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Abstract. This study linked the Weather Research and Fore-
casting (WRF) modelling system and the Distributed Hydrol-
ogy Soil Vegetation Model (DHSVM) to forecast snowmelt
runoff. The study area was the 800 km2 Juntanghu water-
shed of the northern slopes of Tianshan Mountain Range.
This paper investigated snowmelt runoff forecasting mod-
els suitable for meso-microscale application. In this study,
a limited-region 24-h Numeric Weather Forecasting System
was formulated using the new generation atmospheric model
system WRF with the initial fields and lateral boundaries
forced by Chinese T213L31 model. Using the WRF fore-
casts, the DHSVM hydrological model was used to predict
24 h snowmelt runoff at the outlet of the Juntanghu water-
shed. Forecasted results showed a good similarity to the
observed data, and the average relative error of maximum
runoff simulation was less than 15%. The results demon-
strate the potential of using a meso-microscale snowmelt
runoff forecasting model for forecasting floods. The model
provides a longer forecast period compared with traditional
models such as those based on rain gauges or statistical fore-
casting.

1 Introduction

In some high-altitude mountainous areas of western China,
snowmelt water is an important water resource and plays a
vital role in management of water resources. Snowmelt wa-
ter is a primary source for reservoirs and water power sta-
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tions and plays an important part in controlling the quan-
tity of water in the reservoirs and provision of water used
in industry, agriculture and domestic life. Snowmelt wa-
ter can ease drought in semi-arid and arid areas, but rapid
spring snowmelt can cause a flood disaster (Zhao, 2007). Re-
search shows that since the 1980s, the frequency and amount
of snowmelt flooding have increased on the northern slopes
of Tianshan Mountain Region. The frequency of snowmelt
flooding in the 1990s increased 3 times when compared with
that in the 1950s, causing serious damage to the national
economy, and to arable land and properties in the region (Wu,
2003; Yan, 2003). As population continue to grow, the need
for accurate forecasting of flood events is becoming increas-
ingly important.

Traditional flood forecasting models use observed meteo-
rological data. Therefore the forecast period is dependent on
the flood routing in a watershed, often predicting floods only
several hours in advance. We hope to achieve a longer flood
warning forecast period of 1–3 days. High resolution atmo-
spheric models for limited areas offer promisingly accurate
regional forecasts of meteorological fields when forced with
realistic large-scale conditions. Recent work coupling at-
mospheric models with hydrological models has shown that
forecasting meteorological fields can be used to drive hydro-
logical models to produce hydrographs at selected outlets.
The forecast period can thus be extended when compared
with traditional methods.

Atmospheric models have previously been used to force
hydrological models for short-term flood prediction. For
example, Miller and Kim (1996) coupled the Mesoscale
Atmospheric Simulation model with the distributed hydro-
logical model “TOPMODEL” to simulate a 1995 flood-
ing event on the flood-prone Russian River of northern
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California. Andenson (2002), Lin (2002), and Lu (2006)
adopted one-way or two-way atmospheric and hydrologi-
cal coupling models to successfully forecast rainstorm floods
and lengthen the flood prediction time. Kenneth (2001) used
the Atmospheric Research Mesoscale Model (MM5) and the
Distributed Hydrology Soil Vegetation Model (DHSVM) to
simulate a complex rain-on-snow flood event.

This paper focuses on the direct forecasts of 24 h high-
resolution mesoscale Weather Research and Forecasting
(WRF) to drive a distributed hydrological model (DHSVM)
to predict the amount of snowmelt runoff. The snowmelt
runoff forecasting model was assessed by performing a com-
parative result analysis between forecasted and observed
data.

2 Brief description of the two models

2.1 Atmospheric model: WRF

The WRF modelling system is a next-generation mesoscale
modelling system (Michalakes et al., 2001; Wang et al.,
2004; Skamarock et al., 2005) that serves both operational
and research communities. It is designed to be a flexi-
ble, state-of-the-art atmospheric simulation system that is
portable and efficient on available parallel computing plat-
forms. WRF is suitable for use in a broad range of appli-
cations across scales ranging from meters to thousands of
kilometres.

The system consists of multiple dynamical cores, pre-
processors for producing initial and lateral boundary con-
ditions for simulations, and a three-dimensional variational
data assimilation (3DVAR) system. WRF is built using
software tools to enable extensibility and efficient compu-
tational parallelism. The use of the WRF system has been
reported in a variety of areas including storm prediction and
research; air-quality modelling; wildfire, hurricane, and trop-
ical storm prediction; and regional climate and weather pre-
diction (Welsh, 2004; Sun, 2003; Zhang, 2004).

The key component of the WRF-model is the Advanced
Research WRF (ARW) dynamic solver. The model uses
terrain-following, hydrostatic-pressure vertical coordinate
with the top of the model being a constant pressure surface.
The horizontal grid is the Arakawa-C grid. The time in-
tegration scheme in the model uses the third-order Runge-
Kutta scheme, and the spatial discretization employs 2nd to
6th order schemes. The model supports both idealised and
real-data applications with various lateral boundary condi-
tion options. The model also supports one-way, two-way and
moving nest options. It runs on single-processor, shared and
distributed-memory computers.

There are numerous physics options in the WRF model
which are highly modular, transportable, and efficient in the
parallel computing environment. There is an advanced data
assimilation system developed in tandem with the model it-

self. The simulations and real-time forecasting show that
WFR model is able to forecast many kind of weather. The
WRF model incorporates “online” chemistry; therefore WRF
model system has a broad application for not only weather
forecasting, but also for air quality forecasting.

2.2 Hydrological model: DHSVM

The DHSVM is a physically based, distributed hydrological
model developed for use in complex terrain (Wigmosta et al.,
1994). The model accounts explicitly for the spatial distribu-
tion of land-surface process, and can be applied over a range
of scales, from a small plot to large watershed at sub-daily to
daily timescales.

The DHSVM model includes a two-layer canopy model
for evapotranspiration, an energy balance model for snow
accumulation and melting, a two-layer rooting zone model
and a saturated subsurface flow model. Digital elevation
data are used to model topographic controls on incoming
shortwave radiation, precipitation, air temperature, downs-
lope surface water and soil moisture movement. At each
time step the model provides a simultaneous solution to
the energy and water balance equations for every grid cell
in the watershed. Individual grid cells are hydrologically
linked through a quasi-three-dimensional saturated subsur-
face transport scheme. The effects of topography on flow
routing are obtained through the direct use of Digital Eleva-
tion Model (DEM) data. Each grid cell can exchange water
with eight adjacent neighbours. Local hydraulic gradients are
approximated by ground surface slope (kinematic approxi-
mation). Thus a given grid cell will receive water from ups-
lope neighbours and discharge to the downslope.

Water confluence processes in DHSVM involve three
parts: surface slope flow, road/route flow and soil moisture
flow. Surface slope flow is the downslope surface runoff flow
of remaining water following the processes of evapotranspi-
ration, vertical infiltration and evaporation. However, infil-
tration will continue along the flow route during the surface
slope flow process. Road/route flow occurs when the land
surface category is road or route. During this type of flow
evaporation may occur, however downward infiltration does
not occur. Soil moisture flow is the lateral flow of water in the
soil layer, in which horizontal diffusion in soil is accounted
for.

There is a perfect snow accumulation and melt algorithm
in the DHSVM model. DHSVM models the processes as-
sociated with snowpack morphology as described by Storck
and Lettenmaier (1999, 2000) and Storck (2000) using a
two-layer ground snowpack representation of snow accumu-
lation and melt. The snowpack model utilizes separate en-
ergy and mass balance components to represent the various
physical processes affecting the snowpack. It also accounts
for energy exchanges taking place between the atmosphere,
overstory canopy, and main snowpack. The energy balance
components of the model address snowmelt, refreezing, and
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Tab.3 The test of forecasted and observed results 

Index 

Date 

2008-2-29 2008-3-01 2008-3-02 2008-3-03 2008-3-04 2008-3-05 

Efficiency coefficient 0.67 0.952 0.912 0.66 0.68 0.96 

Relative error of peak runoff 5.19% 2.97% 3.40% 13.2% 11.06% 8.65% 

 
 

 

Fig.1 Location of Juntanghu basin 

 

 

 

 

 

 

 

 

 

Fig. 1. Location of Juntanghu basin.

changes in snowpack heat content, while the mass-balance
equations address the snow accumulation and ablation pro-
cesses, transformations in the snow water equivalent, and
snowpack water yield (Wigmosta, 2001).

3 Study area and parameters

3.1 Juntanghu watershed: the study area

The Juntanghu River is located on the northern slope of Tian-
shan Mountain Range, Xinjiang China (Fig. 1). It is a small
river, originating from the Tenniscar Glacier, starting with
the Terssi. According to the statistical analysis from Geo-
graphic Information System (GIS), the headstream elevation
is approximately 3400 m, and the main section is between
1000 m and 1500 m. Multiple streams converge at Mazal,
located in the middle reach of Juntanghu River. The river
then flows into the Red-Mountain Reservoir at the outlet of
mountain area before entering the plains.

The catchment area is approximately 800 km2, the catch-
ment length is 45 km. The average elevation is approxi-
mately 1500 m, the slope of the upriver is 62.5‰, and the
slope of downstream is 5.26%. The average annual runoff
of this basin is approximately 3.89×108 m3. The watershed
has some obvious hydrological characteristics of an arid area
river, and can be divided into a runoff forming region and a
runoff dissipation region, the boundary located at the outlet
of the mountain area. One reason for choosing this basin as
our study area is that it is relatively small with a close hydro-
logical circumscription, and that snowmelt flood damage in
the watershed is serious.

3.2 A limited-region 24-h Numeric Weather Forecasting
System

Currently every Chinese meteorological station and mete-
orological service system can access the fourth-generation
medium-term global numerical weather prediction system
T213L31 forecast of the Chinese National Weather Service.
In this paper, the T213L31 provided at 00:00:00 was used
for the initial field and lateral boundaries of WRF v2.2. For
this study the forecast period was 144 h: at 3 hourly inter-
vals from 0 to 72 h and 12 hourly intervals from 72 to 144 h
The Numeric Weather Forecasting System was run for 24-h
meteorological forecasting everyday.

3.2.1 Numerical experimental plan

Basic parameters of simulated area:
The central longitude and latitude was 86.5◦ E and 44.0◦ N

respectively. The horizontal resolution was 1 km and the grid
numbers in North-South direction and East-West direction
were 130 and 121, respectively. There were 18 vertical lay-
ers. The total simulated time length was 24 h with a time
step of 3 s. A forecast of meteorological fields was produced
every hour.

Terrestrial data:
Data included terrain elevation, land-use/vegetation, land-

water mask, soil type, vegetation fraction and deep soil tem-
perature obtained from USA AVHRR data. Soil class was
based on United States Department of Agriculture texture.
Terrain elevation was Global 30s DEM data. Vegetation cat-
egory was US Geological Survey standard.

Physical process options:
There are many physical process options in WRF for ev-

ery parameterisation scheme. In this study, the schemes were
selected as follows: the cumulus parameterisation was New
Kain-Fritsch scheme; the microphysics scheme was WRF
Single-Moment 3-class (WSM3); a rapid and accurate radia-
tive transfer model (RRTM) long wave and Dudhia scheme
were adopted for long-wave radiation and short-wave radia-
tion; the planetary boundary layer scheme was Yonsei Uni-
versity (YSU); the 5-layer thermal diffusion surface physics
scheme was selected.

3.2.2 Data-processing of meteorological fields

Temperature, humidity, wind speed, incident short and long
wave radiation, and surface pressure at 2 m are required by
DHSVM. Humidity and wind speed are not available directly
from the WRF grid. However, the wind speed of every sigma
lever in the simulation data of WRF model is filed. In this
study, the wind speed at the lowest sigma level was used in-
stead of the wind speed at 2 m. Humidity can be calculated
by simulated water vapour mixing ratio and simulated sur-
face air pressure. The formula is as follows:
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es = (1)

100×
[
6.112× exp(17.67× (t − 273.15)/(t − 29.65))

]
RH =100× qv

/[
0.62197× es/(prs−es)

]
(2)

Wherees is the saturation vapour pressure (pa) (Murray,
1967),t is temperature (K) at 2 m; RH is humidity (%),qv is
water vapour mixing ratio (g/g) at 2 m, prs is surface pressure
(pa).

3.3 Hydrological model initialisation

The DHSVM parameters can be broadly divided into two
major steps. The first involves the assembly of surface char-
acteristics data. This included digital elevation data, soil
characteristics, vegetation, snow data and stream network in-
formation. The model requires attributes derivable from sur-
face characteristics data for each pixel. This step was facil-
itated by use of GIS, with appropriate overlays for each of
the attributes. The second step was to assemble the model
forcing data, which consists of time series of meteorological
variables and spatial overlays used to distribute these forcing
data. This information was provided by the WRF model.

3.3.1 DEM

Elevation data taken directly from the DEM is used by
DHSVM. Other topography attributes (e.g., surface slope
and drainage patterns) were also derived from the DEM.
DEM for the catchment was obtained from a 1:50 000 con-
tour map at a spatial resolution of 30 m. The DEM was
used to delineate the catchments. This procedure, which was
implemented using an algorithm described by Jensen and
Domingue (1998), is coded in most GIS programmes, includ-
ing Arc/INFO routing flow-direction. Additional processing
was performed to preserve general flow characteristics.

3.3.2 Soils

The DHSVM soil data were based on three types of informa-
tion: soil type, soil physical parameter (e.g., lateral conduc-
tivity, exponential decrease, maximum infiltration, porosity,
bubbling pressure, field capacity, wilting point, bulk density)
and soil depth. The soil type data was obtained directly from
the Chinese 1:1 000 000 soil type classification map, which
was interpolated at a spatial resolution of 30 m in Arc/INFO
(Fig. 2). Soil physical parameters were defined firstly accord-
ing to the FAO global 17-catergory soil physical parameters
data and the book “Soil in Xinjiang (Agricultural Bureau of
Uygur Autonomous Region of Xinjiang, 1996)”. Table 1 lists
some of the soil parameters. Soil depth data were calculated
by defining the maximum soil depth (1.3 m) and the mini-
mum soil depth (0.25 m) according to observations based on
DEM and a program provided by Washington University.
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Fig. 2. Soil type map of study area.
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Fig. 3. Vegetation classification map of study area.

3.3.3 Vegetation

Five vegetation classes (grassland, farmland, water, bare land
and evergreen needle leaf) were derived from Enhanced The-
matic Mapper (ETM) classified satellite imagery (Fig.3).
Data were processed to be similar in form to the data sets
used by Kirschbaum (1997) and Matheussen, et al. (2000).
In addition to land classification type, the DHSVM vege-
tation parameters (e.g., height, maximum resistance, mini-
mum resistance, moisture threshold, vapour pressure deficit,
monthly Leaf Area Index (LAI), monthly albedo) were de-
fined according to field observation and USGS 25-category
vegetation physical parameters. Table 2 lists some of the
vegetation parameters.

3.3.4 Snow information

Snow information is very important for stimulating snowmelt
runoff, and for the DHSVM model is requires this as an ini-
tial snow state file. Snow information included snow cover
and spatial distribution of snow water equivalent. In this
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Table 1. Suggest examples of soil class and soil parameters.

Soil class Soil parameter

Maximum Porosity Pore Size Bubbling Field Wilting
Infiltration Distribution Pressure Capacity Point

Chernozem 3.0e-5 0.48 0.46 0.46 0.13 0.12 0.12 0.34 0.26 0.26 0.36 0.31 0.31 0.21 0.23 0.23
Brown calcic soil 2.0e-4 0.46 0.48 0.48 0.12 0.13 0.13 0.26 0.34 0.34 0.31 0.36 0.36 0.23 0.23 0.23
Light chestnut coloured soil 1.0e-5 0.39 0.39 0.39 0.12 0.12 0.12 0.29 0.29 0.29 0.27 0.27 0.27 0.17 0.17 0.17
Dark chestnut soil 1.0e-5 0.39 0.46 0.46 0.12 0.12 0.12 0.29 0.26 0.26 0.27 0.31 0.31 0.17 0.23 0.23
Chestnut soil cultivation 1.0e-5 0.46 0.46 0.46 0.12 0.12 0.12 0.26 0.26 0.26 0.31 0.31 0.31 0.23 0.23 0.23
Grey- cinnamonic soil 3.0e-5 0.48 0.49 0.49 0.13 0.10 0.10 0.34 0.34 0.34 0.36 0.37 0.37 0.21 0.25 0.25
Calcareous Grey-cinnamonic soil 1.0e-5 0.46 0.48 0.48 0.12 0.13 0.13 0.26 0.34 0.34 0.31 0.36 0.36 0.23 0.21 0.21
Alpine meadow soil 1.0e-5 0.47 0.47 0.47 0.08 0.08 0.08 0.37 0.37 0.37 0.36 0.36 0.36 0.27 0.27 0.27
Subalpine meadow soil 1.0e-5 0.46 0.46 0.46 0.12 0.12 0.12 0.26 0.26 0.26 0.31 0.31 0.31 0.23 0.23 0.23

paper, the EOS/MODIS data was used to obtain the snow
cover information by a normalised difference snow index
(NDSI):

NDSI =(Ref4 − Ref6)
/
(Ref4 + Ref6) (3)

Where Ref4, and Ref6 is the reflectance of band 4 and band
6 respectively.

Satellite reflectance in MODIS bands 4 and 6 were used
to calculate the NDSI for the snow cover map. A pixel is
mapped as snow if the NDSI value is>0.4 and the reflectance
in MODIS band 2 is>11% (Barton, 2001; Klein, 2003; Sa-
lomonson, 2004).

The spatial distribution of snow water equivalent was ob-
tained from the National Centre for Atmospheric Research
(NCAR) Final analysis data.

3.3.5 Stream network

The DHSVM stream network was based on three types of
information: a mapping table which located a portion of
stream reaches within its appropriate grid cell and described
the depth, width, and aspect of the channel cut into the soil; a
reach table describing the length, slope, and class of a reach
connected with the next reach downstream; and a class file
with routing characteristics of width, depth, and roughness
for each stream class. These files were derived from the
DEM using an algorithm described by Wigmosta and Perkins
(2001).

In essence, the DEM topology defines the stream loca-
tions, while the extent of the network is specified by the
model user via a given support area (minimum area below
which a stream channel is assumed to exist). For Juntanghu
catchment, the contributing area is 324 000 m2, which was in
part based on field observations.

Stream order was used to perform an initial classification
of reaches. This produced a manageable number of types

 
Fig.4 Stream network of Juntanghu basin (Numbers represent the stream order) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Stream network of Juntanghu basin (Numbers represent the
stream order).

to which channel characteristics could be indexed. Man-
ual adjustments based on limited field observation were con-
ducted where necessary (Fig.4). Class characteristics were
defined according to field observations (where available) and
the relative descriptive size of the classes. The channel
depth, width, and roughness were classified according to
the reach classifications using GISWA algorithms (Wigmosta
and Perkins, 1997). The average slope of each reach was cal-
culated using the DEM.
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Table 2. Suggest parameters of some vegetation classes

Vegetation parameter Vegetation class

Farmland Water Grassland Bare land Evergreen Needle leaf
Overstory Present FALSE FALSE FALSE FALSE TRUE
Understory Present TRUE FALSE TRUE FALSE TRUE
Max Snow Int Capacity 0.04
Root Zone Depths (m) 0.1 0.5 0.5 0.0 0.0 0.0 0.1 0.45 0.4 0.0 0.0 0.0 0.1 0.45 0.5
Overstory Root Fraction 0.2 0.4 0.4
Understory Root Fraction 0.2 0.7 0.1 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.4 0.6 0.0
Maximum Resistance 600 600 5000.0 3000.0
Minimum Resistance 120 200 650.0 200.0
Overstory LAI (Feb.) (%) 90
Understory LAI (Feb.) (%) 0 0 0
Overstory Alb (Feb.) 0.2
Understory Alb (Feb.) 0.12 0.12 0.12
Height (m) 0.8 0.3 20

4 Analysis

4.1 Analyses of forecasting meteorological field results

The time period for the case study was from 01:00:00 GMT
on 29 February 2008 to 00:00:00 GMT, 6 March 2008.

This study used the WRF with the initial fields and lat-
eral boundaries provided by the T213L31 model to realise
the 24 h-numerical weather forecast from 29 February 2008
to 6 March 2008. Figure 5 shows the comparative map of ob-
served meteorological data and corresponding grid forecasts.

From Fig. 5, we can see that: (1) There are certain devi-
ations between forecasted and observed temperature at the
highest and lowest points. The average error is 1.2 K; (2)
The forecasted wind speed is higher than the observed data.
This is because WRF only supplies wind speed in every
sigma layer, so the wind speed in the lowest sigma layer was
adopted. Because the wind speed is a relatively weak influ-
ence on the snowmelt runoff and the error is only 1.54 m/s,
the forecasted data is acceptable; (3) The relative humidity
forecasted error is larger when the humidity fluctuates sig-
nificantly. When the relative humidity is stable, the forecast
is more accurate. The overall average error is 6%. (4) The
forecasted results of solar radiation are generally good. Fore-
casted data is significantly higher than observed data at mid-
day when the water vapour is higher and cloud activity is
greater. It is difficult to consider the effect of clouds due to
WRF low spatial resolution.

Overall the forecasting errors are relatively small, proving
that limited regional numerical weather forecasting precision
can meet the requirements of accurate snowmelt runoff fore-
casting.

4.2 Improvement of DHSVM parameters

Hydrology, vegetation and soil parameter schemes have been
successfully developed for simulation in North America. A
total of 33 parameters were calculated and adjusted in terms
of basin climatic and natural conditions. To apply DHSVM
model system to snowmelt runoff modelling, the parameter
scheme must be improved and reviewed. In this study, all
33 parameters were recalculated and reset by using up-to-
date hydrometeorology theory and methodology, focussing
on critical parameters such as soil porosity, vertical saturated
hydraulic conductivity, maximum infiltration rate and coeffi-
cient of roughness for each layer of soil type.

During the spring melt season, there is little Evergreen
Needle leaf coverage within the study area. As deciduous
foliage is not yet present or is covered by snow, LAI and
height of vegetation (except Evergreen Needle leaf) were
classifieds as bare land. There are two important soil
parameters: Maximum Infiltration rate and Manning’s n
which need to be adjusted in snowmelt runoff modelling.

(1) Maximum infiltration rate:

Seasonal ground frost is widespread in the catchment dur-
ing spring melt season. The spatial distribution of frozen soil
and snow cover at the start of the spring melt season plays
an important role in the generation of spring runoff. Many
field studies on snowmelt infiltration into frozen soils have
been reported in the literature (Kane and Stein, 1983; Burn,
1991; Gray, Toth and Zhao, 2001; Cherkauer, and Letten-
maier, 2003; Niu and Yang, 2006; Zhang and Sun, 2007; Ye,
2009).

Hydrologically, frozen soil suppresses infiltration and
encourages surface runoff. In this paper, we empirically
hypothesise that as the seasonal frozen soil is distributed
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Table 3. The test of forecasted and observed results.

Index Date

29 Feb. 2008 1 Mar 2008 2 Mar 2008 3 Mar 2008 4 Mar 2008 5 Mar 2008
Efficiency coefficient 0.67 0.952 0.912 0.66 0.68 0.96
Relative error of peak runoff 5.19% 2.97% 3.40% 13.2% 11.06% 8.65%

 

Fig.5 Comparative map of forecasted meteorological data and observed data 
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Fig. 5. Comparative map of forecasted meteorological data and ob-
served data.

under snow cover regions, the maximum infiltration rate of
frozen soil is 1.0 e−6.

(2) Manning’s n:

When compared to the time of energy input at snow sur-
face, the delay of snowmelt runoff is due to the water hold-
ing capacity of the snowpack and the horizontal travel time
of melt water along the ground. This results in a delay in the

 

 

Fig. 6 Spatial change map of snow water equivalent (mm) 
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Fig. 6. Spatial change map of snow water equivalent (mm).

peak time of daily runoff. In this paper the soil parameter,
Manning’sn (coefficient of roughness), was adjusted so that
the simulated daily flood-peak time matched the observation
data.

There is no hydrological and meteorological station in the
study area. We have observed the snowmelt process for 3
years (2006, 2007, and 2008). We have observed the daily
flood-peak time during the spring melt season in 2006 and
2007. However for the purpose of this study there was insuf-
ficient time series runoff data available. Several parameters
(e.g., coefficient of roughness, stream network parameters)
were adjusted based on observations from 2006 and 2007.

With the new model parameter schemes, the forecasted
snowmelt runoff agreed with the record database. Mod-
elling efficiency was better than that with original parameter
schemes (Fig. 7).
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Fig. 7. Comparative map of forecasted discharge and observed dis-
charge.

4.3 Analyses of snowmelt runoff results

The DHSVM model was forced by forecasted meteorolog-
ical fields at a spatial resolution of 1 km. However, the
DHSVM model is initialized at a spatial resolution of 30 m.
Therefore there is an interpolated programme embedded
within the DHSVM model, which is based on the DEM data
(30′′) used by WRF model, the high-resolution DEM data
(30 m) and temperature gradient. Figure 6 shows the spatial
change of snow water equivalent. Figure 7 shows the com-
parative map of 24 h-forecasted discharge model with the
new model parameter schemes, forecasted discharge with the
old model parameter schemes and observed discharge from
the outlet of Juntanghu basin from 29 February 2008 to 6
March 2008.

The model efficiency coefficient and the relative error of
maximum value are used to evaluate the efficiency of the
snowmelt runoff forecasting model. Table 3 shows the test
of runoff forecasted with the new model parameter schemes
and observed results.

The model efficiency coefficient:

R2
=

1 −

n∑
i=1

(Qobs− Qfore)
2

n∑
i=1

(
Qobs− Qobs

)2

 × 100% (4)

WhereQobs is the observed discharge (m3/s), Qobsis the
average observed discharge (m3/s), Qfore is forecasted dis-
charge (m3/s).

The relative error of maximum value:

Rm =
Qobs.m − Qfore.m

Qobs.m
(5)

WhereQobs.m, andQfore.m is the maximum observed and
forecasted discharge (m3/s) respectively.

From Fig. 7 and Table 3, the following results can be ob-
served: (1) The average efficiency coefficient is 0.8, which
shows the forecasted data is in strong agreement with the
observed data. The same trends are present in hydrological
processes; and (2) The maximum relative error of maximum

data, which is very important for flood warning, is 13.2%.
This means the snowmelt runoff forecasting model is able
to meet the needs of snowmelt flood forecasting and flood
warning.

5 Conclusion

Based on the latest development of atmospheric science and
hydrology, using the features of snowmelt flooding on the
northern slopes of Tianshan Mountains, this study has built
a snowmelt runoff forecasting model by coupling WRF and
DHSVM. The forecasted results of this model have been
verified. This was achieved as follows: The limited-region
24-hour Numeric Weather Forecasting System was estab-
lished by using the new generation atmospheric model sys-
tem WRF2.2 with the initial fields and lateral boundaries pro-
vided by the T213L31. Overall, weather predictions were in
accordance with observational data. The atmospheric and
hydrologic models were coupled and a 24-h snowmelt runoff
forecasting model was run using forecasted meteorological
fields to force the DHSVM model. With the new parameter
schemes taking seasonal ground frost and snow cover into
consideration, the simulated data showed strong agreement
with the observed data. The average absolute relative error
of the maximum runoff in simulation is below 15%. The
model has successfully achieved practical snowmelt runoff
forecasting.

This study provides safeguards for flood early warning
systems, flood prevention and disaster reduction, and water
resource management through the forecasting of the meso-
microscale snowmelt runoff forecasting model. Coupling the
atmospheric and hydrologic models can offer useful refer-
ence for hydrological forecasting and water resources man-
agement in areas where there is no observed data or incom-
plete data.

The results demonstrate the potential of using meso-
microscale snowmelt runoff forecasting model for flood fore-
casting. The model can provide a longer forecast period
compared to traditional models such as those based on rain
gauges, or statistical forecasting.
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flash flood in Qúebec, Canada, Geophys. Res. Lett., 29, 1026–
1029, doi:10.1029/2001GL013827, 2002.

LU Gui-hua, WU Zhi-yong and LEI Wen: Application of a coupled
atmospheric-hydrological modelling system to real-time flood
forecast, Advance in Water Science, 6, 847–852, 2006.

Matheussen, B., Kirshbaum, R. L., and Goodman, I. A.: Effects of
land cover change on streamflow in the interior Columbia River
Basin (USA and Canada), Hydrol. Proc., 14, 867–885, 2000.

Michalakes, J., Chen, S., Dudhia, J., and Hart, L.: Development of
a next generation regional weather research and forecast model.
In: Developments in Teracomputing: Proceedings of the Ninth
ECMWF Workshop on the use of high performance computing
in meteorology, Singapore, 269–276, 2001.

Miller, N. L. and Kim, J.: Numerical prediction of precipitation and
river flow over the Russian River watershed during the January
1995 storms, B. Am. Meteor. Soc., 77, 101–105, 1996.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and
Clough, S. A.: Radiative transfer for inhomogeneous atmo-
sphere: RRTM, a validated correlated-k model for the long-wave,
J. Geophys. Res., 102(14), 16663–16682, 1997.

Murray, F. W.: On the computation of saturation vapor pressure, J.
Appl. Meteorol., 6, 203–204, 1967.

Berry, P. A. M., Garlick, J. D., Smith, R. G.: Near-global validation
of the SRTM DEM using satellite radar altimetry, Remote Sens.
Environ., 106, 17–27, 2007.

Zhao, Q., Liu, Z., and Shi, Q.: EOS/MODIS data-based estima-
tion of the daily snowmelt in Juntanghu Watershed, northern
slope of Tianshan Mountain, in: Remote Sensing and Mod-
elling of Ecosystems for Sustainability IV, Proc. SPIE, Vol. 6679,
66791C, 2007.

Skamarock, W. C. and Klemp, J. B.: The stability of time-split nu-
merical methods for the hydrostatic and the nonhydrostatic elas-
tic equations, Mon. Weather Rev., 120, 2109–2127, 1992.

Storck, P., and D. P. Lettenmaier, Predicting the effect of a forest
canopy on ground snow accumulation and ablation in maritime
climates, in Troendle, C, Ed., Proc. 67th Western Snow Conf.,
Colorado State University, Fort Collins, 1-12, 1999.

Storck, P.: Trees, snow and flooding: an investigation of forest
canopy effects on snow accumulation andmelt at the plot and wa-
tershed scales in the Pacific Northwest, Water Resource Series,
Technical Report 161, Dept. of Civil Engineering, University of
Washington, USA, 2000.

Sun, J. and Zhao, P.: Simulation and analysis of three heavy rain-
full processes in 1998 with WRF and MM5, Actameteorological
Sinica, 61(6), 692–701, 2003.

US Department of the Interior, and US Geological Survey: Saw-

www.hydrol-earth-syst-sci.net/13/1897/2009/ Hydrol. Earth Syst. Sci., 13, 1897–1906, 2009



1906 Q. Zhao et al.: A snowmelt runoff forecasting model coupling WRF and DHSVM

grass Density, Biomass, and Leaf Area Index: A Flume Study in
Support of Research on Wind Sheltering Effects in the Florida
Everglades, Open-File Report 00-172, 2000.

US Department of the Interior, and US Geological Survey: Vegeta-
tion Classification for South Florida Natural Areas: Saint Peters-
burg, Fl, US Geological Survey, Open-File Report 2006-1240,
1–142, 2006.

USGS: Shuttle Radar Topography Mission (SRTM)—“Finished”
Products: U.S. Geological Survey,http://edc.usgs.gov/products/
elevation/srtmbil.html, last date accessed: 30 June 2005.

Salomonson, V. V. and Appel, I.: Estimating fractional snow cover
from MODIS using the normalized difference snow index. Re-
mote Sensing of Environment, 89 (2004) 351–360.

Wang, W., Barker, D., Bruyere, C., Dudhia, J.: WRF Version 2
modelling system user’s guide:http://www.mmm.ucar.edu/wrf/
users/docs/userguide/, last access: 2004.

Welsh, P., Wildman, A., Shaw, B., et al.: Implementing the Weather
Research and Forecast (WRF) model with local data Assimila-
tion in a NWS WFO, 84th AMS Annual Meeting, Seattle, USA,
2004.

Wigmosta, M. S., Vail, L. W., and Lettenamaier, D. P.: A distributed
hydrological-vegetation model for complex terrain, Water Re-
sour. Res., 30(6), 1665–1679, 1994.

Wigmosta, M. S. and Perkins, W. A.: A GIS-based modelling sys-
tem for watershed analysis: Final Report to the National Council
of Paper Industry for Arid and Stream Improvement, 1997.

Wigmosta, M. S. and Perkins, W. A.: Simulating the effects of for-
est roads on watershed hydrology, in: Influence of Urban and
Forest Land Use on the Hydrologic Geomorphic Responses of
Watersheds, edited by: Wigmosta, M. S. and Burges, S. J., AGU
Water Science and Application Series, 2001.

Rawls, W. J., Nemes, A., Pachepsky, Y. A., and Saxton, K. E.: Us-
ing the NRCS National Soils Information System (NASIS) to
Provide Soil Hydraulic Properties for Engineering Applications,
Am. Soc. Agricult. Biol. Eng., 50(5), 1715–1718, 2007.

Wu, S. and Zhang, G.: Preliminary Approach on the Floods
and Their Calamity Changing Tendency in Xinjiang Region, J.
Glaciol. Geocryol., 25(2), 199–203, 2003.

Zhang, X., Sun, S., and Xue, Y.: Development and Testing of a
Frozen Soil Parameterization for Cold Region Studies, J. Hy-
drometeorol., 8(4), 690–701, 2007.

Zhang, F., Ma, X., and Yang, K.: Numerical Simulation and Di-
agnostic Analysis of a Heavy Rainfall in Jiangnan Area during
24–25 June 2003. Meteorological Monthly, 30(1), 28–32, 2004.

Hydrol. Earth Syst. Sci., 13, 1897–1906, 2009 www.hydrol-earth-syst-sci.net/13/1897/2009/

http://edc.usgs.gov/products/elevation/srtmbil.html
http://edc.usgs.gov/products/elevation/srtmbil.html
http://www.mmm.ucar.edu/wrf/users/docs/user guide/
http://www.mmm.ucar.edu/wrf/users/docs/user guide/

