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Abstract. This paper is concerned with the sensitivity anal-
ysis of the model parameters of the Takagi-Sugeno-Kang
fuzzy rainfall-runoff models previously developed by the au-
thors. These models are classified in two types of fuzzy mod-
els, where the first type is intended to account for the effect of
changes in catchment wetness and the second type incorpo-
rates seasonality as a source of non-linearity. The sensitivity
analysis is performed using two global sensitivity analysis
methods, namely Regional Sensitivity Analysis and Sobol’s
variance decomposition. The data of six catchments from
different geographical locations and sizes are used in the sen-
sitivity analysis. The sensitivity of the model parameters is
analysed in terms of several measures of goodness of fit, as-
sessing the model performance from different points of view.
These measures include the Nash-Sutcliffe criteria, volumet-
ric errors and peak errors. The results show that the sensitiv-
ity of the model parameters depends on both the catchment
type and the measure used to assess the model performance.

1 Introduction

There are several issues arising during the calibration of the
parameters of a rainfall-runoff model, including the selec-
tion of calibration and verification data, the quality and in-
formation contents of these data, the selection of an optimi-
sation algorithm, the choice of suitable criteria for evaluating
the model performance, and problems with the parametric
structure of the model. This paper is mainly concerned with
the problems found in the parametric structure of the model,
which can be broadly classified as those associated with pa-
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rameter insensitivity and those arising from parameter inter-
actions. The sensitivity analysis of a rainfall-runoff model
permits the detection of these parameter insensitivities and
interactions, determining the relative importance of the dif-
ferent model parameters in the performance of the model. If
the result of the sensitivity analysis indicates that some model
parameters are unimportant in determining the model perfor-
mance, then it is possible to fix them to some chosen appro-
priate values, thus reducing the dimensionality of the search
space for subsequent model calibration (Saltelli et al., 2004).
Most typically, sensitivity analysis is performed by studying
the characteristics of the model response surface, which is
basically the multidimensional surface defined by the model
parameters and the objective function values (e.g. Sorooshian
and Gupta, 1995; Xiong and O’Connor, 2000). Nevertheless,
the sensitivity of the model predictions to other input factors,
such as land use (Nandakumar and Mein, 1997; Hundecha
and B́ardossy, 2004) or initial soil moisture conditions (e.g.
Zehe and Bl̈oschl, 2004; Zehe et al., 2005), is also possible.

Parameter insensitivity refers to the case where the objec-
tive function values are not largely affected by variations in
the values of one or more parameters. However, this does
not mean that the time series of discharge estimations does
not vary with changes in these parameters (Wagener et al.,
2002) or that the parameter is redundant in the model struc-
ture (O’Connor, 2005). Firstly, it is possible that even though
the model output is affected by the values taken by some pa-
rameters, the chosen objective function gives little emphasis
to the response modes associated with them. In this case, the
sensitivity of the model to these apparently insensitive pa-
rameters can be observed by analysing the variations in mea-
sures of model performance other than the chosen objective
function (Wagener et al., 2002). Secondly, it is possible that
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the model output seems to be insensitive to the values of one
or more of the model parameters, because the model com-
ponents related to them are not activated by the calibration
data (Sorooshian and Gupta, 1995; Beven, 2001). In order to
prevent this situation, it is necessary to ensure that the data
chosen for model calibration is informative/representative, in
the sense that it encompasses a wide range of conditions in
which the model is expected to operate.

In addition to this, the model structure itself may be such
that the response surface suffers from parameter interactions
at a local and/or a global scale. Parameter interactions at a
local scale occur when simultaneous changes in two or more
parameters seem to compensate with respect to the value
of the objective function, creating elongated valleys along
which the parameter vector may move without evident vari-
ations in the height of the model response surface. Another
problem which often affects the model response surface of
rainfall-runoff models is that of multiple local optima, which
can be seen as a kind of parameter interaction at a global
scale. From the point of view of the identification of insen-
sitive model parameters, the importance of parameter inter-
actions is that a parameter which does not individually af-
fect the model performance can still have strong influence
through interactions with other parameters (Saltelli et al.,
2004).

The purpose of this paper is to study the sensitivity of the
parameters of the Takagi-Sugeno-Kang (Takagi and Sugeno,
1985; Sugeno and Kang, 1988) rainfall-runoff fuzzy mod-
els previously developed by Jacquin and Shamseldin (2006).
Takagi-Sugeno-Kang fuzzy models involve complex non-
linear relationships between the model output and the model
parameters; thus, it is expected that the model response sur-
face is affected both by interactions at a local scale and mul-
tiple optima. In this case, the application of traditional local
sensitivity analysis methods (i.e. the examination of changes
in the model output due to changes in the parameters values
in the vicinity of the some nominal/optimal parameter set)
is not a suitable alternative for determining whether or not
a particular model parameter is important. Accordingly, in
this study the sensitivity of the model parameters is analysed
using global sensitivity analysis methods, namely Regional
Sensitivity Analysis (Spear and Hornberger, 1980; Horn-
berger and Spear, 1981) and Sobol’s variance decomposition
(Sobol, 1993). In the authors’ present knowledge, there are
currently no studies dealing with the sensitivity analysis of
fuzzy-based rainfall-runoff models using such methods.

2 Sensitivity analysis methods

2.1 Local versus global methods

Local sensitivity analysis (LSA) methods measure the sensi-
tivity of a quantityY under examination to small variations
in the model parameters, with respect to some chosen nomi-

nal values (Beven, 2001). Classical LSA methods are based
on the calculation of the derivatives

Sp =
∂Y

∂θp

, (1)

whereY represents the output quantity under examination
(e.g. some measure of model performance) andθp represents
a model parameter. These derivatives are usually approxi-
mated by finite differences, i.e. by evaluation of the change
1Y that results from a small change1θp in the parameter
θp, while the remaining components of the parameter vec-
tor remain constant at their nominal values. Applications of
LSA methods in hydrological modelling include the work of
Mein and Brown (1978), Gupta and Sorooshian (1985) and
Castaings et al. (2005), among others.

There are two main drawbacks of LSA methods that make
them inappropriate for the case of model structures affected
by parameter interactions, as frequently noted in the litera-
ture (Saltelli et al., 2004; Fieberg and Jenkings, 2005; Pap-
penberger et al., 2008). In the first place, the local estimates
of parameter sensitivity obtained with these methods do not
provide any information about the effect of variations of the
models parameters across their feasible ranges. In addition
to this, LSA methods are unable to detect the effect of pa-
rameter interactions, because only one parameter is varied at
a time.

Global sensitivity analysis (GSA) methods attempt to an-
swer the question of whether or not a particular parameterθp

is, overall, an important factor in determining the value of the
quantityY . For this purpose, GSA methods estimate to what
extent the value ofY is affected by variations in the value
of each parameterθp across its feasible range. Furthermore,
some of these methods also analyse the effect of simultane-
ous changes in the values of the remaining parameters, thus
accounting for parameter interactions in the model structure.
Several of GSA methods are described in the literature, in-
cluding regression analysis (see e.g. Saltelli et al., 2004), the
method of Morris (Morris, 1991), Regional Sensitivity Anal-
ysis (Spear and Hornberger, 1980; Hornberger and Spear,
1981) and Sobol’s variance decomposition (Sobol, 1993).

2.2 GSA methods applied in this study

2.2.1 Regional sensitivity analysis

Regional Sensitivity Analysis (RSA) is a GSA method
widely used in hydrological modelling (e.g. McIntyre et al.,
2003; Mertens et al., 2005; Pappenberger et al., 2008; Tang
et al., 2007). Monte Carlo sampling is used for obtaining a
large sample of parameter sets and the corresponding values
of the output quantityY . The parameter sets in the sample are
then classified as either behavioural or non-behavioural, ac-
cording to some a priori fixed criterion concerning the value
of Y . Thus, the sample of parameter sets is split into a be-
havioural (S) and a non-behavioural sub-sample (S*). For
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each model parameterθp, the empirical cumulative prob-
ability distribution from each sub-sample is calculated. In
the case of a sensitive parameter, the probability distribution
from the behavioural sub-sample greatly differs from that of
the non-behavioural sub-sample. In contrast, these probabil-
ity distributions are essentially the same if the performance
of the model is relatively insensitive to variations of the pa-
rameterθp alone. The cumulative probability distribution
from the behavioural set (FS(θp)) and the non-behavioural
set (FS∗(θp)) are compared using a Kolmogorov-Smirnov
test.

The RSA method is mainly concerned with the effect of
unilateral variations of the parameters, as pointed out by
Saltelli et al. (2004) and Tang et al. (2007). The method is
based on simultaneous variations of all the parameters, but
it ultimately relies on the comparison of univariate probabil-
ity distributionsFS(θp) andFS∗(θp). Even though this ap-
proach can implicitly account for some kinds of interaction
structures, this is not the general situation and there are sev-
eral types of interaction effects that are obscured by a mere
comparison of univariate probability distributions (see e.g.
Saltelli et al., 2008). Accordingly, at least in principle, the
method is unable to deal with parameter interactions. In fact,
Spear and Hornberger (1980) clarify that the equality of the
distributionsFS(θp) and FS∗(θp) is a necessary but not a
sufficient condition for the insensitivity of the parameterθp.
That is, great differences betweenFS(θp) and FS∗(θp) al-
ways prove the sensitivity of the parameterθp. However, the
similarity of FS(θp) andFS∗(θp) does not necessarily im-
ply that the parameterθp is unimportant, because it could
still have relevance through interactions whose effects are
not detected by the method. This limitation can be partially
overcome by analysing bivariate covariance structures of the
parameters in the behavioural sub-sample, either through vi-
sual analysis of 2-D plots of or through correlation analysis.
However, this approach only provides information about bi-
variate interactions, while higher order interaction effects are
not revealed (Saltelli et al., 2008).

In this study, the RSA method is applied in the manner
proposed by Wagener et al. (2001). A Monte Carlo sam-
ple of parameter sets is produced and sorted according to the
value of the output quantityY under analysis. The sorted
sample is subsequently split into 10 sub-samples of equal
size and, for every model parameter, the cumulative proba-
bility distribution within each sub-sample is plotted. Visual
comparison of the cumulative probability distributions asso-
ciated with the different sub-samples allows the detection of
sensitive parameters, which are necessarily associated with
visible discrepancies between these probability distributions.
If these discrepancies are not observed, it is both possible that
the parameter is overall insensitive or that it only affects the
model performance through interactions that are not detected
by the RSA method.

2.2.2 Sobol’s variance decomposition

Sobol’s variance decomposition (SVD) is a GSA method that
is receiving increasing attention from hydrologists (e.g. Fran-
cos et al., 2003; Kanso et al., 2005; Wang et al., 2006; Ratto
et al., 2007; Tang et al., 2007). SVD has the advantage over
RSA of being able to deal with all kinds of parameter inter-
actions in the model structure. Even though a more detailed
description of SVD can be found in the dedicated literature
(e.g. Chan et al., 2000; Saltelli et al., 2000), its basic features
are given in what follows.

The SVD method uses the model output varianceV [Y ] as
a measure of the variability of the quantityY , which may
depend, in principle, on the values assigned to all the indi-
vidual model parametersθp. The output varianceV [Y ] is
calculated by exploration of the whole feasible space of the
parameter set. If the model parameters are not correlated, the
output varianceV [Y ] can be decomposed in the following
sum (Sobol, 1993)

V [Y ] =

∑
p

Vp +

∑
p

∑
q>p

Vpq + . . . + V1,2,...,P , (2)

where termVp represents the portion of the variance ofY

that is due to changes in the parameterθp alone. Higher or-
der terms indicate the portion of the total variance exclusively
due to interactions between two or more parameters; for ex-
ample, the termVpq quantifies the joint contribution ofθp

andθq to the variance ofY , minusVp andVq .
There are two sensitivity indices provided by the SVD

method that will be used in this study, namely the first-order
effects and the total effects. The first-order effect ofθp onY ,
defined as (Sobol, 1993)

Sp =
Vp

V [Y ]
, (3)

measures to what extent the parameterθp individually affects
the output quantityY , independently of other model param-
eters. As mentioned by Saltelli et al. (2004), this means that
evaluating first-order effects provides similar information to
that of the RSA method. In reference to Eq. (2), the first-
order effectSp represents the fraction of the output variance
V [Y ] that would be removed if the value of the parameterθp

could be fixed (see e.g. Saltelli et al., 2004). The total effect
STp of the parameterθp is given by (Homma and Saltelli,
1996)

STp =
Vp

V [Y ]
+

∑
q 6=p

Vpq

V [Y ]
+

∑
q 6=p

∑
r>q

Vpqr

V [Y ]
+ . . . , (4)

which is esentially the sum of the first-order effect and all
the higher order terms in Eq. (2) that involveθp. Therefore,
the total effectSTp indicates the overall importance of the
parameterθp in the variability ofY , including both its first-
order effect and interactions with other parameters. Math-
ematically, the total effectSTp measures the fraction of the
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output varianceV [Y ] that would remain if the value ofθp

was unknown, but the true values of the remaining parame-
ters could be fixed (see e.g. Saltelli et al., 2004). In the case
of non-correlated parameters, the total effectSTp is greater
than or equal to the first-order effectSp.

The analysis of first-order effects and total effects allows
a straightforward diagnose of parameter sensitivities (Saltelli
et al., 2004). If the total effect of a parameter is small, it can
be concluded that the parameter is not important in determin-
ing the value ofY ; by contrast, large total effects are neces-
sarily associated with influential parameters. In addition to
this, the difference between the total effect and the first-order
effect of a parameter indicates to what extent the parameter
is involved in interactions with others parameters. Finally, a
large first-order effect proves that a parameter is influential
on its own, independently of interactions with other param-
eters, while a small first-order effect found together with a
large total effect shows that the parameter affects the output
Y mainly through interactions with other parameters.

Variance decompositions similar to that of Eq. (2) can be
written by grouping the parameters into subsets (see e.g.
Saltelli et al., 2004). In that case, the first-order effect of
a group of parameters indicates to what extent the parame-
ters in the group affect the output quantityY , excluding the
effect of interactions with parameters in other groups. The
total effect of a group of parameters includes both the first-
order effect of the group and the interactions with parameters
outside the group. Thus, the total effect of a group of param-
eters is a measure of the overall importance of the group of
parameters in the variability ofY .

Although Monte Carlo methods can be used for the pur-
pose of exploring the feasible space of the parameter set
when calculating the variance terms in Eq. (2), these may be
very computationally demanding (Saltelli et al., 2004; Tang
et al., 2007). In the case of non-correlated parameters, the
FAST method (Cukier et al., 1973; Cukier et al., 1978) is a
sampling strategy for the calculation of first-order effects at
a lower computational cost. Saltelli et al. (1999) further de-
veloped this latter method into the Extended FAST method,
which allows the simultaneous calculation of first-order and
total effects.

3 Models description

3.1 Takagi-Sugeno-Kang fuzzy models

The fundamental elements of fuzzy sets theory were first pro-
posed more than four decades ago (Zadeh, 1965), but ap-
plications of related modelling tools in hydrology are rela-
tively recent (see e.g. Demicco and Klir, 2004). Applications
of fuzzy methods in the hydrological context include mod-
elling groundwater flow phenomena (Bárdossy and Disse,
1993; B́ardossy et al., 1995; Dou et al., 1999), and the
interdependence between global circulation and precipita-

tion (Özelkan et al., 1998; Pongracz et al., 2001; Zehe et
al., 2006), for example. In the narrower context of river
flow forecasting, fuzzy methods have been used for param-
eter estimation (Seibert, 1999; Yu and Yang, 2000), uncer-
tainty analysis (̈Ozelkan and Duckstein, 2001; Bárdossy et
al., 2006; Jacquin and Shamseldin, 2007) and the devel-
opment of rainfall-runoff models (Hundecha and Bárdossy,
2001; Vernieuwe et al., 2005), among other applications.

Fuzzy inference systems, or fuzzy models, are non-linear
models that intend to describe the input-output relationship
of a real system using a set of fuzzy IF-THEN rules and
the inference mechanisms of fuzzy logic. In the case of
Takagi-Sugeno-Kang (TSK) fuzzy inference systems, each
fuzzy rule represents a local model of the real system under
consideration (Takagi and Sugeno, 1985). Themth rule of
a TSK system with input vectorX=(X1, X2, . . . ,XK) and
outputY has the general form

IF (X1 is A1,m) AND (X2 is A2,m) AND. . .AND

(XK is AK,m) THEN Y = fm(X) (5)

where the linguistic termsAk,m in the rule antecedents (i.e.
the IF parts of the rules) represent fuzzy sets (Zadeh, 1965)
with membership functions,µk,m(xk), which are used to par-
tition the domains of the input variables into overlapping
regions. The functionsfm in the rule consequents (i.e. the
THEN parts of the rules) are usually first-order polynomials
having the form

fm(X1, X2, . . . ,XK)=b0,m+b1,mX1+b2,mX2, . . . , bK,mXK . (6)

For a given inputX=x=(x1, x2, . . . , xK), the degree of ful-
filment (DOF) of each rule evaluates the compatibility of the
input X=x=(x1, x2, . . . , xK) with the rule antecedent and
ultimately determines the contribution of the rule’s response
y=fm(x1, x2, . . . , xK) to the overall model’s output. In the
case of Gaussian type membership functions, whose analyti-
cal expression is given by

µk,m(xk) = exp

[
−

(xk − ck,m)2

2σ 2
k,m

]
, (7)

each membership function has two parameters, namely the
centreck,m and the spreadσk,m. The degree of firing is fre-
quently evaluated using the product operator, in which case
it can be expressed as

DOFm(x) = µA1,m
(x1) · µA2,m

(x2) · . . . · µAK,m
(xK). (8)

Finally, the overall output of a normalised first-order TSK
fuzzy model withMrules is calculated according to

y =

M∑
m=1

DOFm(x1, x2, . . . , xK)·
[
b0,m+b1,mx1+b2,mx2+ . . . + bK,mxK

]
M∑

m=1
DOFm(x1, x2, . . . , xK)

. (9)
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3.2 Rainfall-runoff fuzzy models under investigation

The rainfall-runoff models under investigation, previously
proposed by Jacquin and Shamseldin (2006), correspond to
TSK type fuzzy inference systems having the discharge in
the catchment outlet as output variable. A brief descrip-
tion of these models is given in what follows, but further
details on their interpretation and similarities with existing
rainfall-runoff models can be found in the work by Jacquin
and Shamseldin (2006).

The models can be classified in two types, each intended
to account for different kinds of dominant non-linear effects
in the rainfall-runoff relationship. Fuzzy models type 1 are
intended to incorporate the effect of changes in the prevailing
soil moisture content, while fuzzy models type 2 address the
phenomenon of seasonality. Each fuzzy model type consists
of five model structures of increasing complexity, where the
most complex fuzzy models TSK1.5 and TSK2.5 include all
the model components found in the remaining fuzzy models
of the respective type. The rules of the fuzzy models are
given by

TSKmtype.1 : IF (Vmtype isAm)‘THEN Qn=b0,m, (10)

TSKmtype.2 : IF (Vmtype isAm) THEN Qn
= b1,mRIn, (11)

TSKmtype.3 : IF (Vmtype isAm) THEN

Qn
= b0,m + b1,mRIn,

(12)

TSKmtype.4 : IF (Vmtype isAm) THEN

Qn
= b2,m ·

L∑
j=1

hj,mP n
i−j+1 ,

(13)

TSKmtype.5 : IF (Vmtype isAm) THEN

Qn
= b0,m + b2,m ·

L∑
j=1

hj,mP n
i−j+1 ,

(14)

where mtype represents the model type, i.e. type 1 or 2. In all
cases, the output variable in the rule consequents is given by
the normalised dischargeQn, calculated as the quotient be-
tween the discharge at the catchment outletQ and the maxi-
mum dischargeQmax observed during the calibration period.

The choice of antecedent input variableVmtype depends
on the fuzzy model type under consideration. In the case of
fuzzy models type 1, this corresponds to a normalised rain-
fall index RIn, intended to give an indication of the prevailing
soil moisture conditions in the catchment. Accordingly, the
rule consequents of fuzzy models type 1 can be seen as lo-
cal models of the rainfall-runoff relationship, valid for some
fuzzily defined range of soil moisture content. At each time
stepi, the output of an auxiliary Simple Linear Model (SLM)
of Nash and Foley (1982) is used to calculate the current rain-
fall index value RIi from to the convolution summation

RIi = Ga
·

L∑
j=1

Pi−j+1 · ha
j , (15)

wherePj is the rainfall measurement at time stepj, L is the
memory length of the catchment,Ga is the gain factor of
the auxiliary SLM andha

j is thejth ordinate of the discrete
pulse response function of the auxiliary SLM. The rainfall in-
dex RIi is subsequently divided by its maximum value RImax
found during the calibration period, in order to obtain the
normalised rainfall index RIn

i (i.e. RIn=RI/RImax). With the
aim of keeping the number of parameters to a minimum, the
discrete pulse response ordinatesha

j of the auxiliary SLM are
obtained in parametric form using the gamma distribution
model of Nash (1957). Fuzzy models type 2 use the time
of the yeart (in days) as input information to the rule an-
tecedents. This is accomplished by calculating a normalised
time of the yeartn, given by

tn = t/365, (16)

which is ultimately used as antecedent input variable. Each
rule consequent of a type 2 fuzzy model can be seen as a
model of the rainfall-runoff relationship that is associated
with a particular season (fuzzily defined period) of the year.

Gaussian type membership functions, defined in Eq. (7),
are chosen for modelling the antecedent fuzzy sets. However,
in the case of fuzzy models type 1, the analytical expression
of the leftmost (rule 1) and rightmost (ruleM) membership
function are modified in the following manner

DOF1(RIn)=µ1(RIn)=

1, RIn<c1

exp

[
−

(RIn
−c1)

2

2σ2
1

]
, RIn≥c1

, (17)

DOFM(RIn) = µM(RIn) =

exp

[
−

(RIn−cM )2

2σ2
M

]
, RIn≤cM

1, RIn > cM

, (18)

while the membership function of the antecedent fuzzy sets
of fuzzy models type 2 is given by

DOFm(tn) = µm(tn) = exp

[
−

(min {|tn − cm| , 1 − |tn − cm|})2

2σ 2
m

]
(19)

in all cases. Details on the justification for Eq. (17) to (19)
can be found in the study by Jacquin and Shamseldin (2006).
In both types 1 and 2 fuzzy models, the description of each
rule antecedent requires two parameters, namely the centres
cm and the spreadsσm of the membership function, as shown
in Table 1.

As seen in Eq. (10) to (14), the type of functionfm found
in the rule consequents depends on the model structure being
considered. Accordingly, the parameters found in the rule
consequents vary among the different model structures, as
shown in Table 1. As discussed in the work by Jacquin and
Shamseldin (2006), the fuzzy models TSK1.5 and TSK2.5
are the most complex among fuzzy models types 1 and
2, respectively, because they include all the model compo-
nents found in the remaining fuzzy models of the respective
type. In particular, the rule consequents of the fuzzy mod-
els TSK1.5 and TSK2.5, as seen in Eq. (14), are first-order
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Table 1. Parameters involved in the TSK rainfall-runoff fuzzy mod-
els proposed by Jacquin and Shamseldin (2006).

Model cm σm b0,m b1,m b2,m nm (nK)m

TSKX.1 X X X
TSKX.2 X X X
TSKX.3 X X X X
TSKX.4 X X X X X
TSKX.5 X X X X X X

polynomials on the most recent normalized rainfall values
P n

j , which include a free termb0,m in addition to first-order
terms. These fuzzy models allow a different pulse response
function for each rulem, characterized by gamma distribu-
tion parametersnm and (nK)m that define the pulse response
ordinateshj,m.

The sensitivity of the parameters of fuzzy models TSK1.5
and TSK2.5 is studied, in order to establish whether the pa-
rameters associated with a particular model component (e.g.
the free terms in the rule consequents) are not important in
determining the model performance. As mentioned earlier in
the introduction, this situation would indicate that these pa-
rameters can be excluded from the search of the behavioural
regions of the parameter space in a model calibration prob-
lem, by assigning them convenient values within their feasi-
ble ranges (Saltelli et al., 2004). In the case of the fuzzy mod-
els described here, this could be equivalent to considering a
simpler model structure (e.g. fuzzy model TSK1.3 instead of
TSK1.5), by removing the unimportant model component.
The analysis is performed on fuzzy models with three rules,
i.e. the same number of rules used in the study by Jacquin
and Shamseldin (2006).

4 Methodology

4.1 Catchments and data

The data sets used in this study were obtained from the catch-
ment database available at the Department of Engineering
Hydrology, National University of Ireland, Galway. These
data consist of daily averaged values of precipitation and
daily average discharge at the catchment’s outlet. Table 2
shows the location of the catchments and the length of the
data sets. The rainfall-runoff relationship of three of the test
catchments, namely Sunkosi-1, Yanbian and Brosna, is af-
fected by significant seasonal effects; in the case of the re-
maining catchments, intrinsic non-linearity due to changes
in soil moisture contents has greater importance. The catch-
ments did not have hydrologically significant artificial struc-
tures or human intervention at the time when the measure-
ments were made.

As shown in Table 2, the available data are divided into
a calibration and a verification period for split-record simu-
lations. In general, the calibration and the verification data

from a same catchment have similar statistics (see Jacquin
and Shamseldin, 2006). However, the variability of the cali-
bration data of Bird Creek and Wollombi Brook is more pro-
nounced than that of the corresponding verification data. In
particular, the standard deviations of the discharge calibra-
tion data of these latter catchments are much higher than in
verification, even though the calibration and the verification
discharge data have similar means. The data used for the
split sampling tests are considered to be sufficiently long and
have enough information contents, including a wide range of
hydrological conditions.

4.2 Measures of model performance

The sensitivity of the parameters of the fuzzy models TSK1.5
and TSK2.5 with respect to the model performance is anal-
ysed in terms of several measures of goodness of fit, assess-
ing different aspects of the agreement between the observed
and the simulated hydrograph. Each performance measure
represents an output quantityY , whose variability (with re-
spect to the parameters of the model) is to be examined.

The first performance measure under examination is the
R2 efficiency criterion of Nash and Sutcliffe (1970), given
by the following expression

R2
=

MSE0 − MSE

MSE0
, (20)

where the initial mean squared error MSE0 corresponds to
the mean of the squares of the differences between the ob-
served discharges and the long term mean during the cali-
bration period. The mean squared error MSE is calculated
as the mean of the squares of the differences between the
model estimates and the observed discharges. The model ef-
ficiency R2 is a decreasing function of the MSE, achieving
a maximum value of unity if the model discharge estimates
perfectly fit the observed discharges.

Another measure of goodness of fit used in this study is
the deviation of runoff volumes, or relative error of the volu-
metric fit (REVF), given by

REVF = 1 −

∑
Qi∗∑
Qi

, (21)

whereQi∗ andQi represent the model estimated and the ob-
served discharge, respectively, at time stepi. Positive REVF
values indicate underestimation of discharge volumes, while
negative REVF values are obtained when volumes are being
overestimated.

The last measure of model performance considered in this
study is the average relative error to the peak (REP), given
by

REP=

Np∑
i=1

|Qpi − Qpi∗|

NpQpi

(22)

whereNp is the number of selected flow peaks,Qpi repre-
sents a peak in the observed hydrograph, andQpi∗ is the
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Table 2. Location of the catchments and length of the data sets used in the experiments, including the definition of calibration and verification
periods for split sampling tests.

Catchment Country No of years Calibration period Verification period
in data set

starting date No of years starting date No of years

Sunkosi-1 Nepal 8 1 Jan 1975 6 1 Jan 1981 2
Yanbian Central China 8 1 Jan 1978 6 1 Jan 1984 2
Shiquan-3 Central China 8 1 Jan 1973 6 1 Jan 1979 2
Brosna Central Ireland 10 1 Jan 1969 8 1 Jan 1977 2
Bird Creek Oklahoma, USA 8 1 Jan 1955 6 1 Jan 1961 2
Wollombi Brook New Sout Wales, Australia 5 1 Jan 1963 4 1 Jan 1967 1

Table 3. Performance statistics of the fuzzy models TSK1.5 and TSK2.5.

Catchment Parameter group Calibration Verification

R2∗ REVF REP R2∗ REVF REP

Sunkosi-1 TSK1.5 0.88 0.00 0.21 0.84 0.21 0.32
TSK2.5 0.93 0.00 0.15 0.91 0.17 0.23

Yanbian TSK1.5 0.79 0.00 0.29 0.75 0.02 0.33
TSK2.5 0.84 −0.01 0.26 0.79 0.09 0.31

Shiquan-3 TSK1.5 0.88 0.00 0.44 0.77 −0.31 0.50
TSK2.5 0.84 −0.12 0.41 0.36 −0.39 0.67

Brosna TSK1.5 0.42 0.00 0.42 0.49 0.14 0.45
TSK2.5 0.79 0.00 0.26 0.87 0.08 0.26

Bird Creek TSK1.5 0.87 −0.07 0.74 0.13 −0.19 0.84
TSK2.5 0.70 −0.32 0.88 −0.61 −0.88 0.89

Wollombi Brook TSK1.5 0.89 −0.07 0.53 0.73 −0.79 1.69
TSK2.5 0.83 −0.12 0.53 −0.26 −0.50 0.63

∗ R2 values taken from the study by Jacquin and Shamseldin (2006).

model estimated discharge for the same time step asQpi .
The REP would be equal to zero in the ideal case of a per-
fect estimation of all the selected flow peaks; increasing REP
values indicate deterioration in the ability of the model to es-
timate the peak discharges. In this study, the discharge peaks
retained for the calculation of the REP values are those ex-
ceeding the 90% of the calibration discharge data.

Table 3 shows the model performance statisticsR2,
REVF and REP of the fuzzy models TSK1.5 and TSK2.5,
as calibrated by Jacquin and Shamseldin (2006). The
fuzzy model TSK2.5 outperforms the fuzzy model TSK1.5
in terms of efficiency valuesR2, when applied in the
catchments whose rainfall-runoff relationship has a seasonal
nature (i.e. Sunkosi-1, Yanbian and Brosna); but, this situa-
tion is reversed in the remaining catchments (i.e. Shiquan-3,
Bird Creek and Wollombi Brook). In the non-seasonal catch-

ments, the model efficiencies of TSK2.5 during the
verification periods are quite low and also much lower than
those of the calibration periods, which is an indication of
model overfitting. The REVF values seen in Table 3 also
show that there is no evidence that the presence/absence of
seasonality determines which fuzzy model provides a better
estimation of runoff volumes. However, it can be observed
that both TSK1.5 and TSK2.5 give reasonable estimations
of discharge volumes in the case of the seasonal catchments,
with low REVF values during calibration and verification;
the REVF values obtained by the fuzzy models when applied
in the non-seasonal catchments are higher, especially during
verification. Similarly, the REP values of both fuzzy models
tend to be higher in the case of the non-seasonal catchments,
indicating that the estimations of discharge peaks provided
by the fuzzy models are worse in these cases.
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Table 4. Feasible ranges of the parameters of the fuzzy
models TSK1.5 and TSK2.5.

Para- Lower Upper Description
meter bound bound

cm 0 1 Centers of the antecedent
fuzzy sets

σm 0.02 0.25 Spreads of the antecedent
fuzzy sets

b0,m −1.315 1.456∗ Free terms in the
−0.162 0.641∗∗ consequent polynomials

b2,m 0 Pmax/Qmax Coefficients of
first-order terms
in the consequent
polynomials

nm 0.5 10 Gamma distribution
parameters describing
the pulse responses
of the rule consequents

(nK)m 0.5 30 Gamma distribution
parameters describing
the pulse responses
of the rule consequents

∗ Bounds applicable to TSK1.5.∗∗ Bounds applicable to TSK2.5.

4.3 Computational experiments

4.3.1 Application of the RSA method

A random sample of 40 000 parameter sets is generated, both
for the fuzzy model TSK1.5 and for TSK2.5. The feasi-
ble space for sample generation is defined by the parame-
ter bounds established in Table 4. Except in the case of the
free termsb0,m, these bounds are the same as those imposed
by Jacquin and Shamseldin (2006) for the calibration of the
fuzzy models. In the case of the free termsb0,m, whose val-
ues were not bounded during the calibration of the fuzzy
models, the bounds shown in Table 4 are defined in such
a manner that they are 50% wider than the range ofb0,m

values estimated by calibration of TSK1.5 and TSK2.5 for
the test catchments. The performance of the fuzzy models
is evaluated using the measures of goodness of fit indicated
in Sect. 4.2. Probability distribution plots, produced using
the software MCAT (Wagener and Kollat., 2007), are used
for visually detecting sensitive parameters in the manner ex-
plained in Sect. 2.2.1.

4.3.2 Application of the SVD method

The SVD method is applied by splitting the model parame-
ters in groups, with the purpose of clearly highlighting the
importance of each model component in the performance of
the fuzzy models. The groups considered are: 1) antecedent
centrescm, 2) antecedent spreadsσm, 3) polynomial free
termsb0,m, 4) polynomial coefficientsb2,m, 5) gamma dis-
tribution parametersnm, and 6) gamma distribution param-
eters (nK)m. In this case, the first-order effect of a group
estimates to what extent the parameters in the group affect
the model performance, excluding the effect of interactions
with parameters outside the group. Similarly, the total ef-
fect sensitivity index of a group of parameters provides an
estimation of the overall importance of the group in the per-
formance of the fuzzy models, including interactions with
parameters outside the group. The samples of model param-
eters and the sensitivity indices of the groups of parameters
defined above are obtained with the sensitivity analysis soft-
ware SIMLAB2.2 (European Union Joint Research Centre,
2004), using the Extended FAST sampling method (Saltelli
et al., 1999). The bounds used for producing the samples of
parameter sets are the same as those specified above for the
case of the RSA method. The number of parameter sets in
the sample is 9750.

5 Results

5.1 RSA results

As examples of the application of the method, Figs. 1 and 2
show the results of RSA when applied to the fuzzy models
TSK1.5 and TSK2.5, respectively, in the Sunkosi-1 catch-
ment. In both figures, the model performance is evaluated
using the efficiency criterionR2. Only the plots correspond-
ing to one fuzzy rule are shown, but similar ones are obtained
for the remaining rules. From the analysis of Fig. 1, it can be
concluded that the model efficiencyR2 of the fuzzy model
TSK1.5 when applied in the Sunkosi-1 catchment is sensi-
tive to changes in the parameterscm, σm and, particularly,
b0,m. The remaining parameters of TSK1.5 are either non-
important for determining the efficiencyR2, or their influ-
ence arises from interactions that are not accounted for by
the RSA method. Similarly, Fig. 2 shows that the model ef-
ficiency R2 of the fuzzy model TSK2.5 is sensitive to the
values taken by the parametersσm, b0,m andb2,m. In this
case, the RSA method does not reveal any sensitivity of the
model efficiencyR2 with respect to the parameterscm, nm

andnKm.
Table 5 presents a qualitative classification of the param-

eters of the fuzzy models, similar to that presented by Tang
et al. (2007), based on visual analysis of plots such as those
in Figs. 1 and 2. The RSA method was applied to the cal-
ibration and the verification data, finding similar sensitivity
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Fig. 1. Results of RSA method when applied to the fuzzy model TSK1.5 in the Sunkosi-1 catchment, using the efficiency criterionR2 as a
measure model performance.

Fig. 2. Results of RSA method when applied to the fuzzy model TSK2.5 in the Sunkosi-1 catchment, using the efficiency criterionR2 as a
measure model performance.

patterns in both periods. It can be observed that parameter
sensitivities of fuzzy models TSK1.5 and TSK2.5 differ, and
that the sensitivity of the parameters of these fuzzy models
depends on the type of catchment (seasonal or non-seasonal)
where the models are applied. For example, the performance
of TSK1.5 does not seem to be greatly affected by univariate
changes in the parametersb2,m (see Fig. 1). In the case of the
fuzzy model TSK2.5, however, the values of all three mea-
sures of model performance are sensitive to the parameters
b2,m, although only when TSK2.5 is applied in the seasonal
catchments (see Fig. 2).

Table 5 also shows that the sensitivity of a parameter de-
pends on the measure of model performance being consid-
ered. Comparison of the columns corresponding toR2 and

REP reveals that these measures of model performance show
sensitivity to the same type of parameters, which is not an
unexpected result. Being based on the mean squared error,
the model efficiencyR2 is very sensitive to the model er-
rors in the high flow region, which is the zone of the dis-
charge hydrograph that the measure REP is concerned with.
Thus, it is not surprising that there is a strong correlation
between both measures of model performance, with correla-
tion coefficients in the Monte Carlo sample reaching−0.95
in some catchments. As a result, the parameter sensitivities
of the measuresR2 and REP are similar. By contrast, param-
eter sensitivities of the performance measure REVF, which
is more evenly sensitive to errors in the low and high flow
ranges, are different from the other two.
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Table 5. Parameters of the fuzzy models deemed sensitive or very
sensitive by the RSA method according to the measures of model
performanceR2, REVF and REP.

Catch- Para- Fuzzy model Fuzzy model
ment meter TSK1.5 TSK2.5
type group

R2 REVF REP R2 REVF REP

Seasonal cm S S S – – –
σm S – S S – S
b0,m VS VS VS VS VS VS
b2,m – – – S S S
nm – – – – – –
(nK)m – – – – – –

Non- cm S – S – – –
-seasonal σm – – – – – –

b0,m VS VS VS VS VS VS
b2,m – – – – – –
nm – – – – – –
(nK)m – – – – – –

In any case, a feature that is common to all models, catch-
ments and measures of model performance is that the RSA
method shows the polynomial free termsb0,m as the most
sensitive parameters. In addition to this, the gamma distribu-
tion parametersnm and (nK)m are not revealed as sensitive
in any fuzzy model or catchment.

5.2 SVD results

Tables 6 and 7 show the first-order effects for the fuzzy mod-
els TSK1.5 and TSK2.5, respectively. Similarly, Tables 8
and 9 show the total effects corresponding to TSK1.5 and
TSK2.5, respectively. Sensitivity indices values are shaded
according to the following criteria: Values greater than 0.3,
seen as an indication of high sensitivity, are shaded in dark
gray; values between 0.15 and 0.3, interpreted as pointing
out moderately sensitive parameters, are shaded in light gray;
values between 0.02 and 0.15, seen as indicating parameters
with a modest (but non-negligible) sensitivity are not shaded;
finally, values smaller than 0.02, which are considered negli-
gible, are highlighted in yellow. It seems important to point
out that the sensitivity indices obtained for the calibration
and the verification period are consistently close, which sug-
gests that the results obtained in this analysis are independent
on the period of data used for evaluation. The following dis-
cussion gives the conclusions obtained from the analysis of
Tables 6 to 9, according to the criteria outlined in Sect. 2.2.2.

5.2.1 First-order effects

As explained in Sect. 2.2.2, the first-order effect of a group
of parameters represents the sensitivity of the quantityY un-
der examination to changes in the parameters of the group,
without considering the effect of interactions with parame-

ters outside the group. Except in the case where the interac-
tion structure is such that its effects can be detected through
RSA, the results of the RSA method provide similar informa-
tion concerning the sensitivity of parameters. Therefore, it is
not surprising that the analysis of the first-order effects in Ta-
bles 6 and 7 confirm the main results of the RSA method, pre-
sented in the previous section. In the first place, the highest
first-order effects in Tables 6 and 7 correspond to the group
of parametersb0,m, which are the only parameters classified
as very sensitive (VS) by the RSA method. In addition to
this, the first-order effects of the groups of parameters clas-
sified as sensitive (S) by the RSA method are lower than in
the previous case, although generally non-negligible. Finally,
the first-order effects of those groups of parameters for which
the RSA method did not reveal any sensitivity are negligible
in all cases.

5.2.2 Total effects

Recalling the discussion in Sect. 2.2.2, the total effect of a
group of parameters measures the sensitivity of the model re-
sponse to the parameters in the group, including possible in-
teractions with parameters in other groups. Accordingly, the
total effects shown in Tables 8 and 9 are necessarily higher
than the first-order effects in Tables 6 and 7, which exclude
the effect of interactions outside the group. These interac-
tions with other groups are revealed by great differences be-
tween the group’s total effects and first-order effects. The
following discussion analyses the sensitivity of each group of
parameters according to their total effects and the existence
of interactions between groups.

To start with, the total effects shown in Table 8 indicate
that the free termsb0,m are the most influential for determin-
ing the performance of the fuzzy model TSK1.5, with respect
to all three measures of model performance. It can also be
seen that the sensitivity of the antecedent centrescm is also
very high. In all catchments and measures of model perfor-
mance, the differences between the total effects and the first-
order effects of both groups are large, which is not observed
in the remaining groups. This situation indicates that, among
all the groups of parameters, only the groupscm andb0,m are
involved in strong interactions, and that this interactions oc-
cur mainly between them. Another feature shown in Table 8
is that the performance of the fuzzy model TSK1.5 can be
moderately affected by the antecedent spreadsσm. In par-
ticular, this group obtains total effects ranging between 0.16
and 0.28 for the measures of model performanceR2 and REP,
with the highest total effects being observed in the seasonal
catchments. In any case, this sensitivity is not observed in
the case of the performance measure REVF, for which the
total effects of this group are below 0.13 in all cases. Fi-
nally, analysis of Table 8 reveals that the remaining groups
of parameters, namely the coefficientsb2,m and the gamma
distribution parametersnm and (nK)m, have a very low im-
portance for determining the performance of the fuzzy model
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Table 6. First-order effect sensitivity indices of the parameters
of the fuzzy model TSK1.5. Dark gray shading indicates values
greater than 0.3 and light gray shading indicates values between
0.15 and 0.3. Values smaller than 0.02 are shaded in yellow.

Catch- Para- Calibration Verification
ment meter

group

R2 REVF REP R2 REVF REP

Sunkosi-1 cm 0.04 0.02 0.09 0.05 0.02 0.09
σm 0.04 0.00 0.04 0.04 0.00 0.04
b0,m 0.58 0.59 0.40 0.56 0.56 0.38
b2,m 0.01 0.01 0.03 0.01 0.01 0.02
nm 0.01 0.00 0.01 0.01 0.01 0.01
(nK)m 0.01 0.00 0.01 0.01 0.01 0.01

Yanbian cm 0.06 0.02 0.08 0.06 0.02 0.08
σm 0.03 0.01 0.06 0.03 0.01 0.06
b0,m 0.51 0.47 0.42 0.52 0.48 0.46
b2,m 0.01 0.00 0.01 0.01 0.00 0.01
nm 0.01 0.01 0.02 0.01 0.01 0.02
(nK)m 0.01 0.01 0.01 0.01 0.01 0.01

Shiquan-3 cm 0.07 0.02 0.09 0.07 0.02 0.10
σm 0.02 0.01 0.02 0.02 0.01 0.03
b0,m 0.45 0.38 0.45 0.45 0.38 0.45
b2,m 0.01 0.01 0.01 0.01 0.01 0.01
nm 0.01 0.01 0.01 0.01 0.01 0.02
(nK)m 0.01 0.01 0.01 0.01 0.01 0.01

Brosna cm 0.08 0.02 0.08 0.08 0.02 0.08
σm 0.04 0.01 0.06 0.05 0.01 0.06
b0,m 0.48 0.53 0.44 0.48 0.55 0.44
b2,m 0.01 0.01 0.02 0.01 0.01 0.02
nm 0.01 0.00 0.02 0.01 0.00 0.02
(nK)m 0.01 0.00 0.01 0.01 0.00 0.01

Bird Creek cm 0.06 0.02 0.09 0.06 0.02 0.08
σm 0.02 0.01 0.03 0.02 0.01 0.02
b0,m 0.45 0.38 0.45 0.45 0.37 0.45
b2,m 0.01 0.01 0.01 0.01 0.01 0.01
nm 0.01 0.01 0.01 0.01 0.01 0.01
(nK)m 0.01 0.01 0.01 0.01 0.01 0.01

Wollombi cm 0.06 0.02 0.08 0.06 0.02 0.07
Brook σm 0.02 0.01 0.03 0.02 0.01 0.03

b0,m 0.45 0.37 0.47 0.45 0.38 0.46
b2,m 0.01 0.01 0.01 0.01 0.01 0.01
nm 0.01 0.01 0.01 0.01 0.01 0.01
(nK)m 0.01 0.01 0.01 0.01 0.01 0.01

TSK1.5, as the total effects of these groups are consistently
small. More concretely, for all catchments and measures of
model performance, the total effects of these groups do not
exceed 0.14.

The total effects shown in Table 9 indicate that the free
termsb0,m are the parameters with the highest influence in
the performance of TSK2.5, as indicated by all three mea-
sures of model performance and in all the catchments. Un-
like the case of TSK1.5, the total effects of the antecedent
centrescm are generally low. However, a high sensitivity is
seen when the model TSK2.5 is applied in the seasonal catch-
ments and the measure of model performance REP is used, in
which case the total effects of the centrescm range between

Table 7. First-order effect sensitivity indices of the parameters
of the fuzzy model TSK2.5. Dark gray shading indicates values
greater than 0.3 and light gray shading indicates values between
0.15 and 0.3. Values smaller than 0.02 are shaded in yellow.

Catch- Para- Calibration Verification
ment meter

group

R2 REVF REP R2 REVF REP

Sunkosi-1 cm 0.01 0.00 0.10 0.01 0.00 0.07
σm 0.03 0.00 0.09 0.04 0.00 0.06
b0,m 0.59 0.62 0.22 0.57 0.63 0.27
b2,m 0.03 0.04 0.08 0.01 0.03 0.08
nm 0.00 0.00 0.01 0.00 0.00 0.01
(nK)m 0.00 0.00 0.02 0.00 0.00 0.01

Yanbian cm 0.01 0.00 0.09 0.01 0.00 0.09
σm 0.02 0.00 0.10 0.02 0.00 0.10
b0,m 0.62 0.64 0.32 0.62 0.64 0.30
b2,m 0.01 0.02 0.07 0.01 0.02 0.06
nm 0.00 0.00 0.01 0.00 0.00 0.01
(nK)m 0.00 0.00 0.02 0.00 0.00 0.03

Shiquan-3 cm 0.00 0.00 0.01 0.00 0.00 0.01
σm 0.02 0.00 0.01 0.02 0.00 0.02
b0,m 0.64 0.66 0.58 0.64 0.66 0.53
b2,m 0.00 0.00 0.01 0.00 0.00 0.01
nm 0.00 0.00 0.00 0.00 0.00 0.00
(nK)m 0.00 0.00 0.01 0.00 0.00 0.01

Brosna cm 0.00 0.00 0.06 0.01 0.00 0.08
σm 0.03 0.00 0.13 0.03 0.00 0.14
b0,m 0.53 0.58 0.25 0.50 0.57 0.23
b2,m 0.13 0.11 0.13 0.13 0.12 0.11
nm 0.00 0.00 0.01 0.00 0.00 0.01
(nK)m 0.01 0.01 0.07 0.02 0.01 0.05

Bird Creek cm 0.00 0.00 0.01 0.00 0.00 0.01
σm 0.01 0.00 0.01 0.01 0.00 0.01
b0,m 0.64 0.66 0.62 0.64 0.66 0.65
b2,m 0.00 0.00 0.00 0.00 0.00 0.00
nm 0.00 0.00 0.00 0.00 0.00 0.00
(nK)m 0.00 0.00 0.01 0.00 0.00 0.00

Wollombi cm 0.00 0.00 0.01 0.00 0.00 0.01
Brook σm 0.01 0.00 0.01 0.01 0.00 0.01

b0,m 0.64 0.66 0.53 0.64 0.66 0.64
b2,m 0.00 0.00 0.02 0.00 0.00 0.02
nm 0.00 0.00 0.00 0.00 0.00 0.00
(nK)m 0.00 0.00 0.03 0.00 0.00 0.02

0.31 and 0.48. Similarly, the coefficientsb2,m do not greatly
affect the performance of TSK2.5, except for the high total
effects seen in the seasonal catchments for the case of the
measure of model performance REP. The last group having
importance in determining the performance of TSK2.5 is that
of the antecedent spreadsσm, for which the total effects range
between 0.23 and 0.47. Finally, Table 9 also reveals that
the gamma distribution parametersnm and (nK)m are gener-
ally not influential for to the performance of the fuzzy model
TSK2.5. In most cases, the total effects of these groups re-
main below 0.18. The only exception is seen in the Brosna
catchment, where the total effect of the parameters (nK)m in
the measure of model performance REP reaches 0.29.
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Table 8. Total effect sensitivity indices of the parameters of the
fuzzy model TSK1.5. Dark gray shading indicates values greater
than 0.3 and light gray shading indicates values between 0.15 and
0.3.

Catch- Para- Calibration Verification
ment meter

group

R2 REVF REP R2 REVF REP

Sunkosi-1 cm 0.51 0.32 0.54 0.55 0.35 0.53
σm 0.17 0.08 0.20 0.17 0.08 0.23
b0,m 0.94 0.98 0.91 0.94 0.98 0.91
b2,m 0.09 0.05 0.17 0.09 0.06 0.16
nm 0.12 0.07 0.10 0.13 0.07 0.10
(nK)m 0.08 0.07 0.10 0.08 0.07 0.11

Yanbian cm 0.62 0.44 0.49 0.61 0.43 0.45
σm 0.16 0.08 0.28 0.16 0.08 0.26
b0,m 0.93 0.98 0.87 0.93 0.98 0.88
b2,m 0.09 0.06 0.11 0.09 0.06 0.12
nm 0.13 0.08 0.12 0.13 0.08 0.11
(nK)m 0.08 0.08 0.09 0.08 0.08 0.09

Shiquan-3 cm 0.70 0.55 0.68 0.69 0.54 0.66
σm 0.16 0.07 0.17 0.16 0.07 0.19
b0,m 0.93 0.98 0.91 0.93 0.98 0.89
b2,m 0.10 0.07 0.09 0.10 0.07 0.09
nm 0.14 0.09 0.12 0.13 0.09 0.13
(nK)m 0.09 0.08 0.08 0.09 0.08 0.09

Brosna cm 0.55 0.37 0.44 0.54 0.34 0.45
σm 0.21 0.12 0.27 0.23 0.13 0.27
b0,m 0.89 0.98 0.87 0.88 0.97 0.88
b2,m 0.12 0.06 0.14 0.13 0.05 0.14
nm 0.12 0.06 0.11 0.12 0.06 0.12
(nK)m 0.09 0.07 0.11 0.09 0.07 0.11

Bird cm 0.69 0.55 0.67 0.70 0.55 0.69
Creek σm 0.16 0.07 0.17 0.16 0.07 0.16

b0,m 0.94 0.98 0.90 0.94 0.98 0.91
b2,m 0.10 0.07 0.09 0.10 0.07 0.09
nm 0.13 0.09 0.12 0.14 0.09 0.12
(nK)m 0.09 0.08 0.08 0.09 0.08 0.08

Wollombi cm 0.69 0.55 0.63 0.69 0.55 0.64
Brook σm 0.16 0.07 0.16 0.16 0.07 0.17

b0,m 0.94 0.98 0.91 0.94 0.98 0.91
b2,m 0.10 0.07 0.09 0.10 0.07 0.10
nm 0.13 0.09 0.12 0.13 0.09 0.12
(nK)m 0.09 0.08 0.09 0.09 0.08 0.10

6 Conclusions

This study has analysed the sensitivity of the parameters of
the Takagi-Sugeno-Kang rainfall-runoff fuzzy models pro-
posed by Jacquin and Shamseldin (2006). These models
can be classified in two model types, each consisting of five
model structures of increasing complexity. The fuzzy mod-
els TSK1.5 and TSK2.5 are the most complex within types 1
and 2, respectively, and they include all the model compo-
nents found in the simpler fuzzy models of the correspond-
ing group. Two global sensitivity analysis methods were ap-
plied, namely the RSA and SVD methods. In general, the

Table 9. Total effect sensitivity indices of the parameters of the
fuzzy model TSK2.5. Dark gray shading indicates values greater
than 0.3 and light gray shading indicates values between 0.15 and
0.3.

Catch- Para- Calibration Verification
ment meter

group

R2 REVF REP R2 REVF REP

Sunkosi-1 cm 0.07 0.03 0.42 0.10 0.03 0.38
σm 0.29 0.23 0.37 0.29 0.23 0.33
b0,m 0.95 0.95 0.84 0.95 0.95 0.84
b2,m 0.10 0.08 0.59 0.09 0.07 0.48
nm 0.03 0.02 0.10 0.03 0.02 0.08
(nK)m 0.04 0.03 0.13 0.04 0.03 0.11

Yanbian cm 0.04 0.03 0.44 0.05 0.03 0.48
σm 0.28 0.23 0.41 0.27 0.23 0.39
b0,m 0.96 0.98 0.84 0.96 0.97 0.84
b2,m 0.06 0.05 0.43 0.06 0.05 0.46
nm 0.03 0.02 0.10 0.03 0.02 0.12
(nK)m 0.03 0.03 0.18 0.03 0.03 0.18

Shiquan-3 cm 0.03 0.03 0.12 0.03 0.03 0.18
σm 0.26 0.23 0.24 0.26 0.23 0.25
b0,m 0.98 0.99 0.97 0.98 0.99 0.96
b2,m 0.03 0.03 0.05 0.04 0.03 0.06
nm 0.03 0.02 0.03 0.03 0.02 0.04
(nK)m 0.03 0.02 0.04 0.03 0.02 0.06

Brosna cm 0.05 0.03 0.31 0.07 0.03 0.34
σm 0.27 0.23 0.43 0.28 0.23 0.47
b0,m 0.86 0.89 0.76 0.85 0.86 0.78
b2,m 0.23 0.16 0.52 0.26 0.19 0.54
nm 0.03 0.02 0.08 0.03 0.02 0.11
(nK)m 0.06 0.04 0.29 0.07 0.04 0.28

Bird Creek cm 0.03 0.03 0.08 0.03 0.03 0.06
σm 0.26 0.23 0.24 0.26 0.24 0.23
b0,m 0.98 0.99 0.98 0.98 0.99 0.98
b2,m 0.03 0.03 0.04 0.03 0.03 0.04
nm 0.03 0.02 0.03 0.03 0.02 0.03
(nK)m 0.03 0.02 0.04 0.03 0.02 0.04

Wollombi cm 0.03 0.03 0.14 0.03 0.03 0.06
Brook σm 0.26 0.23 0.25 0.26 0.23 0.24

b0,m 0.98 0.99 0.93 0.97 0.99 0.95
b2,m 0.04 0.03 0.10 0.04 0.03 0.07
nm 0.03 0.02 0.05 0.03 0.02 0.05
(nK)m 0.03 0.02 0.11 0.03 0.03 0.08

RSA method has the disadvantage of not being able to detect
sensitivities arising from parameter interactions. By contrast,
the SVD method is suitable for analysing models where the
model response surface is expected to be affected by interac-
tions at a local scale and/or local optima, such as the case
of the rainfall-runoff fuzzy models of Jacquin and Sham-
seldin (2006).

Overall, the results of this study reveal that parameter sen-
sitivities of fuzzy models TSK1.5 and TSK2.5 depend on the
type of non-linear effects (i.e. seasonality or intrinsic non-
linearity) that dominates the catchment’s rainfall-runoff re-
lationship. It was also observed that, for a given catchment,
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parameter sensitivities vary according to the statistic chosen
for evaluating model performance. For example, the total
effects of the antecedent centrescm in the performance of
TSK2.5 are generally low, but the statistic REP (reflecting
the relative error to the peak) was found to be very sensitiv-
ity to these parameters in the case of the seasonal catchments.
These results are in agreement with previous research, show-
ing that the sensitivity of the parameters of a rainfall-runoff
model is dependent on the catchment’s hydroclimatic charac-
teristics and on the measure of model performance (Tang et
al., 2007; van Werkhoven et al., 2008). However, broad gen-
eralizations on parameter sensitivities of the fuzzy models
TSK1.5 and TSK2.5 can still be attempted, with the purpose
of facilitating the calibration process by identifying the pa-
rameters with the highest influence in the model’s goodness
of fit, and those which can be fixed without important loss of
accuracy in the discharge estimates.

In the case of the fuzzy model TSK1.5, it was found that
the performance of the model is quite sensitive to the an-
tecedent centrescm, although most of this influence is due to
interactions with the parametersb0,m. It was also observed
that the antecedent spreadsσm have a moderate importance
in determining the model performance of TSK1.5. Similarly,
it was observed that the antecedent parameterscm andσm

generally do not have a high influence in the performance of
TSK2.5. These situations imply that the actual definition of
the antecedent fuzzy sets is not, on its own, a determinant
factor for the goodness of fit of the fuzzy models TSK1.5
and TSK2.5. It would be possible to fix the antecedent pa-
rameters prior to the calibration of the fuzzy models without
an important deterioration of model performance, provided
that the values of the remaining parameters are conveniently
adjusted.

It was also observed that, in general, the coefficientsb2,m

do not greatly affect the performance of TSK1.5 and TSK2.5.
By contrast, the free termsb0,m were identified as the param-
eters with the highest influence in the performance of TSK1.5
and TSK2.5. Moreover, these parameters exhibit quite high
(and also the highest) first-order effects in all cases, mod-
ifying the model performance independently of interactions
with parameters in other groups. As pointed out by Saltelli et
al. (2004), the identification of appropriate values for param-
eters with a high first-order effect should be a priority dur-
ing the process of model calibration. Nevertheless, Jacquin
and Shamseldin (2006) showed that removing the parameters
b0,m, by moving from the fuzzy models TSKx.3 and TSKx.5
to the simpler TSKx.2 and TSKx.4, respectively, does not
have a significant impact in the performance of the opti-
mised rainfall-runoff fuzzy model. This situation indicates
that finding the “true” values of the free termsb0,m does not
necessarily improve the goodness of fit, as long as these pa-
rameters are all assigned zero values.

This apparent contradiction between the findings of
Jacquin and Shamseldin (2006) and the results of the sen-
sitivity analysis presented in this study can be explained af-

ter a more careful consideration of the facts. First, the large
total and first-order effects of the parametersb0,m indicate
that allowing a free variation of these parameters across their
feasible range does produce important changes in the good-
ness of fit of the fuzzy models TSK1.5 and TSK2.5. In fact,
assigning very inappropriate values to these parameters may
result in an important deterioration of model performance;
for example, assigning highly negative values to the param-
etersb0,m in all of the rules would result in highly negative
discharge estimates in cases where the most recent rainfall
segment is null. However, it is still possible that a relatively
good (and nearly optimal) model response can be obtained
by fixing the values of the parametersb0,m as zero and cali-
brating the remaining model parameters accordingly.

Finally, the results of this study indicate that the gamma
distribution parametersnm and (nK)m are almost unimpor-
tant in determining the goodness of fit of the fuzzy models
TSK1.5 and TSK2.5. These results are in agreement with the
findings of Jacquin and Shamseldin (2006), in the sense that
allowing a different pulse response for each rule consequent
(i.e. moving from the fuzzy models TSKx.2 and TSKx.3 to
TSKx.4 and TSKx.5, respectively) does not necessarily im-
prove the performance of the optimised fuzzy model. In or-
der to reduce the dimensionality of the optimisation problem
associated with the calibration of the model, these param-
eters could be excluded from the search of the behavioural
regions of the parameter space, by assigning to them fixed
values within their feasible ranges. For example, the values
of the parametersnm and (nK)m of all the fuzzy rules could
be given the same values as those of the auxiliary SLM. As
seen in Sect. 3.2, this would be equivalent to abandoning the
models TSK1.5 and TSK2.5 in favour of the more parsimo-
nious TSK1.3 and TSK2.3, respectively.

Further work could explore the application of the GSA
methods applied in this paper to other hydrological models
based on soft computing methods. For example, it would
be convenient to perform sensitivity analysis of other fuzzy
model structures. Similarly, it would also be interesting to
use this methods method for investigating the relative im-
portance of the parameters of typical neural network based
rainfall-runoff models. The application of the method would
allow identifying those parameters whose values can be fixed
without important deterioration in model performance and
those parameters whose appropriate calibration is most im-
portant.
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