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Abstract. Current theories for water flow in porous media
are valid for scales much smaller than those at which problem
of public interest manifest themselves. This provides a drive
for upscaled flow equations with their associated upscaled
parameters. Upscaling is often achieved through volume av-
eraging, but the solution to the resulting closure problem im-
poses severe restrictions to the flow conditions that limit the
practical applicability. Here, the derivation of a closed ex-
pression of the effective hydraulic conductivity is forfeited
to circumvent the closure problem. Thus, more limited but
practical results can be derived. At the Representative El-
ementary Volume scale and larger scales, the gravitational
potential and fluid pressure are treated as additive potentials.
The necessary requirement that the superposition be main-
tained across scales is combined with conservation of energy
during volume integration to establish consistent upscaling
equations for the various heads. The power of these upscal-
ing equations is demonstrated by the derivation of upscaled
water content-matric head relationships and the resolution of
an apparent paradox reported in the literature that is shown
to have arisen from a violation of the superposition princi-
ple. Applying the upscaling procedure to Darcy’s Law leads
to the general definition of an upscaled hydraulic conductiv-
ity. By examining this definition in detail for porous media
with different degrees of heterogeneity, a series of criteria is
derived that must be satisfied for Darcy’s Law to remain valid
at a larger scale.
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1 Introduction

In saturated and unsaturated water flow in porous media,
the continuum approach is generally invoked (e.g., Bear and
Bachmat, 1991), and the resulting laws of mass conservation
and movement, as well as the variables appearing in there,
are defined for a mathematical point centered within a Repre-
sentative Elementary Volume (REV). The resulting equation
for water movement is Darcy’s Law. Its general acceptance is
illustrated by the fact that the REV-scale has frequently been
referred to as the Darcy scale (e.g., Bhattacharya and Gupta,
1983; Jacquin and Adler, 1987; Kavvas, 2001, among many
others).

In order to develop theories (and their associated measur-
able variables) at scales that better correspond to the scale
at which typical real-world problems manifest themselves,
there is a drive to upscale these REV-scale relationships and
variables to larger spatial scales. In doing so, pertinent ques-
tions arise as to the physical soundness of upscaling variables
such as fluid pressure, matric and hydraulic potential, and
water flux. It must be stressed that this problem differs from
upscaling operation that gives rise to the REV-scale descrip-
tion of flow in porous media from pore scale phenomena. At
the pore scale, phases are discretely distributed, phase prop-
erties are only defined in locations where the phase is present,
and the interaction between phases is governed by phase in-
terfaces and the associated surface tensions (see Gray and
Miller, 2007, for an overview), and exchange of mass and
momentum across the interfaces (Raats and Klute, 1968a,
b). At the REV-scale, phase distributions are represented by
volume fractions, interfacial effects are described in terms
of pressure differences between phases, and displacement of
phases is described by changes of the volume fractions the
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phases occupy and by flux densities over cross-sectional ar-
eas spanning many pores. These properties are obtained by
volume-averaging the pore-scale properties. The averaging
theorem, (e.g., Whitaker, 1967; Gray, 1975; Whitaker, 1986)
attributed to various authors (Howes and Whitaker, 1985),
specifically deals with the values at interfaces of given quan-
tities to aid in determining the volume average of the gra-
dient of such quantities. The theorem was questioned by
Veverka (1981) and refined by Howes and Whitaker (1985),
but both agree that for conditions normally found in flow in
porous media, the theorem holds.

In the next-larger upscaling operation, from the REV-scale
to more practically relevant scales, the continuum approach
is preserved (thereby eliminating the problems associated
with phase interfaces), and the key point is the incorpora-
tion of spatial variations in volume fractions, flux densities,
and pressures in the larger-scale formulation. The need to
describe flows in porous media at scales beyond the REV-
scale has been well recognized and has prompted various
lines of attack (see Renard and de Marsily (1997) and Ki-
tanidis (1997) for an overview of methods to upscale satu-
rated hydraulic conductivities, Harter and Hopmans (2004)
and Vereecken et al. (2007) for upscaling flows and flow
parameters in unsaturated soils). To review these in detail
would be beyond the scope of this paper. A common feature
is that tractable solutions of the upscaling problem require
that limitations be imposed to the allowable degree of het-
erogeneity, the nature of the random field representing the
spatial variation of the porous medium, or both. In addition,
only specific megascopic (i.e. larger than the REV-scale) flow
patterns may be permitted. Limitations regarding the degree
of variation are severe given the extreme variability of porous
medium properties (Jury et al., 1991; p. 269), in particular
the hydraulic conductivity at saturation. In the unsaturated
zone, the hydraulic conductivity can vary over many orders
of magnitude. The assumption of (log-)Gaussianity of soil
hydraulic properties is frequently invoked, but hardly ever
tested. De Rooij et al. (2004) concluded that higher-order
moments should not be neglected.

Often, the dimensions of the megascopic flow field of in-
terest are defined by aquifer bounds, horizontal dimensions
of agricultural fields or natural areas, and the vertical ex-
tent of the soil. These dimensions often are too small to
validate the assumption of ergodicity, particularly in soils
where the spatial extent in the megascopic (vertical) flow di-
rection is generally limited (e.g., Yeh, 1998). In addition,
subsurface hydraulic properties vary over many scales. Few
data sets are available that allow an investigation of the spa-
tial nature of such variations, but the assumption that dis-
tinct hierarchic scales exist at which heterogeneities present
themselves is not axiomatic. The only scale at which this
scale hierarchy has been deployed with some success is be-
tween the pore scale and the REV-scale. Still, even here it is
likely that the REV-size depends on the parameter of inter-
est (Bear and Bachmat, 1991). At larger scales, sedimentary

and pedogenetic processes make it more likely that, rather
than a clear scale hierarchy, there exists a scale continuum
at which spatial variation manifests itself. Again, relatively
small volumes of interest (agricultural fields, units on a soil
map, aquifers consisting of buried beds of paleorivers) aggra-
vate the effect on the acceptability of the various assumptions
needed.

The focus of this paper is primarily on upscaling from
the REV-scale through averaging over volumes and cross-
sections beyond the scale of the REV. The technique of
volume averaging beyond the REV-scale was developed
elaborately by Quintard and Whitaker (1988) (from here
on denoted as QW) and more schematically by Gray and
Miller (1984). Since the interest is predominantly in the up-
scaling of Darcy’s Law we do not delve into the thermody-
namic constraints that are being developed in an on-going
series of papers (e.g., Jackson et al., 2009, and references
therein). The analysis of QW is sophisticated but requires nu-
merous simplifying assumptions. The value of QW’s work is
enhanced by their careful identification of these assumptions
and simplifications that are required to obtain the desired vol-
ume averages at the large scale (Sect. 2 in QW) and solve the
closure problems that arise from the need to express the vari-
ations within the averaging volume in terms of the averaged
values. The most pertinent of those assumptions and simpli-
fications are discussed in the following, not to criticize the
work of QW but to assess for which types of problems alter-
native approaches may need to be developed. In following
sections, some of the assumptions are relaxed to find results
that are valid for a wider range of cases. This is done at the
cost of mathematical finesse: for instance, local variations
can no longer be expressed in terms of the averages. As a
consequence, closure will no longer be possible. Because
the paper is of considerable length, equations and pages in
QW are referenced where needed.

1.1 Assumptions and simplifications in volume
averaging

1.1.1 The necessity of a scale hierarchy

In QW Eq. (2.28) and the text below it, the pore scale (mi-
croscopic) is identified as the smallest and the reservoir scale
(gigascopic scale) as the largest of four length scales. The
second scale is the REV-scale (macroscopic scale), and the
third is the scale (megascopic scale) addressed by large-scale
averaging; these are the scales of interest here. Every scale
must be much larger than the previous, but how much larger
is not specified. However, the measures of scale figure reg-
ularly in order-of- magnitude terms that often need to be
negligible in the subsequent derivations. Therefore, a min-
imum of two orders of magnitude difference between sub-
sequent scales seems reasonable. With the REV-scale in the
order of 0.1 m, that makes the megascopic scale in the or-
der of 10 m, which is acceptable in the horizontal direction
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for many aquifers but already too large for the vertical di-
rection in aquifers with sedimentary layers and many unsat-
urated zones.

1.1.2 The requirement of spatially periodic boundary
conditions

The spatially periodic boundary conditions (forced upon QW
to keep the problem mathematically tractable) limit the ap-
plication of the approach to small systems, although Crapiste
et al. (1986) argue that periodic boundary conditions are not
necessary for all problems. The limitations of the use of pe-
riodic boundary conditions imposed on a repetitive unit cell
that represents the porous medium were put in perspective by
Renard and de Marsily (1997) by noting that large-scale pa-
rameters should not depend on the boundary conditions, and
that the unit cell should be small compared to the flow do-
main of interest. But if the unit cell at the megascopic scale
must be in the order of 10 m (see above), the latter condition
cannot always be met. Furthermore, in soils, the root zone
is of particular interest, and mass exchange between the soil
and the atmosphere across the soil surface is key; such fluxes
will never be periodic with increasing depth. The periodic
boundary conditions also seem to implicitly limit the appli-
cation to megascopically unidirectional flow. Flows toward
wells in aquifers are clearly incompatible with that require-
ment. Finally, periodic boundary conditions are difficult to
reconcile with transient flows.

1.1.3 Limitation to quasi-steady flow

Another factor affecting the applicability to non-steady con-
ditions is the fact that the closure problem does not include
the effect of moving contact lines (where phase interfaces
meet), as indicated below Eq. (1.16) in QW. For unsatu-
rated flows, this means that only quasi-steady flows can be
considered, leaving problems involving infiltration beyond
reach of the analysis (QW, p. 392). But even for saturated
flows, QW consider the dynamic problem insolvable at this
time because expressions for the dynamic megascopic-scale
momentum equations cannot be found (QW, p. 393). Note
that the upscaling operation itself necessarily increases the
characteristic time scale of the upscaled equations, and that
highly dynamic situations lend themselves poorly to upscal-
ing (Roth, 2008).

1.1.4 Decomposition of spatial variation

It is assumed throughout in QW, but also in other papers (e.g.,
Gray, 1975; Crapiste et al., 1986; Whitaker, 1986) that local
values (within the averaging volume) of a quantity can be
decomposed into its intrinsic phase average (a volume aver-
age over the volume occupied by the phase of interest) and
a zero-averaged deviations. This decomposition relies on the
disjoint hierarchical sequence of scales, even though there is

no formal requirement for the spatial structure of the devi-
ations. But in a porous medium with a continuum of spa-
tial scales for heterogeneities, it is very difficult to arrive at
an unambiguous value of the intrinsic phase average since
it will depend on the size of the averaging volume on every
length scale. This in turn leaves the deviations poorly defin-
able. In particular, this can be problematic at often blurred
boundaries between sedimentary layers or soil horizons.

There are more subtle limitations and assumptions at play,
but these do not seem to dramatically alter the conclusion that
can be drawn from considering the assumptions above: for
flow problems that are decidedly transient, and/or occur in
media without clear scale hierarchy of its spatial variation in
at least one direction, and/or involve a system boundary, up-
scaling by volume averaging and solving the closure problem
at this time is unlikely to generate meaningful results. This is
corroborated by attempts by Quintard and Whitaker (1990a,
b) and Bertin and Quintard (1990) to tackle theoretically, nu-
merically, and experimentally problems that try to relax some
of the limitations imposed by QW. The resulting equations
were vastly more complex and still were unable to handle sit-
uations that involved ordinary imbibition and drainage pro-
cesses and included gravity (Quintard and Whitaker, 1990a).
Roth (2008) pointed out that averaging flow over larger ar-
eas and volumes increases the characteristic time scale of the
equation describing the large-scale flow. This creates a fun-
damental obstacle for volume-averaging highly transient pro-
cesses (most notably infiltration with a sharp wetting front).

1.2 Gravity

At the Darcy- (macroscopic) scale and the megascopic scale,
the various forces and pressures acting in the pores are ef-
ficiently unified in the core-scale matric and gravitational
potential while the kinetic energy can generally be ignored.
Whatever the method of upscaling may be, gravity gains im-
portance as the vertical dimension of the system under study
expands (QW (p. 403) indicated that gravitational effects had
to be negligible for the closure calculations to be tractable in
their test problems of vertically stratified media and highly
schematized two-dimensional spatially periodic media). In
natural systems, gravity manifests itself in such phenomena
as the finite height of capillary rise in the unsaturated zone,
and in fluid pressure in the saturated zone.

The role of gravity and pressure is apparent in the work of
Gray and Miller (2004), who studied the upscaling of Darcy’s
Law in an idealized system involving a configuration with
horizontal flow in a volume containing two porous media
with different porosities. Gray and Miller (2004) averaged
over a cross-section perpendicular to the main direction of
flow, thereby bypassing the difficulties associated with aver-
aging fluxes over volumes (Nordbotten et al., 2007). They
reported inconsistencies in Darcy’s Law if the layering of
the media was tilted. Their analysis also discussed the av-
eraging of fluid pressure. In the unsaturated zone, the matric
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potential is the equivalent to fluid pressure in the saturated
zone. Therefore, the work of Gray and Miller (2004) may
also have ramifications for averaging the matric potential of
a soil volume, and thus for the determination of soil water
retention curves at various scales. The effect of gravity on
the nature of the soil water retention curve was experimen-
tally addressed in another context by Liu and Dane (1995),
and their findings will help clarify the issues raised by Gray
and Miller (2004).

1.3 Alternative approach

In view of the limitations identified above associated with
upscaling by volume averaging, the problem is attacked in a
way that invokes as few assumptions as possible. Clearly, the
worthy pursuit of a megascopic flow equation with megas-
copic parameters then becomes untenable. On the other
hand, more can be learned from the way in which spatial vari-
ation affects the range of validity of Darcy’s Law by develop-
ing expressions that allow any type of variation to be traced
and its effect quantified. From generally accepted physical
realities, a volume averaging formalism is derived that is
proved to resolve the inconsistencies reported by Gray and
Miller (2004) between formulations of Darcy’s Law and its
upscaled equivalent, which they illustrated for a special case.
The formalism will be used to develop an area-averaged for-
mulation of Darcy’s Law, which is used to examine the con-
ditions for which the REV-scale version remains valid under
the averaging operation.

2 Theory

2.1 The potential energy of subsurface water

A solid foundation of the potential of subsurface water is
conducive to a proper treatment of the various potentials dur-
ing upscaling operations. Groenevelt and Bolt (1969) were
among the first to analyze flow through porous media within
the framework of non-equilibrium thermodynamics. They
declared the pressure a potential that was additive to the grav-
itational potential, which can be formalized as

ψ = p + ρg
(
x3 − x3,ref

)
(1)

whereψ is the total potential per volume [ML−1T−2], p is
the fluid pressure [ML−1T−2], ρ is the fluid density [ML−3],
g is the gravitational acceleration [LT−2], x3 is the vertical
coordinate [L] (positive upward), andx3,ref [L] is an arbitrary
reference height. Note that the inclusion ofx3,ref makes the
potential relative. Since the gradient ofψ is all that is needed,
this is inconsequential.

The superposition of the potentials created by the pres-
sure field and by the gravitational field suggests that methods
developed to average one potential should be applicable to
the other as well. Furthermore, the superposition principle

implies that, in any upscaling operation through systematic
averaging, the averaging manipulations must be identical for
both potentials to maintain the superposition property across
scales. Note that, as long asx3,ref is kept constant, it does not
impair the superposition property.

In subsurface hydrology, the hydraulic and matric head are
related as (e.g., Brutsaert, 2005; Jury et al., 1991):

H = h+
(
x3 − x3,ref

)
(2)

It is immediately clear that this textbook equation can be ob-
tained by dividing the thermodynamically established Eq. (1)
by ρg and replacingp by p minus the atmospheric pressure
to allow h to be zero at the phreatic level. In this way the
pressure is made relative in the same fashion as the elevation
in Eq. (1). Without loss of generality we can set the arbitrary
reference heightx3,ref [L] to zero:

H = h+ x3 (3)

In a multiphase system (solid-fluid-gas) with the gas phase at
instantaneous equilibrium with the atmosphere, the pressure
in the fluid exceeds the atmospheric pressure whenh≥0, and
h is routinely termed the pressure head. For wetting fluids
this implies that the medium is saturated with this fluid. For
matric potentials<0, the fluid pressure is smaller than atmo-
spheric pressure, andh represents the matric and interfacial
forces that retain the fluid in the pores. It is therefore termed
matric head. Note that the magnitude of the matric forces
can cause values ofh that are so low that the pressure equiv-
alent would be negative. Since negative pressures are physi-
cally unacceptable, Hassanizadeh and Gray (1990) proposed
a wettability potential in addition to the fluid pressure to rep-
resent the effect of matric and interfacial forces on a phase.
This wettability potential quantifies the energy change of the
phase associated with a change in saturation. The sum of the
fluid pressure potential (relative to the atmospheric pressure
potential) and the wettability potential givesh. The wettabil-
ity potential satisfies the superposition property of the pres-
sure and the gravitational potential. Therefore, the remainder
of the text simply usesh. The decomposition into the con-
tributing potentials is straightforward.

The excessive pressure of the air forh<0 allows it to in-
vade the pores. The extent to which it will do so is described
by the fluid retention curve, which indicates how much fluid
resides in the pore space at a given matric head. Thus, this
generally hysteretic curve, which is specific for a combina-
tion of medium and fluid, facilitates a consistent characterisa-
tion of the system in terms of fluid content and energy status
of the fluid (Jury et al., 1991; Hillel, 1998).

2.2 Upscaling by spatial averaging

The discussion here pertains to upscaling within a soil vol-
ume that is larger than the REV. In the analysis, we only
require that the REV exists, that the flow is laminar every-
where (thus ensuring the validity of Darcy’s Law at this

Hydrol. Earth Syst. Sci., 13, 1123–1132, 2009 www.hydrol-earth-syst-sci.net/13/1123/2009/



G. H. de Rooij: Averaging subsurface fluxes and potentials 1127

scale), that the gas phase pressure is always at equilibrium
with the atmosphere, and that the fluid is incompressible and
has a constant density. As discussed above, the existence of
the REV implies that the volume-averages of the geometri-
cal characteristics of the microscopic structure of the pore
space and the phase distribution within it do not depend on
the size of the REV, and therefore the characteristic length
scale of these variations must be much smaller than that of
the REV (see Bear and Bachmat, 1991). But similar con-
straints on the separation between the REV-scale and the
next-higher averaging scale are not invoked: the averaging
volume may be large enough to be heterogeneous in a non-
stationary sense (Cressie, 1993), i.e., trends in soil hydraulic
properties may be present. There may even exist a continu-
ous range of scales at which variations in hydraulic properties
of the porous medium manifest themselves.

The following focuses on upscaling Darcy’s Law and ex-
amining the conditions for which it retains its validity be-
yond the REV-scale. Therefore, the closure problem will
not be addressed, which considerably simplifies the mathe-
matical intricacies of the analysis. This is why the imposed
constraints can be much more flexible than those typically
deployed in the volume averaging literature (see the Intro-
duction). There, the desire to solve the closure problem ne-
cessitated a more stringent set of limitations to keep the prob-
lem tractable. As a consequence, the analysis can address
the continuum of scales beyond the REV-scale, instead of
the discrete scale jumps that were explored by Gray (1975),
Crapiste et al. (1986), and QW, among others.

As indicated above, the validity of Darcy’s Law at the
REV-scale is not disputed:

q = −K∇H (4)

whereq [LT−1] is the volumetric flux density vector andK
[LT−1] is the hydraulic conductivity tensor.

The focus is on water flow in porous media; below,x de-
notes the location vector, withx1 andx2 the horizontal co-
ordinates [L],x3 the vertical coordinate as before [L], andt
time [T]. The variables of interest are the porosityn(x), the
volumetric water contentθ (x, t), h, H , q (all functions ofx
andt), andK (x, θ ). For a saturated porous medium,K (x, θ )
simplifies toK (x). By lettingn vary in space but not in time
we exclude from the analysis porous media with varying pore
space (i.e., swelling and shrinking soils), and implicitly limit
the discussion to time scales much smaller than those of in-
terest for most geological and soil morphological processes.
See Raats and Klute (1968a, b) for the treatment of soils with
a non-rigid matrix.

Large-scale averages of porosity and volumetric water
content are easily found and their physical meaning is im-
mediately clear:

nV =
1

V

∫
V

ndV (5)

θV =
1

V

∫
V

θdV (6)

whereV [L3] denotes an arbitrary volume occupied by a
porous medium, and the subscriptV denotes the volume-
averaged value of the subscripted variable. Note that Eqs. (5)
and (6) are themselves upscaled values of volume averages of
indicator functions that take on the value of 1 whenever they
are located in a pore or in the water phase, respectively (see
also Nordbotten et al., 2007). The main difference is obser-
vational: measuringn and θ is feasible in realistic porous
media, while the indicator functions can only be determined
in small, simplified systems. Averages ofn andθ over an
arbitrary area or line along the principal directions within the
porous medium can be found by a corresponding reduction
of the dimensions over which the integrals in Eqs. (5) and (6)
are performed.

As shown above, the hydraulic head represents the total
energy of the water at a given location. Its spatial average
should therefore reflect the total energy of the water present
in the porous medium volume for which the average is deter-
mined. Therefore, the local values should be weighted by the
local water amount. WithH being the energy per unit weight
(Hillel, 1998), weighting by the local weight (θρg) would be
consistent. But sinceρg is assumed constant, this simplifies
to weighting byθ :

HV =

∫
V

θHdV∫
V

θdV
(7)

with the subscriptV denoting a volume average as above.
The weighting byθ ensures that Eq. (7) satisfies the additiv-
ity condition advocated by Gray (2002) in that it conserves
the total energy irrespective of the size ofV .

Because of the identical averaging manipulations required
by the superposition property of the componentsh andx3 of
H and, we also have:

hV =

∫
V

θhdV∫
V

θdV
(8)

and

x3,V =

∫
V

θx3dV∫
V

θdV
(9)

Equation (9) identifies the horizontal plane around the cen-
ter of gravity of the water inV . Note that the numerators
of Eqs. (7–9) have dimensions L4 and are measures of the
total, matric, and gravitational energy, respectively, stored in
a body of subsurface water at a given time. If desired, the
relative nature ofH , h, andx3 can be removed, and the re-
sulting absolute values can be multiplied byρg to obtain the
respective energies in Joules.
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Note that Eq. (8) differs from earlier averaging procedures
by Lee et al. (2007) and Zehe et al. (2006), who took the
volume-average of the matric potential over the entire aver-
aging volume, i.e., the solid phase, the gas phase, and the
liquid phase withinV . In view of the above, this leads to a
systematic underestimation ofhV , because under local equi-
librium, the lower (more negative) values ofh will be as-
sociated with lower water contents and therefore should be
assigned smaller weighting factors to satisfy the requirement
that energy is conserved in the volume-averaging operation.

As with n andθ , averages of the various potentials over
an arbitrary area or line along the principal directions within
the porous medium can be found by modifying the dimen-
sions over which the integrals in Eqs. (7–9) are performed.
In many cases, a flow has a well-defined megascopic direc-
tion, for instance because the flow domain is enclosed by im-
permeable barriers on all but two opposite sides. Integrations
over cross-sections perpendicular to the megascopic flow di-
rection can then provide average potentials that are local with
respect to the coordinate in the flow direction. This is partic-
ularly useful for calculating upscaled head gradients.

Any of the tensorial components ofK can be volume-
averaged, but the resulting average does not bear a relation-
ship to any flux at the scale ofV . ForK this direct approach
seems to be of limited value. Averaging the components of
q is more fruitful. Here, volume averages are less useful (as
Nordbotten et al., 2007 also noted) than averages over some
area (e.g., the boundary ofV , or a cross-section throughV ).
This is a direct consequence of the applicability of Green’s
divergence theorem to relate the mass change in a volume
to the mass flux across its boundary (see Raats and Klute,
1968a, b, among others). For simplicity, we limit the dis-
cussion to averages over areas in two principal directions. In
that case, the flux componentqj [LT−1] (j∈{1, 2, 3}) in the
remaining principal direction is of interest, and its average
qj,A [LT−1] over areaA [L2] in the directions ofxi andxk
(i∈{1, 2, 3}, k∈{1,2,3}, i 6=j 6=k) is:

qj,A =
1

A

∫
A

qjdA = −
1

A

∫
A

Kj
∂H

∂xj
dA (10)

where the off-diagonal elements ofK were assumed to be
equal to zero. The notationKjj was therefore simplified to
Kj . Note that the averaged flux density involves areal av-
erages instead of volume averages. By calculating an areal
average hydraulic head at two planes of areaA and located
at xj−1xj /2 andxj+1xj /2, and taking the limit as1xj↓0,
the areally averaged hydraulic gradient is obtained:

∂HA

∂xj
=

∂

∂xj

∫
A

θHdA∫
A

θdA
(11)

The averaged flux density and hydraulic gradient can be com-
bined in a form that is analogous to Darcy’s Law:

qj,A = −Kj,A
∂HA

∂xj
(12)

The definition of the upscaled hydraulic conductivityKj,A
[LT−1] follows immediately:

Kj,A =
1

A

∫
A

Kj
∂H

∂xj
dA

 ∂

∂xj


∫
A

θHdA∫
A

θdA




−1

(13)

Time does not appear in this equation because the assump-
tion of immediate equilibrium betweenh andθ that under-
lies Richards’ equation is adopted. Still, this is a less severe
restriction than the requirement of non-moving contact lines
discussed in Sect. 1.1.3. As is to be expected, the upscaled
version of the hydraulic conductivity in Eq. (13) generally
behaves in a non-Darcian way. Since the numerator and
the denominator are not proportional, the upscaled hydraulic
conductivity will depend on the magnitude of the upscaled
hydraulic gradient. Furthermore, an infinite number of con-
figurations of local values ofθ andH exist that will yield the
same integrals in the denominator of Eq. (13) but, through
the different local values ofKj , different values of the up-
scaled hydraulic conductivity. Thus,Kj,A is not unique for a
given value of∂HA/∂xj .

2.3 Criteria for determining the validity of Darcy’s Law
at a given scale

It should be noted that Eqs. (10), (11), and (13) preserve the
local values ofθ , H , andKj . Thus, they allow one to insert
any spatial distribution of these values (obtained by measure-
ment, simulation, or any other suitable means) and investi-
gate, for various values ofA, the behavior of the upscaled
flux density, hydraulic gradient, and hydraulic conductivity.
To do so here is outside the scope of the paper, but the form
of the equations permits the inference of favorable conditions
for the use of Darcy’s Law at larger scales.

Specifically, two requirements need to be met to make
Darcy’s Law valid for an areaA: Kj,A should not vary with
the flux densityqj,A acrossA, andKj,A should be unique for
any gradient∂HA/∂xj . The validity criterion following from
the first requirement is:∫
A

Kj
∂H
∂xj

dA

∂
∂xj

( ∫
A

θHdA∫
A

θdA

) ≈ C (14)

with C [LT−1] a constant. For saturated porous media,C

is a true constant that should not vary in time. For unsatu-
rated porous media, the value ofC depends strongly on the
degree of saturation. Note that the criterion is relatively flex-
ible in that it only involves integrations of various properties.
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But the uniqueness requirement, which is less easily captured
in a similar form, imposes limits on the permitted degree of
variation withinA of the various integrands.

Equation (14) is a very general criterion. For various re-
strictions on the degree of variation of some of the character-
istics of the flow, it can be simplified. For instance, ifθ varies
little overA, Eq. (13) simplifies to (after invoking Leibniz’
rule):

Kj,A =

∫
A

Kj
∂H
∂xj

dA∫
A

∂H
∂xj

dA
(15)

and the corresponding validity criteria (forKj,A being inde-
pendent of the gradient) become:∫
A

Kj
∂H
∂xj

dA∫
A

∂H
∂xj

dA
≈ C,

θmax − θmin

θA
� 1 (16)

whereθA is the areal average ofθ within A, andθmin and
θmax are its minimum and maximum value, respectively.
Here too,C is a true constant when the porous medium is
saturated and will depend on the degree of saturation if the
medium is not. The requirement of limited variations inθ
can be satisfied for relatively largeA in an aquifer (segment)
of relatively uniform composition, and in dry soils, where
the localθ hardly depends onh (steep end of the soil water
characteristic), andθ at a givenh is essentially determined
by soil texture (e.g., Hillel, 1998). Equation (15) indicates
that the upscaled hydraulic conductivity is the average of the
local conductivities weighted by the local hydraulic gradi-
ents. Since the local hydraulic gradients affect the field of
localH -values, they indirectly affect the distribution of local
θ -values through the soil water characteristic. Consequently,
Kj,A is still dependent on∂HA/∂xj . For saturated flow this
limitation does not apply, and furthermore,Kj,A is not af-
fected by a scalar multiplication of the field of∇H . Al-
though different distributions of∂H /∂xj can still produce the
same∂HA/∂xj but differentqj,A, this non-uniqueness risk is
probably limited for problems in which the megascopic flow
direction does not change too much.

For dissipativeH (little variation acrossA in H and
∂H /∂xj ), Eq. (13) reduces to:

Kj,A =
1

A

∫
A

KjdA (17)

with the associated validity criteria:

Hmax −Hmin

HA
� 1,

∂H
∂xj max

−
∂H
∂xj min

∂HA
∂xj

� 1 (18)

With the weighting by local gradients removed,Kj,A for sat-
urated flow becomes both unique and independent of the flux

density, and the upscaled Darcy’s Law can be applied as long
as the above conditions are met, which is the case if∂H /∂xj
remains below a critical level everywhere. This condition can
be met if the flux density integrated over the aquifer thickness
is small compared to the aquifer’s transmittivity. For the un-
saturated zone, local conductivity values can vary strongly
even if the matric potential varies relatively little. Hence,
even thoughKj -values are not weighted, the possibility of
non-uniqueness remains.

It is important to note that in all criteria the hydraulic con-
ductivity (the most variable parameter of the subsurface) re-
mains variable. Furthermore, none of the criteria imposes
implicit bounds on the nature or the degree of variability of
Kj .

If A is oriented horizontally during unit gradient condi-
tions in the unsaturated zone, the flow is perfectly vertical
everywhere, withH constant acrossA, and∂H /∂x3=1 every-
where. Under these conditions, the requirements of Eq. (18)
are satisfied, Eq. (17) is valid and the upscaled Darcy’s Law
(Eq. 12) can be used with∂HA/∂x3=1. When the ground-
water level is deep (at least several meters) and a thick non-
layered soil horizon exists, unit gradient conditions can pre-
vail over long time periods in this horizon, and theKj,A then
is equal to the long term net infiltration (see Wagenet, 1986).

Highly transient conditions in unsaturated zone lead to
strongly varying values ofKj and the two spatial gradients
in Eq. (13). As a consequence, the dependence ofKj,A
on ∂HA/∂xj and the non-uniqueness ofKj,A for particular
∂HA/∂xj will increase considerably in these cases, limiting
the length scales for which Darcy’s Law remains valid (leav-
ing aside the question whether Darcy’s Law is valid at all at
a sharp wetting front). This is consistent with Roth’s (2008)
parabolic relationship between the characteristic time scale
of the system and its characteristic length scale.

3 Illustrative cases

3.1 Upscaling the water content-matric head relation-
ship at equilibrium and during unit gradient flow

For the upscaled version of the soil water characteristich(θ),
the relationhV (θV ) is an obvious candidate, but the experi-
mental conditions ofh(θ ) need to be taken into account. At
the Darcy scale, an undisturbed sample is typically exposed
to a fixedH long enough to establish hydrostatic equilib-
rium (e.g., Dane and Hopmans, 2002a, b, c, d; Romano et
al., 2002). From the elevation of the sample with respect to
the chosenx3,ref the value ofh at the center of the sample is
derived. The total water content of the sample is determined
(usually by weighing) to calculate a point (h, θ ) on theh(θ )-
curve. The height of the sample (usually∼5 cm) is assumed
to be too small to let the value ofθ be affected by the vertical
gradient ofh that counters the gradient in the gravitational
potential.
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Even at this small scale, assuming the vertical variation in
h to be negligible may not be permitted. Liu and Dane (1995)
developed a criterion to test the validity of the assumption
for the general two-phase case, involving the densities of
the wetting and the non-wetting fluid and the geometry of
the experimental set-up. In an elegant analysis, Liu and
Dane (1995) demonstrated that the vertical extent of the sam-
ple smoothed theh(θ)-curve. An example calculation with a
point-scale Brooks-Corey relation (Brooks and Corey, 1964),
which features a sharp air-entry value that creates a disconti-
nuity in the curve’s derivative, resulted in a curve more sim-
ilar to van Genuchten’s (1980) continuously differentiable
shape. They calculated the smooth average curve by nu-
merically treating the sample as a stack of thin slices of soil
with identical properties, but with different values ofh corre-
sponding to their respective elevations. Averaging the water
contents of the slices gave the sample water content.

For larger and possibly irregularly shaped averaging vol-
umesV , the vertical extent ofV needs to be accounted for
in conjunction with porous medium heterogeneity withinV .
The procedure proposed by Liu and Dane (1995) can be
adapted by assuming hydrostatic equilibrium withinV , char-
acterized by uniformH or by hV . Applying the hydrostatic
equilibrium conditionH=h+x3 to Eq. (8) gives:

hV = H −

∫
V

θx3dV∫
V

θdV
= H −

+∞∫
−∞

x3

∫
A(x3)

θdA(x3)dx3

 +∞∫
−∞

∫
A(x3)

θdA(x3)dx3


−1

(19)

whereA(x3) is the horizontal area [L2] of V as function of
x3. Note that eitherH orhV is sufficient to fully characterize
the distribution ofh overV if the boundary ofV is known.
The corresponding average water content is (see Eq.6):

θV =
1

V

+∞∫
−∞

∫
A(x3)

θdA(x3)dx3 (20)

An upscaledhV (θV ) relationship according to Eqs. (19) and
(20) incorporates spatial heterogeneity and allowsh to vary
with elevation under hydrostatic equilibrium conditions. The
relationship for megascopicV (e.g., a soil layer within a field
plot, or an entire field) will be of little use to calculate actual
flow, but by comparing the actualhV andθV to the equilib-
rium curve, the deviation from equilibrium can be asserted,
and the tendency ofV to absorb or release water from or to
its surroundings (e.g., the groundwater, or a stream) can be
established with a more or less quantitative measure.

During unit gradient conditions (Wagenet, 1986), flow in
unsaturated soils is strictly gravity-driven. The matric head
is uniform throughoutV , creating a horizontal hydraulic gra-
dient of zero and a vertical gradient of one. Consequently,

the vertical flux density is equal to−K3. Variations in lo-
cal values ofθ arise strictly from soil heterogeneity within
a non-layered horizon, because the matric head for whichθ

follows from the soil water characteristic is uniform. In these
conditions,θV is calculated with Eq. (20) as before, buthV
is simply equal toh at an arbitrary location inV and can be
derived from a single tensiometer reading. Readings from
multiple tensiometers over an extended period in time can
serve to confirm the prevalence of unit gradient conditions.

3.2 Megascopically horizontal flow in a container filled
with a heterogeneous porous medium

This is a generalization of the hypothetical case discussed
by Gray and Miller (2004), where a horizontal, closed rect-
angular container of lengthL [L], height B [L], and cross-
sectional area� [L2] was filled with a porous medium. Two
water-filled reservoirs with a constant water level in contact
with the porous medium over the full cross-section at oppo-
site ends atx1=0 andx1=L established fixed hydraulic head
boundary conditions. A uniform layer of vertical extentb
[L] and porosityn2 was sandwiched between uniform layers
with porosityn1. The strip with porosityn2 tilted from the
container bottom atx1=0 to the top atx1=L to make the dis-
tancec2 [L] between the vertical midpoint of the layer and
the container bottom:

c2(x1) =
b

2
+
x1

L
(B − b) (21)

Gray and Miller (2004) derived an area-averaged pressure
(equivalent to an averagedh) over a vertical cross-section
using theθ -weighted averaging underlying Eq. (8) above. If
the integration in Eq. (8) were carried out over� instead of
a volume (as explained below Eq.9) and the head were con-
verted to a pressure, the resulting equation would be iden-
tical to Gray and Miller’s. According to the superposition
principle (Sect. 2.1) that requires identical averaging manip-
ulations for all components ofH , the gravitational headx3
should have been averaged in the same way to arrive at the
correct gradient in the averagedH� (with the subscript in-
dicating the cross-sectional average). Forn2>n1, the depth
intervalb centered onc2 would overcontribute to the areally
averagedθ -weightedh. The absence of vertical flow implies
thatH is vertically uniform. Withx3 linearly increasing with
elevation,h must necessarily decrease with elevation at the
same rate according to Eq. (3). The overcontribution ofh
aroundc2 would be cancelled out by an equally large over-
contribution ofx3 with opposite sign.

Initially, Gray and Miller (2004) did not carry out the aver-
aging of the gravitational head arguing that gravitation plays
no part in horizontal flow. However, even in horizontal flow,
the gravitational head contributes toH . Consequently, the
calculated∂H�/∂x1 was erroneous, resulting in an obviously
incorrect non-zero water flux while the water levels in the
reservoirs at both ends of the column were the same.
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In the next section of their paper, Gray and Miller (2004)
developed an averaging equation for the gravitational poten-
tial that is the areal averaging equivalent of Eq. (9) above.
The consistency between the averaging manipulations ofh

andx3 was thereby restored, and the correct gradient ofH�
was obtained.

The corrected equations by Gray and Miller (2004) are
only applicable to the specific configuration of their hypo-
thetical set-up, and their methodology rapidly becomes in-
tractable for more complicated set-ups. In contrast, the su-
perposition principle outlined above naturally leads to the
generally applicable set of Eqs. (7–9), that reduces to Gray
and Miller’s (2004) equations for their special case. Thus,
consistent application of the superposition principle resolves
the paradox discussed by Gray and Miller (2004), and the va-
lidity of Darcy’s Law for the scale for which Darcy himself
formulated it remains unchallenged.

4 Conclusions

The relationship between the hydraulic, pressure/matric, and
gravitational heads is supported by the thermodynamic in-
terpretation of fluid pressure and the gravitational potential.
The superposition property of the heads constituting the hy-
draulic head translates into a consistency requirement for the
upscaling manipulations of all heads. With the added con-
straint that the amount of energy must be conserved during
volume integrations, the superposition property produces a
set of consistent upscaling equations.

Application to Darcy’s Law leads to a set of criteria that
must be met to maintain validity of Darcy’s Law under up-
scaling operations. The criteria are based on the requirement
that the area-averaged hydraulic conductivity should not de-
pend on the area-averaged hydraulic gradient. A similar cri-
terion for maintaining uniqueness of the area-averaged hy-
draulic conductivity remains elusive.

Two illustrative cases demonstrate the usefulness of the
volume averaging equations. In one case, an apparent para-
dox reported in the literature that threatened the validity
of Darcy’s Law was elucidated by demonstrating that it
emerged from a violation of the superposition principle.
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