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Abstract. This study analyses the intersite dependence ofments gives a more realistic representation of the character-
nested catchment structures by modelling cross-correlationistic river network structure and improves the estimation of
for pairs of nested and unnested catchments separately. Prokegional information content. Hence, applying two different
abilistic regional envelope curves are utilised to derive re-cross-correlation functions is recommended.

gional flood quantiles for 89 catchments located in Saxony,
in the Southeast of Germany. The study area has a nested
structure gnd the intersite correlation is much stronger foril Introduction
nested pairs of catchments than for unnested ones. Pool-

ing groups of sites (regions) are constructed based on sevrpe estimation of flood quantiles is a major topic in hydro-
eral candidate sets of catchment descriptors using the Reygic research and engineering practise. Due to the uncer-
gion of Influence method. Probabilistic regional envelope ajnty in the estimation of flood discharges with large recur-
curves are derived on the basis of flood flows observed withinyence intervals (e.g.T>100 years) by an at-site flood fre-
the pooling groups. Their estim_ated recurrence intervals arjuuency analysis, several gauges may be pooled together in
basgd on the number of effective sample years of dat.a (i-ea pooling group following the principle “trading space for
equivalent number of uncorrelated data). The evaluation ofjme” (e.q. Stedinger et al., 1993; Robson and Reed, 1999).
the effective sample years of data requires the modellingrherefore, it is assumed that analysis results, e.g. results of
of intersite dependence. We perform this globally, using a; regional flood frequency analysis (RFFA), are valid for all
cross-correlation function for the whole study area as We”gauges of a specific pooling group. RFFA aims at improving
as by using two different cross-correlation functions, one forine estimation of flood quantiles by using the larger num-
nested pairs and another for unnested pairs. In the majorityer of flood data. However, an improvement can only be
of the cases, thesg two modelling appr_oacheS yield signifireached by increasing the effective sample years of data (i.e.
cantly different estimates for the effective sample years ofthe number of independent observations). The increase in
data, and therefore also for the recurrence intervals. The rege effective sample years of data when adding a new site
duction of the. recurrence i_nterval when using two different g g pooling group can be assessed by considering the inter-
cross-correlation functions is larger for larger pooling groupssite correlations or cross-correlations among all gauges in a
and for pooling groups with a higher fraction of nested catch-pq0jing group (Matalas and Langbein, 1962).

ments. A separation into nested and unnested pairs of catch- p pooling group comprises catchments of similar hydro-

logic behaviour. In flood regionalisation studies, fixed homo-
geneous regions are traditionally used, whereby each site is

Correspondence tdB. Guse explicitly assigned to one region, e.g. through cluster analy-
BY (bguse@gfz-potsdam.de) sis (e.g. Acreman and Sinclair, 1986; Nathan and McMahon,
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1990; Rao and Srinivas, 2006). In contrast, the Region ofgeneralised least square (GLS) method, which explicitly con-
the Influence (Rol) approach (e.g. Burn, 1990a, b; Zrinji andsiders the impact of cross-correlated sites. Several studies
Burn, 1994) constructs a separate pooling group for each siteonfirmed that the GLS estimator outperforms the WLS or
in the region under study. the ordinary least squares (OLS) estimator for the application

Several methods and many studies on regional flood freef linear regression models in the case of cross-correlated
quency analysis have been presented (e.g. Cunnane, 1988ites (see e.g. Stedinger and Tasker, 1985, 1986; Kroll and
GREHYS, 1996a, b; Robson and Reed, 1999; Merz andStedinger, 1998; Reis et al., 2005).

Bloschl, 2005; Ouarda et al., 2008). A common application The impact of intersite correlation on regional estimates
is the widely used index flood approach, which assumes thaivas analysed for Partial Duration Series by Madsen and Ros-
a regional growth curve is representative for all sites of a ho-bjerg (1997a, b) and for Annual Maxima Series by Kjeldsen
mogeneous region. The at-site flood quantiles vary only inand Rosbjerg (2002) and Kjeldsen and Jones (2006). Madsen
the scale factor index flood (e.g. Dalrymple, 1960; Stedingerand Rosbjerg (1997a) pointed out that intersite correlation
and Lu, 1995; Robson and Reed, 1999). Linear regressiomeeds to be considered to accurately assess the uncertainty of
models relate catchment descriptors (e.g. drainage area, préie regional estimator. It has recently been demonstrated by
cipitation indices) to a predefined flood quantile (e.g. Rosb-Castellarin et al. (2008) that intersite correlation affects the
jerg and Madsen, 1995; Kroll and Stedinger, 1998; Robsorheterogeneity measure of Hosking and Wallis (1993), which
and Reed, 1999; Reis et al., 2005). Recently, geostatistiestimates the hydrologic heterogeneity of a region.

cal methods (e.g. Top-Kriging) were introduced to region- The distance between two catchments is generally as-
alise flood quantiles (Merz and @chl, 2005; Skoien et al., sumed to be the most important factor for intersite correla-
2006). tion resulting in different cross-correlation models. In these

Regional envelope curves (REC) are a variant of linear re-models, the correlation coefficient decreases as a function of
gression models which only use the size of the drainage arethe distance between the catchments (see e.g. Tasker and Ste-
to estimate the maximum flood discharge (e.g. Crippen andlinger, 1989; Troutman and Karlinger, 2003).

Bue, 1977; Herschy, 2002). A shortcoming of the traditional The effects of the river network structure and mutual loca-
REC method is, however, that no recurrence interval can beion of catchments were considered by Troutman and Kar-
assigned to the maximum discharge. Therefore, Castellarifinger (2003). They pointed out that peak flows between
et al. (2005) proposed the method of probabilistic regionalnested catchments, i.e. catchments along the same stream,
envelope curves (PREC), which enhance the traditional REGire more correlated than peak flows between unnested catch-
approach with a probabilistic interpretation. The method ofments. In terms of flood regionalisation methods Skoien
PREC requires a pooling group, which fulfils the homogene-et al. (2006) demonstrated the better performance of Top-
ity criteria of the index flood method. The recurrence interval Kriging, which considers the effect the river network struc-
of PREC is directly related to the effective sample years ofture, in comparison to a traditional Ordinary Kriging ap-
data. Hence, its calculation algorithm explicitly considers theproach, which is based only on the distances between the
effect of cross-correlated sites in a pooling group of data.  catchments.

Several studies have demonstrated the relevance of inter- Castellarin et al. (2005) developed an empirical function
site correlation for regional flood estimates (e.g. Stedingerpy using a Monte-Carlo simulation to reveal the reduction
1983; Hosking and Wallis, 1988; Madsen and Rosbjerg,of the overall sample years of data in a pooling group due
1997a; Vogel et al., 2001). Matalas and Langbein (1962)to intersite correlation, and to obtain the effective number of
introduced the concept of regional information content to sample years of data for estimating the recurrence interval
determine the effect of intersite correlation within flood se- of a PREC. This is equivalent to the number of independent
quences. The regional information content expresses thdata associated with the concept of information content by
number of independent discharge observations. The authorglatalas and Langbein (1962). Castellarin (2007) examined
showed that the variance of the regional mean increases fahe accuracy of PREC flood quantiles by comparing differ-
cross-correlated sites. ent cross-correlation functions for an Italian data set. Owing

Kuczera (1983) assessed that a low number of observato the small number of nested catchments, different cross-
tions and the presence of intersite correlation leads to aorrelation functions for nested and unnested catchment re-
larger uncertainty of an empirical Bayes estimator. Ste-lationships were not estimated.
dinger (1983) demonstrated that the variance of the regional In this study, we assess the impact of different approaches
variance and skewness increases due to intersite correlatioto model regional cross-correlation structure with respect to
Hosking and Wallis (1988) pointed out that cross-correlationtheir impact on the effective number of observations and the
among sites leads to less accurate estimates of regional floagcurrence interval of probabilistic regional envelope curves
guantiles; however, the influence of regional heterogeneity PREC). First, a global approach is considered, in which the
is more significant. Applying hydrologic linear regression cross-correlation function is identified for the whole study
models, Stedinger and Tasker (1985) introduced intersite corarea. Second, the method of PREC as described by Castel-
relation by extending the weighted least square (WLS) to thdarin et al. (2005) and Castellarin (2007) is extended by
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deriving two different cross-correlation functions, one for d=distance between catchment centrojgscorrelation co-
nested pairs of catchments and one for unnested ones. Whilkefficient by Pearsor,;, Ao=parameters,, j=index denoting
applying both approaches we did not vary any other aspect opairs of catchments.
flood regionalisation (e.g. selection of catchment descriptors, Therefore, empirical cross-correlation coefficients be-
pooling method, etc.), since our investigation mainly focusestween the AMS were related to the distances between the
on the correlation structure for nested and unnested pairs afatchment centroids. By using catchment centroids the river
catchments. Significant factors, which influence the effectnetwork structure is incorporated in the distance calculation
of intersite correlation on PREC, are determined. The study(e.g. Troutman and Karlinger, 2003). The parameterand
region, Saxony in south-eastern Germany, includes several, of the cross-correlation function were fitted by a weighted
pairs of nested catchments and enables us to examine in deptimisation, in which empirical coefficients were weighted
tail the effect of nested catchment structures on PREC floogroportionally to the length of the overlapping time series.
quantiles, whose importance was not adequately acknowl- (2) The number of effective observations was calculated
edged in previous studies. by an empirical relationship, which incorporated the theoret-
ical average cross-correlation values from Eq. (2). The data
set of a specific pooling group compriséstimes AMS with
2 Methods a variable length, but not more thanyears. The length of
the AMS varies due to missing observations or different ob-
servations periods. In a first step, all yeagswith only one
observation among th#f discharge time series were con-

The regional information content (IC) can be defined as theSIdered separately. In these years, all other (M-1) gauging

ratio of the effective sample years of dat# to the total sam- stations have no discharge measurements. sijhebserva-
piey tions are certainly effective, because there is only one dis-

ple years of data n. The effective sample years of data T®Ptharge value within the pooling group for this year (Castel-
resents the equivalent number of independent observations 9 P g group y

within a pooling group (Eq. 1) arin, 2007).
i 9P 5 After this, theY -n1 remaining years were analysed. These
neff

iC _ eff 1) years were split intd’syp subsets withs p,<(Y-n1). In each
n of these subsets (denoted gs there wereL; flood se-

The core idea of regional information content (Matalas andduences with an.equal Iength of yedyswith L, <M. The
number of effective observations of a subsgt ; was cal-

Langbein, 1962) is that a correlated site gives a lower de_culated for each subsetseparately. Then, the numbers of
gree of additional information to the site being studied than P Y- ’

. " . . effective observationsess ; were summed up for all subsets.
an uncorrelated site. Hence, the additional information de- eff,s P

creases for a higher intersite correlation. An IC of 1 meansIn the last step, the number of effective sample years of data

that these sites are completely uncorrelated (independentgeff comprises ihe years with ane observation and the sum

implying that the total flood sequence gives additional infor- f the numbers of effective obs,_ervat|on§ff,s f or all Ysup
. o subsets. The number of effective observations was calcu-
mation @eff=n). In contrast, a small value of IC indicates

that there is only low additional information within the time lated by an empirical rglat|onsh|p derived by Castellgrm et
. . al. (2005) and Castellarin (2007) from Monte-Carlo simula-
series (Matalas and Langbein, 1962).

On the basis of the regional information content, Castel-tlonS (Ea. (3), adopted from Castellarin, 2007).

2.1 Regional information content and number of
effective observations

larin et al. (2005) and Castellarin (2007) estimated the ex- Ysub Ysub L.
oy . sts
ceedance probability of a regional envelope curve. The ef#neff = n1 + Zneff,s =nm+ Z —
fective sample years of datays, hereafter also referred to s=1 s=11+ [pﬁ]L (Ls =1
as the number of effective observations, were calculated by 110176 '
reducing the total sample years of the AMS of all gauges in with : = 1.4 (Lsls) , 3)
two steps (Castellarin, 2007). First, the intersite correlation [(1 - p)0-376]L

between the different AMS was modelled as a function of the

distance between the catchment centroids. Second, the rgzhere the terifj, denotes that the average valye’s and

sults of the cross-correlation function were used to estimate;——537g
the number of effective observations. (1 — p)Y370are calculated for the,; annual flood sequences.

: : . I hat diff luesf
(1) A regional cross-correlation function (Eqg. 2), from t becomes apparent that different parameter valuessfor

. . andai directly affect the results of Eq. (2) and therefore also
Castellarin, 2007), proposed by Tasker and Stedinger (1989)0f qu. 3). C{)nsequently the numges gf effective observa-

\tliv:: c?fptﬁheegi’s\t/\g:gg estimates the cross-correlation as a funCt'ionSneff is affected by using different parameter sets for the
’ cross-correlation function. Equation (3) illustrates that the

Aid; magnitude ofie depends on the size of the available data
Pi ji= exp _— (2) . . s
: 1+ Aod; j set and their cross-correlation characteristics.
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2.2 Probabilistic regional envelope curves 10000
The calculation of the humber of effective sample years of
data is a fundamental step towards the estimation of the ex—? 10001 W
ceedance probability of a regional envelope curve. A re- X Oo o % o Qoo
gional envelope curve (REC) is determined by relating all %
floods of recordQror Normalised by the drainage area (A) &
to A (Eq. (4), adopted from Castellarin, 2007). The flood of g 100
record is the largest discharge of each time series. §
OFoR _ = 10} Index Flood (Mean Annual Flood)

log < A ) =a+bxlogd) @ 5 Regression ( )

. O Flood of record
a=intercept of RECp=slope of REC. —— Regional Envelope Curve

The concept of the probablll_stlc reglona_l envelope curve Yo 100 1000 10000
(PREC) requires that two basic assumptions are fulfilled: Catchment size [km?]

firstly, PREC is based on the index flood hypothesis. The in-

dex flood method (Dalrymple, 1960) requires that all selectedrig. 1. Example of a Regional Envelope Curve (REC).

flood series constitute a homogeneous region. These flood

series are identically distributed, i.e. have the same growth

curve, except for the scale parameter, the index flood (e.gis discussed in Sect. 3. Equation (6) implies that the reduc-
Robson and Reed, 1999). In this study, the mean of the AMSion effect of intersite correlations on directly affects the
was used as index flood. Secondly, there is a scaling of th@stimation of7". The recurrence intervdl, i.e. the inverse
index floodu x to the drainage area (A) (Eq. (5), from Castel- of the exceedance probability, is derived for the entire pool-
larin et al., 2005). The index flood depends on the drainagdng group and therefore is identical for all gauges. lIts va-

area alone. lidity is restricted to the range of the catchment size within
b1 the pooling group, i.e. from the smallest to the largest catch-
ux =CxA (5)  mentsize. Thus, the use of different parameter values for the

A regional envelope curve can be derived in two steps First CrOSS-correlation function affects in the same way asef.

: : : . "~ .~ "We referred to Castellarin et al. (2005), Castellarin (2007)
the slopey is estimated by a regression analysis (orange line d Castellarin et al. (2007) for more detailed information of
in Fig. 1). The second step is a parallel upshift of the re-2" '

S . the PREC concept.
gression line up to the intercept Then all floods of record
are bounded by REC (blue line in Fig. 1) (Castellarin etal., > 3 Pooling scheme
2005).

Since the PREC method is based on the index flood hy-The method of PREC is based on the index flood hypothesis.
pothesis, the derivation of a pooling group which fulfils the This implies the need of pooling groups fulfilling the homo-
homogeneity criteria of the index flood hypothesis is an es-geneity criteria of the index flood method. In this case, the
sential step in the PREC concept. In this work, PREC wasPREC concept is valid for all sites of the pooling group. This
applied for all regions with at least four sites. study is tailored to assess the impact of different approaches

The core idea of PREC is the assignment of an exceedanag the modelling of the regional cross-correlation structure on
probability to a REC. The exceedance probability is esti-several PREC applications. For this purpose several pooling
mated for that particular data pair (i.e. the unit flood of record groups, derived using the Region of Influence (Rol) method,
and associated drainage area) which determines the intercegte needed. We derived several candidate sets of catchment
of REC. This is the exceedance probability of the largest unitdescriptors instead of one “best subset”, because the use of
flood of record in the region. a “best subset” neglects that different subsets of catchment

For this purpose, the plotting position of the maximum unit descriptors could have a similar performance. The pooling
flood of record was used, which was determined by the numgroups were constructed by the following six steps:
ber of effective observationss (Eq. 3) and the Hazen func-

tion (Eq. (6), from Castellarin, 2007). (1) we selected meaningful predictor variables which were
standardised (mean=0, std=1) to allow a comparison be-
T = 2 % neft (6) tween them. We combined the standardised catchment

descriptors to create all possible subsets with one, two

Castellarin (2007) showed that the Hazen function is a suit- and three catchment descriptors.

able quantile unbiased plotting position when the Gener-
alised Extreme Value (GEV) distribution is an adequate par- (2) We defined only those subsets of catchment descriptors
ent distribution. The suitability of the GEV for this study as candidate sets, which had the largest correlation to
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(4)

®)

(6)

www.hydrol-earth-syst-sci.net/13/1699/2009/

the empirical unit index floods. A correlation coeffi-
cient of 0.6 was selected as threshold. Index flood val-
ues were used as explained variable because the PREC
method is based on a scaling of the index flood values
with the drainage area (see Eq. 5).

1703

the L-coefficient of variation (L-CV). Since synthetic
time series generated in the test are independent by def-
inition, intersite correlation introduces some bias in the
Hj-test results (Castellarin et al., 2008). Hosking and
Wallis (1997) mentioned that a very low value of their

heterogeneity measure {H—2) indicates a high inter-
site correlation. All regions with IHvalues lower than

1 are acceptably homogeneous and withudlues be-
tween 1 and 2 are possibly heterogeneous (Hosking and
Wallis, 1997). This means that a modification of the
region is not required or optional, respectively. The H
test was performed with the hw.test (Viglione, 2008, im-
plemented in R). We used each Rol with+R to form

a pooling group and to derive a PREC. Hence, the num-
ber of PREC realisations was identical with the number
of homogeneous Rols.

We then checked all candidate sets with three catch-
ment descriptors on redundancy compared to the se-
lected subsets of two catchment descriptors. We only
maintained candidate sets with three catchment descrip-
tors which led to a larger proportion of explained vari-
ance (higher correlation coefficient).

We checked all subsets on multicollinearity by the Vari-
ance Inflation Factor (VIF) (Hirsch et al., 1992) and re-
moved them if the VIF was larger than five.

Each remaining candidate set was used to derive a Re-

gion of Influence (Rol) (Burn, 1990a, b). The Rol 3 4 application and interpretation of different cross-
meth_od |dent_|f|es a specific pooling group o_f S|tes_ (re- correlation functions

gion in the widest sense) for each gauge (site of inter-

est). The rationale behind this approach is that the spe-

cific hydrologic conditions of the site of interest are con- The number of effective observations was calculated using
sidered to select hydrologically similar gauges. Insteadthe cross-correlation function (see Eq. 2) with separately op-
of the geographical distance, a physiographical Spacéimised parameter sets. In a first approach, the number of ef-
was formed by the catchment descriptors of a selectedective observations (see Eq. 3) was calculated by using one
subset. By selecting sites close to the site of interesross-correlation function for the whole study area (global
in the physiographical space, adequate sites were dete@Pproach, termedunef;,). Second, the cross-correlation
mined for constructing a Rol. We used the Euclidean function was applied with different parameter sets for nested

distance in the physiographical space between the site8nd unnested catchments (nested approach, termgd:).

to evaluate their S|m||ar|ty to the site of interest (Burn' The parameter set for nested structures was used for the pairS
1990a, b). Rols were formed by assessing three differ-of catchments which are in an upstream-downstream rela-
ent thresholds (0.5, 1 and 2) of the Euclidean distancetionship, termedPy. For all of the others, the unnested
The different thresholds reflect the trade-off between theParameter set was employed. The numbers of the effective
size and the regional homogeneity of a pooling groupObservationsieft,c andnef;,y were compared for the same
(e.g. Burn, 1990a; Castellarin et al., 2001). In a pre-Pooling groups. Therefore, the information content (IC),
|iminary ana|ysi5, another Rol variant was also app“edle the fraction of the effective ObservatiOﬂf@f to the total

as proposed by Géand Kysey (2009). Thereby, we observations n, was calculated according to Eq. (1) for the
started with a Rol which includes the ten most simi- global case (IG) and the nested-unnested {ICapproach.

lar sites. The size of the Rol was determined by it- In @ next step, the rati®y was calculated as a function of
eratively adding sites to the Rol until the threshold of the differences betweeny, y andnefr,¢ Usingne,¢ as ref-
Hi<2 was exceeded or in the case of an initially het- erence (Eq. 7).

erogeneous Rol by removing sites until the-tdst falls

below the threshold (step-wise approach) (see e.g. Zrinji

and Burn, 1994; Castellarin et al., 2001;4&and Ky-
sely, 2009). Since we found no significant variations in
the results, we only report here the results of the first
Rol variant.

Ty — T,
100= NG

neff,G Tc

__ Neff N — Neff,G «

Ry = %100 @)

The ratioRy facilitates the interpretation of the influence of
The pooling groups constructed by Rol were tested onthe dif_ferent parameter sets on the number of effective ob-
homogeneity by the heterogeneity measure (H-test) O1_servat|ons. Furthermorg, the stud;_/ focuses on the recurrence
Hosking and Wallis (1993). The H-test compares tr](3|r1"[ervaIT of PREC, which, apcordlng to Eq. (6), is twice as
regional heterogeneity of a pooling group in terms of high as the _nu_mbe_r of effectwe_obs_ervatlons. Consequently,
the variability of L-moment ratios with simulated syn- the ratioRy is identical when using’ instead ofetf (Eq. 7).
thetic time series calculated by a Monte-Carlo simula- The effect of the nested structure Brwas investigated by
tion. The H-test focuses on the sample variability of calculating a degree of nestingy (Eq. 8). It is defined as

Hydrol. Earth Syst. Sci., 13, 1692-2009



1704 B. Guse et al.: Effects of intersite dependence on probabilistic regional envelope curves
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Fig. 2. Elevation and gauging stations in Saxony, Germany. The colour scale indicates the unit flood of record at each gauge.

the ratio between nested catchment p&jgsand all pairs of  the northern parts (Fig. 2). The Elbe is the largest river with a

catchmentsP in a pooling group. catchment size of about 52 000 kit Dresden gauge. There
are five large catchments in Saxony (Weisse Elster, Mulde,
Yi’l Py Schwarze Elster, Spree and Lausitzer Neisse, from west to
= e east) and several tributaries to the River Elbe (Western and
Dy = Y —ng ®)  Eastern tributaries) (Fig. 2).

We only used gauges that (1) had a time series of more
an 29 years, (2) were not strongly influenced by mining ac-
tivities, (3) had a catchment size larger than 1Gkend (4)

ere not located directly downstream of a dam. Furthermore,

The nested catchment structure was estimated separately f%
each year. The years with a single observationii Eq. 3)
were not considered in this approach. Ultimately, the mea

degree of nestin@y for the ¥-n, years (see Sect. 2.1) was we omitted gauges whose catchments were mostly outside of

calgulated for each ROI.' . . ) Saxony. Ultimately, we considered 89 gauges as indicated in
Fmally, since the es_tlmat!on of flooql quantiles de”"eq by Fig. 2. Most of the gauges have a few nested catchment rela-

PRECs is affected by intersite correlation (through the dlfTer'tionships. Nested catchment structures are especially located

ent parameter sets of the cross-correlation function), but alsg}1 the Mulde catchment. All tributaries of the Mulde catch-
by regional heterogeneity (through the threshold adopted fo‘;nents originating in th&rzgebirgeare related to the two

the heterogeneity measure iwe analysed the influence of most downstream gauges (sites 34-35 in Fig. 2).

Q|ﬁerent thresholds of H(.)n. Ry. As reglonal homogeneity We derived the annual maxima series (AMS) as well as the
is a fundamental prerequisite for applying PREC (see Castel:

larin et al., 2005; Castellarin, 2007), we considered two dif-h'gheSt observeq d|§_charge, the flood of reo@t@R, -for ?"
ferent thresholds, He1 and H <2, that according to Hosk- gauges. The suitability of the GEV as parent distribution for
ing and Wallis (1997) refer to “acceptably homogeneous” the 89 gauges was checked by a L-moment ratio diagram (see

" . . S _e.g. Vogel etal., 1993; Peel et al., 2001). It clearly stated that
and “possibly heterogeneous” regions, in this order. Follow the use of the GEV was adequate.

ing the main hypotheses for applying PREC, we did not con- T ) )
sider larger thresholds (i.e. larger heterogeneity degrees).  Climatic, geologic and land-use data were used to derive
catchment descriptors as basis for pooling catchments into
homogeneous regions. Precipitation data was provided by
3 Study area and data the German Weather Service (DWD). We estimated precipi-
tation indices from 453 stations in and around Saxony which
The federal state of Saxony in the south-eastern Germany hdsad a record length of at least 30 years and still existed in
a size of about 18 400 kfrand is characterised by higher ele- 2002. We selected this year because of a severe wide-spread
vations in the SouthwesE(zgebirgg and lower elevationsin  flood which occurred in 2002, in particular along the Elbe

Hydrol. Earth Syst. Sci., 13, 1699#12 2009 www.hydrol-earth-syst-sci.net/13/1699/2009/
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Table 1. List of catchment descriptors.

Abbreviation Catchment descriptors

MAP Mean annual precipitation [mm]

MAXDAY Maximum daily precipitation [mm]

P50 Annual frequency of days with precipitation of more than 50 mm/d [%]
MAX5DAY Maximum precipitation in five days [mm]

PAMS Mean of the annual maximum series of daily precipitation [mm]

ELEV Mean elevation of the catchment [m]

SLOPE Mean slope of the catchment [%]

RANGE.NORM Range of catchment elevation, normalised with the catchment si?@rﬁi@l]
ARABLE Fraction of arable land coverage [%]

URBAN Fraction of urban land coverage [%]

MINING Fraction of mining activities [%]

BEDROCK Fraction of bedrock areas [%]

KF_LOW Fraction of low permeability areas [%)]

and Mulde. During this flood the highest daily precipita- 4 Results
tion ever recorded in Germany was measured. Therefore it
is important to include the precipitation values of this year, 4.1 Intersite correlation in the study area
e.g. to calculate the maximum daily precipitation. Additional
precipitation stations were used to calculate the maximunFigure 3 illustrates the variability of empirical correlation co-
daily precipitation and the maximum five-day precipitation efficients for pairs of annual flood sequences in the study
sum. To better cover the spatial variability of precipitation, area. The heterogeneity of the correlation pattern becomes
we improved the spatial resolution of precipitation stationsapparent when comparing empirical correlation coefficients
by adding precipitation time series shorter than thirty yearshigher than 0.8 (e.g. Mulde gauges, sites 34-60 in Fig. 3),
when the flood of record of the downstream gauge occurredis well as very low correlation coefficients (e.g. Mulde vs.
during the period covered by the shorter precipitation timeSpree gauges (sites 71-83)). The gauges of the Mulde catch-
series. This led to 23 additional precipitation stations (476 inment and the western tributaries to the Elbe River originating
total) which could be used to calculate the maximum daily in the Erzgebirgeare characterised by large empirical corre-
precipitation and the maximum five-day precipitation sum. lation coefficients also beyond their catchment boundaries.
All precipitation indices were interpolated by ordinary krig- The correlation coefficients of neighbouring catchments are
ing. larger than coefficients across the catchment boundaries.
Mean elevation, mean slope and catchment centroids wer&his correlation pattern demonstrates that AMS of neigh-
derived from digital elevation models. In Saxony a grid size bouring catchments are more correlated. Among the 3916
of 25 m was used, whereas the digital elevation model frompossible pairs of catchments, there are 179 nested (5%) and
the Shuttle Radar Topographic Mission (SRTM) with a grid 3737 unnested ones.
size of 90 m (Jarvis et al., 2008) was resampled to a grid size
of 25 m for the areas outside of Saxony. Catchment centroid4.2 Cross-correlation functions
were required for the optimisation of the cross-correlation
function (see Eg. 2). Furthermore, landscape parameter§he cross-correlation function (Eg. 2) was optimised for
were derived from the digital landscape model ATKIS (BKG global, nested and unnested catchment relationships. The
GeoDataCentre, 2005) and hydrogeological parameters werdifferent parameter sets for the cross-correlation function are
taken from the hydrogeological map(#200) by the Saxon ~ given in Table 2. The parameters for the global and unnested
State Agency of Environment and Geology. Altogether, 13cases are similar, whereas the parameters for nested catch-
catchment descriptors were selected (Table 1). ments are noticeably different.
The relationship of the correlation coefficient to the dis-
tance of the catchment centroids for all pairs of sites shows
that the correlation coefficients vary betweef.25 and 1
(Fig. 4). As expected, the correlation decreases with increas-
ing distance. Due to the structure of the river network in
Saxony, all distances between the centroids of nested catch-
ments are lower than 50km, whereas unnested catchment

www.hydrol-earth-syst-sci.net/13/1699/2009/ Hydrol. Earth Syst. Sci., 13, 1692-2009



1706 B. Guse et al.: Effects of intersite dependence on probabilistic regional envelope curves

Lausitzer Neisse

84.89 Table 2. Parametersi(, A2) of the cross-correlation function by

Tasker and Stedinger (1989) and available sample size (m) for dif-

Spree

71-83 ferent catchment structures.

Weisse Elster

o170 Global Nested Unnested

M Al 0.021 0.012 0.022

ulde

34-60 A2 0.009 0.012 0.011
m 3916 179 3737

Schwarze Elster
27-33

We_stern tributaries 2
e Table 3. Subsets of catchment descriptors (CD) and the correlation

Eastern tributari .. . . .
e coefficient (COR) to the index flood of the annual maxima series of

2-6;12-13

Elbe tributary to all gauges.
Czech Republic . . , , : : L L
1 10 20 30 40 50 60 70 80 90
CD1 CD2 CD3 COR
F:ﬁj Be.SEmpmcaI cross-correlation coefficients for AMS of Saxon MAXEDAY ELEV RANGE .NORM _ 0.70
gauges. MAXS5DAY RANGE_NORM  URBAN 0.69
MAP MAX5DAY RANGE _NORM  0.69
MAXSDAY RANGE _NORM 0.68
relationships reach up to a distance of more than 200km. MAX5DAY ELEV URBAN 0.68
Figure 4 illustrates that the cross-correlation functions forthe  ELEV RANGENORM  URBAN 0.66
global and the unnested case are very similar, whereas the PAMS RANGENORM  URBAN 064
nested cross-correlation function strongly differs from them. — M/X°DAY ELEV 0.64
aly _ °M- ELev RANGE_ NORM 0.64
The global and the unnested cross-correlation functions yap MAX5DAY URBAN 0.64
clearly decrease up to a distance of about 50 km between the MAP MAXSDAY 0.62
catchment centroids. The slope of the functions decreases MAP RANGE NORM 0.62
slightly for larger distances. The differentiation in nested PAMS RANGENORM 0.62
and unnested catchments shows a remarkable difference in PS0 RANGENORM  URBAN 0.61
X MAX5DAY ARABLE URBAN 0.61
terms of average cross-correlation. As expected, the cross- yaxpay RANGE NORM URBAN 0.61
correlation function for nested catchments yields higher cor-  MAX5DAY URBAN BEDROCK 0.61
relations than the function for unnested ones, with differ- MAX5DAY PAMS URBAN 0.61
ences of upto 0.2. To give an example, at a distance of 40 km, RANGENORM  URBAN BEDROCK 0.60
RANGE.NORM BEDROCK 0.60

there is a correlation coefficient of 0.7 for nested catchments,

but only 0.5 for unnested catchments (Fig. 4).
The scattering in the correlation-distance plot (Fig. 4) il-
lustrates that the distance between the catchment centroids is
not the only relevant explanatory variable (see Troutman and-415 pooling groups with on average 13 sites fulfilled the as-
Karlinger, 2003). However, the distance has a high explanasumption of the PREC concept and were used further.
tory power for this study area due to the significant decrease

of the correlation coefficients with increasing distance. 4.4 Influence of intersite correlation on information

content
4.3 Region of influence
The number of effective observations was calculated for all

20 candidate sets listed in Table 3 met the criteria of thel415 pooling groups with the global parameter sg ()
pooling scheme (see Sect. 2.3). They were used to construébr the cross-correlation function as well as with the separate
Regions of Influence (Rol) and to derive the correspondingparameter sets for nested and unnested catchment structures
probabilistic regional envelope curves. (nefr,v). Figure 5 illustrates that, as it is expected, the num-

The Rol approach was applied to each of the 89 gaugeser of effective observations is lower than the number of total
separately, using the 20 candidate sets of catchment descripbservations for all pooling groups. It further indicates that
tors and the three different thresholds in the physiographicathe ratio of the number of effective observations to the num-
space. This led to a maximum possible number of 5340 poolber of total observations — information contents;|(@lobal
ing groups. The maximum number was not reached, sincapproach) and I§ (nested-unnested approach) — decreases
regions which were heterogeneous; §2) or had a small as the number of total observations increases. To give an ex-
number of sites within a Rok(4) were omitted. Ultimately, ample, while the information content is about 0.5 for data
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Fig. 4. Cross-correlation functions fitted to global, unnested and
nested catchment structures (T&S: cross-correlation function by

Distance between catchment centroids in km

Tasker and Stedinger, 1989).
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Fig. 5. Number of effective observations vs. sample years of data

sets with 600 total observations, it decreases to only 0.3 in_= 1600

ithin the pooling groups for a global cross-correlation function
and separate cross-correlation functions for nested and unnested
catchments.

the case of 2000 total observations. =
These results show how the information content decreasesg 1400} o

when an additional site is added. The larger the number ofg 12001 . é? *
sample years of data, the lower is the additional gain of infor- g AT %N
mation by adding one site to the pooling group. Furthermore, @ 1000t * 1
the additional gain of information is lower for nested catch- § 800! il |
ments. Hence, the reduction effect of cross-correlated sitesj_u’
onneft becomes larger as the number of total observations % 600 ]
increases. €

8 400+ f 1
4.5 Recurrence interval é 200l |
While a comparison of the effective sample years of data to § 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

o 200 400 600 800 1000 1200 1400 1600

the total sample years of data already illustrates the effect 0

of intersite correlation on the information content, the recur-

rence intervall of PREC shows this effect more clear, since

T is directly related to flood quantile estimates (see Eq. 6). Fig. 6. Difference in recurrence intervals between a single cross-
A comparison ofTg and Ty reveals that the recurrence c_orrelation function (global) and separated cross-correlation func-

interval is higher in most cases when the global cross-i0nS (nested-unnested).

correlation function is used (Fig. 6). The range of the ratio

Ry is between—23 and 3% (Fig. 7a). In other words, the

recurrence interval is up to 23% lower when using separat@pFrOECh ohn the otzer har?d (see Table 2.)’ |th|s mtErestlng
parameter sets for nested and unnested catchment relatioff '00% at the nested catchment structure in the study area.

ships. The difference increases with increasing recurrencél—herefore the rati®yy is related to the degree of'ne'stlﬂgz, .
intervals (Fig. 6), but the rati®y does not show a distinct I.e. the relative number of nested catchments within a pooling

relation to the recurrence interval (Fig. 7a). group (see Eq. 8). !t Is expected thay is mai_nly affected
in pooling groups with a large degree of nesting.

Ry decreases with a higher degree of nesting (Fig. 7b).
There is a particularly strong decreaseRy§ for Dy be-
The calculation off; differs from Ty only in the parameter tween 0 and 0.2. This implies that even a small degree of
set for the cross-correlation function. Since there are largeesting affects the recurrence interval of the PREC appre-
differences between the parameter sets for nested catchmertmbly. However, a certain degree of nesting is required to
on the one hand and for unnested catchments and the globaktimate large differences between the recurrence intervals

Recurrence interval (global) Tg

4.6 Degree of nesting
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Fig. 7. Ratio of recurrence intervat vs. the recurrence interval estimated by a global cross-correlation furiggiqa) and degree of
nestingDy (b).

for the globalTs and the nested-unnested appro@gh For H1< 1
example,Ry <—10 is observed foDy>0.1. Ry decreases ‘
up to a degree of nesting of about 0.4.

Positive values oRy are observed for a degree of nest- :
ing lower than 0.15 and therefore for pooling groups without =~ * - ‘ ‘ ‘ - .

or with onlv a few nested catchments. In the most extreme o-éoo 200‘-400 400‘-600 600‘-800 800-1000 1000‘-1200 120(;-1400 1400‘-1600
y ) Recurrence interval (global) T

-10
-15

Ratio RN[%]
e[ TH
s

|4
|

t
+4
t

case Py=0), the parameter set for unnested catchment re- Hi< 2

lationships is always used in the nested-unnested approach., o[ % T - - - T ]
Figure 4 has shown that the cross-correlation function for = -f ; E 1 i - o
unnested catchments leads to the smallest correlation valuesz o| E3 : B E E =N
Consequently the correlation among sites is lower if only € 2ol i 4 = & = = -

unnested CatChmentS were Used Compared W|th the global ap_ 0-2‘00 200-400 400‘-600 600‘»800 800-1000 1000‘-1200 1200‘-1400 140(;-1600
. . Recurrence interval (global) T,
proach using all catchments. Hence, the lower correlation
petween unnested Cat(.:hm.ems 'eafj.s to a higher recurreng]%:g_ 8. Ratio of recurrence intervat y vs. the recurrence interval
interval (Ty>Tg) resulting in a positive value oRy (see

Eq.7) estimated by a global cross-correlation functifn for different
qg.7).

thresholds of the heterogeneity measure.

4.7 Different thresholds of the heterogeneity measure

. . . 5 Discussion
The threshold of the heterogeneity measure was varied to in-

vest'igate the effect on the formation of pooling groups and, ing goal was to estimate the impact of the intersite depen-
particular, on the recurrence interval of the PREC. The pro-gence of nested catchment structures on the effective sample
cedure for H<2 was repeated for tx1. Alower threshold  ye4rs of data and the recurrence interval of PREC. There-
of the heterogeneity measure leads to less pooling groups andre nested and unnested pairs of catchments were treated
thus to less realisations of PRECs. with separate parameter sets for the cross-correlation func-
The comparison of the rati®y with 7g reveals that tjon This enabled us to compare the nested approach with
Ry decreases with increasing; for both thresholds of the e traditional one using a global cross-correlation function.
heterogeneity measure (Fig. 8). This relationship is illus-  There are three interesting aspects to discuss. These are (1)
trated in equidistant intervals of the recurrence intervals. Weyhe differences between the three cross-correlation function
only show the results for cases with more than ten poolingypjications (global, nested, unnested); (2) the link of a dif-
groups within the equidistant interval. The number of pool- ¢eentiation in nested and unnested catchments to different
ing groups decreases for a lower threshold because of thgy qrologic situations, and (3) the impact of the two differ-
stricter homogeneity criterion. While different thresholds for o approaches of the cross-correlation function (global vs.
the heterogeneity measure lead to a different number of poo'hested-unnested) on the effective sample years of data and
ing groups, and therefore affect the results, they do not influyhe recurrence interval derived by PRECs and its relevance
ence the general statements. for this study area.
The heterogeneity in the correlation matrix (see Fig. 3)
leads to a scattering of the empirical correlation coefficients
in relationships to the distance (see Fig. 4). Madsen and
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Rosbjerg (1997a) determined a scattering due to the heterdributaries of the Elbe river, were affected by flash floods (e.g.
geneity of the region. Whereas we separated the catchmemdlbrich et al., 2003), which in Saxony occur mostly in July
relationships into nested and unnested catchment relatiorand August. These floods produce the highest unit flood dis-
ships, Madsen and Rosbjerg (1997a) divided the study area inharges in the study area. Due to the fast catchment response
two regions and estimated separate regional correlation fundn the Erzgebirge downstream gauges are directly affected
tions for each region. By doing so, they estimated that aby flash floods. In this context it is necessary to mention that
separate consideration of two regions led to a larger averagthe western tributaries of the Elbe are relatively small tribu-
intersite correlation than an overall approach. In our studytaries with only up to three gauges, whereas there are several
we also estimated larger intersite correlations for the nestednested relationships among the gauges of the Mulde catch-
unnested approach than for the global approach for most ofnent (see Fig. 2).
the pooling groups. A lower intersite correlation is found  Since no gauges located at the River Elbe, the largest river
for the nested-unnested approach in specific cases (e.g. a low the study area, are included in the analysis, the differences
degree of nesting) between the catchment sizes of nested catchments are not
Figure 4 demonstrates that there is a large decrease abo large. This aspect is especially important for this study
the cross-correlation functions for the unnested and globahrea, since most of the largest floods occurred in the west-
approaches up to a distance of about 50km. Merz andern tributaries of the River Elbe. These rivers flow into the
Bloschl (2003) assumed that catchments whose centroidElbe upstream of the gauge Dresden. Because of their rel-
have a distance less than 50 km are frequently affected by thatively small catchment sizes<R00 kn?) in comparison to
same event, resulting in a relatively large correlation betweerthe Dresden gauge (52 000 Rmit is not expected that the
their flood sequences. Catchments with larger distances ammean discharge at gauge Dresden is significantly influenced
affected by different events, and consequently the dischargey a local flood in one of the western tributaries only.
time series are less correlated. In the study area, there are only 5% of pairs of nested
The relevance of separate parameter sets for the crosgatchments. As expected, this study has shown significantly
correlation function for nested and unnested catchments dearger correlation among nested catchments than unnested
pends on the spatial extent of floods and consequently omnes. The effect of a distinction in nested and unnested cross-
the prevailing flood regime. Large-scale precipitation eventscorrelation functions might be even larger in regions with a
may lead to larger intersite correlations than local convecarger number of nested catchment relationships. However,
tive rainfalls. In regions that are mainly influenced by long 5% of pairs of nested catchments lead to a significant reduc-
precipitation events, widespread floods may occur at neightion in the recurrence interval of PREC.
bouring gauges across catchment boundaries, independently |n this study, only one specific point of the PREC method
of the catchment structure. In this case, the gauges might bg assessed. It is clear that the recurrence interval of PREC
correlated beyond catchment boundaries (Merz ad®ll, s affected by all steps of the PREC method. However, to
2003), and it is expected that there are only limited differ- determine the influence of one particular step in the PREC
ences between the correlation relationships within and acrossoncept, it is necessary that all other aspects are constant.
catchment boundaries. It is assumed that especially largehis was realised in this study by emphasising the selection
floods across wide areas lead to a large correlation betweesf the parameter sets for the cross-correlation function in a
catchments (Hosking and Wallis, 1988), implying that high hydrologically more comprehensive way.
flood quantiles are affected stronger by intersite correlation. The introduction of the nested structure to the PREC con-
This statement coincides with the decrease in the regional incept results in a reduction of the recurrence interval of up
formation content with increasing sample years of data (sego 23% (see Fig. 7). Therefore, it is recommended to use
Fig. 5). different cross-correlation functions for nested and unnested
An opposite situation is given for flood regimes that catchments, in particularly for pooling groups with a large
are dominated by local convective precipitation events withdegree of nesting (see Fig. 7b). In this study, there is a rele-
small spatial extent. A local precipitation event might evoke yant effect for a degree of nesting larger than 0.15.
a flash flood only along the river. Then, only a few catch-
ments, in particular nested catchments, are affected by the
same flash flood and low correlation relationships acros® Conclusions
catchment boundaries are expected. In this case, the impact
of a separation in nested and unnested catchment relatiorFhis study focused on the modelling of intersite dependence
ships might be strong. when estimating the recurrence interval of a probabilistic re-
In our study area, Saxony, both local floods (e.g. in 1927 ,gional envelope curve (PREC). A correct representation of
1957) as well as regional wide-spread floods (e.g. in 1954the intersite dependence is fundamental for quantifying the
1958, 2002) occurred in the past (e.g. Pohl, 2004; Petrowegional information content of a pooling group, and there-
et al., 2007). The rivers of thErzgebirge specifically the  fore also for identifying the effective sample years of data,
headwaters of the Mulde river and in particular the westernwhich is a key step of the PREC concept. The regional
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information content is defined as the ratio between the ef-This work is part of the Center for Disaster Management and
fective sample years of data (i.e. equivalent number of indeRisk Reduction Technology (CEDIM)hftp://www.cedim.df a

pendent observations) and the overall sample years of data iieint venture between the Helmholtz Centre Potsdam — GFZ Ger-
the regional sample. man Research Centre for Geosciences, the Technical University of
Karlsruhe (TH) and the Forschungszentrum Karlsruhe. We thank

for nested pairs of catchments is significantly larger than for"EP!M and the GFZ and the University of Bologna for the finan-
cial support. Attilio Castellarin acknowledges the Italian Ministry

u_nnested pairs, suggesting separ.ate cross-correlation fungf Education for the grant no. 2007HBTS883.
tions for nested and unnested pairs of catchments. A sep-
aration into nested and unnested pairs of catchments whilgve thank the State Agency of Environment and Geology
modelling the intersite dependence represents an innovatioof the Free State of Saxony for the permission to use the
and a refinement of the existing approach. discharge data and the hydrogeological mapUKH 200)

The study adopts a cross-correlation function whose pa(http://WWW.umwelt.sachsen.de/umwelt/geologie/7703,htm 5
rameters are identified for the whole study area (tradi_Februar_y 2007). Furthermore, we thank the State Agency of Flood
tional approach) as well as differentiated between nested anareventlon and Water Management of Saxony-Anhalt and the State

- Agency for Environment of Thuringia for additional discharge data.
unnested catchment pa|r§ (proposed approach). The ma\?Ve also thank the Potsdam Institute for Climate Impact Research
outcomes can be summarised as follows:

(PIK) and the German Weather Service (DWD) for precipitation
data as well as the Federal Agency for Cartography and Geodesy

1. the differentiation in cross-correlation functions for ‘G BKG) for the ATKIS-Basis-DLM and the diital el
nested and unnested pairs of catchment enables one & ermany ( ) for the “basts- and the digra’ ete-

. th timat fh b f effecti b vation model for Saxony. We also thank the European Commission
improve the estimates of the number of eleclive ODSer-_ ;4 Research Centre (JRC) for the CCM River and Catchment

vations; Database. The SRTM Digital Terrain Model was downloaded from

2_in most of the cases. the number of effective Observa_(http://srtm.csi.cgiar.org/SELECTION/inputCoord.aspLQ May

. . 2008).

tions and, therefore, the recurrence interval of PREC, )

are reduced by modelling the intersite dependence folyiaq by: M. Sivapalan
pairs of nested and unnested catchments separately;

The analysis clearly shows that the intersite correlation

3. the reduction of the estimated recurrence interval in-
creases with the size of the pooling group, or, evidently,
with a higher degree of nesting in the pooling group of

sites; Acreman, M. C. and Sinclair, C. D.: Classification of drainage

. . . basins according to their physical characteristics: an application
4. the results of the analysis are valid for different degrees for flood frequency analysis in Scotland, J. Hydrol., 84(3), 365—

of heterogeneity of the pooling group of sites. Defin- 257 1956

ing the heterogeneity of the pooling groups in terms of gk Geodatenzentrum (Federal Agency for Cartography and
Hi-values as proposed by Hosking and Wallis (1993), Geodesy — GeoDataCentre): Digital Landscape Model ATKIS
the study shows that the same considerations that are Basis DLM, Frankfurt/Main, 2005.

valid for possibly heterogeneous pooling groups of sitesBurn, D. H.: An appraisal of the “region of influence” approach

(H1<2) still hold for acceptably homogeneous groups to flood frequency analysis, Hydrolog. Sci. J., 35(2), 149-165,

(H1<1). 1990a.
Burn, D. H.: Evaluation of Regional Flood Frequency Analysis with

Because of the effect of nested catchment structures on the a Region of Influence Approach, Water Resour. Res., 26(10),
recurrence interval of PREC, we recommend to apply differ- 2257-2265, 1990b.
ent cross-correlation functions for nested and unnested catch=astellarin, A.: Probabilistic envelope curves for design flood es-
ments in PREC studies. Our study points out that the effect timation at ungauged sites, Water Resour. Res., 43(4), W04406,
of nested structure becomes relevant for regions in which the_9d01:10-1029/2005WR004384, 2007. ,
number of nested pairs of catchments is larger than 15% of 2Stellarin, A., Bum, D. H., and Brath, A.: Assessing the effec-
the total number of pairs. Separate cross-correlation func- tiveness of hydrological similarity measures for flood frequency

. - . analysis, J. Hydrol., 241(3), 270-285, 2001.
tions reflect the characteristic catchment structure and iNCOMsatellarin. A. Burn. D. H.. and Brath. A.- Homogeneity testing:

porate this structure in the estimation of flood quantiles. How homogeneous do heterogeneous cross-correlated regions

seem?, J. Hydrol., 360(1-4), 67-76, 2008.
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