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Abstract. There are two approaches available for mappingl Introduction

water retention parameters over the study area using a spatial

interpolation method. (1) Retention models can be first fit- The predictions of soil moisture distributions in the vadose
ted to retention curves available at sampling locations priorzgne or estimates of contaminant arrival time to groundwater
to interpolating model parameters over the study area (the Fle|y heavily on robust estimates of the spatial distribution of
approach). (2) Retention data points can first be interpolatedj| hydraulic parameters. Spatial interpolation techniques
over the study area before retention model parameters argaye been used to estimate the unknown values of these pa-
fitted (the IF approach). The current study compares the peframeters at unsampled locations from available observations.
formance of these two approaches in representing the spatigd has been widely accepted that soil hydraulic parameters
distribution of water retention curves. Standard geostatisti-; ¢ spatially correlated to a greater or lesser extent. Because
cal interpolation methods, i.e., ordinary kriging and indicator ¢ this, techniques that take such information into account
kriging, were used. The data used in this study were obtaineg, st pe used for spatial interpolation. Among many avail-
from the Las Cruces trench site database, which containgpje techniques, including the inverse distance method or the
water retention data for 448 soil samples. Three standarinear interpolation method, only a least-square interpolation
water retention models, i.e., Brooks and Corey (BC), vantechnique called kriging accounts for spatial correlations be-
Genuchten (VG), and Kosugi (KSG), were considered. Foryyeen variables. Kriging is now commonly used for mapping
each model, standard validation procedures, i.e., leave-onesoj| physical, chemical, and/or hydraulic properties. Kriging
out cross-validation and split-sample methods were used t@stimates not only the values of an attribute at unsampled lo-
estimate the uncertainty of the parameters at each samplingations, but also their uncertainties in terms of an error vari-

location, allowing for the computation of prediction errors gnce known as kriging variance, when the underlying geosta-
(mean absolute error and mean error). The results show thajstical model is correct (Goovaerts, 1997).

the IF approach significantly lowered mean absolute errors
for the VG model, while also reducing them moderately for
the KSG and BC models. In addition, the IF approach re-
sulted in less bias than the FI approach, except when the B§
model was used in the split-sample approach. Overall, |
outperforms FI for all three retention models in describing
the spatial distribution of retention parameters.

Unlike water flow in saturated systems, predictions of
variably-saturated water flow in soils depend not only on
nowledge of saturated hydraulic conductivities, but also on
nowledge of the water retention and unsaturated hydraulic
conductivity characteristics that are usually described by var-
ious functional forms. Although experimental data for both
retention and hydraulic conductivity functions are required
for efficient parameterization, in many cases, only retention
data is available. Retention curves are relatively easy to col-
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Fit-first Interpolate-later (F1) - Interpolate-first Fit-later (IF) pil’ical way and do not have a phySical meaning, the evalua-
Water Retention Curve data . .

| tion of these parameters has to be done with great care, or the
it models Intempolate water contents results may be misleading and meaningless (Romano, 2004).

l l However, there are still a number of studies that rely solely
. on water retention parameters, because one can dramatically

Interpolate parameters Fit models

reduce the number of parameters that need to be analyzed.

For example, Zhu and Mohanty (2002) averaged the widely
used van Genuchten “parameters” to simulate large-scale in-

Flow and transport simulation filtration and evaporation processes. In Oliveira et al. (2006),

stochastic fields of “parameters” were generated using condi-
Fig. 1. A difference between the fit-first interpolate-later (FI) and tioning parameters to simulate variably-saturated water flow
interpolate-first fit-later (IF) approaches used in this study. in soils. In some studies, the number of parameters is even re-

duced to one or two by using the scaling method (e.g., Shouse

et al., 1995; Oliveira et al., 2006). The question then arises
measure. Typically, various pore size distribution modelswhether or not we can consider these derived (i.e., averaged
(e.g., Mualem, 1976; Burdine, 1953) are then used to preor randomly generated) parameters to be equivalent to ex-
dict unsaturated hydraulic conductivity functions from the perimentally measured soil physical properties, such as volu-
retention data. In this study, only water retention curve datametric water contents. In other words, to map water retention
will be analyzed, since we have assumed that only this inforparameters, which approach, Fl or IF, should we take?
mation is available, while information about unsaturated hy-  Although there are a great number of studies that have ana-
draulic conductivities is lacking. The water retention param-lyzed and/or modeled the spatial distribution of soil hydraulic
eters for a particular soil are usually obtained by first mea-properties, including water retention model parameters (e.g.,
suring a series of pressure head and water content data paivsendroth et al., 2006; Unlu et al., 1990), we do not know of
from core samples in a laboratory and then by fitting the con-any studies that would rigorously investigate this question.
structed discrete curve using a simple analytical model, suctTomasella et al. (2003) compared two approaches to map re-
as the well-known van Genuchten model (van Genuchtentention parameters, in a manner similar to our study. In one
1980). Water flow in soils is then usually obtained using approach, called the point-based approach, water retention
a numerical model that simulates variably-saturated watedata (the relationship between water contents and water po-
flow, and uses analytical models of soil hydraulic proper-tentials) were predicted using pedotransfer functions (PTF)
ties. Predictions of water flow are thus greatly improved prior to fitting retention models, while in the other approach,
when estimated parameters for a given soil hydraulic modetalled the parametric approach, retention model parameters
adequately represent the highly nonlinear relationships bewere directly predicted using PTFs. By using a compre-
tween water contents, pressure heads and hydraulic corkensive soil water retention database of Brazilian soils, they
ductivities. Although accurate estimation of water retentionfound that the point-based approach outperformed the para-
curves (WRC) or their model parameters is rarely a goal, itmetric approach. Sinowski et al. (1997) also compared two
is one of the most crucial steps in modeling water flow andapproaches to map water retention parameters using PTFs. In
solute transport in the vadose zone. one approach, soil properties that were used as input param-

It is well known that soil water retention parameters are eters of PTFs were interpolated before applying PTFs. In the
not only soil-type dependent, but also spatial-location depenether approach, water retention parameters obtained through
dent. There are two possible approaches to map water retef®TFs were interpolated directly. Their comparison showed
tion parameters over the study area using a spatial interpolathat the former approach outperformed the latter approach.
tion method. (1) Retention models are first fitted to experi-However, the use of PTFs in predicting retention data intro-
mental retention curves available at sampling locations, andluces additional uncertainty (Schaap et al., 2001) that may
then the obtained model parameters are interpolated over thige larger than uncertainties due to the use of fitting and inter-
study area. (2) Retention data can first be interpolated ovepolation techniques.
the study area, and then the retention model is fitted to this This study therefore aims to quantify how well the esti-
interpolated data. The former approach is called thefftt ( mated soil hydraulic model parameters reproduce the actual
first andinterpolate-later) approach, and the latter is referredwater retention curve at a given location using one of two ap-
to as the IF {nterpolate-first ang it-later) approach (Fig. 1). proaches discussed above (i.e., IF and Fl approaches). The
When non-linear processes are involved in either step, resultsvo approaches are evaluated in terms of prediction errors
differ depending upon the approach chosen (Heuvelink andising standard validation techniques.
Pebesma, 1999; Leterme et al., 2007).
The FI approach treats the estimated water retention pa-

rameters as meaningful physical parameters. However, since
some water retention parameters are derived in a purely em-
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Fig. 2. A location map of measured saturated water content data van Genuchten (VG) se(h):W -]
. . . o
(h=0cm) at the Las Cruces Trench site. The vertical axis represents a [em™Y]
the depth from the surface. m (=1-1/n) [-]
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2 Materials and methods o[-

2.1 Water retention data and models

] ] ] ] water retention curves obtained for seven different depths (
The soil hydraulic data set (i.e., water retention curves) used;; ,.=10.75m. There are some discontinuities between the

in this study is available through the Las Cruces Trench Sit§ater contents observed for pressure heads3fio cm, and
database (Wierenga et al., 1989). The database was gefhpse observed for 1000 cm, where water contents increase
erated as part of a comprehensive field study conducted iRg pressure heads decrease. This is likely due to the different
southern New Mexico, near Las Cruces, for validating andmeasyrement procedures used; undisturbed soil cores were
testing numerical models of water flow and solute transport ,caq for water content measurements fref0 to —300 cm

in the unsaturated zone (Wierenga et al., 1991). A 24.6-Myressyre heads, while disturbed soil cores were used for pres-
long by 6.0-m deep trench wall was excavated, and a t0xre heads ranging from1000 to—15000 cm (Hills et al.,

tal of 450 undisturbed samples,_7.6 cm internal diameter anq993)_ Such inconsistency should have an impact on the re-
7.6cm long, were taken from nine layers, 50 samples werejts of model fitting, as all data are equally weighted. Inves-
taken from each layer, for every 0.5m. Soil samples (undis+jgating the impacts of this inconsistency on final parameter
turbed and disturbed) were then analyzed in the laboratorygimates by FI and IF approaches requires rigorous analysis
for soil properties, such as bulk density, saturated hydraulicys how errors are propagated between different approaches.
conductivity, and soil water retention curve. Soil water re- yot surprisingly, all seven curves are quite different. Al-
tention curves were determined at 448 sampling locatians,  though this variation in the vertical direction is expected to
(i=1, 2...448) (Fig. 2). At each location, the water contents,pe mych more pronounced than in the horizontal direction,
0 (ui; h;), were measured at eleven pressure head§=1,  yariations in the horizontal direction also exist and cannot
2...11) of 0,-10, —20, —40, —80, _1203 _200’_ —300, be ignored, as can been seen from Fig. 2. This confirms the
—1000, —5000, and—15000cm HO. While undisturbed  jmportance of analyzing the spatial distribution of water re-
soil cores were used for the wet range300cm to 0CM),  tantion curves at this site.

disturbed soil samples were used with a standard pressure Among many available retention curve models, the Brooks
plate apparatus for the dry rangeX(s 000 cm t0-1000cm).  5n4 corey (BC) model (Brooks and Corey, 1964), the van
More Qetailg regarding the experimental 'procedures. can b%enuchten (VG) model (van Genuchten, 1980), and the Ko-
foun_d n Wlerenga gt al. (1989)_' 'I_'he soil CharaCte”Zat'or_]sugi (KSG) model based on the lognormal pore size distribu-
and infiltration experiments at this site have been analyzed i, | (Kosugi, 1996) are the most widely used analytical ex-
a number of studies, including recent articles by Rockhold etpressions for representing the dependence of the water con-
al. (1996), Oliveira et al. (2006), and Twarakavi et al. (2008). tant on the capillary pressure head for unimodal pore sys-
Figure 2 shows the location map of measured saturategems. Detailed discussions of the commonly used soil hy-
water contents when the pressure head is equal to 0ém or graulic models can be found in Leij et al. (1997). Analyti-
at the site. The saturated water content data are, as expecteg) expressions of the three closed-form models used in this

spatially heterogeneous with mean, maximum, and minimumsydy are listed in Table 1. The parameSeris an effective
values of 0.322, 0.529, and 0.218, respectively. Althoughsatyration defined as follows:

not shown here, water contents measured for other pressure

heads are also spatially heterogeneous. Figure 3 shows sam- 0 — 6,
ple histograms of water contents for eleven pressure head e(h) = 0 — 6y

The mean of each distribution decreases as the pressure head

decreases, as expected. Not all histograms show highlywhered; andé, are the saturated and residual water contents
skewed or asymmetric distributions, indicating that no data(m® m~3), respectively. As can be seen from Table 1, in addi-

transformation is required. Figure 4 depicts the experimentation to6,; andd,, all three models require two other shape (or

@)
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Fig. 3. Sample histograms of water contents for eleven pressure heads (sequénttaity10, —20,—40,—-80,—120,—200,—300,—1000,
—5000, and-15 000 cm).

empirical) parameters, leading to a total of four parameters
representing the retention curve models.

0.4

Application of these water retention functions requires re- o
liable estimates of the parameters for a soil of interest. While .
0; can be obtained independently, the other retention pa- £ 0.3} B o v
rameters usually have to be estimated indirectly, by fitting ¢ : 4 M-
the analytical function to the experimental water retention = I u A g
data using an optimization approach, such as a non-lineai & 0.2 N
least-squares minimization approach (e.g., implemented mi - "V s AQ i
the RETC code). In most optimization procedures, perfor- 5 | 2 2% n Vo080 X a4
mance is improved if the initial estimates are close to the 2 0lp g e2mm "ayy ° 5 é
“true” solution. In other words, if initial estimates are too L e
far from the “true” solutions, the solution may not converge ol o z=s7em , , , ,
to the global minimum, but to the local minimum during the 10* 10° 10* 10° 10° 10*
optimization process. Seki (2007) recently developed a pro- Suction [cm]

gram code that uses a full-automatic procedure to estimate btained f dif depth
soil water retention model parameters. The program autoF'g 4. Water retention curves obtained for seven different depths at

matically selects initial estimates based on observations, ) =10.75m.
that the user does not have to make his/her selections. De-
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Fig. 5. Sample histograms of water retention curve model parameters for BC (left), VG (middle), and KSG (right) models. The saturated

lambdab

sigmal

and residual water contents are in the top two rows, two shape parameters are in the bottom two rows.

tails of this approach will not be discussed in this paper, but2.2 Geostatistical interpolation theory
it should be noted that the full-automatic approach worked

very well in most cases when applied to a number of waterT0 estimate an unknown value of a given soil property at un-
retention data from the UNSODA database (Leij et al., 1996).sampled locations, a geostatistical least-square interpolation
Such an approach is especially attractive when a great nuniechnique, known as kriging, was used in this study. Con-
ber of retention curves need to be fitted simultaneously. Allsider the problem of estimating the value of a soil attribute
three models were fitted to 448 retention data points using: (€.9., water content or soil hydraulic parameters) at an un-
the full-automatic procedure to obtain water retention param-sampled location, whereu is a vector of spatial coordinates.
eters at all sampling locations. Figure 5 shows histograms off he available information consists of values of the variable
retention parameters, includig andd,.. Similar to the wa-  z atN locationsu;, i=1, 2...N. All univariate kriging esti-

ter content histograms shown in Fig.63,andé, histograms  mates are variants of the general regression estigfate)
show no significant skewness and are more-or-less symmegléefined as:
ric, except for6, of the BC and VG models, where about

. n(u)
Y *
12 and 2.5% of data have a value of 0, respectwel_y: As forZ (W) —m () = Z)‘“ W) [z () — m ()] @)
the shape parameters (e.@,, andn,), most are positively =

skewed. The parametéy, even shows a bimodal distribu-
tion. where 1, (u) is the weight assigned to datusfu,) and

m(u) is the trend component of the spatially varying at-
tribute (Goovaerts, 1997). In practice, only those observa-

tions closest ta are retained, that is thg(u) data within a
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given neighborhood or window (u) centered oru, while Goovaerts, 2000). In such case, indicator kriging (IK), in
the influence of those farther away are discarded (Saito angvhich all data are transformed into either 0 or 1 depending
Goovaerts, 2000). One of the most common kriging estima-upon the exceedence of a given threshold (Journel, 1983),
tors is ordinary kriging (or OK), which estimates an unknown can be used. Indicator kriging allows one to estimate the
value as a linear combination of neighboring observations: probabilities of exceeding a series of thresholds at unsam-
@) pled Ipcatipn;, Ie_ading to _the construction of gonditional Cu-
& (u) = Z kﬁ(()K () z (1) 3) mulative distribution functions (ccdf) of the variable of inter-
= est. Once the ccdf is obtained, an optimal estimate and the
uncertainty associated with the estimated value can be quan-

In OK, unlike the constant valge u_sed n S'!“p'e. kriging, tified by taking the meanH-type estimate) and variance of
the mean (or trend) at each estimation location (i.e., Iocalthe cedf, respectively

. . . . . . K
meanyn(u)) is implicitly re-estimated. OK weighig* are The conditional probabilities at for a series of thresh-

determined so as to minimize the error or estimation Va”'oldSZk discretizing a range of variation efare estimated as

20, 1\= % .
anceo<(u)= Var{Z*(u) — Z(u)} under the constraint of an - - SR

. ; ) a linear combination of(u) surrounding indicator transfor-
unbiased estimate (Goovaerts, 1997). These weights are opn () g

. . \ ) nation of data (Uy; zx):
tained by solving the system of linear equations known as the (U 21)
ordinary kriging system: nw)

» [F (; 2l 0)]* = [PHZ @) < 2l ) =) ha @i (was 1) (7)
> AK@) y (e —up) + pok@) =y —u)  a =1, n(w) =1
= w (4)  where
> Agh () =1 ]
o , i (g 20) = {1'”("“) =% p=1,..K ®)
where ok (u) is the Lagrange parameter(u,-ug) is the 0 otherwise

semivariogram between observations wt and ug, and  kyiging weights i (u; zx) are then computed from the in-
y(Uqg-u) is the semivariogram between the datum location yicator kriging system, similar to the OK system (Eq. 4),

Up and the location being estimatad, The semivariogram \here all experimental semivariogramu) are replaced by
y(h) models the varlab!llty between obs_ervatlons separateqygicator semivariogramg; (u). A major drawback of IK is
by a vectorh. The only information required by the System atin order to construct cedfs at any locatignk indicator
(Eq. 4) are the semivariogram valugs, for different sepa-  gemivariograms, usually 9 to 16 (Deutsch and Journel, 1998),
ration distances. These values are readily derived from thg ;e to be computed, anid indicator kriging systems have
semivariogram mode! fittgd to experimental values (i.e., lin-;5 pe solved. Consequently, IK is much more computation-
ear model of regionalization): ally demanding than OK. It is common to use nine deciles of
n(w) the sample distribution as thresholds. More details on indi-

y ) = Tl(h) ;[z (uy) — 7z (ug + h)]2 (5) cator kriging can be found in Goovaerts (1999).

where N (h) is the number of data pairs for a given separa—z'3 Prediction performances: Fl vs. IF

t'r?n vectorh. The cﬁmce c;f the modell IS I'mf'ted tp functhns fTo compare the Fl and IF approaches in terms of reproduc-
thatlenshure a posnl}/ehdeklrjltg covariance function mgtlnx oftion of WRC ati locationsu;, S, (h; u;), two standard valida-
the left-hand-side of the kriging system (Eq. 4). Spatial cor-y, techniques were used: a leave-one-out cross-validation,

relations often vary with direction, and such a case require§n which one observation at a time is temporarily removed
one to compute semivariograms in different orientations 0 0m the dataset and re-estimated from remaining data, and
fit anisotropic (direction-dependent) semivariogram models.a split-sample method, where the dataset is divided into two
In this study, differences in horizontal and vertical variations non-overlapping observation and validation sets (Fig. 6). The
observed in retention data were taken into account by CONs umber of observation locations in each set were 199 (
s_idering anisotrop_ic semivariograms. Details of model fit- and 249 ,), respectively. In the split-sample method, the
ting can be found in Deutsch and Journel (1998), Goovaertghqeration set was used to estimate values at all locations in
(1997), and Kitanidis (1997). In addition to an estimate of yq \5jigation set so that estimation errors could be calculated
the unknown z value, OK provides an error variance that ISexplicitly. Figure 6 depicts the location map of both obser-

computed as vation and validation sets used in the split-sample method.

X n(u) For complete full validation, different split scenarios had to
bk () = Z ho W)y (wg —u) — p(u) (6)  betried. In this study, only the scenario shown in Fig. 6 was
a=1 used. This scenario was considered because it is the most

When histograms show positively skewed distributions likely and realistic scenario where samples were taken layer-
and/or are not unimodal, OK might not be the best ap-by-layer, but not randomly. In addition, the main purpose of
proach to estimate values at unsampled locations (Saito andsing the split-sample method was to investigate the impact
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. 6. Locations used for sample (closed squares) and validation

(open squares) sets in the split-sample procedure.

of the sample size. Note that, in this study, the semivari-
ogram models used in kriging were those fitted to semivari-
ograms for all 448 observations. Details about the Fl and IF
approaches used in the study are given below.

2.3.1 Flapproach

1. Parameters for three water retention functions (BC, VG,

and KSG) were first obtained for all 448 water retention
curvesS, (h; u;) using the automatic fitting procedure
(Seki, 2007).

. For each soil hydraulic parameter, unknown values

were estimated at all 448 locations for the leave-
one-out cross-validation, and at 249 locations for the
split-sample method. Following two interpolation ap-
proaches were compared:

(@) Ordinary kriging (OK) was used for all
parameters.

While OK was used for6, and 9,,
indicator kriging (IK) was used for the
shape parameters.

(b)

The former is referred to as thedw approach, while
the latter will called the Rk approach for the remainder
of the paper.

. For each model and approach, a discrepancy between
observed water retention curv€gi; u;) and those cal-
culated from estimated paramete¥g’; u;) was ob-
tained at each location by computing differences in wa-

ter contents at the eleven corresponding pressure heads.

Mean absolute error (MAE) and mean error (bias ME) 5
are used in this study in the following way:

2.3.2

459

estimated parameters for the pressure hkadand
6 (u;; hj) is the observed water content at the location
u; for the pressure hedd,.

IF approach

1. Unknown water content values corresponding to eleven

pressure heads were estimated using OK at 448 loca-
tions for the leave-one-out cross-validation and 249 lo-
cations for the split-sample method.

. Using the automatic fitting procedure (Seki, 2007), pa-

rameters for three WRC models (i.e., BC, VG, and
KSG) were obtained at each estimated location. To ac-
count for estimation errors when fitting retention mod-
els, eachh-0 pair was weighted based on the reciprocal
of the kriging variance after all kriging variances were
standardized by the total sills of the semivariograms.
More weights are therefore given to those data points
for which the error variances were small.

. For each model, the discrepancy between observed wa-

ter retention curves and those calculated from parame-
ters obtained in the previous step was obtained by com-
puting MAE and ME, similar to what was done for the
Fl approach.

. The impact of the number of data pairs used to con-

struct WRC when estimating parameters was investi-
gated by repeating 1 through 3, using only the follow-
ing six pressure heads: 820,—80,—200,—1000, and
—15000cm. This approach is referred to as IF6 in the
remainder of the paper, while the approach considering
all eleven pressure heads is referred to as IF11. The
number of data pairs used in the IF approach is arbi-
trary. The optimum number depends on many factors,
including soil type. In this study, instead of finding the
optimum number of data pairs for this particular data
set, we have investigated how prediction errors change
when the number of data pairs is reduced to about half
of the original number.

Results and discussions

The results are divided into two sections. The first section

summarizes experimental semivariograms computed from
water retention data and model parameters. In the second
section, different approaches (IF and Fl) are compared in

terms of describing the spatial distribution of soil hydraulic

1 N 1 11 R
1 N 1 11 .
ME = ; [1—1;(9 (wizhj) =0 (ui; hj))} (10)

where N is 448 for the leave-one-out cross-validation
and 249 for the split-sample method,(u;; h;) is
the water content at the locatiam calculated from

www.hydrol-earth-syst-sci.net/13/453/2009/

parameters.
3.1 Semivariograms

Figure 7 shows the experimental semivariograms of WRC
model parameters with fitted geometric anisotropy models.
Semivariograms of water contents corresponding to eleven
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Fig. 7. Experimental semivariograms of water retention curve model parameters with fitted geometric anisotropy models for horizontal
(circles and the solid line) and vertical (triangles and the dashed line) directions. Semivariograms were calculated from model parameters at
448 sampling locations. Subscrigisv, and! correspond to BC (the left column), VG (the middle column), and KSG (the right column)
models, respectively.

pressure heads, — h11, with fitted geometric anisotropy of observations. All experimental horizontal semivariograms
models are depicted in Fig. 8. All these semivariogramswere fitted using either exponential or spherical models, and
were calculated using 448 observations. Excepforthere  they all display a clear nugget effect. Ranges and sill values
is clear anisotropy in all semivariograms with major spa- vary depending on the variable. For example, as expected,
tial continuity observed in the horizontal direction. While semivariograms for the saturatetd and residuald) volu-
horizontal semivariograms, are generally well structured, inmetric water contents are similar for all three models (Fig. 7,
most cases vertical semivariograms fluctuate a lot and are ndbp two rows). However, other parameters have semivari-
smooth. There are not a sufficient number of pairs in the ver-ograms of different shapes, which was expected as the spatial
tical direction to obtain well structured semivariograms. Ex- distribution of these parameters varies. Geometric anisotropy
istence of soil horizons would also not result in spatial cor- models, in which the same nugget and sill values are used for
relation of soil variables in the vertical direction at the scale different directions, were fitted for vertical semivariograms.
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Fig. 8. Experimental semivariograms of water retention data (water contents for a particular pressure head) with fitted geometric anisotropy
models for horizontal (circles and the solid line) and vertical (triangles and the dashed line) directions. Semivariograms were calculated from
retention data obtained at 448 sampling locations.

Nugget effects may be underestimated using this approach, As for the semivariograms of water contents at particu-
since the number of data pairs in the vertical direction is notlar pressure heads (Fig. 8), the ranges of water contents near
sufficient. Using a geometric anisotropy model instead of asaturation in the horizontal direction (i.e., a major range) are
zonal anisotropy model, which can be used to account fogenerally larger than those for drier conditions. This sug-
difference in spatial correlation between vertical and hori-gests that the spatial continuity of larger pores is more pro-
zontal directions, is justified and needed since kriging sys-found than that of smaller pores. When pressure heads are
tems requires the same nugget effect in different directionsmaller than—40 cm, the shape of the semivariograms be-
(Gringarten and Deutsch, 2001). In practice, unless there areomes almost identical. From the Laplace equation for cap-
conclusive physical explanations for phenomena, it is comsllary rise, the radius of a pore corresponding to a pressure
mon to use geometric anisotropy models. head of—40 cm can be calculated to be about 0.035 mm (as-
suming that the contact angle is equal tp 0 herefore, it can
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model (solid black line), and kriged (triangle) at (x, y)=(7.25, 2.16).

In the IF approach, the KSG model was fitted to the constructed waFig. 11. Observed water retention data (square) with the VG model
ter retention curve (red). In the Fl approach, KSG model parameterditted at (x, y)=(12.75, 3.21).

were kriged using ordinary kriging to obtain the FI-KSG curve.

aforementioned non-linear least squared method to obtain

o model parameters. While the model obtained using tag FI
arw || oos approach could not reproduce tiieshape trend observed in
B ||, 0m retention data well, the IF11 approach could capture the trend
% oo of WRC reasonably well. This confirms that, depending on
oot the chosen approach, resulting WRC models can be signif-
" VG - o0 T w . icantly different. In the following section, both approaches
Model Hode were compared in a more comprehensive manner using the

. . . leave-one-out cross-validation and the split-sample methods.
Fig. 10. The impact of the choice of the approach on mean abso-

lute errors (MAE) of retention curve predictions f@) the leave- Figure 10 depicts the mean absolute prediction errors

one-out cross-validation arftd) the split-sample procedures. Three (MAE) calculated for all four approaches, i.e..okl Flix,
WRC models (BC, VG, and KSG) were compared. IF11, and IF6, using the leave-one-out cross-validation and

the split-sample procedures for the three WRC models. In
general, both IF approaches resulted in smaller MAE than
be expected that spatial distributions of pores smaller tharthe FI approaches, regardless of which WRC model was

0.035mm are similar in this soil. used. Decreases in prediction errors were much larger when
the VG model was used, mainly because the prediction per-
3.2 Prediction performance formance of the VG model for the FI approach was much

worse than that for the other two models. At one location,
Using both the FI and IF approaches, water retention curvex, z)=(12.75, 3.21), the fitted parametey (=28.16 cnT?)
model parameters can be obtained at any location. Figure %as three orders of magnitude greater than in the rest of the
shows differences between the Fl and IF approaches in estdomain, where the mean of fitted, is 0.12cnt? and the
mating a water retention curve using the KSG model at a semedian is 0.04cm! (see the histogram af, in Fig. 5).
lected location, X, z)=(7.25, 2.16), where observed retention Although the fit was acceptable at this particular location
data (squares) are available. Due to the exactitude propertfFig. 11), the largex, value (an outlier) affected the esti-
of kriging, data at this location were not included in krig- mation of«, values at surrounding locations, leading to a
ing (i.e., the leave-one-out cross-validation). While the bluerelatively poor performance of the gyt approach for the VG
line is obtained with parameters predicted by thed-&p- model. Indicator kriging was expected to reduce the impact
proach, the red line is calculated with parameters obtaineaf outliers in the Fl approach, as all data are transformed first
by the IF11 approach. In the & approach, model param- to binary data, either O or 1, depending upon exceedence of
eters were estimated directly from surrounding conditioningthe threshold value. However, whéfitype estimates were
parameters using OK. In the IF11 approach, the water reteneomputed, the observed extreme value was taken as a possi-
tion curve was first constructed by interpolating water con-ble maximum value. Because of that, the indicator approach
tent values corresponding to eleven pressure héadsfi11. could not improve the prediction. The problem associated
Constructed water retention data are shown in Fig. 9 usingvith the outlier can be avoided if the IF approach is used. For
red symbols. The KSG model (the solid red line in Fig. 9) the other two WRC models, BC and KSG, average predic-
was then fitted to the constructed retention data using theion errors decreased by about 10-15% when the IF approach
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was used in comparison with the prediction errors for the FI
approach’ Where there were no ObViOUS Outliel’s in |n|t|a”y 4 POOE0OERO00OR00000000000000000000EEO0EECEER0000N000N
evaluated parameters. ORO000000000000R0OR000000NEEEERO00000000000000mOOO0O)
For the Fbk approach, mean absolute errors vary depend-
ing on the WRC model used. On the other hand, predic- o 5 10
tion errors do not depend upon the model used for the IF
approach. This is not a surprising result since three models(c)
Were fltted to the Same reconStrUCted WRCS In the IF ap- 6ﬁIDIDIDDIIDDIDDDDDDIIIDDDIDIDIIDDIDDDIDDDDIIDDDDDD
proach. Therefore, the prediction errors calculated for the  Looossssooossoossoooososcomoooosssoscascessosooaod
IF approach are mainly the summary of model fitting perfor-
mance, but do not directly reflect the accuracy of interpola- DORDODOEEDOOEOOEEOEOROEROORRDODEOEOEOEEOOOOOORDEEE
tion as those for the FI approach do. e et
With regard to MAE, there is no distinct trend in whether DORONODOOODOMROOECOOREOEDOOORCROERORCROERCROREREEE
the IFll approach IS better than the IF6 approach IS bet' 0E!DDDlDDDDD‘lDIDDDDDDD‘DIlDDDDIDD‘IIIDDDDDDI‘DDDDDIIIDD
ter. While IF6 outperforms IF11 when the VG model was ~ ° ° 10 1 20 »
used for both the leave-one-out cross validation and the split-
sample method, IF11 had slightly smaller mean absolute erfig. 13. Location_s where IF11 outperformec_i Fl in terms of mean
rors or almost the same errors when compared to IF6 for thgPselute errors (i.e., smaller MAE) are depicted by open squares,
BC and KSG models. This indicates that reducing the num_wh|Ie closed squares indicate locations where FI outperformed IF
. - for (a) BC, (b) VG, and(c) KSG models.
ber of 6-h pairs by about half does not necessarily worsen
prediction performances, at least for this particular data set,

as long as the IF approach is adopted. This result is quite im- ) i _
portant, since the main reason for preferring the FI approactinus varies depending upon the soil type and can be assessed

over the IF approach in most studies is that the number Osting the IF approach. This is another advantage of the IF

variables one needs to analyze can be significantly reducedPProach over the Fl approach.

The number of parameters required in the WRC models used As for the mean error, there is no obvious trend of over-
in this study is four, which is significantly smaller than the or under-estimation, except for the VG model where mean
original elevend-i pairs used to construct water retention €rrors are always positive (meaning that predicted water con-
curves. To use all pairs in the IF approach, one needs to petents are, on average, greater than observed values). When
form kriging eleven times, which requires significantly more comparing different approaches, ME is much smaller (i.e.,
effort than performing it only four times in the FI approach. has less bias) for the IF approaches than for the FI ap-
However, it was just shown here that when the number ofProaches, except when the BC model was considered in the
data pairs is reduced to six, the IF approach is still bettersplit-sample method. Like that for MAE, this result con-
than the FI approach. With a little extra work, we can im- firms the superiority of the IF approach over the Fl approach.
prove the description of the spatial distribution of water re- While for the BC and KSG models, IF11 resulted in less bias
tention curves using the IF approach. This may not be trughan IF6, for the VG model, IF6 had much smaller biases
when soils with multimodal pore systems (e.g', aggregatedhan IF11 for both the leave-one-out cross-validation and the
soils) are considered. Such soils may require models thagplit-sample method. This indicates again that reducing the
can distinguish between different pore systems, such as thBumber ofh-6 pairs from eleven to six in the IF approach
Durner model (Durner, 1994). To obtain parameters for sucHloes not necessarily worsen the overall performance.
models, we need to have maté: pairs than required by tra- Figure 13 shows spatial distributions of locations where
ditional unimodal models. An appropriate number of pairsIF11 outperformed Kk (open squares), and vice versa
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Table 2. Percentages (%) of locations where mean absolute errorélG model because an extreme value in initially estimated
(MAE) for the IF approach were smaller than those for the FI ap- Parameters led to the poor estimate of that parameter at sur-

proach in the leave-one-out cross-validation. rounding |0cati0n5 in the Fl approach. There iS alWayS a riSk
of including parameter outliers in the estimation process as

Model BC VG KSG long as the FI approach is used_._ In the IF approach, such

a problem rarely occurs. In addition, the IF approach per-

IF11 IF6 IF11 IF6 IF11 IF6 formed better than the FI approach even when the number

MAE 717 701 810 81 621 594 of data pairs used to construct retention curves was reduced

from eleven to six. This makes the IF approach comparable
to the Fl approach in terms of workload, because the number
of variables used in the Fl approach is four, while that in the
(closed squares), in terms of MAE in the leave-one-out crosstF approach would be only six. The FI approach has been
validation. There is no specific trend observed, such as greferred mainly because one can reduce the computational
cluster of open or closed squares. This means that the praime and workload. However, as this study shows, with a
diction of water retention curves was spatially unbiased. Proittle bit of extra work, one can achieve a much better estima-
portions of open squares for both IF11 and IF6 (spatial distion of the spatial distribution of water retention curves by
tributions are not shown) are summarized in Table 2 for allysing the IF approach. In the future, the IF approach should
cases. For all models, the IF approaches outperformed thge applied to estimate unsaturated hydraulic conductivity as
Fl approaches at more than 60% of the sampling locationsyyg||.
For the VG model especially, the IF approaches resulted in  Qyerall, this study shows the superiority of the IF
smaller prediction errors at more than 80% of the samplingapproach over the FI approach in evaluating the spatial
locations. Although the difference between IF11 and IF6 isqjstribution of water retention curves, which is the initial but
small, IF11 was slightly better than IF6 for BC and KSG, critical step in modeling variably-saturated water flow and
while IF6 was better than IF11 for VG. Overall, these per- so|yte transport in field-scale heterogeneous soils. This study
centages confirm the superiority of the IF approach over theshows that interpolating retention model parameters, such
Fl approach in predicting WRCs at any given location. ande in the VG model, should be done with extreme care.
In future studies, the actual impact of the FI approach on
water flow and solute transport still needs to be investigated.

4 Conclusions

Edited by: W. Durner
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