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Abstract. While the correspondence of rainfall return period
TP and flood return periodTQ is at the heart of the design
storm procedure, their relationship is still poorly understood.
The purpose of this paper is to shed light on the controls on
this relationship. To better understand the interplay of the
controlling factors we assume a simplified world with block
rainfall, constant runoff coefficient and linear catchment re-
sponse. We use an analytical derived flood frequency ap-
proach in which, following design practise,TP is defined as
the return period of the intensity-duration-frequency (IDF)
curve given storm duration and depth. Results suggest that
the main control on the mapping of rainfall to flood return
periods is the ratio of storm duration and catchment response
time, as would be expected. In the simple world assumed in
this work,TQ is always smaller or equal thanTP of the as-
sociated storm, i.e.,TQ/TP ≤1. This is because of the differ-
ence in the selectiveness of the rectangular filters used to con-
struct the IDF curves and the unit hydrograph (UH) together
with the fact that different rectangular filters are used when
evaluating the storm return periods. The critical storm du-
ration that maximisesTQ/TP is, in descending importance,
a function of the catchment response time and the distribu-
tion of storm duration, while the maximum value ofTQ/TP

is mainly a function of the coefficient of variation of storm
duration. The study provides the basis for future analyses,
where more complex cases will be examined.
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1 Introduction

Flood design generally requires the estimation of flood dis-
charges of a given return period at a site. If long stream
flow records are available, the flood estimates can be derived
directly from data by frequency analysis. If no or limited
stream flow data are available, or floods associated with very
large return periods are of interest, design floods are gen-
erally estimated based on design storms (e.g.Pilgrim and
Cordery, 1993, p. 9.13). In this procedure, one or more
storms of a given return period are used as an input to a
rainfall-runoff model, and it is then assumed that the sim-
ulated peak discharge has the same return period (e.g.Pack-
man and Kidd, 1980; Bradley and Potter, 1992). There have
been warnings that this assumption may be grossly in error
(e.g.Linsley et al., 1988, p. 365), andPilgrim and Cordery
(1975, p. 81) remarked: “The actual relationship between
the frequencies of the design rainfall and the derived flood is
obscure as each part of the overall design model introduces
some joint probability”. There are a number of “parts” that
need to be considered which include storm rainfall intensity,
storm duration, temporal and spatial storm patterns, and an-
tecedent soil moisture conditions.

Despite the “obscure nature” of the mapping of return pe-
riods, there has been little work devoted to this issue. The
main emphasis has been on finding the rainfall patterns or
model parameters that give a close match between rainfall
and flood return periods.Alfieri et al. (2008) assessed the
accuracy of literature design hyetographs in producing flood
peaks with the same return period as the storms. They noted
that the estimation is biased in most of the cases and provided
a correction factor to obtain more robust estimates of the de-
sign flood. Packman and Kidd(1980) investigated which
antecedent conditions consistently gave flows that matched
an observed flood frequency distribution. They found these
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conditions to be related to average annual rainfall at several
locations in the United Kingdom. For the simple case of
the Probabilistic Rational Method, this problem has been di-
rectly addressed by estimating design runoff coefficients in
a way that the design storms of a given return period pro-
duce flood peaks that match the observed flood peaks with
the same return period (Pilgrim and Cordery, 1993, p. 9.20).

These studies are “black box” analyses where the empha-
sis is on identifying the optimum parameters in a design con-
text. In contrast, the aim of this paper is to help understand
why the return periods of rainfall and floods are different.
Not only is this hoped to contribute to more informed flood
design procedures, but this should also contribute to bet-
ter assessing the magnitude of observed floods. For exam-
ple, based on frequency analyses of runoff and rainfall data,
Gutknecht et al.(2002) found that the 2002 Kamp flood in
northern Austria had a flood return period of more than 1000
years while the return period of the associated rainfall was
smaller. The difference of these magnitudes can be better
understood if the controls on the relationship of the return
periods are known.

As the emphasis in this paper is onunderstandingthe con-
trols, we have chosen to examine a highly simplified “world”.
We assume:

– block rainfall,

– constant runoff coefficient,

– linear catchment response.

This allows us to explicitly scrutinise the effect of storm du-
ration which we consider the most basic control. The design
storm procedure is mimicked in the domain of frequency
distributions by an analytical derived distribution approach
which facilitates the probabilistic interpretation. While the
model is not complete in that it does not represent all possi-
ble processes, it is simple enough to actually understand the
interplay of the controls. This paper is hence considered as
a first step towards understanding more complex situations,
where other processes are introduced such as the variability
of the runoff coefficient, the complexity of the shapes of the
hyetographs and multiple storms.

2 Design-storm procedure and definition of storm re-
turn period

The idea of the design-storm procedure is to estimate a flood
of a selected return period from rainfallintensity-duration-
frequency(IDF) curvesfor the site of interest. In many cases,
the hydrological engineer has standard IDF curves available
for the site but it is important to understand the procedure
used to develop them. For each duration selected, the annual
maximum rainfall intensity is extracted from historical rain-
fall records. Then frequency analysis is applied to the annual
data obtaining a return period for each intensity and duration.

What is termed “duration” in the procedure is in fact not a
storm duration but an aggregation time interval, oraggrega-
tion level. For example, if hourly rainfall data are available
and one is interested in the IDF relationship for a duration
of 3 h, one runs a moving averaging window over the hourly
data and extracts the largest 3-h average of each year to do
the frequency analysis. The moving averaging procedure is
equivalent to convoluting the rainfall time series with a rect-
angular filter (with a base of 3 h in the example).

The way the design storm method is applied varies con-
siderably between countries (Pilgrim and Cordery, 1993,
p. 9.13) but the main components of the procedure can be
summarised as following:

1. Selection of many storms of different durations read-
ing off their mean intensities from the IDF curve corre-
sponding to the return periodTP of interest. As noted
above, rainfalls from the IDF curves do not represent
complete storms but are from intense bursts within these
storms. The storm duration may hence differ from the
aggregation level used to read off the intensity from the
IDF curve. However, in many cases storm duration is
chosen equal to the aggregation level (seeChow et al.,
1988, for details).

2. Application of rainfall time patterns to these storms
(design hyetograph). Rigorously, the design temporal
patterns need to be appropriate for the intense bursts
within storms, and not for complete storms (Pilgrim and
Cordery, 1993, p. 9.13) but, again, in practise these two
are often set equal.

3. Application of spatial patterns to rainfall or, more sim-
ply, of an areal reduction factor for catchment area.

4. Transformation of the design storm to a flood hydro-
graph using a runoff model calibrated for the catchment
of interest.

5. Selection of the maximum flood peak of the flood hy-
drographs produced by storms of different durations.

It is then assumed that this flood peak has a return periodTQ

equal toTP .
In the real world there is no rigorous solution to the prob-

lem of choosing the design parameters (i.e., the shape of the
hyetograph, the rainfall-runoff model parameters, etc.) in a
way thatTQ matchesTP because of the large number of con-
trols that are difficult to understand.

In contrast, when a simplified world is assumed, the exact
mapping of rainfall to flood return periods can be derived. In
the case of block rainfall, as assumed here, the total rainfall
event and the main burst are indeed identical, so the aggre-
gation level used to evaluate the return period of a storm is
equal to the duration of that storm.
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3 The derived distribution approach in the simplified
world

We use here a derived distribution approach which consists
of combining a statistical rainfall model with a deterministic
rainfall-runoff model. This model represents the simplified
world which we are meaning to analyse. The rainfall model
assumes events to be uniform and independent, and durations
and intensities to be random and mutually dependent. Other
factors such as multiple storms, within-storm intensity pat-
terns, seasonality and spatial variability of the rainfall inten-
sities are deliberately neglected.

The rainfall-runoff model is event based. It assumes a
constant runoff coefficient and linear routing represented by
an exponential unit hydrograph. Any non-linearities in the
system as well as random controls on runoff generation are
neglected. The model mimics the design storm procedure
which, in this simplified world, becomes straightforward:
rectangular storms, whose intensities on the IDF curve cor-
respond to their durations, are convoluted with the linear
rainfall-runoff model from which the return period of the as-
sociated flood peaks can be estimated. In this paper, we have
chosen to do most of the analyses in the probability domain
rather than generating time series as the former is more effi-
cient and directly provides insight into the controls.

3.1 Derived flood return period

Given the joint probability density function of rainfall inten-
sity i and storm durationtr asfI,Tr (i, tr), the probability that
Y , i.e., the peak discharge of all independent floods, does not
exceed the flood peak valueqp is

FY (qp) = Pr[Y ≤ qp] =

∫ ∫
R

fI,Tr (i, tr)didtr , (1)

whereR is the region of the(i, tr) space for which the combi-
nation of these two values is transformed into a peak smaller
than or equal toqp by the rainfall-runoff model (see Figs. 1
and 2 inWood, 1976, for a graphical representation).

This equation can be simplified if some assumptions are
formulated. We use here a simplified version of the model of
Sivapalan et al.(2005). For the rainfall model we assume that
the storms are independent, the number of storm events per
year is Poisson distributed (seeKottegoda and Rosso, 1997,
p. 455) with meanm (set to 40), and that the distribution
fTr (tr) of the storm durationtr is known.

Depending on the case analysed in this paper, we as-
sume a discrete distribution (Sect.4.1) or assume thattr is
continuously distributed according to a Weibull distribution
(Sects.4.2–4.4) with the probability density function (pdf):

fTr (tr) =
βr

γr

(
tr

γr

)βr−1

exp

(
−

tr

γr

)βr

, (2)

whereγr andβr are the scale and shape parameters, respec-
tively. The scale parameter is related to the mean storm du-
rationδr by

γr = δr

[
0

(
1 +

1

βr

)]−1

. (3)

The shape parameter is related to the coefficient of variation
of the distribution by

CVr =

√
0 (1 + 2/βr)

[0 (1 + 1/βr)]2
− 1 . (4)

We examine here a basic case ofβr=0.7 andδr=12 h, and
vary these parameters in some of the variants, as detailed in
the results section.

The storm rainfall intensityi is assumed to be distributed
according to a gamma distribution (commonly used for are-
ally averaged intensities, see e.g.Sivapalan and Blöschl,
1998):

fI |Tr (i|tr) =
λ

0(κ)
(λi)κ−1 exp(−λi) , (5)

where parametersλ andκ are functions oftr .
FollowingSivapalan et al.(2005) we assume that expecta-

tion and coefficient of variation of the intensities are related
to the storm duration by power laws

E[i|tr ] = a1t
b1
r and CV 2

[i|tr ] = a2t
b2
r , (6)

so that

κ =
t
−b2
r

a2
and λ =

t
−b1−b2
r

a1a2
. (7)

In all the presented analyses, we have assumed
a1=1.05 mm h−b1−1, b1=0.01, a2=1.5 and b2=−0.55
as inSivapalan et al.(2005) (values calibrated using data of
the Frankenfels raingauge, northern Austria).

As the runoff model, we use a linear reservoir with con-
stant response timetc and a runoff coefficient of unity. The
transformation of rainfall to runoff can then be expressed by
the convolution integral of the exponential unit hydrograph
(UH) with rectangular storms, from which one can evaluate
the flood peak:

qp = 5Q(i, tr) = i ·

[
1 − exp

(
−

tr

tc

)]
, (8)

where5Q is the runoff-model operator.
Adopting these simplifications, the integral of Equation

(1) simplifies to

FY (qp) =

∫
∞

0
FI |Tr

(
5−1

Q (qp, tr)|tr

)
fTr (tr)dtr , (9)

where5−1
Q (qp, tr)=qp/[1− exp(−tr/tc)] is the storm inten-

sity that, for giventr andtc, produces the flood peakqp, and
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FI |Tr (.|tr) is the cumulative distribution of rainfall intensities
conditioned ontr .

The transition from the distribution of all floodsFY (qp) to
the distribution of the annual maximum floodsFQ(qp) is ob-
tained by using the theory of order statistics (e.g.Kottegoda
and Rosso, 1997, p. 455):

FQ(qp) = exp
{
−m

[
1 − FY (qp)

]}
, (10)

which can also be expressed in terms of the return period (in
years):

TQ =
{
1 − FQ(qp)

}−1
. (11)

The integral in Eq. (9) is evaluated numerically in the proba-
bility space.

3.2 Derived IDF curves and storm return periods

We exploit the similarity between the runoff modelling (con-
volution of rainfall by a UH) and the IDF procedure (convo-
lution of rainfall by a moving averaging window) to derive
the return period of rainfall for different aggregation levels
from the statistical rainfall model. The difference between
the runoff model and the IDF procedure is that the former
uses an exponential filter while the latter uses rectangular fil-
ters, one for each aggregation level. The exponential filter
represents, to some degree, hydrological processes in that it
is a summary description of the non-linearity of surface and
near surface runoff (velocity depending on depth), so the ris-
ing limb is always steeper than the falling limb of the hy-
drograph. In contrast, the rectangular filter that is used to
construct the IDF curve is commonly chosen for convenience
and tradition.

If we let a random variableI denote the rainfall intensity
of storms averaged on the aggregation leveltIDF, the proba-
bility that this intensity is lower or equal to an intensityφ is
termedFI (φ, tIDF). To derive the cumulative distribution of
I (defined for a singletIDF), we proceed as in Eq. (1):

FI (φ, tIDF) = Pr[I ≤ φ] =

∫ ∫
R′

fI,Tr (i, tr)didtr , (12)

whereR′ is the region of the(i, tr) space such that the combi-
nation of these two values is transformed to a value smaller
or equal toφ by the IDF filter with aggregation leveltIDF.
The result of the rectangular filtering can be written as:

φ = 5P (i, tr) =

{
i if tIDF ≤ tr
i · tr/tIDF if tIDF > tr

. (13)

With analogous simplifications as in Eq. (9), the cumulative
distribution ofI is

FI (φ, tIDF) =

∫
∞

0
FI |Tr

(
5−1

P (φ, tr)|tr

)
fTr (tr)dtr , (14)

where5−1
P (φ, tr) is the inverse function of Eq. (13) and ex-

presses the intensity of a storm of durationtr that has average
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Fig. 1. Example IDF curves with parametersa1=1.05, b1=0.01,
a2=1.5, b2=−0.55, βr=0.7 andδr=12 h of the rainfall model.φ
is the rainfall intensity over the aggregation leveltIDF andTIDF is
the IDF return period.

intensity φ over the aggregation leveltIDF. The transition
from the distributionFI (φ, tIDF) of all intensities over one
aggregation leveltIDF to the distributionFP (φ, tIDF) of the
annual maximum rainfall intensitiesP yields

FP (φ, tIDF) = exp{−m [1 − FI (φ, tIDF)]} , (15)

which can also be expressed in terms of the return period (in
years) as

TIDF(φ, tIDF) = {1 − FP (φ, tIDF)}−1 . (16)

This equation represents the IDF curves, an example of
which is provided in Fig.1.

In our simplified world, the return period of indi-
vidual storms can now be read off the IDF curve as
TIDF(φ=i, tIDF=tr). The return periodTP of the storms that
produce the maximum annual peaksqp (here calledflood-
producing storms) is then

TP = TIDF(φ = 5−1
Q (qp, tr = tIDF), tIDF = tr) (17)

where5−1
Q (.) is the storm intensity that, for giventr andtc,

produces the flood peakqp.

4 Results

The mapping of rainfall to flood return periods is now shown
by graphs that relate the return periodsTQ and TP of the
same event. Different storm durations are drawn as differ-
ent lines in the(TP , TQ) space. The envelope of these lines,
which maximises the ratioTQ/TP , is the result of the de-
sign storm procedure described in Sect.2. We term criti-
cal storm duration(s),t∗r , the duration(s) for whichTQ/TP is
maximised.
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Fig. 2. Relation between rainfall return periodsTP and flood return periodsTQ for discrete distributions of storm durations:(a) only one
possible storm durationt1; (b) only two possible storm durationst1=6 h (continuous line) andt2=12 h (dashed line);(c) only two possible
storm durationst1=3 h (continuous line) andt2=144 h (dashed line). The response time of the catchment is alwaystc=6 h.

4.1 Simple case: discrete number of storm durations

First, we consider some extremely simplified cases. Suppose
to have only one possible storm durationt1, so that its prob-
ability is pTr (t1)=1. In this limiting case, as storms differ by
their intensity only,qp is a strictly monotonically increasing
function of i and a perfect correspondenceTP =TQ follows
(Fig. 2a).

If, instead, two storm durationst1 andt2 are possible with
equal probabilitiespTr (t1)=pTr (t2)=1/2, this is no longer
true. In Fig.2b we have imposedt1=tc and t2=2tc. The
graph suggests thatTQ is always lower thanTP . This result
can be explained by the differences between the distribution
of the flood peakqp and the distributions of the intensities
that can cause it, i.e.,5−1

Q (qp, t1) and5−1
Q (qp, t2). From

Equation (9) it follows that

FY (qp) =
1
2

[
FI |Tr

(
5−1

Q (qp, t1)|t1

)
+

+FI |Tr

(
5−1

Q (qp, t2)|t2

)]
. (18)

On the other hand, since two durations are possible, two dis-
tributionsFI have to be considered. For the storms of dura-
tion t1 (continuous line in Fig.2b), given that

5−1
P

(
5−1

Q (qp, t1), t1

)
=5−1

P

(
5−1

Q (qp, t1), t2

)
=5−1

Q (qp, t1), (19)

Equation (14) becomes

FI

(
5−1

Q (qp, t1), t1

)
=

1
2

[
FI |Tr

(
5−1

Q (qp, t1)|t1

)
+

+FI |Tr

(
5−1

Q (qp, t1)|t2

)]
. (20)

The only difference betweenFY and FI is in the sec-
ond part of the second term of Eqs. (18) and (20).
As t1<t2, it follows that FI |Tr (5

−1
Q (qp, t1)|t2) is greater

than FI |Tr (5
−1
Q (qp, t2)|t2) and, as a consequence, that

FI (5
−1
Q (qp, t1), t1)>FY (qp). Since they transform to the

extremes in the same way,TP >TQ.

Considering the storms of durationt2 (dashed line in
Fig. 2b) Eq. (14) becomes

FI

(
5−1

Q (qp, t2), t2

)
=

1
2

[
FI |Tr

(
5−1

Q (qp, t2) ·
t2
t1

|t1

)
+

+FI |Tr

(
5−1

Q (qp, t2)|t2

)]
. (21)

Here the difference betweenFY andFI is in the first part of
the second term of Eqs. (18) and (21). As t1<t2, it follows
thatFI (5

−1
Q (qp, t2), t2)>FY (qp), soTP >TQ.

Heuristically, the finding ofTQ always being lower than
TP has to do with (a) the shape of the UH being different
from the shape of the IDF filter and (b) the fact that two dif-
ferent filters are used for assigningTP while a single filter
is used for assigningTQ. The rectangular IDF filter of ag-
gregation levelt1 strongly highlights the events of duration
t1, more than the exponential UH does. In the same way,
the IDF filter of aggregation levelt2 strongly highlights the
events of durationt2. The UH is less selective and easily
allows events of both durations to produce maximum peaks.

Another system is shown in Fig.2c that differs from2b
in that t1�tc and t2�tc. In this case, for high return pe-
riods TQ is similar toTP of short storms (durationt1), for
low return periodsTQ is similar toTP of long storms (du-
ration t2), while in the middle partTQ is lower thanTP for
both types of storms. This behaviour is a consequence of the
shape offI |Tr (i|tr), i.e., the distribution of intensities given
the storm durations. Consider once more the casetIDF=t1
(continuous line in Fig.2c) for which Eqs. (18) and (20) hold.
For high values ofqp, the termsFI |Tr (5

−1
Q (qp, t1)|t2) and

FI |Tr (5
−1
Q (qp, t2)|t2), that are the ones that cause the differ-

ences betweenTP andTQ, tend to be equal to 1. Therefore
TQ≈TP . Analogous considerations can be used to explain
the behaviour of the dashed line corresponding totIDF=t2.
For low values ofqp, the termsFI |Tr (5

−1
Q (qp, t1)|t1) and

FI |Tr (5
−1
Q (qp, t2) ·

t2
t1

|t1) tend both to 0.
Hydrologically, the most extreme short duration storms re-

sult in relatively large floods (larger than those from the most
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Fig. 3. Relation between rainfall return periodsTP and flood return periodsTQ for different storm durationstr . Case of response timetc
equal to the mean storm durationδr (tc=δr=12 h). The two upper graphs(a, b) are obtained with the analytical derivation ofTP andTQ;
the two lower graphs(c, d) are the result of a Monte-Carlo simulation (20 000 simulated years). The grey-scale of points represents storm
durations (dark points are short storms). For the slices in graph (d), flood return periods between 8 and 13 years have been labelled as 10 yrs
and those between 50 and 200 years have been labelled as 100 yrs.

extreme long duration storms) because of the shape of the
IDF curve. The smallest long duration storms result in rel-
atively large floods because saturation of the catchment is
reached.

In the case of Fig.2a the design storm procedure will give
a 1:1 mapping of the return periods. In the case of Fig.2b,
t2 will be the critical storm duration (t∗r =t2). It is interesting
to see that in Fig.2c the highest maximum annual floods are
given by rainfall events with different durations, depending
on the storm return period considered, sot∗r is not unique for
the catchment.

Analogous results can be obtained when 3 or more storm
durations are possible. The generalised case is given by the
continuous distribution of storm durations shown in the next
section.

4.2 Continuous distribution of storm durations

Storm durationtr is now considered to be distributed accord-
ing to the Weibull distribution of Eq. (2). Figure3 shows the
relationship betweenTP andTQ for different storm durations

tr when the response time of the linear reservoirtc is equal to
the average annual storm durationδr . The mapping of the re-
turn periods is plotted in the upper-left graph. The six curves
represent 6 storm durations as multiples oftc .

The envelope curve in Fig.3a is always below the 1 to 1
line indicating thatTQ obtained by the design storm proce-
dure is smaller thanTP . This can be explained analytically
by generalizing the comparison between Eqs. (18), (20) and
(21) to the continuous case, and analogous hydrological ar-
guments apply as in the discrete case.TP is greater thanTQ

because the IDF filters are more selective than the UH fil-
ter. This is because of their shapes (rectangular as opposed
to exponential) and the fact that, for each storm duration, a
different filter is used when constructing the IDF curve while
the same UH is used for all storms.

This behaviour is further illustrated by slicing Fig.3a hor-
izontally, and expressing the slices in terms of the ratio of
return periodsTQ/TP . This ratio is shown in Fig.3b as a
function of storm durationtr for three flood return periods
TQ (10, 100 and 1000 years). These curves are obtained by
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Fig. 4. Relation between rainfall return periodsTP and flood return periodsTQ for different storm durationstr . Case of rectangular UH with
width equal totc (tc=δr=12 h).

interpolations in the(TP , TQ, tr) space. For short storm du-
rations, the ratio of the return periods increases with storm
duration, reaches a maximum aroundt∗r ≈2tc (the critical
storm duration), and decreases for longer durations. At the
maximum, the difference betweenTP and TQ slightly de-
pends on the considered value ofTQ, andTQ/TP is always
below 0.5.

It appears that, for short durations, peak flows are small
and hence the ratioTQ/TP is small. During short duration
storms, the catchment does not contribute entirely to runoff
generation, so the storms must be extremely severe to pro-
duce big floods. The ratio at short durations is therefore con-
trolled by runoff response. For long durations, peak flows
are also small and hence the ratioTQ/TP is small. This is
because, in this case, runoff has already reached equilibrium
(the catchment totally contributes to runoff) but, according to
the IDF curves, rainfall intensities are very low. The ratio at
long durations is therefore controlled by rainfall. The maxi-
mum of the curves in Fig.3b is due to the interplay between
catchment processes and rainfall processes and occurs at the
critical storm durationt∗r .

To be able to plot individual events, Monte-Carlo simula-
tions have been performed based on the same assumptions
for the rainfall and rainfall-runoff models. The results are
hence fully consistent with the analytical approach. A scatter
plot of TP versusTQ based on the Monte-Carlo simulations
is shown in Fig.3c. Each point represents one maximum an-
nual flood and its corresponding storm. The scatter comes
from random storm durations. The grey scale used in the
graph is related to the duration of the storms: dark points are
short storms, light-grey points are long storms. Two slices
through Fig.3c represented in terms of the ratioTQ/TP are
shown in Fig.3d. The points, each one representing one
event, clearly trace the analytical curves of Fig.3b. As can
be seen in the graphs, the simulated events are more dense
around the critical storm duration (corresponding to the en-
velope curve in Fig.3c), meaning that the catchment acts as a

filter on storm durations. This is an important effect that can-
not be obtained by the analytical approach, and is discussed
in more detail in Sect.4.4.

In Sect.4.1we have stressed that the shape of the UH is an
important control on the relation max(TQ/TP )<1. We hence
expect the behaviour of the mapping to change when chang-
ing the shapes of the UH. In the limiting case, where the UH
is a rectangular function of widthtc, the resulting mapping
is shown in Fig.4. In this case, the critical storm duration is
t∗r =tc and givesTP =TQ. This is not surprising, because the
convolution of the rainfall series with the rectangular UH is
identical to the IDF filtering. The series of maximum peaks
qp and the series of the peak intensitiesφ (with tIDF=tc) co-
incide. For shorter and longer storms thantc, the flood return
periods are of course smaller than the rainfall return period.

For the case of a rectangular UH, the design storm method
would hence be exact yielding the flood return period equal
to the rainfall return period. UH shapes that lie between ex-
ponential and rectangular have been represented by a beta
distribution, as inAlfieri et al. (2008). Results (not shown
here) indicate that the envelope curves lie between those rep-
resented in Figs.3a and4a.

4.3 Effect of average storm duration, catchment response
time and return period

After these first examples, we investigate the combined ef-
fect on the(TP , TQ) mapping of the average storm duration
δr , the catchment response timetc and the range of return pe-
riodsT considered. Figure5 is analogous to Fig.3ab except
for tc>δr (tc=60 h,δr=12 h). In this case, the critical storm
duration visibly depends on the return period which was not
the case fortc=δr=12 h (Fig. 3). For low return periods,
t∗r ≈tc, while for high return periodst∗r ≈2tc.

This is the effect of the interplay of the catchment re-
sponse timetc and the distribution of storm durations. Al-
most all storms are short (relative totc), so regular floods
are produced by short storms. Only very extreme floods are
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Fig. 5. Relation between rainfall return periodsTP and flood return periodsTQ for different storm durationstr . Case of exponential UH
with response timetc greater than the mean storm durationδr (tc=60 h,δr=12 h).

produced by (rare) longer duration storms resulting in larger
t∗r as the return period increases. Interestingly, for the con-
verse case (tc=60, δr=12 h) t∗r decreases from about 3tc to
about 2tc as the return period increases (not shown here). Ap-
parently, for the limit of very large return periods, the limit-
ing critical storm durationt∗r is about 2tc. This can be in-
terpreted as follows. For large return periods, the maximum
tends to approach the time of concentration (for reasons con-
sistent with the rational method) as there is a large number
of storms that may produce that flood, so the distribution of
storm durations becomes relatively less important. The time
of concentration (when the water from the furthest point of
the catchment reaches the outlet) is, typically, larger than
the response time (e.g. defined as the recession parameter),
which may explain the maximum at twice the response time
(2tc).

It is clear that the distribution of possible storm durations
is an important control on the mapping. Figure6a and b
are generalisations of Figs.3 and5 and show the effects of
changing the mean storm duration. In Fig.6a only the en-
velope curves are shown fortc=12 h while δr varies. The
figure indicates that the average duration does not affect the
position of this curve.

In Fig. 6b the lines correspond to a return period of
TQ=100 years. The figure indicates that asδr increases, the
maximum of the curves moves to the right, i.e., the ratiot∗r /tc
increases as well. This means that the critical storm duration
depends both on catchment processes (here parameterised by
tc) and on rainfall processes (δr ). It is interesting that the crit-
ical storm duration changes with the distribution of durations
but the envelope curve max(TQ/TP ) does not.

In Fig. 6c and d, the coefficient of variationCVr of the
distribution oftr has been changed by varying the shape pa-
rameterβr of the Weibull distribution (see Eq.4). As CVr

tends to 0, the flood return period approaches the rainfall re-
turn period (i.e., a 1 to 1 mapping) as only a single storm
duration is possible. This is the case of Fig.2a. On the other
hand, ifCVr increases, max(TQ/TP ) decreases and reaches

a stable value of about 0.3 for very dispersed distributions.
This is because, for highCVr , it is mainly the tail of the dis-
tribution that changes. For the durations commensurate with
the catchment response timetc, the changes are small.

4.4 The catchment as a filter on storm durations

In the previous sections we have derived flood and storm re-
turn periods for different storm durations. For example, con-
sidering Fig.3b, a storm of durationtr≈tc would produce
a flood of return periodTQ≈10 years ifTP ≈50 years, pro-
vided such as storm occurs. Figure3a and b gives no infor-
mation about the probability of storm occurrence. It is now
of interest to understand what is the probability that a maxi-
mum annual flood was produced by an event of durationtr .
The distribution of this probability is called heredistribu-
tion of flood-producing storm durations, f ∗

Tr
. Some cases

obtained by Monte-Carlo simulations are shown in Fig.7. In
both graphs, the Weibull parent distribution oftr of Eq. (2) is
shown for comparison (solid line). The transition to the ex-
tremes transforms it into the dashed and dashed-dotted lines.
As shown in Fig.7a, the distribution of flood-producing
storm durations depends on the catchment response timetc
(here the exponential UH is used). Given a “parent” distri-
bution of storm durations (e.g. Eq.2), the catchment acts as
a filter (see alsoSkøien and Bl̈oschl, 2006). Storms with du-
rations on the order of magnitude of the catchment response
time are transformed into annual floods with higher proba-
bility. If tc increases, also the average and the spread of the
distribution of flood-producingtr increase. In small catch-
ments with short response times, it is usually the short dura-
tion storms that produce large floods (e.g. flash-floods), and
the duration of the storms does not vary much. On the other
hand, in large catchments with long response times, long du-
ration storms tend to produce large floods and there is a larger
variability of flood-producing storm durations. Short flash
floods, however, rarely produce large floods in large catch-
ments. Clearly, this is the conceptual basis of the rational
method.
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Figure7b shows instead the effects of the UH shape. We
have considered five cases using a beta distribution for the
UH with shape parameterspβ and qβ as in Alfieri et al.
(2008). Whenpβ=1 andqβ=4, the UH is similar to the
exponential one; whenpβ=2 andqβ=4, it peaks at about
1/4 of the UH width; whenpβ=2 andqβ=2, it is symmetric
with the maximum in the center; and whenpβ=1 andqβ=1,
it is a rectangular UH. The widths of the beta UHs have been
chosen in order to have a similar mode of the distribution of
flood-producing storm durations (about 7 h), which implies
similar response times.

The results show that the distribution of the durations of
the flood-producing storms associated with the rectangular
UH has the largest peak of all the distributions. This means
that the rectangular filter is more selective on storm durations
than the others. The exponential-like UH, in contrast, is the
least selective. The difference in selectiveness of the expo-
nential and rectangular filters is at the heart of the differences
between the rainfall and flood return periods together with
the fact that different rectangular filters are used for eachtIDF
when evaluating the storm return periods.

5 Conclusions

The purpose of this research is to contribute to a better un-
derstanding of the design storm method used in engineer-
ing hydrology and a better understanding of the relationship
between storm and flood return periods of observed floods.
This relationship is controlled by many factors of which we
examine storm duration as a starting point. Based on an an-

alytical approach we derive the extreme storm and flood fre-
quency distributions from a rainfall model assuming block
rainfall, constant runoff coefficient and linear catchment re-
sponse.

Even in the simple world modelled here, the relationship
between storm and flood return periods is not straightfor-
ward. The main findings are summarised in Fig.8:

a) If there is only a single storm duration, the flood return
periodTQ is always equal to the rainfall return period
TP , irrespective of the shape of the unit hydrograph.

b) In a more realistic case where storm durations vary, the
flood and rainfall return periods are still identical, pro-
vided runoff response can be represented by a rectan-
gular unit hydrograph and the storm duration is equal
to the duration of the unit hydrograph. For longer and
shorter stormsTQ<TP .

c) In the more general case of a non-rectangular right
skewed UH and varying storm durations,TQ<TP al-
ways. This is because of the difference in the selective-
ness of the rectangular filter used to construct the IDF
curve and the UH, together with the fact that different
rectangular filters are used for eachtIDF when evaluat-
ing the storm return periods.

A critical storm durationt∗r exists whereTQ/TP is at a
maximum. For case (c),t∗r is (in decreasing importance) a
function of the catchment response timetc, average storm
durationδr , the coefficient of variation of the storm duration
CVr and the rainfall return periodTP . t∗r ranges betweentc
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and 3tc, mainly depending onδr . The maximum ofTQ/TP

(when varying storm duration) is about 0.4 implying that, for
the simple world examined here, the design storm method
would give a 40 year flood when using a 100 year storm as
an input to the runoff model.

We also examined the duration of the storms that produce
the maximum annual floods. As the catchment response time
tc increases, so does the average and the spread of the distri-
bution of flood-producing storm durations. This analysis also
confirmed the higher selectiveness of the rectangular filters
used to calculate the IDF curves as compared to the expo-
nential unit hydrograph.

Comprehensive sensitivity analyses (not shown in this pa-
per) indicate that the above results are generic and do not
depend much on the particular rainfall model used. For a
world where

– storm duration varies,

– rainfall intensities are distributed according to a posi-
tively skewed distribution,

– extreme rainfall intensity decreases with storm duration

and considering the simplifying assumptions made in this pa-
per

– block rainfall

– constant runoff coefficient

– linear catchment response

the mapping of rainfall to flood return periods will always
look very similar to the results shown here.

While these results are only applicable to this simple
world, they are an important stepping stone towards the
more complex cases involving random runoff coefficients
and complex hyetographs, for example. For these, one would
expect that the envelope curve in the(TP , TQ) space goes
above the 1 to 1 line as is observed for floods that have oc-
curred (e.g.Gutknecht et al., 2002). These additional factors
will be examined in a follow up paper.

Notation

Variables:

TQ flood return period [yrs]
TP storm return period [yrs]

TIDF IDF return period [yrs]
tr , t1, t2 storm duration [h]

i average storm intensity [mm/h] over its duration
tr

tIDF aggregation level [h]
φ average storm intensity [mm/h] over the aggre-

gation leveltIDF

qp flood peak [mm/h]

t∗r critical storm duration [h]

R, R′ regions of the(i, tr) space

Y , Q, I , P random variables

Parameters (values for the basic case are indicated):

δr mean storm duration (12 h)

CVr coefficient of variation of the storm duration
(1.46)

βr Weibull shape parameter of storm duration (0.7)

γr Weibull scale parameter of storm duration
(9.48 h)

λ Gamma scale parameter of storm intensity

κ Gamma shape parameter of storm intensity

a1, b1, a2, b2 rainfall model parameters (a1=1.05 mm h−b1−1,
b1=0.01,a2=1.5, b2=−0.55)

m average number of storms per year (40)

pβ , qβ shape parameters of the Beta distribution

Operators:

E(.) expected value

CV (.) coefficient of variation

FX(.) cumulative distribution function ofX

fX(.) probability density function ofX

pX(.) probability mass function ofX

fX,Y (.) joint probability density function ofX andY

fX|Y (.) conditional probability density function ofX
givenY

Pr(.) probability

0(.) Gamma function

5Q(.) runoff model operator

5P (.) IDF filter operator
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