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Abstract. For three small, mountainous catchments in Ger-
many two medium-range forecast systems are compared that
predict precipitation for up to 5 days in advance. One system
is composed of the global German weather service (DWD)
model, GME, which is dynamically downscaled using the
COSMO-EU regional model. The other system is an em-
pirical (expanded) downscaling of the ECMWF model IFS.
Forecasts are verified against multi-year daily observations,
by applying standard skill scores to events of specified inten-
sity. All event classes are skillfully predicted by the empirical
system for up to five days lead time. For the available predic-
tion range of one to two days it is superior to the dynamical
system.

1 Introduction

Medium-range prediction of heavy rainfall for flash-flood
prone areas such as small mountainous river catchments be-
longs to the most important challenges of current weather
forecasting. Progress in that field is obviously quite bene-
ficial for any affected community, since early warnings in
the time frame of several (3–5) days could initiate protec-
tion measures and thus avoid much of the damage that is
usually brought about by flash floods. Medium-range pre-
dictability comes mainly from numerical weather prediction
(NWP), where general circulation models (GCMs) simulate
the global atmosphere several days into the future. But phys-
ical and numerical conditions impose a limit on the spa-
tial resolution of GCMs, rendering their direct output fairly
useless for many practical applications. Additional steps
are therefore needed to derive small-scale information from
GCMs.
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This “downscaling”-named procedure exists in two forms,
dynamical and empirical, both of which have their advan-
tages and disadvantages. The main advantage of the dynam-
ical approach is the foundation on first principles, which re-
quires only a limited number of additional, empirically de-
rived parameters to represent the unresolved scales. But the
complex interplay between model dynamics and topography
is difficult to represent physically so that, e.g., positional
errors sometimes slip in. This problem is not encountered
in empirically based methods as they are directly calibrated
against the observed climate, and any potential bias should
in principle be removed by the calibration. But to do so re-
quires a considerable amount of parameters that are hard to
estimate with sufficient confidence, and that introduces extra
errors in the forecasts. But once these parameters are esti-
mated, empirical model forecasts are usually much cheaper
numerically.

Numerous comparisons have been conducted between dif-
ferent dynamical downscaling approaches (e.g. Charba et al.,
2003; Ebert et al., 2003; McBride and Ebert, 2000; Richard
et al., 2007; White et al., 1999). By contrast, the case of em-
pirical downscaling is more diverse because under that term
several quite different approaches are summarized. Some of
them apply fairly simple statistical recipes to fit the direct
model output to observations, such as model output statis-
tics (MOS) or bias correction methods (cf. Wilks, 1995).
These approaches are self-evident enough to go without fur-
ther verification or comparative analysis. Other approaches
are somewhat more elaborate – and may actually deserve the
name of empiricalmodel. Here one defines and calibrates
a transfer function between large-scale atmospheric fields
and small scale phenomena, such as daily temperature or pre-
cipitation. These methods have particularly come to flourish,
it seems, with the advent of ensemble prediction for which
their numerical simplicity can be fully exploited (Clark and
Hay, 2004; Hamill et al., 2006; Liu et al., 2008).
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Fig. 1. The three river basins.

I am not aware of any systematic comparison between dy-
namical and empirical methods of NWP downscaling. In
this study, daily precipitation forecasts are compared that are
made by two coupled systems for three small head catch-
ments in Germany. One system is the Globalmodell (GME)
downscaled by the Lokalmodell (LM, now COSMO-EU) of
the German weather service (Majewski et al., 2002; Damrath
et al., 2000). The other is the Integrated Forecast System
(IFS) of the European Centre for Medium Range Weather
Forecast (ECMWF), empirically downscaled using expanded
downscaling (EDS) (White, 2002; B̈urger, 1996). The sys-
tems are compared with regard to three intensity classes, by
verifying binary forecasts of the corresponding events using
standard scores.

2 Data and methods

2.1 The catchments

Atmospheric flow over Germany is westerly dominated, with
blocking intermezzos that redirect winds northward or south-
ward. The interplay between this flow and the orography of
a catchment leads to typical precipitation characteristics. For
example, while Alb and Upper Danube are in close proxim-
ity one (Alb) is located west and the other east of the Black
Forest, giving them typical luv–lee characteristics with cor-
responding climate. The Upper Iller, on the other hand, is

Table 1. The three study areas.

Basin Region Area (km2) Stations

Alb Black Forest (North) 150 11
Upper Danube Black Forest (South) 520 22
Upper Iller Alps (North) 960 53

located just North of the Alps and receives the greatest pre-
cipitation amounts during northerly (blocking) flow. Fig-
ure 1 displays the location of the three catchments in South-
ern Germany. Their main characteristics are summarized in
Table 1.

For each basin, average precipitation over all reporting sta-
tions will be verified. Although varying availability of data
reduces verification performance through time, each forecast
system is affected equally so that a fair comparison is possi-
ble.

2.2 The GME/LM forecasting system

Unlike most other GCMs, the GME employs a gridpoint ap-
proach of a icosahedral–hexagonal type, with an almost uni-
form mesh size for the entire globe (i.e. without grid con-
vergence at the poles). Until 27 September 2004, that size
was∼60 km with 31 levels, and it changed to∼40 km and
40 levels afterwards. The model is initialized in a 3 h time
interval using a data assimilation scheme that is based on
optimum interpolation. Forecasts up to+174 h are issued
twice daily at 0:00 and 12:00 UTC, with an additional+48 h
forecast issued at 18:00 UTC. Details of the model can be
found in (Majewski et al., 2002). The regional model LM is
a non-hydrostatic model that operates on 35 levels and a grid
spacing of 7 km covering central Europe. When nested in the
GME it receives initial and boundary conditions from that
model.

For this study, GME/LM forecasts were available from
2002 to 2005, issued daily at 12:00 UTC for lead times of
+12 h,+24 h,+36 h,+48 h. The verified quantity was av-
erage precipitation of all grid points covering the catchment
area.

2.3 The IFS/EDS forecasting system

Unlike the GME the IFS is a spectral model. For the pur-
pose of this study the IFS control forecast from the en-
semble prediction system (EPS) was used (the operational
high-resolution forecast was not available). Between 1997
and 2005 the EPS was run at gradually increasing resolu-
tion. Starting withTL159 (i.e. a spectral triangular trunca-
tion T159 with linear grid, equivalent to a grid spacing of
about 120 km at mid latitudes), the system was changed in
2000 toTL255, equivalent to about 80 km; it operated on 40
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levels throughout. (Later in 2006 the system was once more
upgraded toTL399 or∼50 km, and 62 levels.) For the sub-
sequent downscaling the following fields were selected from
the 850 hPa level:

– geopotential height

– temperature

– vorticity

– specific humidity

And from the surface level

– total precipitation

was included as a fifth predictor field. All fields were inter-
polated on a 1×1 degree grid, using the rectangular section
between the edges (4◦ W, 46◦ N) and (18◦ W, 56◦ N), which
roughly covers the area of central Europe. Concatenation of
all fields results in an array of dimension 825=5×(15×11).
By applying an empirical orthogonal function (EOF) anal-
ysis and retaining only the most dominant EOFs it is pos-
sible to reduce this dimension considerably. The reduction
should keep as much of the field’s fine structure as is neces-
sary to represent, e.g., the major floods of concern, but not
so much that one ends up fitting noise. In this case, retain-
ing 81 EOFs was a good compromise (as further discussed in
Sect. 4). It should be noted that by using the entire synoptic
domain (here central Europe) the downscaling must not be
confused with a simple MOS approach.

The study covers the decade from 1997 to 2005. Even
for the highest available EPS resolution of about 80 km the
size of the Alb basin (150 km2) is only about 3% of the size
of one grid cell (6400 km2), so the need for downscaling is
obvious. The IFS forecasts are issued at 12:00 UTC. For to-
tal precipitation (as an accumulating quantity) and a forecast
lead time of+l h, l=0, 12, . . . , 120, the overlapping 24 h-
sums of(l+24) h−l h were used as predictor (local precipi-
tation is observed in 24 h-sums only).

Suppose the series of daily atmospheric predictors is given
asx(t)=(x1(t), . . . , xn(t)), with n=81. On the other hand,
let all station variables be concatenated to form the sin-
gle vector time seriesy(t)=(y1(t), . . . , ym(t)); in our case,
m=11. I assume that both series have been transformed to
N(0, 1)-variates (normal with zero mean and unit variance)
using the probit transformation (Ledermann et al., 1984;
Bürger, 1996). This will ensure that all scales are weighted
adequately by the EDS model, to be described now.

With one exception, the EDS model is just like multiple
linear regression (MLR). For both one assumes a model

y = xQ + ε , (1)

which has MLR as the least squares solution

MLR = argmin
Q

‖ xQ − y ‖ (2)

(‖ · ‖ denoting the Frobenius norm). The problem with MLR
is that the simulated amplitudes are scaled by the prevailing
canonical correlations betweenx andy, and are thusdamped
relative to observations (B̈urger et al., 2006). By imposing
on Q the side condition that local covariance be preserved
one obtains as a solution the expanded downscaling (EDS)
matrix:

EDS= argmin
Q

‖ xQ−y ‖ , subj.to Q′x′xQ = y′y .(3)

Equation (3) describes a so called nonlinear programming
problem which is numerically very complex and hard to im-
plement. But recently the following closed-form solution of
Eq. (3) was found (B̈urger et al., 2009):

EDS= G−1
x V U ′Gy (4)

HereGx andGy denote the Cholesky factors ofx′x andy′y,
respectively, andU andV are from the singular value decom-
position

U6V ′
= Gyy

′xG−1
x . (5)

Accordingly, when driven by global fields that have identi-
cal covariance to the calibrating fields of EDS, the simulated
local record has covarianceidentical to the observed record.
EDS is optimal among all linear maps with this property, by
leaving the smallest possible error in Eq. (1). It was orig-
inally developed for the downscaling of climate scenarios,
with particular emphasis on hydrologic extremes (Bürger,
2002; Menzel et al., 2006).

The model was calibrated on the data from 1997 to 2001
and validated for 2002 to 2005 (as for GME/LM). In slight
deviation from a perfect prognosis approach model calibra-
tion wasnot done with observed or analyzed fields but in-
stead with the+0 h IFS forecast. This might result in a sub-
optimal model fit, but it avoids any bias when the EDS is
applied to real forecasts. What will further deteriorate the
model calibration are the different reference times used for
the global and local states. Local precipitation is reported as
the 24 h-sum between 06:30 UTC of the reporting day and
06:30 UTC of the following day. The global fields, on the
other hand, correspond to 00:00 UTC and 12:00 UTC valid
time. Without further adjustment the IFS/EDS forecasts cor-
respond to overlapping 24-sums in 12 h steps. To obtain
non-overlapping 12 h-sums the resulting values are simply
halved. This produces a “smoothed” 12 h-resolution and rep-
resents about the maximum temporal resolution that the EPS
allows. Although that is sufficient for an operational early
flood warning system, the very details of some of the historic
floods probably need an hourly time frame to be adequately
simulated hydrologically. This limitation should be kept in
mind for the results shown below.
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Fig. 2. For the Alb, heaviest observed (black) precipitation event of the respective year, along with the+2 d forecast of IFS/EDS (blue) and
GME/LM (red).

3 Results

The two downscaling system, LM and EDS, are not directly
verifiable and comparable in this setting since they are driven
by different global models. If both of these driver models
were verifiable and comparable, then a comparison of LM
and EDS could be derived from the coupled systems con-
sidered here. Unfortunately, for the GME no evaluation nor
any archived driving data exist for Europe in the time frame
between 2002 and 2005.

Some indirect evaluation and comparison is nevertheless
possible. According to published comparisons it is gener-
ally acknowledged that on a global scale, upper air ECMWF
forecasts “exhibit smaller errors than DWD-GME forecasts”
(http://www.ecmwf.int/products/greenbook). For precipita-
tion, the comparison is more heterogeneous and seems to de-
pend strongly on the investigated region and time, cf.http://
www.emc.ncep.noaa.gov/mmb/ylin/pcpverif/scores. For ex-
ample, some sources report superior performance of the
GME at least over Germany (McBride and Ebert, 2000; Ebert
et al., 2003) while others suggest the opposite (Bartholmes
et al., 2009). In a recent comparison for Europe for the year
2008, the 500 hPa geopotential height predictions of the IFS
markedly outperformed those of the GME; but this applied
mainly for longer lead times (roughly> +2 d), the short-
lead predictions were more similar. Predictions of local pre-

cipitation were less distinguished and more ambivalent, with
the Heidke skill score being slightly better and the FBI being
slightly worse for the IFS over a wide range of lead times and
precipitation intensities (personal communication U. Dam-
rath, DWD). But this comparison is only partially represen-
tative for the current study as the GME underwent significant
improvements since 2004. Nevertheless, as will become ap-
parent from comparing here the two coupled systems, some
conclusions can still be drawn with regard to the downscaling
models LM and EDS.

The following verification results are based on daily fore-
casts for the period 2002–2005, by comparing observed and
predicted areal mean precipitation. I will describe in some
detail the results for the smallest of the catchments, the Alb,
followed by summarizing the forecasts for the other two
catchments which are quite similar anyway.

3.1 Alb

As a first impression, Fig. 2 displays observations and+2 d
forecast of the heaviest precipitation events of each year be-
tween 2002 and 2005. It is evident that IFM/EDS performs
better here than GME/LM. In March 2002, there was a se-
quence of 4 consecutive days with heavy precipitation. The
first two of these were captured very well by the IFS/EDS,
while the GME/LM merely simulated at most half of the
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Fig. 3. Cumulative distribution functions of Alb observations
(black) and simulations (+2 d) from IFM/EDS (blue) and GME/LM
(red).

scale throughout. In 2003, the difference between the fore-
casts is even more striking: While IFS/EDS simulates the en-
tire series quite accurately, the GME/LM misses the events
almost completely. In 2004 there was an entire series of
4 strong events, and except only in one case (IFS/EDS for
the third event) they were forecast quite unsatisfactory by
both systems. The 2005 forecasts are similar to those of
2003. Part of the lower predictive skill of GME/LM can
be traced back to the reduced variability of that system, as
demonstrated by the cumulative distribution function (cdf)
of the+2 d prediction of areal precipitation, shown in Fig. 3.
Compared to observations, the exceedance probability of the
larger scales (on the x-axis) is considerably smaller for the
GME/LM, and slightly larger for the IFS/EDS.

To focus on the predictability of strong events it is con-
venient to considerQ95=13.4 mm/d andQ99=27.1 mm/d,
the upper 5% and 1% quantile, respectively, of the observed
areal precipitation. Table 2 shows the contingency table
of the corresponding IFM/EDS and GME/LM forecasts for
a lead time of+2 d, based on the validation period (1431
days). ForQ95, IFM/EDS has more hits (26 vs. 6) and
fewer misses (33 vs. 53) than GME/LM, but also more false
alarms (53 vs. 21). This is also reflected in the general over-
prediction of IFM/EDS (79 events) and underprediction of
GME/LM (27 events), as compared to observed 59 events.
The results forQ99 are similar, although the number of
predicted events by IFM/EDS now almost equals the num-
ber of observed events (16); noQ99 event is predicted by
GME/LM.

The overall quality of the binary forecasts shown in Ta-
ble 2 is assessed using the Gilbert skill score (GSS, also
called equitable threat score). GSS measures the hit count
relative to all cases where an event was observed or fore-
cast, and scales the result in a way that random forecasts re-
ceive a zero score (Wilks, 1995). ForQ95 (Q99) this gives

Table 2. Contingency table for forecasting heavy precipitation with
lead+2 d, using IFS/EDS (blue) and GME/LM (red). Upper part:
Q95, lower part:Q99.

Q95=14.6 mm EDS, LM≤Q95 EDS, LM>Q95

OBS≤Q95 1319, 1351 53, 21 1372
OBS>Q95 33, 53 26, 6 59

1352, 1404 79, 27

Q99=26 mm EDS, LM≤Q99 EDS, LM>Q99

OBS≤Q99 1405, 1411 10, 4 1415
OBS>Q99 11, 16 5, 0 16

1416, 1427 15, 4

GSS(IFS/EDS)=0.21 (0.19) and GSS(GME/LM)=0.06
(0.0), showing superior performance by IFS/EDS.

To gain more insight into the predictive power of our sys-
tem, I have plotted in Fig. 4 the GSS for all lead times up
to 5 days, using the usual thresholds ofQ95 andQ99 along
with 0.1 mm/d (wet/dry). For all three classes the IFS/EDS
forecast shows positive skill up to a lead time of+5 d. The
GME/LM forecasts are worse throughout; note thatQ95
forecasts improve slightly from+1 d to +2 d, which indi-
cates chance behavior in view of the small GSS values; for
the Q99 class there is no skill beyond a lead time of+1 d.
For comparison, I also show the performance of the persis-
tence forecast, which is usually a bad predictor for precipita-
tion due to its short memory; note again the chance behavior
especially forQ99.

To further analyze the dependence of forecast skill on the
rarity of the event Fig. 5 shows, for a lead time of+2 d, the
dependence of forecast skill on the event threshold. I show
both the GSS and, as a check for under- or overprediction,
the frequency bias index (FBI, the ratio of the number of
forecast events to the number of observed events). For both
systems the GSS decreases with rarity, but throughout it is
about 0.2 larger for the IFS/EDS. With respect to the FBI, the
GME/LM tends towards strong underprediction with heav-
ier events, as compared to fairly unbiased predictions of the
IFS/EDS for all thresholds.

GSS and FBI are by far not the only scores to assess
the quality of a binary forecast, or equivalently, summa-
rizing the entries of a contingency table. If in an experi-
ment the total number of cases is of no interest, there re-
main 3 independent quantities (degrees of freedom) by which
that table is characterized, leaving infinitely many possibili-
ties to combine them into a score. Looking at the table in
more economic terms, a very interesting and simplifying ap-
proach is provided by the cost-loss model (Thompson, 1952).
Namely, once an event is forecast and precautionary mea-
sures have been taken, it does not matter – from an economic
point of view – whether the event actually occurs or not.
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Fig. 4. For the Alb, skill (GSS) of the two forecast systems vs. lead time, using three different event classes. IFS/EDS: blue, GME/LM: red.
For comparison, persistence is used as well (gray).
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Fig. 5. GSS and FBI dependence on event threshold (rarity), using
+2 d predictions for the Alb.

Therefore, only two degrees of freedom remain: the proba-
bility of a miss,PM=P(O>Q∧F≤Q), and the probability
of a forecast being issued,PF =P(F>Q). With the cost of
precautionary measures beingC and that of a loss incurred

from a miss beingL, the expected daily expenses amount to:

e = L · PM + C · PF . (6)

If no forecast is issued, no investment costs are generated but
each occurring event is a miss. If the event probability isPE ,
the costs to be expected are

e0 = L · PE . (7)

In general, if

PE − PM

PF

> α , (8)

whereα=C/L denotes the cost/loss ratio, the expected re-
duction of losses outweighs the investment from the protec-
tion and the forecast has positive economic effects.

For the case described in Table 2, suppose the cost for
protection against a rather moderateQ95-event isC=10 kC,
and the loss isL=100 kC, thene0=0.05 ∗ L=5 kC. Using
the IFS/EDS forecasts one gets a value of aboute=3.3 kC,
which amounts to 1.7 kC savingsper day; GME/LM fore-
casts yield savings of about 500C. This is the situation for
forecasts of lead+2 d. Figure 6 displays the expected daily
expenses for all lead times and both event classes. Consid-
erable savings are to be expected forQ95 events when using
IFS/EDS forecasts for up to lead+5 d. ForQ99 events, us-
ing C=100 kC andL=1 MC, the same is true for forecasts
of up to lead+3 d. Using GME/LM forecasts gives moderate
savings, except for the+2 d forecast ofQ99 which entails no
savings. The two examples above used a cost/loss ratio of
α=0.1; according to Eq. (8), positive economic effects can
be expected also for smaller values ofα.
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Fig. 6. Expected daily expenses for the Alb, for aQ95 andQ99 event with no warnings (black) or warnings from IFS/EDS (blue) or
GME/LM (red).
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Fig. 7. Similar to Fig. 2, for the Upper Danube. (Note that observations ended in 2003).

3.2 Upper Danube and Upper Iller

Despite different geographical and climatic conditions, the
verification results for the Upper Danube and Upper Iller are
similar to the Alb. For the Upper Danube, where data ended
in 2003, the+2 d forecast of the most extreme yearly events
is depicted in Fig. 7. In 2002, the most extreme event was
observed on 19 March with 67 mm/d. Here the IFS/EDS
forecast (32 mm/d) is only moderately better than that of
GME/LM (19 mm/d). In 2003, IFS/EDS forecasts are again
superior to GME/LM. Forecasts for the Upper Iller are gen-
erally worse than those of the other catchments. This is ex-
emplified by the yearly maxima shown in Fig. 8. Especially
the 2004 and 2005 forecasts are bad for both systems. The
general superiority of IFS/EDS to GME/LM is apparent from

Fig. 9. It shows that for all event classes and lead times the
GSS is comparable to the skill of the Alb shown in Fig. 4.
Only theQ99 skill for lead time+2 d is exceptionally high
for the Upper Danube (GSS=0.54). It is unknown whether
this is a random effect (data ended in 2003) or indicative of a
real feature.

4 Discussion

In the above analysis I have assessed the capability of the two
coupled systems IFS/EDS and GME/LM to forecast precip-
itation for a small river basin several days in advance. The
IFS/EDS was able to skillfully predict medium-sized events
(Q95) up to a lead time of 5 days and strong events (Q99) up
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Fig. 8. Similar to Fig. 2, for the Upper Iller.
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Fig. 9. Similar to Fig. 4, the GSS for the other two catchments. Upper Danube (square) and Upper Iller (circle).

to at least 3, maybe 5 days in advance. For all event classes
and lead times that system outperformed the GME/LM sys-
tem. The crucial question is now which of the components
makes the difference. But since the systems are so deeply
intermingled one feels that deciding that question is hard if

not impossible. For example, while IFS and EDS are coupled
through 5 predictor fields LM obtainsall its boundary con-
ditions from GME. And among those there might always be
“bad” fields which are not in the IFS predictor set and which
make the difference.
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Whatever the reported differences in skill are, they appear
marginal in relation to those of, e.g., Fig. 2 or Fig. 5. These
+2 d forecasts reveal a gap in skill that can hardly be as-
cribed to the driving models. This is further supported by the
GME/LM failure to reproduce local variability, as evidenced
by Fig. 3 and compared to the fairly unbiased local variability
of the GME at least in its 2008-version. Therefore, I would
ascribe the observed skill differences mainly to the down-
scaling. It is not unlikely that what we see here is related
to the well known luv-lee problem of many high-resolution
dynamic models (Baldauf and Schulz, 2004; Elementi et al.,
2005), where in mountainous terrain too much rainfall is pro-
duced on the luv side and too little on the lee side.

The luv-lee problem illuminates the differences between
dynamical and empirical downscaling models mentioned in
the introduction: Being genuinely three-dimensional the dy-
namical models simulate high-resolution precipitation for an
entire domain. But the parameterizations of the unresolved
scales – here: the advection of falling rain – introduce imper-
fections that over complex terrain can have a large impact on
the water balance. Empirical models, on the other hand, have
“seen” the luv–lee characteristic during calibration and “re-
member” it when confronted with a particular weather type.
But a large-scale/small-scale relation like this may as well be
more complicated, nonlinear for example, which would then
require a revision of the transfer function class and a re-fitting
with extra parameters. One should note, however, that if this
revision comesafter the factindependent validation with the
same data is no longer possible. Some a priori physical in-
sight is therefore desirable even for empirical models.

A major drawback in the current setup of the IFS/EDS
is the determination of the number of EOFs to be retained.
Here it was done by simply cross-checking some validation
statistics for various lead times, and selecting a number that
appeared optimal on average. For Alb, Upper Danube, and
Upper Iller this was 81, 79, and 114 EOFs, respectively. Due
to data limitations this was done using the entire dataset, so
the verification statistics shown above are not fully indepen-
dent. However, dependence on the number of EOFs was in
general fairly weak over a broad range of values, so that the
main results are not affected by this choice. This step should
nevertheless be improved in future work, for example, by us-
ing more elaborate cross validation techniques.

It should be noted that probabilistic versions of the
IFS/EDS system exist and have also been applied to the three
catchments (cf. OPAQUE,http://brandenburg.geoecology.
uni-potsdam.de/projekte/opaque). This was done simply by
replacing the deterministic IFS forecast by the ensemble pre-
diction system of the ECMWF (B̈urger et al., 2009). In these
applications, the use of probabilistic information indeed im-
proves the forecasts, especially for the longer lead times be-
yond+3 d.

Acknowledgements.This study was conducted as part of the
project OPAQUE which was funded by the Federal Ministry of Ed-
ucation and Research, Germany. I am grateful to the Landesanstalt
für Umwelt, Messungen und Naturschutz Baden-Württemberg who
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