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Abstract. Ecohydrology and hydropedology are two emerg-
ing fields that are interconnected. In this study, we demon-
strate stemflow hydrology and preferential water flow along
roots in two desert shrubs (H. scopariumand S. psam-
mophila) in the south fringe of Mu Us sandy land in North
China. Stemflow generation and subsequent movement
within soil-root system were investigated during the grow-
ing seasons from 2006 to 2008. The results indicated that
the amount of stemflow inH. scopariumaveraged 3.4% of
incident gross rainfall with a range of 2.3–7.0%, while inS.
psammophilastemflow averaged 6.3% with a range of 0.2–
14.2%. Stemflow was produced from rainfall events with
total amount more than 1 mm for both shrubs. The aver-
age funneling ratio (the ratio of rainfall amount delivered to
the base of the tree to the rainfall that would have reached
the ground should the tree were not present) was 77.8 and
48.7 forH. scopariumandS. psammophila, respectively, in-
dicating that branches and stems were fully contributing to
stemflow generation and thereby provided sources of water
for possible preferential flow into deeper soil layer. Analysis
of Rhodamine-B dye distribution under the shrubs showed
that root channels were preferential pathways for the move-
ment of most stemflow water into the soil. Distribution of
soil water content under the shrubs with and without stem-
flow ascertained that stemflow was conducive to concentrate
and store water in deeper layers in the soil profiles, which
may create favorable soil water conditions for plant growth
under arid conditions. Accordingly, a clear linkage between
aboveground ecohydrology and belowground hydropedology
in the desert shrubs is worth noticing, whereby an increase in
stemflow would result in an increase in soil hydrologic het-
erogeneity.
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1 Introduction

Ecohydrology and hydropedology are two emerging fields
that are interconnected within soil-plant-atmosphere contin-
uum in water-limited ecosystems. The integrated interdisci-
plinary research of hydropedology and ecohydrology would
enhance our understanding of the interactions between soil,
water, and biological factors in the “Critical Zone” (National
Research Council, 2001; Lin, 2003; Lin et al., 2005; New-
man et al., 2006; Brantley et al., 2006; Young et al., 2007).
Vegetation plays an important role affecting ecohydrologi-
cal and hydropedological processes at the local and catch-
ment scales because of the control that vegetation canopies
exert on the redistribution of incident precipitation (Carlyle-
Moses, 2004; Owens et al., 2006) and plant roots exert
on water and nutrient transport in the vadose zone (Devitt
and Smith, 2002; Skaggs and Shouse, 2008). Vegetation
canopies can affect the vertical and horizontal spatial dis-
tribution of water within the plant community (Owens et
al., 2006). Partition of precipitation by vegetation canopy
comprises three fractions: (1) interception, which is retained
on the vegetation and is evaporated after or during rainfall;
(2) throughfall, which reaches ground by passing directly
through or dripping from tree canopies, and (3) stemflow,
which flows to the ground via trunks or stems (Crockford and
Richardson, 2000; Carlyle-Moses and Price, 2006). Canopy
interception generally exerts a negative effect on the hori-
zontal distribution of water by retaining small pulses of pre-
cipitation in the canopy (Loik et al., 2004; Owens et al.,
2006; Llorens and Domingo, 2007) and preventing water
from reaching the ground surface. Throughfall affects sur-
face soil layers and moisture distribution, while stemflow can
alter the vertical distribution of water by funneling water to
the base of plants where it can infiltrate preferentially (De-
vitt and Smith, 2002; Llorens and Domingo, 2007) or be re-
distributed through diffusion or hydraulic lift (Schwinning
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and Sala, 2004; Owens et al., 2006). Johnson and Lehmann
(2006) reviewed that tree redistributed hydrologic fluxes to
the root zone through a double-funneling process: (1) tree
first partitions rainfall into throughfall and stemflow, result-
ing in a spatial redistribution of water fluxes reaching the
soil; and (2) stemflow delivered to the soil at the base of
trees is then further funneled by tree roots through below-
ground preferential flow pathways. Levia and Frost (2003)
reviewed the quantitative and qualitative importance of stem-
flow in forested and agricultural ecosystems, and pointed out
that stemflow was a spatially localized point input of pre-
cipitation and solutes at the plant stems and was of hydro-
logical and ecological significance. Stemflow values usu-
ally are less than 5% of annual rainfall but can reach 22 to
40% in some cases (Slatyer, 1965; Pressland, 1973; Navar
and Ryan, 1990; Carlyle-Moses and Price, 2006; Li et al.,
2008). Johnson and Lehmann (2006) found that stemflow
can vary by more than three orders of magnitude, from 0.07%
to 22% of incident rainfall, under a wide range of precipita-
tion regimes (600–7100 mm y−1). Levia and Frost (2003) re-
ported the mean maximum stemflow values of approximately
3.5%, 11.3%, and 19% for tropical, temperate, and semiarid
regions, respectively. Stemflow is highly variable between
and within types of vegetation, as reviewed by Lorens and
Domingo (2007). For example, Lorens and Domingo (2007)
found that although stemflow averaged 3% of incident pre-
cipitation under Mediterranean conditions, there was an as-
sociated coefficient of variation of 111%.

Although stemflow may be volumetrically minor com-
pared to throughfall at the stand scale, it has a significant
influence on runoff generation, soil erosion, groundwater
recharge, soil moisture, plant nutrients, and the spatial dis-
tribution of understory vegetation and epiphytes (Levia and
Frost, 2003; Carlyle-Moses and Price, 2006; Li et al., 2008).
Stemflow always results in spatial heterogeneity in soil-water
fluxes due to stemflow and root channelization processes.
In a study in Western Australia, root channels beneath eu-
calypt forest provided conduits for the penetration of rain
water to a depth of 12 m over a period of 20 years, whilst
rainwater on wheat lands in the same area had penetrated
no deeper than 2.5 m (Allison and Hughes, 1983; Maitre
et al., 1999). Nulsen et al. (1986) found that the canopy
of mallee vegetation intercepts rainwater and redistributes it
into soil via stemflow at depths as great as 28 m. The flow
of water through stem-root system often occurs as prefer-
ential flow. Devitt and Smith (2002) reported that macrop-
ores formed by the root systems of woody shrubs may be an
important conduit for downward water movement in desert
soils. Stemflow could be an important source of soil mois-
ture in arid and semiarid lands (Tromble, 1987). Mauchamp
and Janeau (1993) reported thatFlourensiacernuawas capa-
ble of channeling approximately 50% of the incident gross
precipitation to the plant stem. Navar and Bryan (1990)
calculated that the stemflow inputs to the soil around three
semiarid shrub stems in northeastern Mexico represented a

water input that was five times that received by other ar-
eas below the shrub canopies. Moreover, other arid and
semiarid shrubs likeBanksia ornate, Xantohorrea australis,
Haloxylon aphyllum, Acacia aneura, Diospyrus texana, Aca-
cia farnesiana, Tamarix ramosissima, Caragana korshinskii
andReaumuria soongoricaare also adapted to divert rainfall
to the base of their stems as stemflow where it subsequently
infiltrates the soil and remains available for plant uptake in
the deeper soil layers (Pressland, 1976; Nulsen et al., 1986;
Navar, 1993; Martinez-Meza and Whitford, 1996; Lorens
and Domingo, 2007; Li et al., 2008). This deep infiltrated
water is considered as a possible source of available moisture
for shrub growth in desert ecosystems even in the absence of
accessible water in the upper soil profile (Tromble, 1987).
Martinez-Meza and Whitford (1996) hypothesized that the
stemflow-root channelization process by shrubs was an adap-
tive mechanism used to survive seasonal drought, a process
referred to as the “nursing effect” by Goodall (1965). How-
ever, water utilization by plants is controlled by many factors
(such as vegetation types, soil moisture storage and redistri-
bution, depth of root and bedrock, and frequency of rainfall
events), thus the extent and importance of stemflow used by
plants are not generally well understood (Maitre et al., 1999).

Stemflow hydrology and preferential water flow along
roots in the soil are intimately linked. Stemflow hy-
drology involves stemflow generation and water chemistry
change as influenced by meteorological conditions, season-
ality, species-specific traits, and canopy structure (Levia and
Frost, 2003). Despite the recognition of potentially large ef-
fect of stemflow and associated processes on the hydrologic
budget, few, if any, experimental studies have simultane-
ously evaluated the hydrologic fluxes redistributed by above-
ground shrub stems and below-ground roots with stemflow
and preferential flow, respectively, under natural rainfall con-
ditions. In recent decades, stemflow-root channelization pro-
cess in the soil has received considerable attention (Press-
land, 1976; Nulsen et al., 1986; Navar, 1993; Martinez-Meza
and Whitford, 1996; Lorens and Domingo, 2007; Segal et al.,
2008); however, available data about the interconnection be-
tween stemflow and water flow in soil profile remain scarce.
For example, stemflow dynamics, velocity, and pathway in
relation to rainfall characteristics and vegetation species re-
main elusive, and the subsequent movement of stemflow wa-
ter within soil-root system under different canopies and soil
conditions is not well understood for plant survival in water-
limited ecosystems. Therefore, the objective of this study
was to make an attempt to connect ecohydrology and hy-
dropedology through an integrated study of stemflow gen-
eration and subsequent water movement in soils. We used
a combination of stemflow collection with real-time rainfall
monitoring, dye tracing, and soil profile moisture monitoring
under two desert shrub species in the south fringe of Mu Us
sandy land of North China.
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Figure 1 Location of the study area 3 
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Fig. 1. Location of the study area.

2 Materials and methods

2.1 Study area

The study was conducted at Yulin Experimental Station of
Mu Us Sandy Land Ecosystem of Beijing Normal Univer-
sity in Jingbian County, Shaanxi Province, North China
(37◦38′ N, 108◦50′ E, 1350 m a.s.l.) (Fig. 1). The Mu Us
sandy land lies in the transitional zone from typical steppes
to deserts. It has a semi-arid continental climate, and is
highly susceptible to wind erosion (Runnstrom, 2003). The
widespread coating of the Quaternary aeolian sand dunes on
the Cretaceous rocks favors shrubs over trees and grasses to
such an extent that at least 117 shrub and semi-shrub species
have been observed within the Mu Us sandy land (Dong and
Zhang, 2001).

The study site lies in the south fringe of Mu Us sandy
land. Mean annual precipitation is 395 mm, more than 60%
of which occurs between July and September. Mean annual
temperature is 7.9◦C and annual pan evaporation is 2485 mm.
Psammophytic half-shrub communities are the main vegeta-
tion, dominant species beingSalix psammophila, Artemisia
ordosica, Hedysarum scoparium, Hedysarum laeve, Psam-
mochloa villosa(Chen et al., 2002). We selectedS. psam-
mophilaandH. scopariumto investigate the characteristics
of stemflow generation and its hydropedological effects. The
soil (Typic Ustipsamment) is an aeolian sand with uniform
texture throughout the profile (98.48% sand, 1.52% silt, and
0% clay). Average soil organic matter and total N concentra-
tion in the 0–100 cm layer are 0.64 and 0.068 g kg−1, respec-
tively (Wang et al., 2006).
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Figure 2 Photographs showing shrubs of S. psammophila (A) and H. 32 

scoparium (B), stemflow collector consisting of plastic funnel and a 33 

collection bottle (C) and a vertical profile of dye stained area (D) under S. 34 

psammophila with several root channels indicated (marked by the yellow 35 
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Fig. 2. Photographs showing shrubs ofS. psammophila(a) andH.
scoparium(b), stemflow collector consisting of plastic funnel and
a collection bottle(c) and a vertical profile of dye stained area(d)
underS. psammophilawith several root channels indicated (marked
by the yellow elliptic frames).

2.2 Experimental design

2.2.1 Stemflow characteristics

To investigate stemflow characteristics ofS. psammophila
(Fig. 2a) andH. scoparium(Fig. 2b), we measured stemflow
from 14 mature plants representing the two shrub species (7
samples for each species). Stemflow volumes were deter-
mined on a rainfall event basis during rainy seasons between
June and September from 2006 to 2008. Stemflow drainage
was collected using plastic funnels fitted around the main
stems and sealed with silicone sealant. The funnels were con-
nected via plastic tubes to a collecting bottle where the stem-
flow was stored (Fig. 2c). We measured stemflow by hand
using graduated cylinder after each rainfall event. Stemflow
volume of each plant was divided by its canopy area to cal-
culate the stemflow depth on a stand basis. Total incident
rainfall was measured automatically with a tipping bucket
rain gauge (Delta-T, Cambridge, UK) located 20 m away
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Table 1. Mean values (± standard deviation) of morphological pa-
rameters of the two dessert shrub species studied (n=12).

H. scoparium S. psammophila

Shrub height (m) 1.7±0.3 2.1±0.2
Branch angle (◦) 70.5±10.0 61.8±6.5
Basal area (cm2) 3.9±1.8 10.9±8.3
Number of branches 13±9 6±2
Canopy area (m2) 2.7±0.6 3.6±3.1

from the study plots in an open area. Canopy variables that
were measured on each shrub included shrub height, num-
ber of branches, branch angle, canopy height, basal area, and
canopy area (Table 1) using methods of Martinez-Meza and
Whitford (1996). Shrub height was measured at the centre of
the canopy, basal area was calculated with collar girth at the
base, canopy area was calculated by taking the east-west and
north-south diameters through the centre of the fullest part of
the canopy.

To determine the extent to which the branches of shrubs
spatially concentrate stemflow inputs and operate as a col-
lection of incident gross precipitation, the Herwitz funneling
ratio (F) was calculated as (Herwitz, 1986):

F =
V

B × P
(1)

whereV is stemflow volume (L),B is trunk basal area (m2),
and P is the depth equivalent of gross incident precipita-
tion (mm). The productB×P provides the volume of wa-
ter that would have been caught by a rain gauge having an
opening equal to that of the trunk basal area. Thus,F rep-
resents the ratio of the amount of precipitation delivered to
the base of the shrub to the rainfall that would have reached
the ground if the shrubs were not present (Carlyle-Moses and
Price, 2006). Funneling ratios higher than unity indicate that
canopy components other than the trunk are contributing to
stemflow (Herwitz, 1986; Carlyle-Moses and Price, 2006).

2.2.2 Dye tracer experiment

Dyes are commonly used tracers to investigate subsurface
water movement (Flury and Wai, 2003). For more than a
century, dye tracers have provided clues regarding flow and
transport processes in the subsurface. Flury et al. (1994) re-
ported that the disadvantage of dye for tracing water flow
paths is that the sampling, i.e., soil excavation, is destructive
and experimental results can not be repeated at the same lo-
cation. However, they also stated that results obtained from
staining experiments clearly illustrate the complicated pat-
tern of water movement with a high spatial variability. On the
basis of specific criteria such as solubility, sorption, mobil-
ity, and stability under different environments, Rhodamine-B

dye has been recommended as one of the most suitable trac-
ers (Wilson et al., 1986; Flury and Wai, 2003). Martinez-
Meza and Whitford (1996) and Devitt and Smith (2002)
have used Rhodamine-B dye to illustrate the pattern of water
movement in the roots of desert shrub. Therefore, we se-
lected Rhodamine-B dye to trace flow path of stemflow in
the root area.

To assess redistribution of stemflow into the soil profile
for S. psammophilaandH. scoparium, we selected another
three plants for each species with growth shape similar to
those for stemflow measurements to conduct dye tracer ex-
periments under three natural rainfall events - representing
small (4.9 mm), medium (9.1 mm), and large (32 mm) rain-
fall in the study area. One plant was used for each of the
three rainfall events for bothS. psammophilaandH. scopar-
ium. The selected plants were a few meters away from those
used for measuring stemflow. Rhodamine-B dye powder was
sprinkled on the soil surface around the base of the trunk (at
the root crown) of the selected shrubs as well as the adjacent
bare area without shrubs before rain occurrence (Martinez-
Meza and Whitford, 1996). Twenty-four hours after rainfall,
pits were dug along the main roots beneath the canopy of the
shrubs (Fig. 2d), and photographs were taken using a digi-
tal camera, and then downloaded and transferred to ArcGIS
(ESRI, Redlands, CA) for the dye stain analysis (Devitt and
Smith, 2002). Diagrams of the percentage of dye stained area
with depth were made according to the procedure of Janssen
and Lennartz (2008). Canopy parameters of plants in this
part of the study were obtained by the same methodology as
that used in the stemflow measurements.

2.2.3 Soil water content measurements

To explore the effect of stemflow on soil water recharge, soil
water contents were measured under two other plants with
similar growth for each of the two shrub species: one was
the control with stemflow, and the other without stemflow
(which was removed using stemflow collector). Soil water
contents were measured using TRIME-PICO IPH time do-
main reflectometry (TDR) (IMKO, Ettlingen, Germany) to
a depth of 100 cm with sampling increment of 20 cm after
each rainfall event. The TDR access tubes were installed to
a depth of 1.2 m and at 5 cm from the stem of the shrub. Soil
water content measurements were conducted from June to
September in 2007 for 8 rainfall events. Soil moisture at each
depth was obtained by taking three replicated measurements
(through rotating the probe at approximately 120◦) and cal-
culating the average. We analyzed soil water contents forH.
scopariumandS. psammophilawith and without stemflow
under three rainfall events (4.3, 14 and 32.5 mm) to char-
acterize the distribution of soil water under rainfall of high,
medium, and low amounts. Meantime, we compared the dif-
ferences in soil water contents between the treatments with
and without stemflow at the soil depths of 20, 60 and 100 cm
for the two shrub species for the 8 rainfall events.
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Figure 3 Daily rainfall distribution (a) together with the stemflow depth 3 
(mm) for S. psammophila (b) and H. scoparium (c) during growing 4 
seasons from 2006 to 2008 at the experimental site (bars indicated 5 
standard deviation of the seven replicates for each species) 6 

Fig. 3. Daily rainfall distribution(a) together with the stemflow
depth (mm) forS. psammophila(b) andH. scoparium(c) from 2006
to 2008 during growing periods at the experimental site (bars indi-
cated standard deviation of the seven replicates for each species).

3 Results and discussion

3.1 Rainfall and stemflow

During rainy seasons between June and September from
2006 to 2008, a total of 64 rainfall events were recorded
with individual rain amount ranging from 1.1 to 33.9 mm.
Fifty-three percent of these rainfall events were less than 5
mm and their contribution to the total rainfall amount during
rainy reasons from 2006 to 2008 was less than 17%, while
the rains exceeding 10 mm accounted for 69% of the total
rainfall. Analysis of the rainfall intensity (I10, maximum
rainfall intensity in 10 min) showed that the records were
in the range of 1.2–57.6 mm h−1 and 59% were less than
5.0 mm h−1, whereas rainfall intensity over 20 mm h−1 ac-
counted for only 16% of rainfall events. The results suggest
that most storms were of small size with low intensity, and
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Fig. 4. The relationship between stemflow and daily rainfall amount
(a) and maximum Intensity in 10 min(b) for H. scopariumandS.
psammophila.

the total amount of annual rainfall depended mainly on a few
of lager size storms.

Stemflow was measurable only for 49 events (76.6%)
(Fig. 3), among which the minimum rainfall was 1.1 mm
for S. psammophilaand 1.2 mm forH. scoparium, respec-
tively. This suggests that the threshold amount of rainfall for
stemflow initiation is slightly over 1 mm for these two shrubs.
This threshold value is comparable with the rainfall thresh-
old of 1.5 mm reported by Pressland (1973) forA. aneura,
1–2 mm reported by Enright (1987) forRhopalostylis sap-
ida, and 1.3–1.8 mm reported by Martinez-Meza and Whit-
ford (1996) forLarrea tridentata, Prosopis glandulosaand
Flourensia cernua.

Individual stemflow was significantly correlated with in-
dividual rainfall amount for both shrub specices. Stemflow
increased with increasing rainfall depth and followed a pos-
itive linear function (Fig. 4a). For the same amount of rain-
fall, S. psammophilaon average produced 1.85 times higher
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Fig. 5. Box-and-whisker diagrams showing the median, 25th, 50th,
75th percentiles and standard deviation for individual stemflow per-
centage of daily rainfall amount forS. psammophilaand H. sco-
parium. (�) Represents mean value, (∗) maximum and minimum
value.

stemflow thanH. scoparium.Stemflow amounts inH. sco-
pariumaveraged 3.4% of incident gross rainfall with a range
of 2.3–7.0%, while inS. psammophila, stemflow averaged
6.3% with a range of 0.2–14.2% (Fig. 5). Higher stem-
flow production forS. psammophilawas likely a result of
its larger canopy area, larger basal area, taller shrub height,
and smaller branch angel, as compared withH. scoparium
(Table 1). Several earlier studies have reported positive cor-
relation between stemflow amount and canopy area (Ford
and Deans, 1978; Martinez-Meza and Whitford, 1996; Li
et al., 2008). The relationship between stemflow and rain-
fall intensity in this study was weaker but showed a gen-
eral negative power function (Fig. 4b). Both shrubs showed
a decline in stemflow as rainfall intensity increased from
0.2 mm h−1 until about 10 mm h−1 and then relatively sta-
bilized up to the intensity near 60 mm h−1. This supports
results of Carlyle-Moses (1996), who found that stemflow
significantly (α=0.05) decreased with increasing mean event
rainfall intensity in a temperate deciduous stand in southern
Ontario, Canada.

Average funneling ratio (F) was 77.8 and 48.7 forH.
scopariumandS. psammophila, respectively, indicating that
branches and stem were fully contributing to stemflow gen-
eration and thereby provided greater amount of water to the
base of the stem. TheH. scopariumhad high variability in
F , and the largestF value was 203 during a 10.6-mm rainfall
event. In contrast,S. psammophilaexhibited small variability
in F with the largest values of 117 during a 8.8-mm rainfall
event. The lower funneling ratio ofS. psammophilaas com-
pared toH. scopariumwas due toS. psammophila’s larger
basal area (Table 1). From Eq. (1), 1.6 lowerF for S. psam-
mophilais expected becauseS. psammophilahas 1.85 higher
stemflow for the same amount of incident rainfall and 2.8
larger basal area. The funneling ratios forH. scopariumand

S. psammophilaapproximately fall within the range of values
(7–112) derived by Herwitz (1986) for montane tropical rain-
forest of Australia. Various other researchers have reported
diverseF values for different plants in various environments.
For example, Navar (1993) reported thatProsopis laevigata
and Acacia farnesianashrubs had average stemflow fun-
nelling ratios of 11, while ratios forDiospyros texanaindi-
viduals averaged 58. Herwitz and Levia (1997) found, in a
mixed deciduous secondary growth stand in Massachusetts,
that the average winter funnelling ratios from five sampled
bigtooth aspen (Populus grandidentata) ranged from 5.2 to
14.7. Carlyle-Moses and Price (2006) reported that red oak,
sugar maple, and American beech had funneling ratio of 7.3,
20.6, and 26.3, respectively. Li et al. (2008) found that
average funneling ratios were 153.5±66.2, 53.2±25.7, and
24.8±15.3 for the shrubs ofC. korshinskii, R. soongorica
andT. ramosissimarespectively, in the semiarid loess regions
of China. Carlyle-Moses and Price (2006) reviewed stud-
ies concerning stemflow funneling ratios and concluded that
the funneling ratios found in temperate deciduous forests are
similar to those in tropical rainforests, semiarid, and humid
Mediterranean environments.

For the two shrub species the relationship betweenF and
incident rainfall amount was found to have a tendency ofF

first being increased with incident rainfall amount between
1.2 and 12.8 mm, while for the five events>29 mm theF

values declined (Fig. 6a). We can not completely quantify
the relationship betweenF and rainfall depth because inci-
dent rainfall events between 12.8 and 29 mm were not avail-
able in our study. However, our results are consistent with
findings of Carlyle-Moses and Price (2006), who found that
the eventF values for red oak, sugar maple, and Ameri-
can beech increased in a linear fashion between events of
4.3 and 17.4 mm, while for the two events>17.3 mm theF
values were significantly smaller than would be expected if
the linear trends ofF versus rainfall amount for the smaller
events continued. Li et al. (2008) also found such pattern
betweenF and incident rainfallfor C. korshinskii, R. soon-
gorica andT. ramosissima. Carlyle-Moses and Price (2006)
explained that, with increasing rainfall input, a greater pro-
portion of a tree becomes saturated and thus the area con-
tributing to stemflow increases until a threshold rainfall in-
put is reached that saturates all tree areas capable of pro-
ducing stemflow. Once this threshold rainfall is exceeded,
F value begins to decrease. For the relationship between
F and rainfall intensity (Fig. 6b),F tended to increase in
a linear fashion for events less than 10 mm h−1 of I10 (the
maximum rainfall Intensity in 10 min), whileF showed a
decreasing trend withI10 between 10 and 60 mm h−1. Such
pattern was also reported by Staelens et al. (2008) who found
that a significant decrease of stemflow amount was found for
events with higher maximal rainfall rates, particularly dur-
ing the leafed periods. A likely explanation is that intense
rain events increase the probability of branch drip by over-
loading preferential flow paths on tree trunks and forcing
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Fig. 6. Relationship between funneling ratio and daily rainfall
amount(a) andI10 (b) (maximum rainfall Intensity in 10 min) for
H. scopariumandS. psammophila.

stemflow to become throughfall (Crockford and Richardson,
2000; Staelens et al., 2008). Also, Carlyle-Moses (2004)
suggests that the larger rain-drop volume, terminal velocity,
and thus kinetic energy associated with high intensity rainfall
results in a larger proportion of intercepted precipitation be-
ing “splashed” from the canopy surfaces and thus reducing
the amount of water available for stemflow production and
interception loss. However, Fig. 6 reflects a mixture of dif-
ferent effects of rainfall amount and intensity on stemflow,
where the effects of rainfall amount onF might be counter-
acted by rainfall intensity for intense rain events. This needs
further investigation in future study.

3.2 Dye coverage

As observed in the field (such as that illustrated in Fig. 7),
the dye stained area was significantly influenced by the pres-
ence of shrub. In the bare area, the dye coverage was higher
but only confined to the upper part of the vertical sectional

area with a rather uniform distribution (Fig. 7g, h, i), and the
maximum dye stained depth was 8, 10, and 14 cm for the
rainfall of 4.9, 9.1 and 32 mm, respectively (Fig. 8). How-
ever, in the area with the shrub, dye movement was localized
along main roots where the dye had penetrated farther into
the vertical profiles (Fig. 7a–f and Fig. 2d). The maximum
depth of dye stain ranged from 18 to 20 cm forH. scoparium
and from 20 to 26 cm forS. psammophila, respectively, un-
der the three rainfall events (Fig. 8). The maximum dye depth
increased with increasing rainfall for both shrubs. Also, the
larger rain produced more uniform flow in the upper soil pro-
file while the smaller rain produced a higher degree of prefer-
ential flow pattern (Fig. 7). This may be attributed to the fact
that the preferential stemflow effect close to the stem would
be masked by throughfall infiltration because a greater pro-
portion of rainfall occurred as throughfall during large rain-
fall events (Pressland, 1976; Owens et al., 2006).

As far as rainfall intensity is concerned, high intensity
rain may be more prone to trigger stemflow as preferential
flow. In Fig. 7, the rainfall event of 4.9 mm with high inten-
sity (average rain intensity of 19.60 mm h−1) showed appar-
ent deeper wetting front (dye stain area), followed by rain-
fall events of 32 mm (average rain intensity of 1.60 mm h−1)

and 9.1 mm (average rain intensity of 0.76 mm h−1), indicat-
ing that preferential flow was more pronounced under higher
rainfall intensity. However, the process of stemflow and
preferential flow may compensate at certain rainfall inten-
sity as stemflow decreases with rainfall intensity while pref-
erential flow increases with rain intensity. Dye tracer exper-
iment showed that preferential flow occurrence is linked to
the presence of roots (Fig. 2d). This is also confirmed by the
findings of Martinez-Meza and Whitford (1996) and Devitt
and Smith (2002), who used artificial application of water of
higher amount (40–300 mm). In our experiment, we traced
stemflow in the soil profile under natural rainfall conditions.
Stemflow penetrated as deep as 18 cm under the rainfall of
4.9 mm, suggesting that stemflow from small rainfall events
can also recharge deeper soil in the sandy desert area. de
Rooij (2000) and Wang et al. (2003) reported that finger flow
resulting from wetting front instability is common in sandy
soil, but we did not find finger flow phenomena in this study.
This may be attributed to the fact that the presence of shrubs
localized stemflow along main roots and thereby channelling
water down the root zone. Kung (1990) reported that prefer-
ential flow paths constituted dominant flow pattern in a sandy
vadose zone, and that water flowing through the root zone
was funneled into concentrated flow paths that occupied only
a small portion of the soil matrix and yet accounted for most
of the transport.

Nutrient enrichment in stemflow could contribute to high
organic matter content in the soil close to the plant (Whit-
ford et al., 1997), which may also lead to preferential flow
occurrence. Johnson and Lehmann (2006) reviewed that dis-
solved organic carbon (DOC) concentrations of the stemflow
were enriched by 703–2372% relative to rainfall. In addition,
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Figure 7 Computer-enhanced photos of the dye stained area in vertical 3 
soil profiles exposed around the base of the trunk (see Fig. 2D for an 4 
actual visualization) beneath the canopy of H. scoparium, S. 5 
psammophila, and the bare area, respectively, under three rainfall events 6 
with amount of 4.9, 9.1 and 32 mm (the corresponding intensity and 7 
duration was 19.6, 0.76, 1.6 mm h-1, and 0.25, 12, 20 hours respectively). 8 
White shading indicates dye stained areas, black shading represents 9 
unstained conditions. See Fig. 8 for quantitative dye-stained area as a 10 
function of soil depth. 11 
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Figure 8 The percentage of dye stained area with depth for H. scoparium 3 

( ), △ S. psammophila (○) and the bare area (□) respectively, under three 4 

rainfall events with amount of 4.9, 9.1 and 32 mm 5 

 6 

Fig. 8. The percentage of dye stained area with depth forH. sco-
parium(4), S. psammophila(©) and the bare area (�) respectively,
under three rainfall events with amount of 4.9, 9.1 and 32 mm.

stemflow water contains high concentrations of particulate
organic matter (POM) (Parker, 1983). Bundt et al. (2001) re-
ported that soil organic C concentrations in preferential flow
pathways were 10–70% higher than that in the soil matrix. In
our study, soil organic mater was significantly higher (1.0–

1.6 g kg−1) in the soil around shrub base ofH. scoparium
andS. psammophilathan that in the adjacent bare soil (0.3–
0.6 g kg−1). This indirectly suggests that stemflow may also
induce preferential flow by means of nutrient input to the soil
and thus altering soil structure.

3.3 Soil water content

Soil water content with soil depth directly reflected the in-
fluence of stemflow-root system on water movement. Wetter
soil and deeper penetration of the water can be clearly noted
when there was stemflow (Fig. 9). During the three rainfall
events characterized by small (4.3 mm), medium (14 mm)
and large (32.5 mm) amounts, as much as 10–60% increase
in soil water content could be found inS. psammophilaand
10–140% increase inH. scopariumas compared to that with-
out stemflow. However, the magnitude of the effect of stem-
flow on soil water content seems smaller than would be ex-
pected from the funneling ratio values. This may be at-
tributed to funneling ratios expressed in terms of the basal
area (Herwitz, 1986) instead of stemflow impacted area.
Pressland (1976) found that all stemflow infiltrates into the
soil within the area of 50 cm around large trees with cir-
cumferences larger than 40 cm and within the area of 30 cm
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Figure 9 Distribution of volumetric soil water contents (VSWC) for H. 4 

scoparium and S. psammophila with and without stemflow under three 5 

rainfall events characterized by high, medium and low amount. 6 

Horizontal bars represent the standard error of the three soil moisture 7 

measurements 8 

 9 

Fig. 9. Distribution of volumetric soil water contents (VSWC) for
H. scopariumandS. psammophilawith and without stemflow un-
der three rainfall events characterized by high, medium and low
amounts. Horizontal bars represent the standard error of the three
soil moisture measurements.

around the smaller trees with circumferences less than 20 cm.
Tanaka et al. (1991) also found that the infiltration area of
stemflow increases with increasing diameter of the tree base
with a maximum limitation. Owens et al. (2006) had used
an impact area of 0.5 m2 around the base of the tree to cal-
culate stemflow funneling ratio for Ashe juniper (Juniperus
asheiBuchholz). In our study, stemflow infiltrated within
the areal radius of 15–20 cm around the shrub base (stem di-
ameter averaged 3.6 cm forS. psammophilaand 2.2 cm for
H. scoparium) (Fig. 7), therefore funnelling ratios calculated
using definition of Herwitz (1986) over-estimated concentra-
tion of water near the stem, though Herwitz funnelling ra-
tio has been widely used by many researchers (e.g., Navar,
1993; Levia and Frost, 2003; Levia, 2004; Carlyle-Moses
and Price, 2006). The increase of soil water content between
with and without stemflow in our study is comparable to the
results obtained by Pressland (1976) and Specht (1957). This
confirms that stemflow is conducive to concentrate and store
water in deeper layers in the soil profile. As in arid and
semiarid environments where potential evapotranspiration is
many times greater than precipitation, water is the most lim-
iting factor. Previous studies have indicated that redistribu-

 34

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

Figure 10 Difference in soil water contents between the treatments with 27 

and without stemflow at various depths for S. psammophila (a) and H. 28 

scoparium (b) under different rainfall conditions, Vertical bars represent 29 

the standard error of the three soil moisture measurements. 30 
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Fig. 10. Difference in volumetric soil water contents between the
treatments with and without stemflow at the soil depths of 20, 60
and 100 cm forS. psammophila(a) and H. scoparium(b) under
different rainfall conditions. Vertical bars represent the standard
error of the three soil moisture measurements.

tion of precipitation by funneling water from the canopy to-
wards the base of the plant has been shown to increase the
moisture available to individual plants (e.g., Pressland, 1976;
Herwitz, 1986; Martinez-Meza and Whitford, 1996; Devitt
and Smith, 2002). Hence we speculate that stemflow would
be considered as an essential property of desert shrubs that
contributes to the stability of shrub communities in harsh en-
vironments (Martinez-Meza and Whitford, 1996). For the
deciduous forests, Liang et al. (2007) also reported that max-
imal soil water storage was more than 100 to 200% of the
cumulative open-area rainfall at the points downslope from
a tall stewartiastem on a hillslope. They attributed this to
concentrated stemflow rapidly flowing into soil layers along
the pathways of roots as bypass flow.

Figure 10 shows the differences in soil water contents
between the treatments with and without stemflow at the
soil depths of 20, 60 and 100 cm forH. scopariumand S.
psammophilaunder the 8 rainfall events. The results indi-
cated that the increase of soil water content due to stemflow
tended to increase with increasing rainfall amount for both

www.hydrol-earth-syst-sci.net/13/1133/2009/ Hydrol. Earth Syst. Sci., 13, 1133–1144, 2009



1142 Xiao-Yan Li et al.: Connecting ecohydrology and hydropedology in desert shrubs

shrubs. This is consistent with the above results in Sect. 3.1
that stemflow amount increases with increasing rainfall. In-
creases of soil water content changes were observed at all
depths from 20 to 100 cm. In particular, increase at 60-cm
depth was much greater than that in the upper layers (20-
cm) and deep layers (100-cm). This suggests that stem-
flow mostly reached 60-cm soil layers and only small por-
tion reached 100-cm soil layers in the study area. Liang et
al. (2009) reported that, in the stemflow infiltration process,
water flowed rapidly through a deep layer, causing irregu-
lar changes in vertical soil water content. This process is
very different from the vertical rainfall infiltration process, in
which the wetting front expands slowly from the upper layer
to the deeper layer. Johnson and Lehmann (2006) found that
stemflow has a double contribution to uneven water input
and preferential rainwater infiltration that enlarges the het-
erogeneity of soil water dynamics in forested stands. There-
fore, stemflow not only serves as a point source of rainwater
on the floor, but also has a high potential to infiltrate mul-
tiple soil layers as bypass flow (Liang et al., 2007). The
S. psammophilahad more soil water increase and exhibited
significant response to stemflow as compared to theH. sco-
parium, becauseS. psammophilagenerated more stemflow
during rainfall events.

4 Conclusions

This study evidenced stemflow hydrology of two desert
shrubs (H. scopariumand S. psammophila) and its impact
on the spatial distribution of water flux reaching the soil and
its link to preferential flow in the soil profile, which was en-
hanced by the presence of roots and led to water accumu-
lation in deeper soil layers. The results indicated that, on
average, 3.4% of incident gross rainfall occurred as stem-
flow for H. scoparium, and 6.3% forS. psammophila. Stem-
flow increased linearly with daily precipitation amount, but
decreased in a power function with rainfall intensity. The
dye tracer experiment proved that root channels were pref-
erential pathways for the movement of most stemflow water
into the soil and that preferential flow was more pronounced
for rainfall events with higher intensity. Distribution of soil
water content under the shrubs with and without stemflow
ascertained that stemflow was conducive to concentrate and
store water in deeper soil layers, a phenomenon favorable for
desert shrub survival in water-limited ecosystems. A clear
connection between aboveground stemflow and belowground
preferential flow is demonstrated in this study at the indi-
vidual shrub scale, revealing the importance of integrating
ecohydrology and hydropedology in understanding the hy-
drologic cycle in desert ecosystems.
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