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Abstract. From the point of view of multisite stochastic
daily rainfall modelling, there are two new ideas introduced
in this paper. The first is the use of asymmetrical copulas
to model the spatial interdependence structure of the rainfall
amounts together with the rainfall occurrences in one rela-
tionship. The second is in the evaluation of the (necessary
but often ignored) congregating behaviour of the higher val-
ues of simulated rainfall; this evaluation is performed by cal-
culating the entropy of the observations at all the near equi-
lateral triangles that can be formed from the sequences at the
gauge sites, as a function of their mutual separation distance.
It turns out that the model captures the qualities desired and
offers a fresh approach to a relatively mature problem in hy-
drometeorology.

1 Introduction

In 21st century hydrology, there is a growing need to match
precipitation simulation to the fine spatial scale of distributed
hydrological models. Random fields mimicking radar rain-
fields offer an attractive possibility, but the lowly rain-gauge
is still the instrument of choice for conditioning such fields.
Without a good model for multi-site daily rainfall at gauge
sites, a random field model would likely be missing some
connection to the reality of the detail, particularly those as-
pects dependent on location. It is the purpose of this paper
to delve into the underlying interdependence between daily
rain-gauge readings in a variable terrain and model it faith-
fully.

Careful study of the dependence structure of many hy-
drometeorological data sets, both spatial and temporal, re-
veals that the dependence is more complex than that mod-
elled by conventional correlation of the multivariate normal.
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The tool used in this paper for modelling this complex de-
pendence is the multivariate copula, relating observations at
many sites in space and time. The advantages that can be as-
cribed to using copula densities to represent interdependence
between variables include the following properties:

– The empirical copulas (probability density scatterplots
in many dimensions) are independent of their corre-
sponding marginal distributions, so that copulas display
interdependence between variables in its purest or es-
sential form.

– Empirical copulas are easily computed from data.

– Differences in types of association between variables
are readily identified by copula shape.

– A suite of theoretical copula density functions has been
developed to model these attributes.

We proceed by describing how copulas can be used for
modelling spatial and temporal relationships between vari-
ables sampled at fixed locations. As a point of departure, the
normal score (or quantile) transform (NQT) has been used
in multi-site stochastic simulation in hydrology for the last
40 or more years, starting with the work ofThomas and
Fiering (1962) and Matalas(1967). In their approach, to
achieve the simulation, field variables are analysed and their
marginal distributions fitted. These are then transformed to
normal variates and these in turn are associated by their pair-
wise correlations through the multivariate normal distribu-
tion function. The unique advantage of the multivariate nor-
mal is that all higher order correlations are implicitly defined
by the second order moments. Thus, in simulation, genera-
tion of the multi-site replicates of the field variables is readily
achieved by generating properly associated multivariate nor-
mal variates which are back-transformed to synthetic field
variables. These ideas are now common practice in hydro-
logical applications.
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A careful examination of sample copulas of hydrometeo-
rological processes reveals, however, that there is frequently
a significant departure of the dependence structure from that
of the bivariate Gaussian which is simply defined by its cor-
relation coefficient. The question posed and answered in this
paper is: How does one exploit this knowledge in simulation
of multi-site daily rainfall?

1.1 Simulation of multi-site Time Series of daily
precipitation

Srikanthan and McMahon(2001) gave an extensive review
of rainfall models, including multisite network modelling.
There has since been continued interest in the subject and
we name some of the activity (this is not an exhaustive
list as we use a different modelling procedure in this pa-
per). Srikanthan(2005) generated the daily rainfall values
via a season-dependent multisite AR(1) model, based on the
work of Wilks (1998), which was then post-conditioned to
give the observed monthly and annual variations.Mehro-
tra et al.(2006) compared three multi-site stochastic weather
generators, including (i) a parametric hidden Markov model
(HMM), (ii) the Srikanthan(2005) multi-site stochastic pre-
cipitation generation model proposed byWilks (1998) and
(iii) a non-parametric K-nearest neighbour (KNN) model,
concluding that Wilks-based model had the edge.Apipat-
tanavis et al.(2007) used a semiparametric blend of Markov
chains and Bootstrap resampling.Mehrotra and Sharma
(2007) proposed a modification of the traditional Markov
chain approach for modelling the occurrences, using an ana-
lytically derived factor that represents the influence of rain-
fall aggregated over long time periods in an attempt to incor-
porate low-frequency variability in simulation.Srikanthan
and Pegram(2009) extended the post-conditioning in the ear-
lier work of Srikanthan(2005) to include spatial as well as
temporal dependence to the same end.

One of the notable features of rainfall estimated by radar is
that the low frequency fluctuations of the random field are ev-
ident in zones of higher rainfall distinct from zones of lower
rainfall. Data sampled from raingauge networks also exhibits
this behaviour (the grouping of high separate from low val-
ues) but is not so obvious. This strong spatial dependence
has its origins in the physics of rainfall accumulations and
has traditionally been modelled by two-dimensional tools in
the past (covariance and variogram functions, for example)
and we suggest that the spatial interdependence is stronger
than can be captured by pairwise modelling.

To model this spatial dependence we go part of the way
to multidimensional copulas by introducing stronger depen-
dence structures for high rainfall values than low ones. To
test this congregating property by using bivariate correlations
is not enough. To ascertain whether rainfall data and simula-
tions can capture the higher dimensional spatial dependence
structure, we have devised a spatial statistic based on the joint
probabilities of rainfall behaviour, above certain thresholds,

measured at the vertices of nearly equilateral triangles over a
range of sizes in the gauge network. The measure of associ-
ation depends on the entropy of the 3-variate 2-state proba-
bilities of each triangular set, defined by a quantile threshold
of choice. We chose this configuration because acute angled
triangles, in the limit, degenerate to straight lines, destroy-
ing the spatial property we wish to explore. We choose to
call this behaviour “congregating” rather than use the word
“clustering” which has other connotations.

By congregation, we mean that on a particular day of rain
on a region, the wet gauges will tend to group in a small num-
ber of sub-regions, with the interior of each of the congrega-
tions experiencing more rainfall than the edges fringed by
dry gauges, as observed in the records. We suggest that the
multisite copula-based model will dynamically model that
feature better, because the wet-dry process and the amount
process are jointly described by the dependencies captured
by the multivariate copulas. This is the important innovation
of the modelling procedure introduced herein.

Turning to the detail of jointly modelling occurrences and
amounts of rainfall at more than one site,Herr and Krzyszto-
fowicz (2005) developed a normal quantile based procedure
for modelling pairs of rain gauge records, in particular they
separately modelled the dry and wet probabilities and the
marginal and joint wet distributions. In this paper, we use
that approach as a point of departure to model many sites
through the use of multivariate copulas which implicitly cap-
ture the pair-wise joint wet and dry processes as well as
the mixed wet and dry possibilities. The approach goes be-
yond the combination of Markov chains for occurrences and
the separate generation of correlated amounts for the wet
sites used previously by most authors quoted above. These
are typified bySrikanthan and Pegram(2009), who used
a two-tiered model: a multi-site bivariate Markov chain to
model the wet-dry occurrences and a multivariate Gamma
AR(1) process to model the jointly wet events. Although
that model satisfactorily mimics and reproduces the histor-
ical daily, monthly and annual statistics, there is no feature
built in to that approach to mimic the congregation of high
values, other than cross-correlation.

The novelty in the copula-based application is that both
occurrences and amounts are generated from the same inter-
dependence process, which was an idea thatSerinaldi(2009)
published while this paper was being submitted. In the pro-
cedure adopted in this paper, in simulating a rainfield on a
particular day, a set of hidden correlated normal Y-vectors
is generated via a multi-site autoregressive process, depen-
dent on each other and on the previous day’s values. These
are transformed to uniformly distributed copula variables
through the non-linear V-transform (to be introduced in the
sequel) and in turn using these quantiles, the field values Z
(occurrences and amounts) are obtained, with the congrega-
tion of similar quantiles of wetness at gauges being implicitly
modelled.
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The paper is structured as follows after this introduction:
the problem is defined and copulas are explained; the copula-
based multi-site time series model of daily rainfall is outlined
theoretically and the theory behind the entropy-based congr-
regation measure is developed; comparisons between (i) the
observed and (ii) sets of simulated replicate daily data are
made; the congregation behaviour of the modelled rainfall is
compared with the observed through innovative entropy cal-
culations; conclusions are drawn.

2 Problem definition

2.1 Description of the data to be modelled

The sites of the records studied in this paper appear in
Fig. 1 in a region which has non-homogeneous meteoro-
logical characteristics, effectively a mesoscale sized area
in Baden-Ẅurtemberg in South-West Germany. 32 stations
with daily records from 1958 to 2001 were selected and are
located around the Black Forest on the west and east side
of the mountains, chosen particularly because of the hetero-
geneity of the statistics of the records.

The resolution of the data is 0.1 mm, so that any ob-
servation less than this threshold is taken to be a dry day.
Examining such a record reveals intermittency of rainfall,
in both space and time. From experience and observation,
clouds produce highly variable precipitation in random con-
gregations. These events range from intermittent, locally
intense, and fragmentary convective ones, to long-lasting,
well spread, persistent, stratiform ones. The statistics of the
daily raingauge observations of the observed events reflect
these characteristics, occurrences being isolated or congre-
gated in space and time, while the amounts are relatively
highly skewed.

The spatial dependence structure of daily rainfall is more
complex than can be modelled by a simple correlation co-
efficient over the range of observed values. Where the ob-
served values are low, they tend to be scattered and inter-
mittent, exhibiting a poor spatial dependency. By contrast,
where the rainfalls are high, they tend to be spatially and
temporally more dependent. This interdependence which is
related to the amount of rain needs an appropriate technique
to describe it. The choice here is the multivariate copula;
only a short introduction on copulas is given here; readers
interested in more general details are referred toJoe(1997),
Nelsen(1999), or Salvadori et al.(2007).

A copula is defined as a distribution function on the n-
dimensional unit cube. All marginal distributions are uni-
form:

C : [0,1]n → [0,1] (1)

C(u) = ui if the vector u = (1,...,1,ui,1,...,1) (2)

For everyn dimensional hypercube within the unit hyper-
cube, the corresponding probability has to be non-negative.
Copulas and multivariate distributions are linked to each

Fig. 1. The locations of the rain gauge stations indicated by circled
dots, around the Black Forest within the German state of Baden-
Württemberg used in this study; shading darkens with increasing
altitude above sea level. Stations 1 and 23 are coloured brown and
blue respectively and will be used in the discussion in Section2.2.
The full numbering appears in Fig.8.

other by Sklar’s theoremSklar(1959). Sklar proved that each
multivariate distributionF (t1,...,tn) can be represented with
the help of a copula:

F (t1,...,tn) = C
(
Ft1 (t1),...Ftn (tn)

)
(3)

whereFti (ti) represents the i-th one-dimensional marginal
distribution of the multivariate distribution. If the distribu-
tion is continuous then the copulaC is unique. Copulas can
be constructed from distribution functions, as described by
Nelsen(1999):

C(u) = C(u1,...,un) = F
(
F−1

t1
(t1),...F

−1
tn

(tn)
)

(4)

The advantage of using a copula is that it is invariant
to strictly increasing monotonic transformations of the vari-
ables. Thus the frequent dilemma whether to transform data
or not (for example taking the natural logarithms) does not
occur in this case.

An interesting and important property of a copula is
whether the corresponding dependence is the same for high
or low values. A bivariate copula expresses a symmetrical
dependence if:

C(u,v) = C(1−u,1−v)−1+u+v (5)

which means that the copula density is symmetrical with re-
spect to the secondary diagonalu = 1−v of the unit square
and the copula densityc satisfies:

c(u,v) = c(1−u,1−v) (6)
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(a)

(b)

Fig. 2. Two sample copulas for station pairs 1 and 23, the upper
panel(a) for Summer (June to August) and the bottom panel(b) for
the relatively wetter Winter (December to February); see Fig.10for
station locations and Table1 for P [0] values in January and July,
which are close to the thresholds in these figures.

2.2 Examples of empirical copulas of daily rainfall

Copulas are most usefully visualised as bivariate densities
rather than bivariate cumulative functions of joint probabil-
ity on the space[0,1]

2. In Fig. 2 we show two examples of
empirical copulas derived from scatter-plots of pairs of daily
recording rain gauges. The empirical copula densities sam-
pled from the pair of stations 1 and 23 (on opposite sides
of the divide as will be seen in Fig.1), appear in Fig.2a
and b, respectively for summer (June, July, and August) and
for winter (December, January, and February). The horizon-
tal and vertical lines indicate the probability limits for the
dry/wet boundaries, both evidently drier in summer than in

winter. These figures exhibit a constant density for the “both
dry” condition in the plateau defined in the lower left cor-
ner. The upper left and lower right quadrants show the one-
dimensional marginal densities of the wet gauge given that
the other is dry, thus one can see all the conditional distribu-
tions in one figure.

2.3 Examples of models of theoretical copulas for
multisite rainfall

Figure3a shows an example of the bivariate normal copula
with a relatively high constant correlation of 0.85, which is
seen to exhibit symmetry about both diagonals. We note that
any Normal Quantile (scores) transform from arbitrary joint
distribution functions to Gaussian, allowing the modelling of
the correlation structure of the bivariate Normal to dictate
the interdependence, will maintain the bisymmetric nature
of the bivariate normal copula. Thus low values will be as
well correlated as high values, as is expected in the normal
copula. The image in Fig. 3b shows the partitioned version
of the normal copula in Fig.3a.

Evidently there is a need to model the observed depen-
dence structure more carefully than via the normal score
transform, whose dependence structure is locked into the bi-
variate normal copula, independent of any monotonic quan-
tile transform. This fundamental property (of the interdepen-
dence between the variables being completely unaffected by
the transformations of the field variables’ marginal distribu-
tions) is not easy to grasp until it is fully understood that the
dependence structure displayed by the copula is dependent
only on the rank of the observation, not its marginal distribu-
tion.

No monotonic transform of the normal distribution is go-
ing to yield a copula in character different to Fig.3. Theo-
retical models of copulas are difficult to come by, however,
Bárdossy(2006) introduced some which provide a basis for
achieving the type of asymmetrical behaviour found in em-
pirical copulas, of which Fig. 2 is an example.

Meta-elliptical copulasFang et al.(2002) offer another al-
ternative for the description of the dependence structure of
precipitation. These copulas however are radially symmetri-
cal and, except for the special case of the normal distribution,
cannot be parameterized to represent independent marginals.

In our first choice to achieve asymmetry, a hidden standard
normal density is folded about its origin by a modular trans-
form (and variants) that ensure that highly negative and pos-
itive values occupy the same location on the copula density
space. The new V-copula model chosen was introduced by
Bárdossy and Li(2008) and is based on the modulus trans-
form, where all negative values are mapped onto their cor-
responding positive values. An example of such a copula is
shown in Fig.4c (a partitioned version of Fig.4a), which will
be seen to reflect the desired characteristics of the sampled
spatial daily rainfall copulas in Fig.2. Figure4b which has
different parameters does not exhibit the “waist” appearing
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(a)

(b)

Fig. 3. (a)Bivariate normal copula density withρ=0.85, the lower
panel(b) is the partitioned version of the upper panel (a), where
P [zero rainfall]=0.51 in each case.

in Fig. 4a and in the copulas of data of Fig.2a and b. The
parameters will be defined in the theoretical development in
the next section.

In contrast to the work ofSerinaldi(2008) who concen-
trated on the upper-tail dependence structure of 2-copulas,
we are concerned about the joint interdependence of congre-
gations of rainfall stations. Congregation behaviour is the
feature of widespread flood-causing rainfall and it is this fea-
ture which we do not want to lose in the rainfall model. We
are particularly interested in the joint modelling of multisite
daily rainfall and would eventually like to model the spatial
behaviour, not as a conglomerate of bivariate relationships as
has been done with the multinormal, but as jointly multidi-
mensional copulas as was done byBárdossy and Li(2008).
However, the copula model we chose for this rainfall network

(a)

(b)

(c)

Fig. 4. Copula densities using the v- transform copula model
with hidden normal density:(a) k = 4.0, m = 0, ρ = 0.75, (b)
k = 1.0, m = 1, ρ = 0.75, and(c) the partitioned version of the v-
transformed copula in Fig. 4a.

www.hydrol-earth-syst-sci.net/13/2299/2009/ Hydrol. Earth Syst. Sci., 13, 2299–2314, 2009



2304 A. B́ardossy and G. G. S. Pegram: Copula based multisite model

application is still a multisite bivariate model in principle,
as it is predicated on a hidden covariance Gaussian model.
To check if this copula-based model can capture spatial
dependence better than the conventional covariance based
model, we use the entropy of the observations of the trian-
gular triples. This entropy procedure is fully developed in
Sect. 3.4.

3 The model

3.1 Theory behind the model

The rainfall observed at sitei = 1,2,...,n on dayt is labelled
zi(t). To model these data, we work through three stages: a
hidden multisite AR(1) time series model; a non-linear trans-
form to an intermediate variable defining the copulas; the
transform of the quantiles defined by the copulas to the sim-
ulated field variables.

The multi-site Auto-Regressive lag-1, or AR(1) model,
suggested byPegram and James(1972), based on the
seminal paper ofMatalas (1967), is used as the driver
for the multi-site rainfall model, for both the dry and
wet occurrences and the wet amounts, specified as follows:

y(t) = diag{ri(t)}y (t −1)+diag
{[

1−r2
i (t)

]1/2
}
a(t)

where:

y(t) = {yi(t),i = 1,2,...,n} is a vector of correlated
Gaussian variates corresponding to each of
the n sites on dayt , suitably transformed from
thezi(t) observations.

ri(t) = are the serial correlations between theyi-values
and depend on the month in whicht falls;
they have to be inferred after the transformation
by the copula of thez-values to theys in
the Gaussian domain

a(t) = B(t)e(t) is a cross-correlated “noise” vector
B(t) is the “square root” matrix of the cross-correla-

tion matrixG(t) relating they(t) through
thea(t)-values during the month corresponding
to dayt , in the sense thatBT B = G

e(t) is ann-vector of IID standardised
Gaussian random variates.

In this model the serial dependence is restricted to each
site, while the cross-correlation comes through the noise term
a(t). The factorisation ofG is achieved by singular value
decomposition (SVD) (see for examplePress et al., 1992),
which is stable even ifG is ill-conditioned. Briefly, SVD
decomposesG into G = V WUT , whereW is diagonal and
comprises the singular values.U andV are orthonormal and
in the particular case thatG is square (the case of a covari-
ance matrix),UT V = I . B may be (not uniquely) computed
asV W1/2UT , whereW1/2

= diag{w
1/2
i }, so thatB = BT .

In this formulationB is full, not triangular as in Cholesky
decomposition which fails whenG is ill-conditioned.

The relationship between thehiddenyi(t) values and the
corresponding rainfall amountszi(t) (including the dry days)
is developed through the following transform; this relation-
ship is used both for estimation and for simulation.

The transform for the copulas works as follows:y is Gaus-
sian; we define an intermediate variables = g(y), where

g(y) = m−y if y <m

= k(y −m)α otherwise
(7)

Note that ifm = 0 andk = α = 1, theng(y) = |y|, so in that
case, the non-linear transformg(.) is based on a non-shifted
modulus.

Figure5 shows the relationship, form = 1 andk = α = 2
in three stages: the standard normal in the upper panel, then
the transformation fromy to s in the middle panel and then
in the lower panel, a comparison of the densities of the two
distributions, the shifted normal and the V-copula-based one:
φ(m−y) andfg(s). Note the long tail ins in the case of the
latter.

Returning to the development, the distribution function of
S = g(Y ) is thus

Fg(s) = P [S < s] = P
[
m−s <Y < (s/k)1/α

+m
]

= 8
[
(s/k)1/α

+m
]
−8[m−s]

(8)

and the density function ofS is

fg(s) =
1

kα

( s

k

) 1
α
−1

φ

[( s

k

) 1
α
+m

]
+φ[m−s] (9)

shown in comparison with the normal densityφ(y−m), with
m = 1 in Fig.5.

To picture the relationship, the points wheres = |y|

are computed and shown explicitly in the middle panel of
Fig. 5: we getP [S < 2.2808] = P [−2.2808< Y < 2.2808],
as shown by the intersections of the horizontal and vertical
lines.

Whenm > 3, then8[(s/k)1/α
+m] ≈ 1 thusFg(s) ≈ 1−

8[m− s] = 8[s −m], so thats approaches Gaussianity in
this case.

The quantile defined by the cdfFg(s) is related to the cor-
responding rainfall amount through the transform:

zi (t) = F−1
zi

[
Fg (s)

]
(10)

whereFzi
[.] is the marginal (mixed discrete and continuous)

cdf of zi(t) at theith site, whose parameters are dependent
on the month into whicht falls.

The V-transform explicitly models the difference between
two rainfall modelling/generating processes; it separates the
positive (wet) rainfall values into two distinct component dis-
tributions which are separated by a zone corresponding to no
precipitation. These lower and upper arms of the V-transform
can be interpreted as describing advective/stratiform and
convective precipitation respectively. Figure6 shows the
conditional distributions corresponding to the two compo-
nents – (the parameters arem=1.5,k=2, andα=2). One can
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Fig. 5. The copula variables transformed from the Gaussiany. The
value ofs indicated by the horizontal line in the middle panel(b) of
the figure is 2.2808. The vertical lines, through the intersection of
thes = 2.2808 line with thes = g(y) curves, are the two values ofy

definings, and in the upper panel(a) they bound the segment of the
standard normal distribution integrated to giveP [S < s], leading to
the cdfFg(s) of s. The densitiesφ(y −m) & fg(s) appear in the
lowest panel(c).

see that the blue distribution corresponding to the high non-
linear transformed values on the right arm of the v-transform
produces much higher precipitation values than the red distri-
bution derived from the left arm, which is in fact a segment of
the (untransformed) normal distribution. A special analysis
(not detailed here) of the correlations within sets of precip-
itation values generated from the two arms of the V-copula
transform, shows that the correlation between the series is
different for the two different generating mechanisms. For
the above defined parameters with P[0]=0.5 one has a cor-
relation of 0.81 for the precipitation amounts corresponding
to the lower arm of the V-transformation and 0.48 for the
upper arm. Thus the lower arm represents the advective (or
stratiform) processes better than the upper arm, which corre-
sponds to scattered occasionally very intense (or convective)
precipitation.

Fig. 6. Division of rainfall amount distribution corresponding to the
left arm of the transformation (advective/stratiform precipitation) –
red line and to the right arm (convective precipitation) – blue line.
Parameters used for this transformation arem = 1.5, k = 2, α = 2,
and a Weibull distribution of the precipitation amounts is assumed.

In more detail, we can extract the wet amount and dry in-
formation directly froms depending on the dry probability at
a sitei on a given dayt :

zi(t) = 0 if Fg(s)<pi(t)

= F−1
wi

[{
Fg(s)−pi(t)

}
/{1−pi(t)}

]
otherwise

(11)

Here Fwi
(z) is the distribution function of precipitation

amounts at locationi on wet days,pi(t) is the probability
of a dry day at locationi. The above definition leads to cor-
rect marginals at each observation location.

The interdependence of precipitation amounts is obtained
through the interdependence structure ofY . The main diffi-
culty in this representation is that the parameters of the hid-
denY andg have to be estimated by searching for the correct
parameter set, whereZ is the only observed information set;
this has to be done by maximum likelihood using nonlinear
optimisation.

The spatial dependence between precipitation observa-
tions is described by the copula of the multivariate distri-
bution defined by the transformation functiong(y) through
the correlation matrixG of the hidden Gaussian variables
y. Note that this copulaC(u1,u2,...,un) is only properly
defined forui > pi(t), because of the pole of probability at
(0,0) and in addition, the ‘conditional’ marginal distributions
Fg(ui,0) andFg(0,uj ) for i 6= j , are spread over the left and
bottom quadrants of the copula, as shown in Fig.2.

To develop the model for spatial dependence, the bivariate
marginal copulas describing the dependence between pre-
cipitation amounts corresponding to two different locations
can be obtained from theg-transformed bivariate normal

www.hydrol-earth-syst-sci.net/13/2299/2009/ Hydrol. Earth Syst. Sci., 13, 2299–2314, 2009
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distribution of the y-variates. The distribution function is:

Fg

(
si,sj

)
= P

[
Si (t) < si,Sj (t) < sj

]
=

= P
[
g(Yi) < si,g

(
Yj

)
< sj

]
= P

[
Yi < (si/k)1/α

+m,Yj <
(
sj/k

)1/α
+m

]
−

P
[
Yi < m−si,Yj <

(
sj/k

)1/α
+m

]
−

P
[
Yi < (si/k)1/α

+m,Yj < m−sj
]
+

P
[
Yi < m−si,Yj < m−sj

]
= 82

[
(si/k)1/α

+m,
(
sj/k

)1/α
+m

]
−

82

[
m−si,

(
sj/k

)1/α
+m

]
−

82
[
(si/k)1/α

+m,m−sj
]
+

82
[
m−si,m−sj

]
.

(12)

Here82 is the bivariate normal distribution function, with
standard normal marginals and correlationρ. The corre-
sponding density required for finding the parameters of the
hidden AR(1) model, for the case of two sites by maximum
likelihood are found by differentiation:

∂2Fg

(
si,sj

)
/∂si∂sj = fg

(
si,sj

)
fg

(
si,sj

)
=

{
1/

(
k2α2

)(
sisj/k2

)1/α−1
}

φ2

[
(si/k)1/α

+m,
(
sj/k

)1/α
+m

]
+{

1/(kα)
(
sj/k

)1/α−1
}

φ2

[
m−si,

(
sj/k

)1/α
+m

]
+{

1/(kα)(si/k)1/α−1}
φ2

[
(si/k)1/α

+m,m−sj
]
+

φ2
[
m−si,m−sj

]
.

(13)

The n-dimensional joint density can be derived similarly
and with largen this soon becomes computationally demand-
ing in the general case. However, we chose the parameters
α,m andk of the copula to be the same for all sites which
eases the computational burden, but the marginalP [0] val-
ues for each station are different; the fitting is done simul-
taneously for all stations. We note that the estimation of
the copula parameters can be obtained by maximising then-
dimensional likelihood function numerically. In order to take
the discrete continuous character into acount the likelihood
function is built from then-dimensional version of Eq. (13)
for days with precipitation at all sites, while for days with
one or more dry stations the corresponding marginals have to
be integrated to the limit defined by the dry day probability.
Due to the fact that this procedure requires the summation of
2n terms for each day with observed precipitation, the proce-
dure had to be simplified. For a given triple of parametersm,
k, andα the correlations ofY can be estimated using maxi-
mum likelihood from the joint bi-variate distributions (taking

the zeros also into account). The sum of the log-likelihoods
of all pairs is used as an overall likelihood and maximized
by varying the triple of parametersm, k, andα. A numerical
optimization scheme was used for this purpose.

Although desirable in the long run, we did not perform any
estimation of precision of the parameters at this stage.

3.2 Parameter estimation – marginal distributions

The marginal distributions of the positive rainfall amounts
were estimated by maximum likelihood for each month at
each site. The candidate distributions were the Exponential
and the Weibull and that distribution was chosen whose AIC
(Akaike (1974)) was a minimum. The characteristics of the
two chosen distributions are (Linhart and Zucchini(1986)):

– Exponential distribution:

– parameter:a (scale)

– probability density function:
f (x) = (1/a)exp(−x/a)

– maximum likelihood estimator:
a = sample mean

– AIC: = ln(a)+1+1/n

– generate exponential random deviate:
x = −a lnU

– Weibull distribution:

– parameter:a (scale),b (shape)

– probability density function:
f (x) = (b/a)(x/a)b−1exp

[
−(x/a)b

]
– maximum likelihood estimator:

b =
{(∑n

1xb
i lnxi

)
/
(∑n

1xb
i

)
−(1/n)

∑n
1 lnxi

}
– once b is found by search:

a =
{
(1/n)

∑n
1xb

i

}1/b

– AIC:
= −

{
n[lnb−b lna] +(b−1)

∑n
1 lnxi−

b
∑n

1(xi/a)
}
+2/n

– if b = 1, the Weibull reduces to Exponential

– generate Weibull random deviate:x = a [−lnU ]1/b

The AIC values obtained for Exponential and Weibull fits
were 2.21 and 2.17, respectively, so the Weibull distribution
was chose to model the wet values.

3.3 Parameter estimation – spatial and temporal
copulas

The parameters of the copula are defined through the non-
linear V-copula transform if the parameters of the multivari-
ate distribution which are used for its definition are defined.
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Due to the fact that the distribution function of the precipi-
tation is mixed discrete-continuous, the corresponding cop-
ula is non unique. The fit of the copula represents the wet-
wet corner well and provides reasonable marginals for the
dry/wet distributions. One has to estimate the (global) trans-
formation parametersm, k, andα (one set for each season,
for both spatial and temporal interdependence), the individ-
ual 12n(n−1)/2 monthly pairwise spatial correlation coef-
ficients of the underlying multivariate normal random vari-
able and the 12n monthly station temporal correlations of the
ARMA process.

It is appropriate at this stage to show an example of an
empirical copula linking rainfall temporally for a selected
gauge; it appears in Fig.7. In comparison with the spatial
copulas of Fig.2, it appears that the very wet and very light
rainfalls are more strongly related than the moderate ones, so
that the copula density of the wet quadrant exhibits a saddle-
shaped surface.

3.4 Validation using Entropy of the triple observations

The verification of statistics by intercomparison is a standard
prerequisite, but validation of the model by using statistics
not employed in the specification needs thought. To deter-
mine whether a model produces the same spatial congrega-
tion of rainfall values as the observations, something more
than pair wise correlation is required for validation. Pair wise
correlations can be used for verifying a model but not for in-
dependent validation, since they are used in the model defi-
nition.

The minimum construct for spatial dependence in the
plane is between the values observed at three points at the
vertices of a triangle. The shape of the triangle is impor-
tant and as its size increases one expects the dependence be-
tween the observations at the vertices to drop. The triangle
cannot be too long and thin, else there will be two points
close together or one near the middle of a line joining the
other two. The ideal of an equilateral triangle will ensure
that there are no ambiguities in mutual distance, since ori-
entation is of secondary importance. However, in randomly
scattered sites a compromise is necessary. An approximation
to equal sides needs to be allowed for in randomly spaced
data points, hence a reasonable constraint on the sides of the
triangle needs to be imposed. Because we used Heron’s for-
mula for the calculation of the triangle area A, we chose the
following criterion for the acceptance of a suitable triple of
points.

For each of the three pairs of sides in an adopted triangle,
we chose that the maximum difference in a pair must be less
than 10% of the perimeter of the triangle; i.e. for sidess1,
s2, ands3, p = s1+ s2+ s3 and the criterion is: accept triple
if max|si − sj |/p < 0.1 for all i andj not equal. Once the
triangle has been identified, A is calculated.

To determine the level of association between the values
at the vertices in a chosen triangle, we use all the contempo-

Fig. 7. Sample copula for the temporal structure of daily precip-
itation at station 14 (December–February); horizontal axis corre-
sponds to dayt , vertical axis to dayt+1.

raneous data at the sites to compute the joint wet/dry prob-
abilities. We then determine a given threshold to divide the
quantiles into binary sets. The three thresholds chosen for
this paper were (i) the wet/dry probabilities (set at 0.5) and
(ii) the 0.9 and (iii) 0.975 quantiles, noting that the average of
P [0] values determined for the 32 stations used in this study
over all months is 0.495.

In more detail, for each triple, the eight binary probabili-
tiesp(i,j,k), for i, j , k = 1,2 were calculated over all days
of the record, where the states 1 and 2 are the lower and up-
per partition of the probabilities by the threshold. Thus, for
example, the probability that all three gauges on a given day
are dry or wet arep(1,1,1) andp(2,2,2) respectively.

The entropy H of each of the sets of 8 probabilities was
calculated as a measure of dependence in a given triple; thus

H = −
∑

{p(i,j,k) · ln[p(i,j,k)]}

summed over all i,j,k for each triple
(14)

The lower the entropy, the greater will be the association
between the variables at a given threshold. We checked to
see whether eitherH or p(2,2,2) gave better discrimination
between the sets (observations and simulations) and it turned
out thatH was qualitatively better, benefitting from the extra
information contained in the other 7 probabilities. To deter-
mine how well the simulations compare with the observa-
tions,H was plotted against the square root of the area of the
triangle as a measure of mean spacing,h = A1/2, for each
permissible triangular triple. These results appear in Sect.5.
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Fig. 8. The locations of the rain gauge stations (with station 11
at the origin) in the Black Forest used in this study, indicated by
crosses. The two triangles based on station 11 are those with ex-
treme angles selected from the 32 including station 11; these are
used in the entropy calculation for validation, discussed in Sect.3.3.
The circled region includes gauges 1, 9, 17, and 25, whose means
appear in Fig.9.

4 Application of the methods

4.1 Data analysis – derived statistics of the observations

The model described above was applied to the set of se-
lected stations in Baden-Ẅurtemberg in South-West Ger-
many, whose locations are shown in Figs.1 and8. Mean pre-
cipitation amounts are highly variable in this region. Table1
shows the estimated January and July dry-day probabilities
and the mean precipitation amounts on wet days.

Figure9 shows the annual cycle of the average daily pre-
cipitation by month for a few stations. Note the different an-
nual cycles exhibited by the relatively close stations, which
are strongly linked to altitude. Locations 1 and 25 with low
elevations both on the west side of the Black forest have a
similar cycle, with highest precipitation amounts occurring
in early summer. Station 9 at a higher elevation located on
the top of the mountains is wetter and has an annual maxi-
mum in winter; station 17 at an intermediate altitude has a
nearly uniform mean. These differences present a challenge
for multisite precipitation modelling.

Marginal distributions and the copula parameters were
estimated for each month separately. Parameters of the
marginal distributions describing wet amounts were esti-
mated using the maximum likelihood method.

Table 1. Selected rainfall stations; extremes in each column in bold.

January July

Nr Location Elevation p0 Mean p0 Mean
(m) (mm) (mm)

1 Achern 138 0.41 3.7 0.55 6.7
2 Albstadt

Burgfelden 911 0.48 4.1 0.55 7.5
3 Altensteig Wart 594 0.43 4.6 0.53 5.3
4 Althengstett

Ottenbronn 530 0.47 3.8 0.55 5.4
5 Elzach

Oberprechtal 480 0.45 7.0 0.54 9.0
6 Gutach i,Br,

Bleibach 302 0.47 5.2 0.54 8.7
7 Freudenstadt

Kniebis 875 0.39 10.0 0.49 9.6
8 Freudenstadt

(WST) 797 0.36 8.7 0.50 7.7
9 Forbach

Herrenwies 750 0.45 10.4 0.52 10.4
10 Weisenbach 200 0.46 6.7 0.54 7.1
11 Eschbronn

Mariazell 716 0.53 4.9 0.58 6.3
12 Fluorn Winzeln 660 0.52 7.0 0.61 7.4
13 Freudenstadt

Igelsberg 757 0.37 7.0 0.51 7.0
14 Furtwangen 870 0.40 9.2 0.50 8.8
15 Offenburg 153 0.47 3.5 0.57 6.3
16 Rheinau

Memprechtshofen 131 0.49 3.8 0.59 6.5
17 Oppenau 315 0.42 7.3 0.52 8.3
18 Oberndorf/Neckar 516 0.46 5.3 0.53 5.9
19 Rosenfeld 640 0.45 3.8 0.54 5.8
20 Rottenburg,

Bad Niedernau 349 0.50 3.3 0.55 5.7
21 Oberreichenbach 639 0.44 5.1 0.53 5.9
22 Wolfach 265 0.46 6.7 0.54 8.4
23 Triberg Nussbach 720 0.44 7.3 0.52 7.8
24 Triberg 683 0.43 9.3 0.49 8.8
25 Willstätt

Legelshurst 140 0.54 3.5 0.62 6.8
26 Villingen

Schwenningen
(NST) 715 0.51 4.7 0.56 6.7

27 Tübingen
Bebenhausen 350 0.51 3.2 0.54 6.0

28 Enzkl̈osterle 600 0.43 7.8 0.52 7.4
29 Bad Wildbad

Sommerberg 740 0.41 7.2 0.50 7.0
30 Weil der Stadt 389 0.45 3.0 0.56 5.2
31 Tifenbronn 344 0.47 3.5 0.57 5.6
32 Villingen

Schwenningen 720 0.47 4.7 0.53 5.7

Figures10–14show typical general behaviour of the data.
The dry day probabilities’ variation over the months of the
year of four gauges introduced in Figs.8 and9 (gauges: 1,
9, 17, and 25), ranging from moderately dry to wet, appear
in Fig. 10. They fluctuate narrowly about the ensemble mean
of 0.495 and showing consistent low temporal variability in
this temperate zone.
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Fig. 9. Observed mean daily precipitation over the year for selected
stations from the west of the cluster shown in Fig.8; we note (by
comparison with Fig.1) that stations 1 and 25 lie in the low altitude
area to the West, and that stations 9 and 17, although close, are sited
at high and intermediate altitudes, clearly affecting the amount and
patterns of rainfall.

Fig. 10.The variation of the dry probabilities for 4 selected stations
by month.

Fig. 11. The standard deviations of daily rainfall for selected sta-
tions by month.

Fig. 12. Parameters of the copula transformation functiong.

Fig. 13. Serial correlations of the copula transformed y-variates
determined from the data for stations 1 to 8.

Fig. 14. Selected cross-correlations of the copula-transformed y-
variates for station 30 against stations 1 to 8, ranked by distance
from station 30.
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The standard deviations of wet values of the same stations,
shown in Fig.11, vary in much the same way as the means
shown in Fig.9.

The spatial copula parameters (m, k, andα) are estimated
for all gauges in the region each month using the multivariate
copula; these appear in Fig.12. This generalised treatment
may need to be refined to allow the behaviour of individual
gauges to be reflected in the model, but will add to com-
plexity at this stage. Note the near constancy of the shift
parameterm, with all months other than June and July hav-
ing values of 1.91 and above. June and July experience more
thunder-storms than the other months and havem=1.69 and
1.81, respectively. By contrast, the slopek of the right arm of
the v-copula shown in Fig.5, adjusts over the year to accom-
modate the proportions of stratiform and convective rain, be-
ing largest in the summer months.α needs to be constrained
and reaches its maximum of 3.5 over the first 6 months and
December.

The serial correlations driving the y-variates of the hidden
AR(1) multisite model are determined by maximum likeli-
hood through the inverse of the V-copula transform. These
temporal copulas are made to model the empirical temporal
copulas like that shown in Fig.7. The stations selected to
display these hidden correlations appear in Fig.13 and lie
along the SW-NE diagonal in Figs.1 and8, except for sta-
tions 1 and 2 which lie respectively in the extreme NW and
SE. There is thus a good spread of behaviour as also indi-
cated by the statistics in Table1. Sites 7 and 8 are close to
each other near the middle of Fig.8 and show the highest
(and most similar) correlations.

Spatial correlations of the copula-transformed y-variates
seem to depend on distance, as well as altitude. We com-
pute the monthly spatial cross-correlations of the Gaussian
y-variates between sites 1–8 against site 30, as shown in
Fig. 14, where the sites (1–8) have been ordered by their dis-
tance from site 30 (the furthest NE site of the set of 32) which
ranges from 10 to 97 km. We note that there is not much de-
pendence of this statistic on annual variability; it varies more
between sites.

The values in Fig.14, which range from 0.76 to 0.98,
are considerably higher than the correlations for the rain
amounts obtained by the Srikanthan-Pegram (henceforth
“covariance”) model, which range from 0.40 to 0.89 over
the same set of station inter-associations exhibited in the
figure. The (hidden) normal correlations for the occur-
rences (wet/dry) process in the covariance model are much
closer to those of the corresponding stations for the copula-
based model, ranging from 0.80 to 0.96. These sets of val-
ues are not strictly comparable because, in this paper we
are using the multinormal correlations of variables reverse-
transformed through the copula relationship, however, they
are interesting.

It is not strictly fair to compare these with the intersite cor-
relations of the hidden covariance model ofSrikanthan and
Pegram(2009). However, we will use that model in eval-

uating the efficacy of the entropy congregation criterion in
the next subsection, so it worth outlining its philosophy here.
The relevant passage from the abstract of that paper describes
the model as a

multisite two-part daily model nested in multisite
monthly, then annual models. A multivariate set
of fourth order Markov chains is used to model
the daily occurrence of rainfall; the daily spatial
correlation in the occurrence process is handled
by using suitably correlated uniformly distributed
variates via a Normal Scores Transform (NST) ob-
tained from a set of matched multinormal pseudo-
random variates, ... a hidden covariance model. A
spatially correlated two parameter gamma distri-
bution is used to obtain the rainfall depths; these
values are also correlated via a specially matched
hidden multinormal process.

Figure15 shows the scatterplots of the observed and sim-
ulated interstation correlations and rank correlations of the
rainfall amounts for winter. As one can see, the simulated
correlations are slightly lower than the observed ones. In
contrast, in the rank correlations there is no systematic dif-
ference between the simulated and the observed series. The
reason for this is that the copula approach is based on the
rank correlations fitted in the transformed domain.

5 Results: comparison of simulations with observations

20 replicates of the historical series (effectively 860 years)
were generated and certain statistics of interest were deter-
mined from these and compared to the corresponding statis-
tics of the historical series.

5.1 Calculation of distributional statistics

The performance of the model is demonstrated using differ-
ent uni- and multi-variate statistics. Figure16 shows the
(smoothed) annual cycles of the averages of the historical
and 20 simulated mean daily precipitation sequences, for a
pair of selected stations (8 and 30), where it is seen that the
values are satisfactorily recaptured, thus verifying this aspect
of the model behaviour.

To illustrate the performance of the model in the multivari-
ate sense, sets of unconditional and conditional cumulative
probability distributions were derived for station 7 with ref-
erence to two representatively different stations 8 and 30 (sta-
tion 7 is close to station 8 but far from station 30) for winter
and summer conditions. Due to the fact that small precipita-
tion amounts are usually not as important as large ones, con-
ditionals with thresholds were also considered. These com-
parisons appear in Figs.17and18, where a detailed comment
is given in the figure captions.
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Fig. 15. Cross-correlations (circles) and rank cross correlations (crosses) for the observed and simulated pre-

cipitation series.

Fig. 16. Comparison of the averages of 20 simulated and the observed mean daily precipitation over the year

for stations 8 and 30 - the average of the simulations is smoother, as expected.
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Fig. 15. Cross-correlations (circles) and rank cross correlations
(crosses) for the observed and simulated precipitation series.

Fig. 16. Comparison of the averages of 20 simulated and the ob-
served mean daily precipitation over the year for stations 8 and 30
– the average of the simulations is smoother, as expected.

The comparisons of observed and simulated conditional
and unconditional cumulative distribution functions appear-
ing in Figs.17 and18 show that the copula-based procedure
captures the joint modelling of wet/dry and amounts pro-
cesses well. Figure19displays the frequency of the numbers
of gauges that are wet on any given day during winter; the
results for summer are equally good. Again, because we are
more concerned about heavier than lighter rainfall, the com-
putations are performed by conditioning the observations on
the higher 10 mm threshold. This will mean that there are
likely to be more zero counts than if the threshold is set at
the observation precision of 0.1 mm.

Fig. 17. Observed and (average of 20) simulated cumulative dis-
tributions of daily precipitation for station 7 in winter (December–
February). The upper solid lines are the unconditional cdfs. The
dashed lines show the conditional distributions where the daily pre-
cipitation at station 8 is not less than 5 mm. Black lines are the
observed and the red lines are the simulated distribution functions
using the V-copula. Note that in the upper line (unconditional cdf),
theP [0] value of 0.39 for January given in Table1 is closely cap-
tured by the simulated series, obscured slightly by the step at the
axis.

Fig. 18. Observed and (average of 20) simulated cumulative dis-
tributions of daily precipitation for station 7 in winter (December–
February). The upper solid lines are the unconditional cdfs. The
dashed lines show the conditional distributions where the daily pre-
cipitation at station 30 is not less than 5 mm. Black lines are the
observed and the red lines are the simulated distribution functions
using the V-copula. The conditional curves meet the unconditional
ones near 70 mm; both the observed and simulated cdfs show a
greater probability of lighter rainfall than in Fig. 17, the simulated
ones approachingP [0]=0.09.
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Fig. 19. Distribution of the number of 32 stations exceeding the
threshold of 10 mm on a winter day:P [all stations< 10 mm]=0.55.

Table 2. Joint triple probabilities of observations at stations 11, 16,
and 21 being below (1) and above (2) quantile 0.90.

Stations

11 16 21 p(i, j , k)

1 1 1 0.8258
1 1 2 0.0239
1 2 1 0.0333
1 2 2 0.0170
2 1 1 0.0300
2 1 2 0.0203
2 2 1 0.0110
2 2 2 0.0387

5.2 Validation using entropy of triples

The calculation of the entropyH , as described in Sect.3.4,
for a given set of data is demonstrated in this section and then
applied to the data-sets.

Recall that H = −
∑

{p(i,j,k).ln[p(i,j,k)]} summed
over alli,j,k = 1,2 for a given triple.

The red triangle in Fig.8 has vertices at the points (11,
16, and 21) and over the record, the observed probabilities
of the triple being jointly below or above the 0.90 quantile,
(indicated by 1 or 2) in various combinations, are given in
Table2.

The probabilities are obtained by counting the number
of occurrences of the three gauges’ quantiles being jointly
above or below 0.9 on all days for the record of 42 years in
the eight patterns.

Fig. 20. Isometric view of the 3-D probability space of the three
stations (11, 16, and 21) being wet or dry, with the hidden all-dry
probability indicated as 0.826.

The diagram in Fig.20indicates the arrangement, with the
value of the hidden (all dry) probabilityp(1,1,1) = 0.826 as
indicated. If the gauged data were independent,p(2,2,2)

would equal 0.13
= 0.001 instead of the observed 0.039. The

observed relative value is a multiple of 39 greater than the
independent one, indicating strong dependence between the
high quantiles.

The entropy for the above triple is 0.790, less than the
figure of 0.975 which would be calculated in the indepen-
dent case for a quantile threshold of 0.90; this comparison
indicates greater association between the data than indepen-
dence. In contrast, the entropy of the completely dependent
case would be 0.325, indicating maximum association be-
tween the data.

To compare the performances of the models in terms of
wet/dry discrimination, noting that the averageP [0] for the
sites is 0.495, Fig.21presents the (h, H ) plots for the follow-
ing three sets: (i) data, (ii) copula model, and (iii) covariance
model, for the near average wet/dry threshold quantile of 0.5.
The points plotted are for each acute triangle which satisfies
the condition in Sect.3.4 that for each of the three pairs of
sides, the maximum difference in a pair must be less than
10% of the perimeter of the triangle. The horizontal axis is
h = A1/2 (A is the area of the triangle) and the vertical axis is
H . The entropy has a complete interdependence lower bound
of 0.693. This comparison shows that the copula model is
only better than the covariance model (with respect to captur-
ing the wet-dry occurrences) at smaller distances. They both
fail to capture the inter-association at larger mutual distances
approaching 60 km (whenh = A1/2 approaches 40 km). Al-
though this is an imperfection, it is not a bad as missing the
dependence between the high rainfall rates (>90% quantile),
because a congregation of large rain-rates has serious hydro-
logical consequences.
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Fig. 21. Entropies of Data and two models, the Copula model and the Covariance model, under the assumption

that P (0) = 0.5, for the purpose of comparing models’ ability to model the wet/dry process. The entropy value

for complete interdependence is 0.693 when h = A = 0 and is indicated by the lower red line.
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Fig. 21. Entropies of Data and two models, the Copula model
and the Covariance model, under the assumption thatP(0)=0.5,
for the purpose of comparing models’ ability to model the wet/dry
process. The entropy value for complete interdependence is 0.693
whenh=A=0.

Turning to the data in isolation from the simulations,
Fig.22presents the entropy behaviour over the same network
at three thresholds: dry/wet assumed to have quantiles of 0.5;
0.90 (repeated from Fig. 21) and 0.975. The entropy lower
bounds are 0.693; 0.325; 0.117 for values of marginal quan-
tiles 0.5; 0.9; 0.975, respectively. The fitted trend lines are
guides, not suggesting structure, however the convergence
of the (h, H ) plots towards the corresponding dependence
limits is more convincingly demonstrated by using lnA in
place ofA1/2. The nearly equidistant behaviour of the en-
tropy plots of the data in log-space suggest some underlying
useful structure which we have yet to explore.

Finally, in Fig. 23, we present a comparison between
the entropy behaviour of the three sets: (i) the data,
(ii) the copula model simulations and (iii) the covariance
model simulations for the 90% threshold. The Area of
the red triangle in Fig.8 joining points (11, 16, and 21)
is 1411 km2. In Fig. 23 the corresponding point(h,H) =(√

Area,entropy
)

= (37.56,0.790) appears as a red dot. It

is clear that the copula model is closer to the data across the
range ofh than the covariance model, but is still not close
enough for a complete match, indicating that the congregat-
ing behaviour of the copula simulations is an improvement
over the covariance ones, but still needs attention. In partic-
ular, this interdependence would be modelled by a high di-
mensional copula. However, the discrimination between the
sequences offered by the entropy measure is encouragingly
sharp.

Fig. 22.Entropies of the observed Data at three quantile thresholds:
0.50, 0.90 and 0.975, and suggested convergence to the correspond-
ing limits of complete interdependence.

Fig. 23. Entropies of the data and the Copula model and Covariance models, plotted as (h, H). All appear to

converge to the value 0.325 of perfect dependence, indicated by the red line lower bound, when h = A = 0.

The red dot is (h, H) = (37.56, 0.790) calculated at the start of this section, corresponding to the red triangle in

Figure 8.
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Fig. 23.Entropies of the data and the Copula model and Covariance
models, plotted as (h, H ). All appear to converge to the value 0.325
of perfect dependence, indicated by the red line lower bound, when
h = A = 0. The red dot is (h, H )=(37.56, 0.790) calculated at the
start of this section, corresponding to the red triangle in Fig.8.

In summary, the entropy of the eight 3-state binary proba-
bilities calculated by thresholding quantiles at various levels,
when applied to the values at the vertices of nearly equilat-
eral triangles, holds promise as a criterion for spatial depen-
dence quantisation. It is clear that in all cases the Entropy
statistic indicates stronger interdependence for smaller inter-
station distances, as expected.
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The method indicates that the copula model is superior in
this respect to the covariance model to which it was com-
pared, but not yet good enough to suggest that it fully cap-
tures the spatial structure of rainfall recorded in networks of
gauges. To achieve this will require the application of a truly
multi-dimensional copula, not one predicated on a combina-
tion of bivariate relationships.

6 Conclusions

The paper set out to establish the nature of the interdepen-
dence between rainfall sequences in an inhomogeneous re-
gion, to determine an appropriate model. It was found that
the classical Normal Scores Transform is not rich enough to
capture the range of correlations being strong at high rain-
fall values and weak at low rainfall amounts. Multinormal
variables defined by their correlation structure were nonlin-
early transformed, from which set the copulas were derived.
The parameters of the transforms and the hidden correlations
were obtained by using numerical optimisation to obtain the
maximum likelihood. The resulting parameters were used
with success in modelling both the rainfall amounts and the
occurrences simultaneously.

A novel technique using entropy for determining the de-
gree of congregation of wet gauges was devised which shows
that the copula-based model is an improvement over the tra-
ditional multisite covariance models, but that it still needs
improvement to match the data. Other statistics used for vali-
dation, such as cumulative distribution functions conditioned
on neighbouring sites experiencing rainfall above a relatively
wet threshold of 10 mm, show that these distributions are
well mimicked by the copula-based multisite rainfall model.
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