corresponding values ofz0M, z, h andd with
Eq. (9). An empirical equation forgs of Allen et al. (1998)
is used to estimate the upper and lower limits ofθ2:

gs =
LAI active

100
(10)

where LAIactive is the leaf area index (m2 leaf m−2surface)
that contributes to transpiration. For the upper and lower lim-
its of θ2 (i.e. gs), the values corresponding to a LAIactive of
3.5 and 0 are used, respectively. The upper and lower limits
of Ts are estimated by applying Stefan-Boltzmann equation
for two extreme values of emissivity (0.90 and 0.99 for the
vineyard and 0.95 and 0.99 for the fully grown maize). For
the forest site, the standard deviation of the readings of nine
thermistors is used as a proxy for the standard deviation of
Ts . Table 2 presents the a priori values and standard devia-
tionsσθ1, σθ2 andσT s derived in this way.

It is further assumed that the covariances (cov(θ1, θ2),
cov(θ1, Ts), cov(θ2, Ts)) are zero, and that the errors inθ1,
θ2 andTs of consecutive time steps of a time series are uncor-
related. The latter assumption may not be realistic: estimates
of roughness parameters and surface temperature measure-
ments may be biased and errors inθ1 andTs are therefore
most likely to be similar for consecutive time steps. How-
ever, it appears that reasonable results can be obtained even
when these effects are ignored. Assuming that all covari-
ances are zero makes it possible to solve Eq. (7) for every
time step individually. This is computationally more effi-
cient than solving Eq. (7) for the whole time series at once,
which requires manipulation of large matrices containing the
parameters of all (half-hourly) time steps.

The posterior parameters for an individual time step are
now calculated with Eq. (7), using:

θ =

(
θ1
θ2

)
and θ0 =

(
θ̃1

θ̃2

)
(11)

Cθ =

(
σ 2

θ1 0
0 σ 2

θ2

)
and Cx = σ 2

T s (12)

The posterior (optimum) parameter set,θ̂ , is calculated with
Eq. (7). The minimum of the square error (the term between
the brackets of Eq. 7) is found with the Nelder-Mead method.
These posterior values are used to calculate sensible and la-
tent heat flux with Eqs. (1) to (3). For comparison, sensi-
ble and latent heat fluxes are also calculated using the latter
two methods presented in Sect. 2.2. That is, Method 2: the
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Ts-approach, using Eqs. (1) to (3) withH , λE andgs as un-
knowns, and using the a priori expression for ga (ga=θ̃1u)

and measuredTs ; and Method 3: the conductance-approach,
using Eqs. (1) to (3) withH , λE andTs as unknowns, and
using a priori values forga andgs .

3.2 Experimental setup

The Bayesian approach is applied using micrometeorologi-
cal time series obtained for a maize crop (Sonning, UK), a
vineyard (Barrax, Spain) and a Spruce forest (Speulderbos,
The Netherlands). For the maize crop, 9 days, for the vine-
yard, 6 days and for the forest, 3.5 days worth of half-hourly
data are used.

3.2.1 The maize field

Meteorological input variables and fluxes were obtained over
a fully grown maize field (row spacing was 0.75 m, the
within-row spacing was about 0.12 m) located at the Crops
Research Unit at Sonning farm (a research facility owned
by the University of Reading, UK). It is located 4 km from
Reading in Sonning (UK), at 51.48◦ N, 0.90◦ W, elevation
35 m above sea level (see Houldcroft, 2004); the soil type is
loamy sand. Data from 7 to 16 September 2002 were used,
when the leaf area index was 3.4 m2 m−2 and the canopy
height 1.9 m.

Net radiation was measured using a CNR1 four-
component net radiometer (Kipp and Zonen, Delft, The
Netherlands) at a mounting height of 2.5 m above the ground.
Soil heat flux was calculated using a Fourier analysis on mea-
sured soil temperatures, combined with estimates of thermal
diffusivity and heat capacity, the so-called analytical or exact
method (see e.g. Verhoef, 2004). The soil temperatures were
acquired with type-NT 10 k� thermistors (RS, UK) that had
been encapsulated with a stainless steel housing, accuracy
of ±0.2◦C, installed at nominal depths of 2 and 5 cm. Soil
heat flux at the surface (z=0), i.e.G, was calculated by us-
ing a negativez (i.e. −0.02 m) in the analytical equation of
soil heat flux. Thermal diffusivity was calculated using the
Arctangent method (Verhoef et al., 1996), using soil temper-
ature signals at both depths, and heat capacity was calculated
from the soil moisture content at 5 cm depth, measured using
a Thetaprobe (Delta-T Devices).

Wind speed was measured using an AN1 cup anemometer
(Delta-T Devices, UK), air temperature and humidity were
measured with a RHT2 psychrometer, all at a height of 4 m
above the surface. Surface temperature was estimated by
inverting Stefan-Boltzmann’s law, using outgoing longwave
radiation measured with the CNR1 radiometer and an emis-
sivity of 0.98. Although contact temperature measurements
of the surface were available as well, these were not used in
order to approximate remote sensing measurements as much
as possible.

Sensible and latent heat fluxes were obtained using a com-
bination of a Solent R3 sonic anemometer (Gill Instruments
Ltd, Lymington, Hampshire, UK) and a differential closed-
path infrared gas analyser (LI-7500, LICOR Inc., Lincoln,
NE, USA), with appropriate correction procedures applied.

3.2.2 The vineyard

Meteorological input variables and fluxes were obtained over
a vineyard (row spacing was 3.35 m, the within-row spacing
was approximately 1.5 m, LAI was 0.52 m2 m−2, fractional
vegetation cover 0.33 and vegetation height about 2 m) lo-
cated at the Barrax agricultural test site in Spain (39.06◦ N,
02.10◦ W), where various crops were grown, some of them
irrigated. Data were collected between 14 and 21 July 2004
during an intensive field campaign (SPARC). The experiment
has been described in detail by Su et al. (2008).

Net radiation was measured using a CNR1 four-
component net radiometer at a mounting height of 4.8 m
above the ground. Soil heat flux was measured with 3 Hukse-
flux HFP01 heat flux plates (Campbell Scientific Inc., USA)
at 0.5 cm depth. Heat storage above the sensors was ne-
glected. Air temperature and relative humidity were mea-
sured with a HMP45 sensor (Vaisala, Finland) at 4.78 m
height, wind speed with a cup anemometer (Vector Instru-
ments, Ltd., United Kingdom) at 4.88 m height. Surface tem-
perature was estimated by inverting Stefan-Boltzmann’s law,
using outgoing longwave radiation measured with the CNR1
radiometer and an emissivity of 0.98. All data were collected
at 1 min intervals, and 10-min averages were stored, and half
hourly averages were used in this study.

Sensible and latent heat fluxes were obtained using a com-
bination of a Solent R3 sonic anemometer (Gill Instruments
Ltd, Lymington, Hampshire, UK) and a differential closed-
path infrared gas analyser (LI-7500, LICOR Inc., Lincoln,
NE, USA) installed at 3.4 m height. Further details about the
experiment can be found in Timmermans et al. (2009).

3.2.3 The forest

Meteorological input variables and fluxes were obtained over
a Douglas fir stand planted in 1962 in the Veluwe forest ridge
in the Netherlands (52.50◦ N, 05.69◦ E). The research site is
equipped with a 47 m high measurement tower maintained
by the Dutch National Institute for Public Health and the En-
vironment (RIVM). The tree density is 785 trees per hectare
and the tree height 32 m. Leaf area index is approximately
5 m2 m−2. The topography is slightly undulating with height
variations of 10 to 20 m within distances of 1 km. Data were
collected between 10 and 21 June 2006 during an intensive
field campaign (EAGLE). Details about the field campaign
are described by Su et al. (2009).

The instrumentation at the forest site was similar to that
at the vineyard. Net radiation was measured at a height of
35 m. Soil heat flux was measured with Hukseflux heat flux
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plates at 0.5 cm depth below the litter layer. Temperature,
humidity and wind speed were measured at 35 m height. Be-
cause of an issue with the CNR1 radiometer (the temperature
of the instrument was not correctly measured), the outgo-
ing longwave radiation could not be used to estimate surface
temperature. Instead, contact temperatures were measured
with Negative Temperature Coefficient (NTC) sensors, 9 of
which were attached to needles and branches and 8 placed
on the soil. The average temperature of the 9 NTC’s con-
nected to the vegetation was used as an estimate of surface
temperature. Because of the dense vegetation, the contri-
bution of soil temperature was neglected. Contact temper-
ature measurements were only available between 15 and 21
June 2006. Meteorological measurements were carried out
and data stored at 1 min intervals. Half-hourly averages were
used in this study.

Sensible and latent heat flux were measured with a CSAT3
sonic anemometer (Campbell Scientific, USA) and an open
path infrared gas analyser (LI-7500, LICOR Inc., Lincoln,
NE, USA) installed at 47 m height. The data were processed
with the software package ECpack (http://www.met.wau.nl/
projects/jep/index.html) and corrections were carried out ac-
cording to Van Dijk et al. (2004).

4 Results

Figure 1 shows plots of a number of key variables versus
time, measured and calculated with the three above men-
tioned methods, for one example day with clear sky con-
ditions, for each of the three field sites. The plotted vari-
ables are the difference between surface and air temperature
(Ts−Ta), the aerodynamic and surface conductance,ga and
gs , and the sensible and latent heat flux,H andλE.

The concuctance-approach by definition follows the a pri-
ori values for bothga and gs , without making use of the
measurements ofTs . For the Barrax site, this approach re-
sults in much lower modelled than measuredTs−Ta . The
Ts-approach, by definition, follows the measurements forTs ,
irrespective of the corresponding values forgs . The modelled
vales forgs are often outside the range of values found in the
literature, even negative or infinitely high. The Bayesian ap-
proach compromises between following measured values for
Ts and following the a priori values for the conductancesga

andgs . The advantage of the Bayesian approach is that, in
this way, extreme values ofTs , ga or gs are avoided.

The Bayesian approach has a second advantage: the pos-
terior values ofga andgs reveal actual information about the
surface which is neither present in the a priori values, nor
in the model. Posterior aerodynamic conductancega does
not deviate much from a priori, but surface conductancegs

shows a clear diurnal pattern. The highest values ofgs are
found in the late morning for the maize and the forest. In
the afternoon,gs decreases until a minimum at 19:00. Dur-
ing daytime hours,gs at the vineyard is lower thangs at
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Fig. 1. Measured and modelled values of (Ts−Ta), aerodynamic
conductancega , surface conductancegs , sensible heat fluxH , and
latent heat fluxλE, versus time. The data represent example days
for a fully-grown maize field in Sonning (UK) on 13 September
2002, a vineyard in Barrax (Spain) on 15 July 2004, and a forest
in Speulderbos (The Netherlands) on 16 June 2006. The thin solid
line represents theTs -approach, the dashed line the conductance-
approach, the bold solid line the Bayesian approach, and the symbol
“x” represents a field measurement.

the forest and the maize site. These patterns emerge even
though a priori values forgs are constant and equal for all
three sites. The patterns agree with conceptual understand-
ing: semi-empirical models often predict a decreasinggs

caused by stomatal closure during the afternoon. The lower
gs for the vineyard can be explained by the lower vegetation
cover (0.33) than that of the other two sites (closed canopies).

Figure 2 shows surface conductancegs versus vapour pres-
sure deficit for the four sites. This figure shows a negative
correlation betweengs and vapour pressure deficit similar to
that described in the literature (e.g. Leuning, 1995).

During the night, due to the small vapour gradient
(qs−qa), Ts is relatively insensitive togs . As a result, poste-
rior gs returns to the a priori value during the night. This has
little consequences for the calculated fluxes, since these are
small during the night.

Figure 1 also shows that the conductance-approach and
the Bayesian approach are unable to reproduce night time
surface temperatures of the vineyard and the forest. Dur-
ing the night, stable, stratified air conditions are formed, in
which the aerodynamic conductance strongly reduces (Mass-
man and Lee, 2002). We do not find this strong reduction of
ga in the posterior values. The reason is that the chosen stan-
dard deviation forθ1 (σθ1) is too low to include night time
stable conditions. Increasing the standard deviation ofθ1 in
order to account for stability is possible, but this would mean
that the assumption of a Gaussian distribution ofθ1 is no
longer valid.

www.hydrol-earth-syst-sci.net/13/749/2009/ Hydrol. Earth Syst. Sci., 13, 749–758, 2009

http://www.met.wau.nl/projects/jep/index.html
http://www.met.wau.nl/projects/jep/index.html


756 C. van der Tol et al.: Bayesian approach to estimate sensible and latent heat

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

vpd (hPa)

g s (
m

m
 s

−
1 )

+ Sonning

x Barrax

o Speulderbos

+ Sonning

x Barrax

o Speulderbos

+ Sonning (maize)

x Barrax (vineyard)

o Speulderbos (forest)
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Fig. 3. For the maize field (Sonning), for all half-hourly data in
the measurement period, modelled versus measured sensible heat
flux H (upper graphs) and latent heat fluxλE (lower graphs), for
the conductance-approach (left), theTs -approach (middle) and the
Bayesian approach (right).

Concerning the fluxesH and λE, the following is ob-
served. The conductance-approach performs well during the
night and in the morning, but underestimatesH and overes-
timatesλE during the afternoon. The reason is, that the a
priori values forgs are constant, and that no stomatal closure
is included in the conductance-approach. TheTs-approach
performs well during the afternoon, but poorly during the
night and in the morning. The values of the fluxes calculated
with the Bayesian approach always vary between that of a
priori and theTs-approach, and closely follow the superior
approach: the conductance-approach in the morning, and the
Ts-approach in the afternoon. Consequently, the Bayesian
approach closely follows the measurements.
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Fig. 4. Similar to Fig. 3, but for the vineyard (Barrax).
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Fig. 5. Similar to Fig. 3, but for the forest (Speulderbos).

Figures 3 to 5 show the results for the whole measure-
ment period as scatter plots of modelled versus measured
variables, for the three sites. For all three sites, the Bayesian
approach results in the lowest root mean square error for the
fluxes. The Bayesian approach reduces both the bias and the
scatter compared to the other two approaches.

Both theTs-approach and the Bayesian approach overes-
timateλE of the vineyard. This may be caused by an eddy
covariance flux measurement error rather than a model error.
The vineyard was relatively small and surrounded by bare
land, stubble fields and irrigated crops, which contaminated
the eddy covariance signal (Timmermans et al., 2009). The
high measuredλE values may be attributed to an adjacent
irrigated maize field. A different problem with the measure-
ments is apparent in the forest, where measuredRn was 10%
higher than the sum ofH , λE andG. Because the model
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forces energy balance closure (Eq. 1), it is possible thatλE

is overestimated, whileH is not underestimated (Fig. 5).
It is difficult to reproduce measuredH andλE when these

measurements are not used for calibration. Obviously, all
of the three approaches would perform significantly better if
the measured fluxes were used for calibration. However, in
practice, measured fluxes are rarely available. Without mea-
sured fluxes for calibration, both the conductance-approach
and theTs-approach may perform poorly (see, for example,
the conductance-approach in the vineyard (Fig. 3) or theTs

approach at the forest site, Fig. 5). The Bayesian always per-
forms better than the other two approaches (a lower RMSE).
Moreover, unrealistic parameter values are avoided.

5 Discussion and conclusion

In data assimilation, it is critical to quantify the uncertainty
associated to parameters and measurements. This is not al-
ways possible for lack of data. A starting point is to identify
sources of error. In this particular study, the uncertainties of
aerodynamic and surface conductance are relevant.

Dimensionless “aerodynamic” parameterθ1 can vary in
space and time for two different reasons: variations in sur-
face roughness and variations in atmospheric stability. The
first is the dominant cause of variations in space (at a specific
time of a satellite overpass), whereas the second is the domi-
nant cause of variations in time (at a specific field site). Sim-
ilarly, surface conductance,θ2, can vary in space and time
for two different reasons: variations in plant species, vegeta-
tion density and soil moisture content on the one hand (spa-
tial variations) and variations in the diurnal cycle of stomatal
regulation on the other hand (temporal variations).

In this study, no distinction is made between sources of
error. High standard deviations are used for the two con-
ductances in order to cover different errors, although the ef-
fect of stability on aerodynamic conductance during the night
is not incorporated (see Sect. 4). One may argue that some
of the errors are of random nature, whereas others are more
constant in time. An approach to handle such differences in
the nature of errors is to distinguish between bias and ran-
dom noise. This approach has been tested for the data of this
study as well, leading to results similar to those presented in
this paper.

The simple Bayesian approach led to improved estimates
of sensible and latent heat flux of maize, vineyard and for-
est compared to more classic approaches which use either
measured surface temperature or a priori parameter values.
Posterior estimates reveal the diurnal pattern of surface con-
ductance during the day (stomatal regulation), without using
measured fluxes as input.
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