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Abstract. Many flow and transport phenomena, ranging
from delayed storage in pumping tests to tailing in river or
aquifer tracer breakthrough curves or slow kinetics in reac-
tive transport, display non-equilibrium (NE) behavior. These
phenomena are usually modeled by non-local in time formu-
lations, such as multi-porosity, multiple processes non equi-
librium, continuous time random walk, memory functions,
integro-differential equations, fractional derivatives or multi-
rate mass transfer (MRMT), among others. We present a
MRMT formulation that can be used to represent all these
models of non equilibrium. The formulation can be extended
to non-linear phenomena. Here, we develop an algorithm for
linear mass transfer, which is accurate, computationally in-
expensive and easy to implement in existing groundwater or
river flow and transport codes. We illustrate this approach by
application to published data involving NE groundwater flow
and solute transport in rivers and aquifers.

1 Introduction

Solving flow and solute transport phenomena in natural me-
dia requires using variables, such as heads and concentra-
tions, that characterize the state of the system at every point.
As such, they are termed state variables. State variables are
assumed representative of a small portion of water around
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such point. Using them to model flow and transport implic-
itly requires assuming local equilibrium.

Even though local equilibrium is assumed by default, non-
equilibrium (NE) behavior is frequently observed in flow and
transport through water bodies. Symptoms of NE depend
on the actual phenomenon under study. In flow problems,
NE is typically manifested by a delayed drainage (Gerke
and van Genuchten, 1993a, b) or a delayed storage mobi-
lization (Fig. 1a). Head in a water body often rises fast at
early times in response to an inflow, which suggests a small
storage capacity. However, the rate of head rise may de-
cay at later times, suggesting an increase in storage capac-
ity (Boulton, 1955). In tracer transport problems, break-
through curves typically display fast and sharply rising limbs
(Fig. 1b), which might denote a small volume of displaced
water, but then display a long tail at late times, which sug-
gests the opposite (Valocchi, 1985; Carrera, 1993; Cortis and
Berkowitz, 2004). In reactive transport problems, NE is man-
ifested, for example, by reaction rates, orders of magnitude
slower than what would be expected from laboratory experi-
ments (White and Peterson, 1990).

The common thread of these observations is that they can
be attributed to spatial variability. The phenomenon (flow,
transport, chemical reaction) appears to affect a small por-
tion of the water body at early times, but a large portion at
late times. In fact, actual explanations and models of NE be-
havior are phenomenon specific, but they typically involve
visualizing the water body as consisting of mobile and im-
mobile (or less mobile) regions. In water flow through per-
meable media, NE has been attributed to delayed storage
mobilization, either because of resistance at the aquifer free
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Fig. 1. Typical response to(a) a constant injection test in a double
porosity formation and(b) a tracer test breakthrough curve. In both
cases, the system reacts with small storage capacity at early times,
but much larger at late times, suggesting that some time is needed
before the full storage capacity is mobilized.

surface (Boulton, 1955; Neuman and Witherspoon, 1971;
Neuman and Tartakovsky, 2009), or at low permeability
blocks (Barenblatt et al., 1960; Warren and Root, 1963). It
has also been attributed to heterogeneity (Cortis and Knudby,
2006). NE has also been observed in multiphase flow and ex-
tensively studied in the petroleum field (e.g., Kazemi et al.,
1976; Kazemi and Gilman, 1993). Here, departures from
equilibrium are attributed to the permeability contrast be-
tween porous blocks, which store most of the fluid on the
reservoir, and fractures, which have a low storage capacity
but a high permeability. Fluid flow occurs mainly through the
fractures, whereas the matrix blocks act as fluid sink/sources
(Da Prat, 1982).

Water flow and solute transport in unsaturated fractured
rock and soils also display non-equilibrium behavior (Gerke
and van Genuchten, 1993a, b; Zhou et al., 2006). Usually,
the imbibition rate or fluid flow between the fractures and the
matrix domains is driven nonlinearly by the local pressure
difference in liquid-phase pressure between the fracture and
the matrix blocks (Zimmerman et al., 1995).

In solute transport, non-equilibrium has been attributed to
diffusion-limited storage into immobile regions, kinetic sorp-
tion or heterogeneity (Brusseau et al., 1989; Sudicky, 1989,
1990; Valocchi, 1990; Sardin et al., 1991; Cvetkovic et al.,
1992; Toride et al., 1993; Tsang, 1995; Haggerty and Gore-
lick, 1995; Ray et al., 1997; Carrera et al., 1998; Dentz and
Berkowitz, 2003; El-Zein et al., 2005; Salamon et al., 2006;
Vogel et al., 2006; Zhang et al., 2006, 2007; Alcolea et al.,
2008; Willmann et al, 2008; Kumar, 2008; Gouze et al.,
2008). Non-equilibrium is intrinsically associated to mul-
ticomponent reactive transport at the field scale (Willmann et
al., 2009). In these systems, several reactions can take place
in different parts of the domain. These reactions are influ-
enced by the dynamic of flow between these regions.

Non-equilibrium also has been observed in solute trans-
port through rivers that are influenced by the exchange of
water between the river and the underlying hyporheic zone
(Fernald et al., 2001; Boano et al., 2007; Marion et al., 2008)
or by aggregated dead-zones (Beer and Young, 1983; Lees et
al., 1998, 2000; Davis et al., 2000). Dead zones can be asso-
ciated to a number of effects, such as reverse flows induced

by bends and pools, side pockets, zones between dikes, tur-
bulent eddies, and wakes behind bed irregularities and rough-
ness elements (Deng et al., 2004). Non-equilibrium has also
been observed in natural systems like saturated hillslopes
constituted by well-connected fractures and a main soil ma-
trix (Zhang et al., 2009).

Mathematical formulations to simulate NE behavior are
as diverse as the phenomena they represent. However, most
of them can be viewed as non-local in time. This means
that storage mobilization does not depend solely on heads
(or concentration) at the current time, but also on their his-
tory. In practice, this can imply that a sink-source term (e.g.
Carrera et al., 1998) or that an additional storage term (e.g.
Haggerty and Gorelick, 1995) are added to the mass balance
equations. It is the form of such terms what sets different
non-local formulations apart. Their number is too long to
list, but the most widely used have been:

– Dual porosity formulations (e.g., Warren and Root,
1963) view the medium as consisting of two overlap-
ping continua (mobile and immobile). The mobile con-
tinuum allows lateral exchanges of water and solute
mass. The immobile continuum only exchanges mass
with the mobile region. Actual solution of the problem
can be achieved either by spatial discretization, Laplace
transform of semi-analytical solutions. Even though
dual porosity formulations can be viewed as rather sim-
ple, they represent a basic building block for other for-
mulations.

– Integro-differential formulations (Herrera and Rodarte,
1973; Herrera and Yates, 1977; Carrera et al., 1998)
consist of representing mass transfer to the immobile
region as the convolution of the state variable (head
or concentration) past history and a memory func-
tion. They can be solved by semi-analytical methods
or Laplace transform (Carrera et al., 1998).

– Multi-rate mass transfer (MRMT) (Roth and Jury, 1993;
Haggerty and Gorelick, 1995; Carrera et al., 1998; Hag-
gerty et al., 2000; Wang et al., 2005; Gouze et al., 2008;
Benson and Meerschaert, 2009) is a generalization of
dual-porosity models, in which mass transfer between
a mobile and multiple immobile regions is modeled by
diffusive or first-order mass transfer terms. Here, the
medium heterogeneity is mapped onto a distribution of
retention times in the immobile regions.

– Continuous time random walk (CTRW) (Berkowitz and
Scher, 1998; Dentz et al., 2004; Berkowitz et al., 2006;
Le Borgne et al., 2008). In this modeling approach
the movements of solute particles in a heterogeneous
medium are modeled as random walks in space and
time. That is, both space and time increments are ran-
dom variables. The latter accounts for the fact that
transport in low permeability zones is slower than in
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high permeability regions. Here the medium hetero-
geneity is mapped onto the distribution of time incre-
ments. In general the space and time increments are
coupled.

– Time fractional derivatives (Benson et al., 2000a, b;
Berkowitz et al., 2002; Zhang et al., 2009) and/or frac-
tional mobile/immobile transport (Metzler and Klafter,
2000; Schumer et al., 2003) describe NE by means of
fractional (i.e., non-integer) time derivatives.

These formulations look different. However, when restricted
to non-locality in time (some of them can also represent non-
locality in space), they are not. Dual porosity formulations
are a special case of MRMT. Dentz and Berkowitz (2003)
showed that the MRMT approach and the uncoupled ver-
sion of the CTRW approach are formally equivalent and gave
an explicit map between them. Haggerty et al. (2000) dis-
cuss the equivalence between MRMT and integrodifferential
formulations. The equivalence of space and time fractional
dynamics and these approaches has been discussed by, e.g.,
Metzler and Klafter (2000), Berkowitz et al. (2006), Schumer
et al. (2003), Benson and Meerschaert (2009) and Zhang et
al. (2009). In essence, a fractional order time derivative is
equivalent to a power-law memory function or a power-law
distribution of retention times (MRMT) or time increments
(CTRW).

In hindsight, the equivalence of such a diverse set of for-
mulations sounds evident. In essence, they can all be viewed
as expressing linear mass transfer between mobile and im-
mobile regions. That this exchange is characterized by a dis-
tribution of residence times or time increments, by a memory
function or by a fractional order derivative does not look crit-
ical. However, a broad set of characterizations hinders com-
parison and synthesis, thus slowing scientific development.
A unified approach is needed.

An additional problem comes from the mathematical dif-
ficulty of some of these formulations. Integrodifferential
equations or Laplace transform are extremely efficient, but
not easy to grasp by many. Worse, their applicability is re-
stricted to linear problems. Therefore, they are not imme-
diate to translate to non-linear phenomena, such as multi-
component reactive transport (Donado et al., 2009; Willmann
et al., 2009).

The objective of this work is to propose a unified formu-
lation that is computationally efficient and can be extended
to non-linear phenomena. We adopt the MRMT approach
for two reasons. First, it is intuitive and does not require
mathematical tools beyond basic calculus. Second, it allows
localization. As discussed above, the domain is assumed to
consist of a mobile continuum and several overlapping im-
mobile continua. These exchange mass linearly with the mo-
bile region. In this way, the state of immobile zones can be
characterized by heads (or concentrations). That is, the tradi-
tional single state variable is substituted by several state vari-
ables (as many as immobile regions). Effectively, these work

as local state variables, that can be used to model non-linear
processes.

2 Governing equations

Non-local in time formulations can be used to enrich the
behavior of either the flow or transport equations, or both.
In either case, they can be viewed in two complementary
fashions: (i) as a continuum of delayed storage terms, in
which case these equations represent the total mass balance
in both mobile and immobile regions, or (ii) as a contin-
uum of sink/source terms, which act as linear mass exchange
terms between mobile and immobile zones. In practice, the
continuum is substituted by a discrete number of terms. Us-
ing the first view, the flow equation becomes

Sm
∂hm

∂t
+

N∑
j=1

Sim,j
∂him,j

∂t
= −∇ · q + q (1)

wheret [T ] is time, hm [L] is head in the mobile zone,Sm
[L−1] is the specific storage coefficient,q [L T −1] is water
flux, q [T −1] represents a sink/source (recharge/extraction),
andhim,j [L] andSim,j [L−1] are head and specific storage
coefficients of thej th immobile zone, respectively. Water
storage in each immobile region is fed by a linear exchange
with the mobile domain

Sim,j
∂him,j

∂t
= σim,j

Kim,j

Lim,j

(
hm − him,j

)
(2)

whereσim,j [L2 L−3] is the specific surface of thej th im-
mobile region,Lim,j [L] its distance from the mobile zone
andKim,j [L T −1] its hydraulic conductivity.

Analogously, the solute transport equation expresses the
solute mass balance per unit volume of aquifer

φmRm
∂cm

∂t
+

N∑
j=1

φim,jRim,j
∂cim,j

∂t
= ∇ · (Dm · ∇cm)− q · ∇cm (3)

wherecm [M L−3] is the mobile concentration,Dm [L2 T −1]
is the hydrodynamic dispersion tensor,φm [L3 L−3] is the
mobile porosity (volume of pores per unit aquifer volume),
andRm [−] is the mobile zone retardation factor. Similarly,
cim,j [M L−3], φim,j [L3 L−3] andRim,j [−] are the con-
centration, porosity and retardation factor of thej th immo-
bile zone. As in flow phenomena, mass balance in thej th
immobile region is given by

Rim,jφim,j
∂cim,j

∂t
= σim,j

φ′

im,jDim,j

Lim,j

(
cm − cim,j

)
(4)

whereφ′

im,j [L3 L−3] is its porosity (volume of pores per

unit volume of immobile region),Dim,j [L2 T −1] is a molec-
ular diffusion coefficient in thej th immobile region. Equa-
tion (4) can be somewhat simplified by writingφ′

im,j as a
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function of φim,j (see e.g., Carrera et al., 1998). In prac-
tice, the physical meaning of the parameters in Eqs. (2) and
(4) is somewhat approximative. What is important is that (1)
N immobile regions are considered, (2) their state is char-
acterized by a state variable (uim), and (3) they exchange
mass with the mobile region proportionally to the difference
in state variables. Bearing this in mind, Eqs. (1–4) can be
written in general as

β
∂um

∂t
+

N∑
j=1

βj
∂uim,j

∂t
= Lu (um) (5)

∂uim,j

∂t
= αj

(
um − uim,j

)
j = 1 ...N (6)

whereu=h, for flow or u = c, for solute transport. Theβj
[−] coefficients are called capacity coefficients (Rim,jφim,j
for transport orSim,j for flow) to account for the distribution
of mass in the immobile phases;β [−] is the capacity co-
efficient of the mobile phase (Rmφm for transport orSm for
flow); andαj [T −1] is a first-order mass transfer rate coeffi-
cient. The right-hand side of Eqs. (1) and (3) is designated
generically by the operatorLu.

DenotingFj the j th term of the sum in Eq. (5), the gov-
erning equations for the immobile zones are given as

Fj = βj
∂uim,j

∂t
= βjαj

(
um − uim,j

)
j = 1...N (7a)

F =

N∑
j=1

Fj (7b)

whereF is the total exchange between mobile and immobile
regions.

3 Numerical formulation for MRMT

Spatial and time discretization of either the flow or transport
equations under local equilibrium assumptions (i.e., without
MRMT) leads to a linear system of equations

D
1um

1t
+ Auk+θm = bk+θ (8)

where1um=uk+1
m −ukm, 1t=tk+1

−tk is the time step,θ is
a weighting factor and the superscripts stand for the time in
which the variable is evaluated.

Accounting for MRMT can be achieved in two ways: (a)
using an appropriate mesh with nodes representing the im-
mobile zones (e.g., Neuman et al., 1982), or (b) by elim-
inating the unknown in the immobile region as an explicit
state variable, i.e. expressinguim,j as a function ofum (e.g.,
Carrera et al., 1998). Here, we have adopted the later ap-
proach because: first, it maintains the number of unknowns
unchanged and, second, it is actually simpler to implement
into existing generic flow and transport simulation codes.

Figure 2 displays a schematic representation of a hypo-
thetical numerical mesh that includes both the mobile and
immobile domains. We assume that each nodem of the mo-
bile zone is connected to all adjacent nodes of the mesh and
to all the immobile blocks. Nodeim,j of the immobile re-
gion is only connected to nodem. Geometrically, nodeim,j
overlaps with nodem. We show below that the variableu
at nodeim,j (i.e., uim,j ) can be solved explicitly as a func-
tion of um. Therefore, nodeim,j needs not be an “uncertain”
node, but can be considered as a zero-D node that contributes
to the mobile region, and is only updated after mobile state
variables have been computed.

We first solve theN first-order ordinary differen-
tial Eq. (6) in terms of1um, while assuming thatum
varies linearly during each time increment. That is,
um=ukm+

(
1um

/
1t
) (
t − tk

)
. This leads toN first-order

linear differential equations, whose solution is

uim,j (t) = ukim,j e
−αj

(
t−tk

)
+ ukm

(
1 − e−αj

(
t−tk

))
(9)

+
1um

1t

[(
t − tk

)
−

1

αj

(
1 − e−αj

(
t−tk

))]
Combining Eqs. (6), (7a) and (9), the fluxFj evaluated at
time tk+θ will be

F k+θj = βjαj

(
uk+θm − uk+θim,j

)
= βjαj

(
ukm − ukim,j

)
e−αj θ1t +

1um
1t
βj
(
1 − e−αj θ1t

) (10)

Notice that this flux is only a function ofu at the previous
time step and1um. Therefore, the total mass flux,F k+θ ,
given by Eq. (7b), can be substituted into Eq. (8). This leads
to a system that is identical to Eq. (8), except that the storage
matrix and sink/source term are modified according to

(
D∗
)
ii

= (D)ii + vi

N∑
j=1

βj
(
1 − e−αj θ1t

)
(11a)

(
b∗
)k+θ
i

= (b)k+θi − vi

N∑
j=1

βjαj

[
ukm,i −

(
ukim,j

)
i

]
e−αj θ1t (11b)

whereukm,i is the value ofu at nodei of the mobile region

and timetk,
(
ukim,j

)
i

is the corresponding value in thej th

immobile block, andvi is the volume of celli in volume in-
tegrated formulations (e.g., finite element) and is equal to 1.0
in discretized formulations (e.g., finite differences). Finally,
it is necessary to updateuim,j at the end of each time step
using Eq. (9). This approach is quite simple to program and
should lead to accurate solutions at a very low computational
cost. As with the integro-differential approach, the number
of nodes/elements is not altered by the addition of the MRMT
terms.

These equations were implemented in a Fortran 90
module called modprocessMRMT.f90, which is struc-
tured following the coding guidelines and rules proposed
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by Slooten (2009). The module defines MRMT ob-
jects by means of a specific type of variables, that con-
tain the capacity termsβj and mass transfer coefficients
αj , and provides services to solve the equation described
here. The module supports some characteristics of object-
oriented programming. In fact, the module was designed
such that its types and operations are available from out-
side but the details of the implementation are hidden
from the user (“black box” principle). These function-
alities facilitate linking other Fortran modules or objects
to modprocessMRMT.f90. For instance, reactive trans-
port may be included in both the mobile and immobile re-
gions, by properly linking the object-oriented tool CHEP-
ROO (Bea et al., 2009) to both any conservative transport
code and the module modprocessMRMT.f90. The module
can be downloaded fromhttp://www.h2ogeo.upc.es/English/
English/software.htm#ModprocessMRMT.

4 Equivalence with other similar approaches

As mentioned in the introduction, a large number of non-
local in time schemes have been presented by different au-
thors. This section is devoted to discussing their equivalence
so as to facilitate using them in the proposed formulation.
This equivalence is summarized in Table 1 in terms of coeffi-
cientsαj andβj of the generalized MRMT model proposed
in this work (Eqs. 5 and 6).

4.1 Equivalence with the classical MRMT approach

Haggerty et al. (2000) provided a comparison table with dif-
ferent MRMT formulations considering governing equations
similar to Eqs. (5) and (6). The present approach is essen-
tially identical to that of Haggerty and Gorelick (1995). The
main difference is that they formulated their equations per
unit volume of water. Therefore, their capacity coefficients
are equal to the coefficientsβj of Eqs. (5) and (6), but di-
vided by the mobile capacity,β. DenotingβjHG andαjHG
the capacity and first-order mass transfer coefficients consid-
ered by Haggerty and Gorelick (1995), we have the following
equivalence relationship

βjHG = βj
/
β (12a)

αjHG = αj (12b)

We have preferred to use capacity coefficients as defined in
Eq. (5) to keep the physical meaning and consistence of the
governing equations as mass balances per unit volume of
aquifer.

4.2 Equivalence with the integro-differential approach

Many schemes approximate the effect of the immobile region
by a continuous memory function. The governing equations
are then solved in the Laplace domain. These solutions can

Fig. 2. Hypothetical numerical discretization of the mobile and im-
mobile domains.

also be approximated by expanding the memory function as
a sum of exponentials (Carrera et al., 1998). Each summand
can then be solved as explained in Sect. 3. For the purposes
of comparison with our approach, the important issue is to
acknowledge that such approaches are typically defined in
terms of overall parameters for the whole immobile region
(as opposed to independentαj andβj ). For the works of
Carrera et al. (1998) and Salamon et al. (2006), the equiva-
lence is given by:

αj = γ 2
j

Dim

RimL
2
im

(13a)

βj =
aj

γ 2
j

Rimφim (13b)

whereφim [L3 L−3], Rim [−], Dim [L2 T −1] andLim [L]
are characteristic parameters of the entire immobile domain.
Coefficientsaj andγ j can be found in the literature (e.g.,
Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty
et al., 2000; Salamon et al., 2006) for diffusion into different
geometries (layered, cylindrical, spherical and veins) and the
standard first-order model. These formulations result from
the analytical solution of the diffusion equation. A large
number of first-order mass transfer rate coefficients and their
distributions estimated from field and laboratory test results
can be obtained from the works of Cosler (2004) and Hag-
gerty et al. (2004).

The mass flux,F , into the immobile region in memory
function based approaches is given by
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Table 1. Equivalence between the present formulation and other approaches, on the basis of coefficientsαj andβj that appear in Eqs. (5)
and (6).

Formulation or phenomena Description of parameters jα jβ
   

2 -1DSolute transport with mass exchange 
2

,,

,

jimjim

jim

LR
D

  jimjimR ,, φ   im,j [L  T ] is a molecular diffusion coefficient in the jth immobile 
region; Rim,j [-] is the retardation factor of the jth immobile zone; Lim,j 
[L] is the distance from the mobile zone to the jth immobile zone; jim ,φ  
[L3 -3 L ] is the porosity of the jth immobile zone. 

Flow with delayed storage 
(e.g., Boulton, 1955) 

jimjim

jimjim

LS
K

,,

,,σ
  jimS ,   jim,σ  [L2 -3 L ] is the specific surface of the jth immobile region; Kim,j 

[L T-1] is the hydraulic conductivity in the jth immobile region; Sim,j 
[L-1] is the specific storage coefficient of the jth immobile zone; Lim,j 
[L] is the distance from the mobile zone to the jth immobile zone. 

MRMT  and 
(Haggerty and Gorelick, 1995) jHGα

 
ββ jHG HGjαHGjβ  are the capacity and first-order mass transfer 

coefficients used by Haggerty and Gorelick (1995); 
 

β  is the mobile 
capacity. 

Integro-differential 
(e.g., Carrera et al., 1998) 2

2

imim

im
j LR

Dγ
 

imim
j

j R
a

φ
γ 2

 

imφ  [L3 -3 L ], Rim [-], Dim [L2 -1 T ] and Lim [L] are characteristic 
parameters of the entire immobile domain with the same meaning as in 
solute transport; coefficients aj and jγ  are shape factors for diffusion 
into different geometries. 
aCTRW 

(e.g., Dentz and Berkowitz, 2003) jα
  ∞=⎥

⎦

⎤
⎢
⎣

⎡
= ∑

∞

=

− ...1
1

ka
j

j
k

jk βα
k are the expansion coefficients of the Laplace transform of the 

memory function g*. 
 

Fractional derivatives  

( ) ( )

1...2
1

1

,
1

1

1
1

1
1

−=
−
−

−+=

== −−

Nj
N

j

tt
N

j

NN

αααα

αα

1...1

1
1

1

−=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+=
∑

Nj

gm

j

j

j

N

ji
jj

j

N

α
α

α

αβ
β

β
m(e.g., Willmann et al., 2008) 

 

 

g is the slope of the memory function in log-log scale; [t1, tN] is the 
interval of time on which this function displays a power-law behavior. 

Solute transport in rivers 
(e.g., Lees et al., 2000) ss AAαα =1   sA=1β   sα  [T-1] is the storage zone exchange coefficient; A [L2] is the stream 

channel cross-sectional area; and As [L2] is the storage zone cross-
sectional area. 

Low permeability blocks 
(e.g., Warren and Root, 1963) 

imim

im

C
ak

μφ
α =1   imimCφβ =1   a [L-2] is a geometry factor of the matrix blocks; k  [L2

im ] is the absolute 
permeability of this region; μ  [M L-1 T-1  [L3] is the fluid viscosity; imφ  
L-3] is the porosity of the matrix blocks; Cim [L T2 M-1] is the total 
compressibility of matrix blocks. 

 

F (x, t) =

t∫
0

g (t − τ)
∂um (x, τ )

∂τ
dτ (14)

= g ∗
∂um

∂t
+ g (t) um (x,0)

whereg is the memory function and * denotes the convolu-
tion product. Carrera et al. (1998) approximate this product
using the integro-differential approach of Herrera and Ro-
darte (1973) and Herrera and Yates (1977). An equivalent
alternative is to approximateg by

g (t) =

∫
∞

0
αb (α) e−αtdα (15)

whereb(α) [T ] is a density function of first-order rate coef-
ficients. Haggerty et al. (2000) provide explicit expressions
for the density and memory functions for various models or
geometries. To use the approach of Sect. 3, we need to ex-
press the memory function as

g (t) =

∞∑
j=1

αjβj e
−αj t (16)

Note that Haggerty et al. (2000) included the factorαjβj on
the memory function, unlike Carrera et al. (1998) who placed
it on flux F . However, both approaches are equivalent. We
calculate the convolution product in Eq. (14), truncating the
memory function atN th term and following the same al-
gebraic analysis described in the Appendix 1 of Carrera et
al. (1998). Thus, we can expressF k+θ as

F k+θ =

N∑
j=1

βjαj e
−αj θ1tI kj +

1um

1t

N∑
j=1

βj
(
1 − e−αj θ1t

)
(17a)

I k+1
j =

∫ tk+1

0
e−αj

(
tk+1

−τ
) ∂um
∂τ

dτ = e−αj1tI kj (17b)

+

(
1 − e−αj1t

)
αj

1um

1t

The equivalence between our approach and integro-
differential approach becomes evident by comparing
Eqs. (17a) and (10). Also note that, from Eq. (9) we obtain
the recursive relationship

uk+1
m − uk+1

im,j = e−αj1t
(
ukm − ukim,j

)
+

(
1 − e−αj1t

)
αj

1um

1t
(18)
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which is similar to Eq. (17b). Therefore, we arrive at
Eqs. (7b) and (10) by imposing the condition

I kj = ukm − ukim,j (19)

The coefficients in Eq. (13) result from an infinite series ex-
pansion that needs to be truncated. Truncation criteria and
expression for the final terms of truncated multi-rate series
can be found in Haggerty and Gorelick (1995) and Salamon
et al. (2006). In the case of diffusion into different geome-
tries, they proposed the same criteria to evaluateβN . How-
ever, while Haggerty and Gorelick (1995) suggested writing
αN as the rest of theαj coefficients (i.e., Eq. 13a), Salamon
et al. (2006) proposed the following expressions

βN =

(
1 −

N−1∑
j=1

aj

γ 2
j

)
Rimφim (20a)

αN = λ

(
1 −

N−1∑
j=1

aj

γ 2
j

)
(

1 − λ
N−1∑
j=1

aj

γ 4
j

) Dim

RimL
2
im

(20b)

whereλ for layers, spheres, cylinders are given by Salamon
et al. (2006).

4.3 Equivalence with CTRW

Dentz and Berkowitz (2003) found a mathematical equiva-
lence between MRMT and the CTRW model (Berkowitz and
Scher, 1998; Dentz et al., 2004; Berkowitz et al., 2006; Mar-
golin et al., 2003; Salamon et al., 2006;). They formulated a
CTRW approach which is formally equivalent to the integro-
differential formulation of MRMT presented in this paper.
They present a map between the memory function defined
in the context of integro-differential formulations,g, and the
transition time distributionψ(t)

g∗ (s) =
1 + ψ∗ (s) (1 + sτ0)

sτ0ψ∗ (s)
, (21)

whereτ0 defines which portion of the medium is mobile or
immobile and as such is related to the mobile and immobile
volume fractions of the medium (see Dentz and Berkowitz,
2003). The Laplace transform of the memory function,g∗,
can be expanded into a series ins according to

g∗ (s) =

∞∑
k=1

(−1)kaks
k, (22)

where explicit expressions for theak are given in Dentz and
Berkowitz (2003). Forg∗(s) given by the Laplace transform
of Eq. (16), we obtain

g∗ (s) =

∞∑
j=1

αjβj

αj + s
=

∞∑
j=1

βj

∞∑
k=1

(−1)k α−k
j sk (23)

=

∞∑
k=1

(−1)k sk
[

∞∑
j=1

α−k
j βj

]

By comparison of Eqs. (22) and (23), we obtain relations
between theβj and theak for a given series of ratesαj

ak =

[
∞∑
j=1

α−k
j βj

]
(24)

The latter expression can be inverted (numerically) in order
to obtain explicit expressions for the weightsβj and thus for
the memory functiong(t) that simulates the transport behav-
ior in a CTRW.

4.4 Equivalence with the fractional derivatives
approach

Another method to describe non-localities in time is
the fractional-order advection-dispersion equations (fADE)
(Benson et al., 2000a, b; Zhang et al., 2009). This ap-
proach is quite general and can be characterized by a power
law memory function when only the time derivative term in
the advection-dispersion equation (ADE) is fractional (Will-
mann et al., 2008).

On the other hand, Dentz and Berkowitz (2003) proposed
the use of the truncated power law memory function, which
has become widely used because breakthrough curves often
display a power law behavior at late times (see, e.g., Zhang
et al., 2007; Willmann et al., 2008). The late time behav-
ior of the breakthrough curve can be related to the memory
function (Haggerty et al., 2000). This memory function only
requires specifying the slope of the memory function in log-
log scale,mg, and the interval of time [t1, tN ] on which this
function displays a power-law behavior. A practical method
to calculate the distribution coefficientsβj consists of, first,
calculate theαj values assuming they are evenly distributed
on a logarithmic scale while fixingα1 = t−1

N andαN=t−1
1 .

Secondly, we obtain a recursive relationship forβj values
by approximating the memory function with expressions of
successive increasing orders, i.e.

log

(
N∑
i=j

βiαi

)
− log

(
N∑

i=j+1

βiαi

)
= mg

(
log tj − log tj+1

)
(25)

wheretj=α
−1
j . This leads to

βj =

N∑
i=j+1

βiαi

αj

[(
αj

αj+1

)mg
− 1

]
j = 1...N − 1 (26)

To get the values ofβj , we first assign an arbitrary value to
βN (e.g.,βN=1). Then we apply Eq. (26) and finally scale

these values imposing the condition
N∑
j=1

βj=1.

4.5 Equivalence with other models and phenomena

There are a lot of specific models, problems and other ap-
plications that can be cast as non-local in time formulations.
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Many of those models rely on single rate first-order mass
transfer (e.g., Roth and Jury, 1993). Haggerty and Gore-
lick (1995) have classified these mass transfer models as
“chemical” or “physical” with subdivisions into one-site or
two-sites models. They have shown how these models are
equivalent and interchangeable.

As an examples, we want to mention the model of flow
through low permeability blocks (Warren and Root, 1963),
the transient storage model of longitudinal solute transport
in rivers and streams (Bencala and Walters, 1983), and trans-
port under linear kinetic adsorption (e.g., Nkedi-Kizza et al.,
1983). In essence, all of these models are particular cases
of the single first-order mass transfer model, in which there
is only one immobile zone exchanging mass with the mobile
domain.

Warren and Root (1963) formulated a model for the single-
phase flow of a slightly compressible liquid through forma-
tions containing an intergranular porosity and a fissure poros-
ity. In their approach, the continuity equation includes a
term accounting for the flow between the two porous regions.
Here, the state variables are the pressure in the fractured
zone,um [M L−1 T −2], and the pressure in the matrix re-
gion, uim,1 [M L−1 T −2]. Also, we can identifyβ andβ1
with φmCm andφimCim, whereCm andCim [L T 2 M−1] are
the total compressibilities of the fracture and matrix blocks,
respectively. The flow between fracture and matrix regions
is controlled by the mass transfer rate coefficientα1 given by

α1 =
akim

µφimCim
(27)

wherea [L−2] is a shape factor reflecting the geometry of
the matrix blocks,kim [L2] is the absolute permeability of
this region andµ [M L−1 T −1] is the fluid viscosity.

For solute transport in rivers the governing Eqs. (5) and (6)
are based on the conservation of mass principle for the stream
and storage zone segments (Bencala and Walters, 1983; Lees
et al, 2000; Zhang and Aral, 2004). In this context,um [M
L−3] is the in-stream solute concentration,uim,1 [M L−3]
is the storage zone solute concentration,β represents the
stream channel cross-sectional areaA [L2], and β1 is the
storage zone cross-sectional areaAs [L2]. The first-order
mass transfer rate coefficient is given by

α1 =
A

As
αs (28)

whereαs [T −1] is the storage zone exchange coefficient.
Similar identification of parameters can be done with other

phenomena and models. Some of them are summarized in
Table 1.

5 Applications

In order to illustrate the proposed formulation, we apply it to
four problems. We first test its applicability to flow problems

by simulating delayed yield from storage, which we verify by
comparison to Boulton’s (1955) analytical solution. We also
simulate an actual pumping well test carried out at a nearly
field scale (Martinez-Landa et al., 2004). Next, we compare
our approach with the integro-differential approach, simulat-
ing the hypothetical radially convergent tracer test described
by Alcolea et al. (2001). We then apply the present approach
to solve two problems of radial flow to a pumping well (Hag-
gerty and Gorelick, 1995). Finally, we show how our formu-
lation can be used to simulate a river tracer experiment (Lees
et al., 2000). Simulations were carried out with TRACONF
(Carrera et al., 1993), a Fortran program for the simulation
of water flow and solute transport through porous media.

5.1 Example of NE in flow phenomena

Boulton (1955) developed an analytical solution for unsteady
radial flow allowing delayed yield from storage. This prob-
lem can be described by Eq. (1) withN=1, assumingq=0.
We model a hypothetical pumping test, considering a trans-
missivity of T =0.01 m2 s−1, Sm=0.001 andSim=0.1, and a
pumping rate of 0.04π m3 s−1. Initial head equals zero. We
compare our non-local in time approach with the Boulton’s
solution for three values of the rate coefficientα=2.5×10−6,
10−5 and 5×10−5 s−1. Boulton (1955) referred toα as an
empirical constant. We considered a mesh of 208 nodes with
a spacing size1r increasing geometrically with a factor of
1.08. The integration scheme in time was semi-implicit with
variable1t .

Figure 3 displays the evolution of heads, at a distance
of R=51.6 m from the well, versus dimensionless time
(tD=Tt/SmR2). We can see that the numerical solution (solid
line) obtained with the present approach matches the analyti-
cal solution (circles) obtained by Boulton (1955). The figure
illustrates the influence of the rate coefficientα on the sys-
tem behavior. Whenα is small (long response time), the sys-
tem behaves for a long time as if there was no delayed yield.
Whenα increases the system soon behaves as it is constituted
only by one domain with the full storage. This is expected
because for very large values ofα, the water mass transfer
between mobile and immobile zones is so fast that they tend
to be at equilibrium.

The present approach was also applied to the simulation
of a field experiment. To do so, we consider a pumping
test carried out during the second stage of FEBEX project
(Martinez-Landa et al., 2004). We simulated a 2-D flow
through a medium constituted by a granite matrix with a hor-
izontal fracture. As in the Boulton’s problem, this pumping
test can be modeled by Eq. (1) withN=1, assumingq=0. A
pumping rate of 1.01×10−5 m3 s−1 was applied during 9 s.
As initial head we assumed steady-state conditions. Previ-
ous data analysis suggests an estimated fracture transmis-
sivity of T =8.91×10−6 m2 s−1, and specific storage coeffi-
cientsSm=1.2×10−3 andSim=3.9×10−2. Using an expres-
sion analogous to Eq. (27), we estimated the mass transfer
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Fig. 3. Comparison between the present approach and an analytic
solution (Boulton, 1955) for delayed yield. Dimensionless rate co-
efficient is defined asαD=SmR2α/T .

rate coefficient asα=7.8×10−5 s−1. We considered a mesh
of 125 nodes with a spacing size1r increasing geometrically
with a factor of 1.1. The integration scheme in time was fully
implicit with variable1t .

Figure 4 shows the evolution of measured drawdown at
a distance ofr=0.043 m from the well. We can see that
the present approach (solid line) reproduces the experimen-
tal data (circles). The figure also shows that an increase in
the mass transfer rate coefficient or in the matrix storage co-
efficient, causes an increase in the fluxes of water from the
fracture to the matrix. As expected, this leads to a delay in
the drawdown, as shown in Fig. 4 (dotted and dashed lines).

5.2 Example of NE in solute transport

We model the convergent tracer test described by Alcolea et
al. (2001). A tracer mass of 7.88 g is injected 8 m away from
a well pumping 150 m3 d−1. The radius of the pumping well
and the aquifer thickness are 0.2 m and 5 m, respectively.
Porosity of the mobile domain isφm=0.1. The immobile
zone consists of layers of lengthLim=0.05 m and porosity
φim=0.045. The diffusion coefficient in the immobile zone
was set toDim=0.001 m2 d−1. Alcolea et al. (2001) used
TRANSIN code, which considers the integro-differential ap-
proach to solve matrix diffusion problems. Thus, we have
calculated coefficientsα’s and β ’s according to Eq. (13)
with N=50. A uniform mesh with a grid size1r=0.005 m
(93 nodes) and a fully implicit integration scheme in time
was used in the simulations.

Figure 5 shows the breakthrough curves at the pump-
ing well simulated with the present approach and with
TRANSIN, which compare quite well. The maximum rel-
ative error was 1%.

Fig. 4. Simulation of a pumping well test (Martinez-Landa et al.,
2004) with the present approach.

Fig. 5. Breakthrough curve of tracer in a radial convergent test,
illustrating the equivalence between the present approach and the
integro-differential formulation (Alcolea et al., 2001).

5.3 Example of NE in solute transport at field scale

Haggerty and Gorelick (1995) presented a case of radial flow
to a pumping well, in the context of PCE removal from the
Borden sand aquifer under realistic pumping rates. To solve
the governing equations, they expressed the MRMT model in
dimensionless form and used a semianalytic method. Here
we only give the main characteristics concerning with our
approach, as the specifications of the problem are well de-
scribed in their work (Haggerty and Gorelick, 1995). Two
hypothetical case studies were considered: the remediation
of a homogeneous aquifer (Borden sand) and the remedia-
tion of a hypothetical heterogeneous aquifer with a mixture
of mass transfer processes. In both cases we used a mesh of
102 nodes with a spacing size1r decreasing in such a way
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Fig. 6. Comparison between the present approach and a semi-analytic solution (Haggerty and Gorelick, 1995).(a) Homogeneous aquifer.
(b) Mixture of mass transfer processes (heterogeneous aquifer).

that all cells have the same volume and1r1=1.39 m. The
integration scheme in time was semi- implicit with variable
1t .

The first case study simulates the cleanup history of a ho-
mogeneous aquifer where seven immobile zones are associ-
ated to a distribution of grain sizes. The grains are assumed
to be spherical; theαj andβj coefficients are given in Ta-
ble 2 of Haggerty and Gorelick (1995). As in their work,
we have considered 50 exponential terms to adequately de-
scribe each immobile domain. Figure 6a displays the evo-
lution of the PCE mass fraction remaining through an sce-
nario of 500 d. We can see that the numerical solution (solid
line) obtained with the present approach match very well the
semi-analytical solution (dashed line) obtained by Haggerty
and Gorelick (1995).

In the second numerical experiment, we simulate the re-
moval of PCE from an heterogeneous aquifer. Here, hetero-
geneity arises from four immobile zones of different geom-
etry (porous grains, grain aggregates, clay layers and clay
pods) and two immobile zones characterized by a surface
reaction (slow and fast reactions). The mass-transfer pa-
rameters are those appearing in Table 3 of Haggerty and
Gorelick (1995). Note that these parameters are assumed
locally heterogeneous, but they have the same distribution
at all points in space. Once again, 50 terms were used to
describe each geometry and only a single term for each re-
action. Figure 6b shows predictions of the mass fraction of
PCE remaining in the aquifer during a remediation scenario
of 20 000 d. Again, the evolution of the mass fraction remain-
ing obtained through the present approach (solid line) fit well
the results predicted by the semi-analytical solution (dashed
line). Therefore, the present model can reproduce the behav-
ior of heterogeneous media characterized by different types
and rates of mass transfer.

5.4 Example of NE due to transient storage in a river
tracer experiment

Here we make use of the equivalence between the present ap-
proach and the transient storage model described in Sect. 4.5
to model a river tracer experiment (Lees et al., 2000).

In one of their experiments, Lees et al. (2000) injected an
amount of 10 kg of sodium chloride into a river upstream,
and measured the tracer concentration over time at three
sampling stations downstreams. They measured a constant
discharge of 251 L s−1. Figure 7 shows the breakthrough
curves (BTC) at two reaches (reach B located at 140 m and
reach C at 190 m downstream from the injection point) and
the BTC’s simulated with the present approach. To fit ex-
perimental BTC’s we fixed the longitudinal dispersion coef-
ficient atDm=0.64 m2 s−1. The estimated model parameters
(Eq. 28) were (As /A=0.62;αs=0.0056 s−1) for reach B, and
(As /A=0.68;αs=0.0058 s−1) for reach C.

This example shows that the proposed formulation can re-
produce the behavior of mass transfer between active flow
and dead-zones in a river system. However, a certain knowl-
edge of the distributions of the storage zone cross-sectional
area, storage zone exchange coefficient, and dispersion co-
efficient could be used to improve the description of ex-
perimental data by the MRMT model. In such a case, the
proposed approach could better describe the complex mass
transfer processes attributed to the wide spectrum of dead
zones in natural rivers and streams (Zhang et al., 2009).

6 Conclusions

We have shown that all non-local in time formulations can
be unified through a general MRMT approach. In doing so
we have reviewed a series of widely used non-local in time
flow and transport formulations which model a series of envi-
ronmental flow and transport phenomena such as subsurface
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Fig. 7. Simulation of a tracer river experiment (Lees et al., 2000).

flow and transport in heterogeneous media, chemical trans-
port under kinetic adsorption in soils and groundwater and
transport in streams and rivers. All of these approaches are
equivalent to and can be formulated in terms of the proposed
MRMT formulation. We have developed an easy-to-use nu-
merical implementation of multi-rate mass transfer, which
embeds existing formulations for non-locality in time. This
numerical method is simple and physically consistent with
and mathematically equivalent to other non-local in time
flow and transport approaches such as integro-differential,
CTRW and fractional derivatives formulations. The present
approach avoids the spatial discretization of the immobile
domain, because it solves state variables of that zone as ex-
plicit functions of the state variables in the mobile domain.
The approach also avoids the need to keep track of the past
history of state variables at the mobile domain. That is,
the proposed formulation yields an algorithm that is local in
time to model non-local phenomena. The latter facilitates (i)
physical interpretation of parameters and (ii) incorporation
of non-linear phenomena, such as chemical reactions, that re-
quire local variables. The algorithm was implemented into a
Fortran 90 module that is very efficient and accurate, as it in-
volves an analytical solution for the mass balance equations
in the immobile zones. Through a series of examples we
have illustrated that the proposed formulation can describe a
wide spectrum of phenomena displaying non-equilibrium be-
havior. Thus, the developed MRMT module may find wide
application for the realistic modeling of environmental flow
and transport problems.

The decomposition of a complex non-local single contin-
uum domain into a simple multicontinuum domain opens a
wealth of possibilities for modeling non-linear phenomena.
We expect that the actual procedure for extending the pro-
posed formulation to non-linear processes will be problem
dependent. Willmann et al. (2009) or Donado et al. (2009)
have done it for multicomponent reactive transport because

this problem can be decomposed as (1) linear transport of
conservative components and (2) non-linear local chemical
computations. In this kind of problems, the localization
implicit in MRMT is essential. Moreover, in this kind of
problems, the immobile regions decomposition obtained for
conservative (linear) transport remains unaltered when sim-
ulating reactive (non-linear) transport. However, this may
not remain true in general. The MRMT formulation can be
easily extended for modeling non-linear phenomena such as
multiphase flow or rainfall-runoff, but whether the immobile
regions decomposition can be left unaltered remains to be
proven.

The module has been tested by comparison with published
solutions and is publicly available athttp://www.h2ogeo.upc.
es/English/English/software.htm#ModprocessMRMT.
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