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Abstract. There are two approaches available for mapping
water retention parameters over the study area using a spatial
interpolation method. (1) Retention models can be first fit-
ted to retention curves available at sampling locations prior
to interpolating model parameters over the study area (the FI
approach). (2) Retention data points can first be interpolated
over the study area before retention model parameters are
fitted (the IF approach). The current study compares the per-
formance of these two approaches in representing the spatial
distribution of water retention curves. Standard geostatisti-
cal interpolation methods, i.e., ordinary kriging and indicator
kriging, were used. The data used in this study were obtained
from the Las Cruces trench site database, which contains
water retention data for 448 soil samples. Three standard
water retention models, i.e., Brooks and Corey (BC), van
Genuchten (VG), and Kosugi (KSG), were considered. For
each model, standard validation procedures, i.e., leave-one-
out cross-validation and split-sample methods were used to
estimate the uncertainty of the parameters at each sampling
location, allowing for the computation of prediction errors
(mean absolute error and mean error). The results show that
the IF approach significantly lowered mean absolute errors
for the VG model, while also reducing them moderately for
the KSG and BC models. In addition, the IF approach re-
sulted in less bias than the FI approach, except when the BC
model was used in the split-sample approach. Overall, IF
outperforms FI for all three retention models in describing
the spatial distribution of retention parameters.

Correspondence to:H. Saito
(hiros@cc.tuat.ac.jp)

1 Introduction

The predictions of soil moisture distributions in the vadose
zone or estimates of contaminant arrival time to groundwater
rely heavily on robust estimates of the spatial distribution of
soil hydraulic parameters. Spatial interpolation techniques
have been used to estimate the unknown values of these pa-
rameters at unsampled locations from available observations.
It has been widely accepted that soil hydraulic parameters
are spatially correlated to a greater or lesser extent. Because
of this, techniques that take such information into account
must be used for spatial interpolation. Among many avail-
able techniques, including the inverse distance method or the
linear interpolation method, only a least-square interpolation
technique called kriging accounts for spatial correlations be-
tween variables. Kriging is now commonly used for mapping
soil physical, chemical, and/or hydraulic properties. Kriging
estimates not only the values of an attribute at unsampled lo-
cations, but also their uncertainties in terms of an error vari-
ance known as kriging variance, when the underlying geosta-
tistical model is correct (Goovaerts, 1997).

Unlike water flow in saturated systems, predictions of
variably-saturated water flow in soils depend not only on
knowledge of saturated hydraulic conductivities, but also on
knowledge of the water retention and unsaturated hydraulic
conductivity characteristics that are usually described by var-
ious functional forms. Although experimental data for both
retention and hydraulic conductivity functions are required
for efficient parameterization, in many cases, only retention
data is available. Retention curves are relatively easy to col-
lect when in comparison with unsaturated hydraulic conduc-
tivities, which are generally difficult and time-consuming to
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Fig. 1. A difference between the fit-first interpolate-later (FI) and
interpolate-first fit-later (IF) approaches used in this study.

measure. Typically, various pore size distribution models
(e.g., Mualem, 1976; Burdine, 1953) are then used to pre-
dict unsaturated hydraulic conductivity functions from the
retention data. In this study, only water retention curve data
will be analyzed, since we have assumed that only this infor-
mation is available, while information about unsaturated hy-
draulic conductivities is lacking. The water retention param-
eters for a particular soil are usually obtained by first mea-
suring a series of pressure head and water content data pairs
from core samples in a laboratory and then by fitting the con-
structed discrete curve using a simple analytical model, such
as the well-known van Genuchten model (van Genuchten,
1980). Water flow in soils is then usually obtained using
a numerical model that simulates variably-saturated water
flow, and uses analytical models of soil hydraulic proper-
ties. Predictions of water flow are thus greatly improved
when estimated parameters for a given soil hydraulic model
adequately represent the highly nonlinear relationships be-
tween water contents, pressure heads and hydraulic con-
ductivities. Although accurate estimation of water retention
curves (WRC) or their model parameters is rarely a goal, it
is one of the most crucial steps in modeling water flow and
solute transport in the vadose zone.

It is well known that soil water retention parameters are
not only soil-type dependent, but also spatial-location depen-
dent. There are two possible approaches to map water reten-
tion parameters over the study area using a spatial interpola-
tion method. (1) Retention models are first fitted to experi-
mental retention curves available at sampling locations, and
then the obtained model parameters are interpolated over the
study area. (2) Retention data can first be interpolated over
the study area, and then the retention model is fitted to this
interpolated data. The former approach is called the FI (f it-
first andinterpolate-later) approach, and the latter is referred
to as the IF (interpolate-first andf it-later) approach (Fig. 1).
When non-linear processes are involved in either step, results
differ depending upon the approach chosen (Heuvelink and
Pebesma, 1999; Leterme et al., 2007).

The FI approach treats the estimated water retention pa-
rameters as meaningful physical parameters. However, since
some water retention parameters are derived in a purely em-

pirical way and do not have a physical meaning, the evalua-
tion of these parameters has to be done with great care, or the
results may be misleading and meaningless (Romano, 2004).
However, there are still a number of studies that rely solely
on water retention parameters, because one can dramatically
reduce the number of parameters that need to be analyzed.
For example, Zhu and Mohanty (2002) averaged the widely
used van Genuchten “parameters” to simulate large-scale in-
filtration and evaporation processes. In Oliveira et al. (2006),
stochastic fields of “parameters” were generated using condi-
tioning parameters to simulate variably-saturated water flow
in soils. In some studies, the number of parameters is even re-
duced to one or two by using the scaling method (e.g., Shouse
et al., 1995; Oliveira et al., 2006). The question then arises
whether or not we can consider these derived (i.e., averaged
or randomly generated) parameters to be equivalent to ex-
perimentally measured soil physical properties, such as volu-
metric water contents. In other words, to map water retention
parameters, which approach, FI or IF, should we take?

Although there are a great number of studies that have ana-
lyzed and/or modeled the spatial distribution of soil hydraulic
properties, including water retention model parameters (e.g.,
Wendroth et al., 2006; Unlu et al., 1990), we do not know of
any studies that would rigorously investigate this question.
Tomasella et al. (2003) compared two approaches to map re-
tention parameters, in a manner similar to our study. In one
approach, called the point-based approach, water retention
data (the relationship between water contents and water po-
tentials) were predicted using pedotransfer functions (PTF)
prior to fitting retention models, while in the other approach,
called the parametric approach, retention model parameters
were directly predicted using PTFs. By using a compre-
hensive soil water retention database of Brazilian soils, they
found that the point-based approach outperformed the para-
metric approach. Sinowski et al. (1997) also compared two
approaches to map water retention parameters using PTFs. In
one approach, soil properties that were used as input param-
eters of PTFs were interpolated before applying PTFs. In the
other approach, water retention parameters obtained through
PTFs were interpolated directly. Their comparison showed
that the former approach outperformed the latter approach.
However, the use of PTFs in predicting retention data intro-
duces additional uncertainty (Schaap et al., 2001) that may
be larger than uncertainties due to the use of fitting and inter-
polation techniques.

This study therefore aims to quantify how well the esti-
mated soil hydraulic model parameters reproduce the actual
water retention curve at a given location using one of two ap-
proaches discussed above (i.e., IF and FI approaches). The
two approaches are evaluated in terms of prediction errors
using standard validation techniques.
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Fig. 2. A location map of measured saturated water content data
(h=0 cm) at the Las Cruces Trench site. The vertical axis represents
the depth from the surface.

2 Materials and methods

2.1 Water retention data and models

The soil hydraulic data set (i.e., water retention curves) used
in this study is available through the Las Cruces Trench Site
database (Wierenga et al., 1989). The database was gen-
erated as part of a comprehensive field study conducted in
southern New Mexico, near Las Cruces, for validating and
testing numerical models of water flow and solute transport
in the unsaturated zone (Wierenga et al., 1991). A 24.6-m
long by 6.0-m deep trench wall was excavated, and a to-
tal of 450 undisturbed samples, 7.6 cm internal diameter and
7.6 cm long, were taken from nine layers, 50 samples were
taken from each layer, for every 0.5 m. Soil samples (undis-
turbed and disturbed) were then analyzed in the laboratory
for soil properties, such as bulk density, saturated hydraulic
conductivity, and soil water retention curve. Soil water re-
tention curves were determined at 448 sampling locations,ui

(i=1, 2. . . 448) (Fig. 2). At each location, the water contents,
θ

(
ui; hj

)
, were measured at eleven pressure heads,hj (j=1,

2. . . 11) of 0,−10, −20, −40, −80, −120, −200, −300,
−1000, −5000, and−15 000 cm H2O. While undisturbed
soil cores were used for the wet range (−300 cm to 0 cm),
disturbed soil samples were used with a standard pressure
plate apparatus for the dry range (−15 000 cm to−1000 cm).
More details regarding the experimental procedures can be
found in Wierenga et al. (1989). The soil characterization
and infiltration experiments at this site have been analyzed in
a number of studies, including recent articles by Rockhold et
al. (1996), Oliveira et al. (2006), and Twarakavi et al. (2008).

Figure 2 shows the location map of measured saturated
water contents when the pressure head is equal to 0 cm orh1
at the site. The saturated water content data are, as expected,
spatially heterogeneous with mean, maximum, and minimum
values of 0.322, 0.529, and 0.218, respectively. Although
not shown here, water contents measured for other pressure
heads are also spatially heterogeneous. Figure 3 shows sam-
ple histograms of water contents for eleven pressure heads.
The mean of each distribution decreases as the pressure head
decreases, as expected. Not all histograms show highly
skewed or asymmetric distributions, indicating that no data
transformation is required. Figure 4 depicts the experimental

Table 1. Water retention,Se, models used in this study.

Models Expression Parameters

Brooks and Corey (BC) Se (h) =

{
1 h≤hb(

h
hb

)−λ
h>hb

hb [cm]

λ[–]

van Genuchten (VG) Se(h)= 1
[1+|αh|

n]m n[–]

α [cm−1]
m (=1−1/n) [–]

Kosugi (KSG) Se(h) =
1
2erfc

{
ln(h/hl)√

2σ

}
hl [cm]

σ [–]

water retention curves obtained for seven different depths (z)
at x=10.75 m. There are some discontinuities between the
water contents observed for pressure heads of−300 cm, and
those observed for−1000 cm, where water contents increase
as pressure heads decrease. This is likely due to the different
measurement procedures used; undisturbed soil cores were
used for water content measurements from−10 to−300 cm
pressure heads, while disturbed soil cores were used for pres-
sure heads ranging from−1000 to−15 000 cm (Hills et al.,
1993). Such inconsistency should have an impact on the re-
sults of model fitting, as all data are equally weighted. Inves-
tigating the impacts of this inconsistency on final parameter
estimates by FI and IF approaches requires rigorous analysis
of how errors are propagated between different approaches.
Not surprisingly, all seven curves are quite different. Al-
though this variation in the vertical direction is expected to
be much more pronounced than in the horizontal direction,
variations in the horizontal direction also exist and cannot
be ignored, as can been seen from Fig. 2. This confirms the
importance of analyzing the spatial distribution of water re-
tention curves at this site.

Among many available retention curve models, the Brooks
and Corey (BC) model (Brooks and Corey, 1964), the van
Genuchten (VG) model (van Genuchten, 1980), and the Ko-
sugi (KSG) model based on the lognormal pore size distribu-
tion (Kosugi, 1996) are the most widely used analytical ex-
pressions for representing the dependence of the water con-
tent on the capillary pressure head for unimodal pore sys-
tems. Detailed discussions of the commonly used soil hy-
draulic models can be found in Leij et al. (1997). Analyti-
cal expressions of the three closed-form models used in this
study are listed in Table 1. The parameterSe is an effective
saturation defined as follows:

Se(h) =
θ − θr

θs − θr

(1)

whereθ s andθ r are the saturated and residual water contents
(m3 m−3), respectively. As can be seen from Table 1, in addi-
tion toθ s andθ r , all three models require two other shape (or
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Fig. 3. Sample histograms of water contents for eleven pressure heads (sequentially,h=0,−10,−20,−40,−80,−120,−200,−300,−1000,
−5000, and−15 000 cm).

empirical) parameters, leading to a total of four parameters
representing the retention curve models.

Application of these water retention functions requires re-
liable estimates of the parameters for a soil of interest. While
θ s can be obtained independently, the other retention pa-
rameters usually have to be estimated indirectly, by fitting
the analytical function to the experimental water retention
data using an optimization approach, such as a non-linear
least-squares minimization approach (e.g., implemented in
the RETC code). In most optimization procedures, perfor-
mance is improved if the initial estimates are close to the
“true” solution. In other words, if initial estimates are too
far from the “true” solutions, the solution may not converge
to the global minimum, but to the local minimum during the
optimization process. Seki (2007) recently developed a pro-
gram code that uses a full-automatic procedure to estimate
soil water retention model parameters. The program auto-
matically selects initial estimates based on observations, so
that the user does not have to make his/her selections. De-
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Fig. 5. Sample histograms of water retention curve model parameters for BC (left), VG (middle), and KSG (right) models. The saturated
and residual water contents are in the top two rows, two shape parameters are in the bottom two rows.

tails of this approach will not be discussed in this paper, but
it should be noted that the full-automatic approach worked
very well in most cases when applied to a number of water
retention data from the UNSODA database (Leij et al., 1996).
Such an approach is especially attractive when a great num-
ber of retention curves need to be fitted simultaneously. All
three models were fitted to 448 retention data points using
the full-automatic procedure to obtain water retention param-
eters at all sampling locations. Figure 5 shows histograms of
retention parameters, includingθ s andθ r . Similar to the wa-
ter content histograms shown in Fig. 3,θ s andθ r histograms
show no significant skewness and are more-or-less symmet-
ric, except forθ r of the BC and VG models, where about
12 and 2.5% of data have a value of 0, respectively. As for
the shape parameters (e.g.,αv andnv), most are positively
skewed. The parameterhb even shows a bimodal distribu-
tion.

2.2 Geostatistical interpolation theory

To estimate an unknown value of a given soil property at un-
sampled locations, a geostatistical least-square interpolation
technique, known as kriging, was used in this study. Con-
sider the problem of estimating the value of a soil attribute
z (e.g., water content or soil hydraulic parameters) at an un-
sampled locationu, whereu is a vector of spatial coordinates.
The available information consists of values of the variable
z at N locationsui , i=1, 2. . .N . All univariate kriging esti-
mates are variants of the general regression estimatez∗ (u)
defined as:

z∗ (u) − m (u) =

n(u)∑
α=1

λα (u) [z (uα) − m (uα)] (2)

where λα(u) is the weight assigned to datumz(uα) and
m(u) is the trend component of the spatially varying at-
tribute (Goovaerts, 1997). In practice, only those observa-
tions closest tou are retained, that is then(u) data within a
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given neighborhood or windowW (u) centered onu, while
the influence of those farther away are discarded (Saito and
Goovaerts, 2000). One of the most common kriging estima-
tors is ordinary kriging (or OK), which estimates an unknown
value as a linear combination of neighboring observations:

z∗ (u) =

n(u)∑
α=1

λOK
α (u) z (uα) (3)

In OK, unlike the constant value used in simple kriging,
the mean (or trend) at each estimation location (i.e., local
mean,m(u)) is implicitly re-estimated. OK weightsλOK

α are
determined so as to minimize the error or estimation vari-
anceσ 2(u)= Var{Z∗(u) − Z(u)} under the constraint of an
unbiased estimate (Goovaerts, 1997). These weights are ob-
tained by solving the system of linear equations known as the
ordinary kriging system:

n(u)∑
β=1

λOK
β (u) γ (uα − uβ) + µOK(u) = γ (uα − u) α = 1, ..., n(u)

n(u)∑
β=1

λOK
β (u) = 1

(4)

whereµOK(u) is the Lagrange parameter,γ (uα-uβ ) is the
semivariogram between observations atuα and uβ , and
γ (uα-u) is the semivariogram between the datum location
uα and the location being estimated,u. The semivariogram
γ (h) models the variability between observations separated
by a vectorh. The only information required by the system
(Eq. 4) are the semivariogram values,γ , for different sepa-
ration distances. These values are readily derived from the
semivariogram model fitted to experimental values (i.e., lin-
ear model of regionalization):

γ̂ (u) =
1

2N(h)

n(u)∑
α=1

[z (uα) − z (uα + h)]2 (5)

whereN (h) is the number of data pairs for a given separa-
tion vectorh. The choice of the model is limited to functions
that ensure a positive definite covariance function matrix of
the left-hand-side of the kriging system (Eq. 4). Spatial cor-
relations often vary with direction, and such a case requires
one to compute semivariograms in different orientations to
fit anisotropic (direction-dependent) semivariogram models.
In this study, differences in horizontal and vertical variations
observed in retention data were taken into account by con-
sidering anisotropic semivariograms. Details of model fit-
ting can be found in Deutsch and Journel (1998), Goovaerts
(1997), and Kitanidis (1997). In addition to an estimate of
the unknown z value, OK provides an error variance that is
computed as

σ 2
OK (u) =

n(u)∑
α=1

λα (u) γ (uα − u) − µ (u) (6)

When histograms show positively skewed distributions
and/or are not unimodal, OK might not be the best ap-
proach to estimate values at unsampled locations (Saito and

Goovaerts, 2000). In such case, indicator kriging (IK), in
which all data are transformed into either 0 or 1 depending
upon the exceedence of a given threshold (Journel, 1983),
can be used. Indicator kriging allows one to estimate the
probabilities of exceeding a series of thresholds at unsam-
pled locations, leading to the construction of conditional cu-
mulative distribution functions (ccdf) of the variable of inter-
est. Once the ccdf is obtained, an optimal estimate and the
uncertainty associated with the estimated value can be quan-
tified by taking the mean (E-type estimate) and variance of
the ccdf, respectively.

The conditional probabilities atu for a series of thresh-
oldszk discretizing a range of variation ofz are estimated as
a linear combination ofn(u) surrounding indicator transfor-
mation of datai(uα; zk):

[F (u; zk| (n))]∗ = [Pr{Z (u) ≤ zk| (n)}]∗ =

n(u)∑
α=1

λα (u) i (uα; zk) (7)

where

i (uα; zk) =

{
1 if z (uα) ≤ zk

0 otherwise
k = 1, ..., K (8)

Kriging weightsλα(u; zk) are then computed from the in-
dicator kriging system, similar to the OK system (Eq. 4),
where all experimental semivariogramsγ (u) are replaced by
indicator semivariogramsγ I (u). A major drawback of IK is
that in order to construct ccdfs at any locationu, K indicator
semivariograms, usually 9 to 16 (Deutsch and Journel, 1998),
have to be computed, andK indicator kriging systems have
to be solved. Consequently, IK is much more computation-
ally demanding than OK. It is common to use nine deciles of
the sample distribution as thresholds. More details on indi-
cator kriging can be found in Goovaerts (1999).

2.3 Prediction performances: FI vs. IF

To compare the FI and IF approaches in terms of reproduc-
tion of WRC ati locationsui , Se(h; ui), two standard valida-
tion techniques were used: a leave-one-out cross-validation,
in which one observation at a time is temporarily removed
from the dataset and re-estimated from remaining data, and
a split-sample method, where the dataset is divided into two
non-overlapping observation and validation sets (Fig. 6). The
number of observation locations in each set were 199 (Np)
and 249 (Nv), respectively. In the split-sample method, the
observation set was used to estimate values at all locations in
the validation set so that estimation errors could be calculated
explicitly. Figure 6 depicts the location map of both obser-
vation and validation sets used in the split-sample method.
For complete full validation, different split scenarios had to
be tried. In this study, only the scenario shown in Fig. 6 was
used. This scenario was considered because it is the most
likely and realistic scenario where samples were taken layer-
by-layer, but not randomly. In addition, the main purpose of
using the split-sample method was to investigate the impact
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Fig. 6. Locations used for sample (closed squares) and validation
(open squares) sets in the split-sample procedure.

of the sample size. Note that, in this study, the semivari-
ogram models used in kriging were those fitted to semivari-
ograms for all 448 observations. Details about the FI and IF
approaches used in the study are given below.

2.3.1 FI approach

1. Parameters for three water retention functions (BC, VG,
and KSG) were first obtained for all 448 water retention
curvesSe(h; ui) using the automatic fitting procedure
(Seki, 2007).

2. For each soil hydraulic parameter, unknown values
were estimated at all 448 locations for the leave-
one-out cross-validation, and at 249 locations for the
split-sample method. Following two interpolation ap-
proaches were compared:

(a) Ordinary kriging (OK) was used for all
parameters.

(b) While OK was used for θ s and θ r ,
indicator kriging (IK) was used for the
shape parameters.

The former is referred to as the FIOK approach, while
the latter will called the FIIK approach for the remainder
of the paper.

3. For each model and approach, a discrepancy between
observed water retention curvesSe(h; ui) and those cal-
culated from estimated parametersSe(h; ui) was ob-
tained at each location by computing differences in wa-
ter contents at the eleven corresponding pressure heads.
Mean absolute error (MAE) and mean error (bias ME)
are used in this study in the following way:

MAE =
1

N

N∑
i=i

[
1

11

11∑
j=1

∣∣∣θ̂ (
ui; hj

)
− θ

(
ui; hj

)∣∣∣] (9)

ME =
1

N

N∑
i=i

[
1

11

11∑
j=1

(
θ̂

(
ui; hj

)
− θ

(
ui; hj

))]
(10)

whereN is 448 for the leave-one-out cross-validation
and 249 for the split-sample method,̂θ

(
ui; hj

)
is

the water content at the locationui calculated from

estimated parameters for the pressure headhj , and
θ

(
ui; hj

)
is the observed water content at the location

ui for the pressure headhj .

2.3.2 IF approach

1. Unknown water content values corresponding to eleven
pressure heads were estimated using OK at 448 loca-
tions for the leave-one-out cross-validation and 249 lo-
cations for the split-sample method.

2. Using the automatic fitting procedure (Seki, 2007), pa-
rameters for three WRC models (i.e., BC, VG, and
KSG) were obtained at each estimated location. To ac-
count for estimation errors when fitting retention mod-
els, eachh-θ pair was weighted based on the reciprocal
of the kriging variance after all kriging variances were
standardized by the total sills of the semivariograms.
More weights are therefore given to those data points
for which the error variances were small.

3. For each model, the discrepancy between observed wa-
ter retention curves and those calculated from parame-
ters obtained in the previous step was obtained by com-
puting MAE and ME, similar to what was done for the
FI approach.

4. The impact of the number of data pairs used to con-
struct WRC when estimating parameters was investi-
gated by repeating 1 through 3, using only the follow-
ing six pressure heads: 0,−20,−80,−200,−1000, and
−15 000 cm. This approach is referred to as IF6 in the
remainder of the paper, while the approach considering
all eleven pressure heads is referred to as IF11. The
number of data pairs used in the IF approach is arbi-
trary. The optimum number depends on many factors,
including soil type. In this study, instead of finding the
optimum number of data pairs for this particular data
set, we have investigated how prediction errors change
when the number of data pairs is reduced to about half
of the original number.

3 Results and discussions

The results are divided into two sections. The first section
summarizes experimental semivariograms computed from
water retention data and model parameters. In the second
section, different approaches (IF and FI) are compared in
terms of describing the spatial distribution of soil hydraulic
parameters.

3.1 Semivariograms

Figure 7 shows the experimental semivariograms of WRC
model parameters with fitted geometric anisotropy models.
Semivariograms of water contents corresponding to eleven
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Fig. 7. Experimental semivariograms of water retention curve model parameters with fitted geometric anisotropy models for horizontal
(circles and the solid line) and vertical (triangles and the dashed line) directions. Semivariograms were calculated from model parameters at
448 sampling locations. Subscriptsb, v, andl correspond to BC (the left column), VG (the middle column), and KSG (the right column)
models, respectively.

pressure heads,h1 − h11, with fitted geometric anisotropy
models are depicted in Fig. 8. All these semivariograms
were calculated using 448 observations. Except forαv, there
is clear anisotropy in all semivariograms with major spa-
tial continuity observed in the horizontal direction. While
horizontal semivariograms, are generally well structured, in
most cases vertical semivariograms fluctuate a lot and are not
smooth. There are not a sufficient number of pairs in the ver-
tical direction to obtain well structured semivariograms. Ex-
istence of soil horizons would also not result in spatial cor-
relation of soil variables in the vertical direction at the scale

of observations. All experimental horizontal semivariograms
were fitted using either exponential or spherical models, and
they all display a clear nugget effect. Ranges and sill values
vary depending on the variable. For example, as expected,
semivariograms for the saturated (θ s) and residual (θ r ) volu-
metric water contents are similar for all three models (Fig. 7,
top two rows). However, other parameters have semivari-
ograms of different shapes, which was expected as the spatial
distribution of these parameters varies. Geometric anisotropy
models, in which the same nugget and sill values are used for
different directions, were fitted for vertical semivariograms.
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Fig. 8. Experimental semivariograms of water retention data (water contents for a particular pressure head) with fitted geometric anisotropy
models for horizontal (circles and the solid line) and vertical (triangles and the dashed line) directions. Semivariograms were calculated from
retention data obtained at 448 sampling locations.

Nugget effects may be underestimated using this approach,
since the number of data pairs in the vertical direction is not
sufficient. Using a geometric anisotropy model instead of a
zonal anisotropy model, which can be used to account for
difference in spatial correlation between vertical and hori-
zontal directions, is justified and needed since kriging sys-
tems requires the same nugget effect in different directions
(Gringarten and Deutsch, 2001). In practice, unless there are
conclusive physical explanations for phenomena, it is com-
mon to use geometric anisotropy models.

As for the semivariograms of water contents at particu-
lar pressure heads (Fig. 8), the ranges of water contents near
saturation in the horizontal direction (i.e., a major range) are
generally larger than those for drier conditions. This sug-
gests that the spatial continuity of larger pores is more pro-
found than that of smaller pores. When pressure heads are
smaller than−40 cm, the shape of the semivariograms be-
comes almost identical. From the Laplace equation for cap-
illary rise, the radius of a pore corresponding to a pressure
head of−40 cm can be calculated to be about 0.035 mm (as-
suming that the contact angle is equal to 0◦). Therefore, it can
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Fig. 10. The impact of the choice of the approach on mean abso-
lute errors (MAE) of retention curve predictions for(a) the leave-
one-out cross-validation and(b) the split-sample procedures. Three
WRC models (BC, VG, and KSG) were compared.

be expected that spatial distributions of pores smaller than
0.035 mm are similar in this soil.

3.2 Prediction performance

Using both the FI and IF approaches, water retention curve
model parameters can be obtained at any location. Figure 9
shows differences between the FI and IF approaches in esti-
mating a water retention curve using the KSG model at a se-
lected location, (x, z)=(7.25, 2.16), where observed retention
data (squares) are available. Due to the exactitude property
of kriging, data at this location were not included in krig-
ing (i.e., the leave-one-out cross-validation). While the blue
line is obtained with parameters predicted by the FIOK ap-
proach, the red line is calculated with parameters obtained
by the IF11 approach. In the FIOK approach, model param-
eters were estimated directly from surrounding conditioning
parameters using OK. In the IF11 approach, the water reten-
tion curve was first constructed by interpolating water con-
tent values corresponding to eleven pressure heads,h1 −h11.
Constructed water retention data are shown in Fig. 9 using
red symbols. The KSG model (the solid red line in Fig. 9)
was then fitted to the constructed retention data using the
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Fig. 11. Observed water retention data (square) with the VG model
fitted at (x, y)=(12.75, 3.21).

aforementioned non-linear least squared method to obtain
model parameters. While the model obtained using the FIOK
approach could not reproduce theS-shape trend observed in
retention data well, the IF11 approach could capture the trend
of WRC reasonably well. This confirms that, depending on
the chosen approach, resulting WRC models can be signif-
icantly different. In the following section, both approaches
were compared in a more comprehensive manner using the
leave-one-out cross-validation and the split-sample methods.

Figure 10 depicts the mean absolute prediction errors
(MAE) calculated for all four approaches, i.e., FIOK, FIIK ,
IF11, and IF6, using the leave-one-out cross-validation and
the split-sample procedures for the three WRC models. In
general, both IF approaches resulted in smaller MAE than
the FI approaches, regardless of which WRC model was
used. Decreases in prediction errors were much larger when
the VG model was used, mainly because the prediction per-
formance of the VG model for the FI approach was much
worse than that for the other two models. At one location,
(x, z)=(12.75, 3.21), the fitted parameterαv (=28.16 cm−1)
was three orders of magnitude greater than in the rest of the
domain, where the mean of fittedαv is 0.12 cm−1 and the
median is 0.04 cm−1 (see the histogram ofαv in Fig. 5).
Although the fit was acceptable at this particular location
(Fig. 11), the largeαv value (an outlier) affected the esti-
mation ofαv values at surrounding locations, leading to a
relatively poor performance of the FIOK approach for the VG
model. Indicator kriging was expected to reduce the impact
of outliers in the FI approach, as all data are transformed first
to binary data, either 0 or 1, depending upon exceedence of
the threshold value. However, whenE-type estimates were
computed, the observed extreme value was taken as a possi-
ble maximum value. Because of that, the indicator approach
could not improve the prediction. The problem associated
with the outlier can be avoided if the IF approach is used. For
the other two WRC models, BC and KSG, average predic-
tion errors decreased by about 10–15% when the IF approach
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Fig. 12. The impact of the choice of the approach on mean errors
(ME) of retention curve predictions for(a) the leave-one-out cross-
validation and(b) the split-sample procedure. Three WRC models
(BC, VG, and KSG) were compared.

was used in comparison with the prediction errors for the FI
approach, where there were no obvious outliers in initially
evaluated parameters.

For the FIOK approach, mean absolute errors vary depend-
ing on the WRC model used. On the other hand, predic-
tion errors do not depend upon the model used for the IF
approach. This is not a surprising result since three models
were fitted to the same reconstructed WRCs in the IF ap-
proach. Therefore, the prediction errors calculated for the
IF approach are mainly the summary of model fitting perfor-
mance, but do not directly reflect the accuracy of interpola-
tion as those for the FI approach do.

With regard to MAE, there is no distinct trend in whether
the IF11 approach is better than the IF6 approach is bet-
ter. While IF6 outperforms IF11 when the VG model was
used for both the leave-one-out cross validation and the split-
sample method, IF11 had slightly smaller mean absolute er-
rors or almost the same errors when compared to IF6 for the
BC and KSG models. This indicates that reducing the num-
ber of θ -h pairs by about half does not necessarily worsen
prediction performances, at least for this particular data set,
as long as the IF approach is adopted. This result is quite im-
portant, since the main reason for preferring the FI approach
over the IF approach in most studies is that the number of
variables one needs to analyze can be significantly reduced.
The number of parameters required in the WRC models used
in this study is four, which is significantly smaller than the
original elevenθ -h pairs used to construct water retention
curves. To use all pairs in the IF approach, one needs to per-
form kriging eleven times, which requires significantly more
effort than performing it only four times in the FI approach.
However, it was just shown here that when the number of
data pairs is reduced to six, the IF approach is still better
than the FI approach. With a little extra work, we can im-
prove the description of the spatial distribution of water re-
tention curves using the IF approach. This may not be true
when soils with multimodal pore systems (e.g., aggregated
soils) are considered. Such soils may require models that
can distinguish between different pore systems, such as the
Durner model (Durner, 1994). To obtain parameters for such
models, we need to have moreθ -h pairs than required by tra-
ditional unimodal models. An appropriate number of pairs
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Fig. 13. Locations where IF11 outperformed FI in terms of mean
absolute errors (i.e., smaller MAE) are depicted by open squares,
while closed squares indicate locations where FI outperformed IF
for (a) BC, (b) VG, and(c) KSG models.

thus varies depending upon the soil type and can be assessed
using the IF approach. This is another advantage of the IF
approach over the FI approach.

As for the mean error, there is no obvious trend of over-
or under-estimation, except for the VG model where mean
errors are always positive (meaning that predicted water con-
tents are, on average, greater than observed values). When
comparing different approaches, ME is much smaller (i.e.,
has less bias) for the IF approaches than for the FI ap-
proaches, except when the BC model was considered in the
split-sample method. Like that for MAE, this result con-
firms the superiority of the IF approach over the FI approach.
While for the BC and KSG models, IF11 resulted in less bias
than IF6, for the VG model, IF6 had much smaller biases
than IF11 for both the leave-one-out cross-validation and the
split-sample method. This indicates again that reducing the
number ofh-θ pairs from eleven to six in the IF approach
does not necessarily worsen the overall performance.

Figure 13 shows spatial distributions of locations where
IF11 outperformed FIOK (open squares), and vice versa
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Table 2. Percentages (%) of locations where mean absolute errors
(MAE) for the IF approach were smaller than those for the FI ap-
proach in the leave-one-out cross-validation.

Model BC VG KSG

IF11 IF6 IF11 IF6 IF11 IF6
MAE 71.7 70.1 81.0 82.1 62.1 59.4

(closed squares), in terms of MAE in the leave-one-out cross-
validation. There is no specific trend observed, such as a
cluster of open or closed squares. This means that the pre-
diction of water retention curves was spatially unbiased. Pro-
portions of open squares for both IF11 and IF6 (spatial dis-
tributions are not shown) are summarized in Table 2 for all
cases. For all models, the IF approaches outperformed the
FI approaches at more than 60% of the sampling locations.
For the VG model especially, the IF approaches resulted in
smaller prediction errors at more than 80% of the sampling
locations. Although the difference between IF11 and IF6 is
small, IF11 was slightly better than IF6 for BC and KSG,
while IF6 was better than IF11 for VG. Overall, these per-
centages confirm the superiority of the IF approach over the
FI approach in predicting WRCs at any given location.

4 Conclusions

This study compared the performance of two interpolation
approaches, a commonly used fit-first interpolate-later (FI)
approach and a proposed interpolate-first fit-later (IF) ap-
proach, to estimate the spatial distribution of water reten-
tion curve parameters. In the former approach, the reten-
tion curve model parameters are first evaluated at sampled
locations from observed retention data, and then these pa-
rameters are interpolated directly for locations without mea-
surements. In the latter approach, retention data are first in-
terpolated for locations without measurements, and then re-
tention curve model parameters are fitted to these estimated
retention curves. Three retention models, Brooks and Corey,
van Genuchten, and Kosugi models were considered. As for
spatial interpolation, a least-squared interpolation technique,
known as kriging, was used. For variables that do not show
asymmetric distributions, ordinary kriging was used, while
for those with asymmetric distributions, indicator kriging
was used as well. Standard validation techniques (the leave-
one-out cross-validation and the split-sample methods) were
used to compare the two approaches in terms of reproducing
retention curves.

Both validation results showed that, regardless of the re-
tention model selected, the IF approach had lower predic-
tion errors (mean absolute errors) when compared to the FI
approach. Improvements were especially substantial for the

VG model because an extreme value in initially estimated
parameters led to the poor estimate of that parameter at sur-
rounding locations in the FI approach. There is always a risk
of including parameter outliers in the estimation process as
long as the FI approach is used. In the IF approach, such
a problem rarely occurs. In addition, the IF approach per-
formed better than the FI approach even when the number
of data pairs used to construct retention curves was reduced
from eleven to six. This makes the IF approach comparable
to the FI approach in terms of workload, because the number
of variables used in the FI approach is four, while that in the
IF approach would be only six. The FI approach has been
preferred mainly because one can reduce the computational
time and workload. However, as this study shows, with a
little bit of extra work, one can achieve a much better estima-
tion of the spatial distribution of water retention curves by
using the IF approach. In the future, the IF approach should
be applied to estimate unsaturated hydraulic conductivity as
well.

Overall, this study shows the superiority of the IF
approach over the FI approach in evaluating the spatial
distribution of water retention curves, which is the initial but
critical step in modeling variably-saturated water flow and
solute transport in field-scale heterogeneous soils. This study
shows that interpolating retention model parameters, suchn

andα in the VG model, should be done with extreme care.
In future studies, the actual impact of the FI approach on
water flow and solute transport still needs to be investigated.

Edited by: W. Durner
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