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Abstract. Medium range hydrological forecasts in depend on. To reduce flood damages by taking appropriate
mesoscale catchments are only possible with the use of hyprecautions, long lead times (several days) in hydrological
drological models driven by meteorological forecasts, whichforecasting are needed, which is only possible with the use
in particular contribute quantitative precipitation forecasts of medium range weather forecasts in a coupled hydrome-
(QPF). QPFs are accompanied by large uncertainties, esp¢eorological model chain. Especially the large uncertainties
cially for longer lead times, which are propagated within the in precipitation forecasting affect the accuracy and reliability
hydrometeorological model system. To deal with this limi- of the resulting hydrological forecast. As it would be im-
tation of predictability, a probabilistic forecasting system is prudent to simply ignore these uncertainti®agpenberger
tested, which is based on a hydrological-meteorological enand Beven2006, they have to be forecasted too. For this
semble prediction system. The meteorological componenpurpose, probabilistic forecasts can be applildréndorfer
of the system is the operational limited-area ensemble pre1997).
diction system COSMO-LEPS that downscales the global In meteorology, probabilistic ensemble forecasts have
ECMWEF ensemble to a horizontal resolution of 10 km, while been established for operational forecasts some time ago.
the hydrological component is based on the semi-distributedvieteorological ensemble prediction systems (EPSs) are op-
hydrological model PREVAH with a spatial resolution of erationally available at the global scale from, for e.g., the US
500 m. National Center for Environmental Predictions (NCE&th

Earlier studies have mostly addressed the potential beneand Kalnay 1997, the European Centre for Medium Range
fits of hydrometeorological ensemble systems in short cas&Veather Forecasts (ECMWH|olteni et al, 1996 and the
studies. Here we present an analysis of hydrological ensemMeteorological Center of Canada (MSBoutekamer et al.
ble hindcasts for two years (2005 and 2006). It is shown thatl996. From these ensemble forecasts, a measure of the
the ensemble covers the uncertainty during different weatheforecast uncertainty can be gained in terms of the ensem-
situations with appropriate spread. The ensemble also showlsle spread. The spread of the ensemble members represents
advantages over a corresponding deterministic forecast, evamainly the initialization uncertainty of the meteorological
under consideration of an artificial spread. model, the main source of uncertainty for large-scale atmo-
spheric circulation patterns in forecasts up to about five days
(Buizzg 2003.

A number of case studies were conducted, which directly
use the output from a global scale EPS to drive hydrologi-

Recent flood events (e.g., the Alpine flood of August 2005,cal models (e.gBartholmes and Todin2005 Pappenberger

et al, 2008 showed the vulnerability of the infrastructure we 2005 Rousset et a1.2007 Komma et al. 2007). While
demonstrating promising results, some of the case studies

suffer from biases related to the coarse resolution of the me-

Correspondence tdS. Jaun teorological model (and depend in turn on the scale the hy-
BY (simon.jaun@wsl.ch) drological model applied). The large scale meteorological

1 Introduction

Published by Copernicus Publications on behalf of the European Geosciences Union.


http://creativecommons.org/licenses/by/3.0/

1032 S. Jaun and B. Ahrens: Evaluation of a probabilistic hydrometeorological forecast system

Table 1. Catchment identifiers with names of the respective rivers
and gauges as well as the size of the catchments.

identifier  river gauge size [kFr}
C1 Hinterrhein  Furstenau 1575
Cc2 Vorderrhein  llanz 776
C3 Rhine Domat-Ems 3229
C4 Landquart Felsenbach 616
C5 Il Gisingen (A) 1281
Nj C6 Rhine Diepoldsau 6119
C7 Rhine Neuhausen 11887
2&} 100 km C8 Thur Andelfingen 1696
C9 Rhine Rekingen 14718
Fig. 1. Catchment overview, showing the defined catchments with gig ﬁg:z $;]Z%genberg 2119%9
respective identifier (C1,..., C23, cf. Tallpupstream of the Rhe- C12 Aare Hagneck 5128
infelden gauge (published iraun et a].2008. c13 Aare Brugg-Agerten 8217
C14 Emme Wiler 939
. C15 Aare Brugg 11750
models are not accurate at modeling local weather, because ~,¢ Linth Weesen 1061
local sub-grid scale features and dynamics are not resolved, 17 Limmat Zurich 2176
especially in regions with complex topography. To overcome 18 Limmat Baden 2396
this limitation, global-scale EPS forecasts can be dynami- C19 Reuss Seedorf 832
cally downscaled by use of a limited area numerical weather  C20 Reuss Luzern 2251
model (e.g., the COSMO model, nested into the ECMWF  C21 Reuss Mellingen 3382
ensemble as described in the following sectidviss et al. C22 Aare Untersiggenthal 17625
(2002 showed that such a refinement from a grid spacing of ~ €23 Rhine Rheinfelden 34550

36 km to a grid spacing of 12 km results in better forecasts, as

it allows the definition of the major topographical features of

the region and their corresponding atmospheric circulation. This paper investigates the applicability of a high-

A dynamical downscaling of the global meteorological fore- resolution meteorological-hydrological ensemble system, us-

casts is expensive in terms of computing resources, and thusg the dynamical downscaling approach for two continuous

it is not feasible to downscale the full ensemble for everydayyears (2005 and 2006). The study area consists of the upper

operational applications. Therefore, the ensemble size is noRhine basin, encompassing an overall area of 34 550 K

mally reduced and only a subset of the ensemble members igccount for inhomogeneities in topography, atmospheric pro-

used Molteni et al, 2001). This approach has successfully cesses and runoff regimes, the domain is divided into 23 sub-

been used for several hydrological case studies (egount  catchments with a typical size of 900 to 1600%uf. Fig. 1

et al, 2007 Jaun et a].2008. In contrast, statistical down- and Tablel), based on the setup describedverbunt et al.

scaling approaches, like the use of meteorological analogue$2006. In addition to the analysis of selected catchments,

rely heavily on the availability of long historical data sets and the full extent of the study area is considered.

do not appear to be suitable to provide useful information Besides the input uncertainty (uncertainty from the mete-

about the future small-scale streamflow by its@fgmede  orological data used to drive the hydrological model), which

et al, 2008, especially in the case of extreme events. is addressed by the use of the meteorological ensemble, two
The aforementioned publications on evaluation of hydro-additional components affect the output uncertainty of a hy-

logical ensemble forecast systems have been limited to floodirological model: the initialization uncertainty (i.e., the ini-

case studies and/or single catchments. Only recently haveal state of the model) and the model uncertainty itself (un-

larger data sets become availabl@Isson and Lindstm  certainty from parameters and the conceptualizatitmgt

(2007 andBartholmes et al(2009 provide analysis of ex- et al, 2005. In this work, the main focus remains on the in-

tended time series over large areas (Sweden and Europe, rput uncertainty, as forecasted meteorological data is regarded

spectively), both of which use direct output from the global as the most uncertain componemnbodini, 2004).

scale ECWMF EPS to drive the hydrological model. An ex-

tensive list of recent studies applying ensemble approaches

for runoff forecasts can be found @loke and Pappenberger 2 Methods

(2009, together with a review of ensemble techniques. _ ] ) )
The meteorologic-hydrologic model chain used is the same

as described idaun et al(2008, where it was used for a
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case study of the extreme event in August 2005. For the me2.2 The hydrological model

teorological component, either an ensemble forecast system

or a deterministic forecast system, providing a single modelThe semi-distributed hydrological model PREVAM\(iroli
realization, is applied. Forecast setups and strategies wer@l al, 2009 is then driven by COSMO-LEPS with hourly
adopted and applied to the operationally available meteorotime steps. PREVAH (Preciptation Runoff EVApotranspi-

logical forecasts for the years 2005 and 2006. ration Hydrotope) uses hydrologic response units (HRUs,
Flugel 1997 and the runoff generation module is based

2.1 Deterministic and probabilistic meteorological fore-  on the conception of the HBV-modeBérgstbm and Fors-
cast systems man 1973 Lindstiom et al, 1997, adapted to a spatially
distributed application. Further information on the model
The deterministic meteorological forecasts are provided byphysics, structure, interpolation methods and parameterisa-
the Operational weather forecast model COSMO-7. ThiStions can be found iGurtz et a|(]_999, Gurtz et a|(2003
model is the MeteoSwiss implementation of the COSMO andzappa et al(2003. The initial conditions of the hydro-
model (COnsortium for Small-scale Modelingteppeler  |ogical model are obtained from a continuous reference sim-
etal, 2003, which is nested in the global deterministic fore- ylation driven by meteorological observations, subsequently
cast model from ECMWF. COSMO-7 uses a horizontal grid- referred to as HREF. No additional perturbations were re-
spacing of 0.0625 degrees (7 km) and 45 model levels. Sixglised at the level of the hydrological model, e.g., considera-
meteorological variables (temperature, precipitation, humid+jon of initialization uncertainties.
ity, wind, sunshine duration derived from cloud cover, global  The use of the deterministic meteorological forecast vari-
radiation) are further downscaled to 500 m grid-spacing (Us-ables as input to PREVAH results in a deterministic hydro-
ing bilinear interpolation, temperature adjusted according tojogical forecast subsequently referred to as HDET. The cou-
elevation by adopting a constant lapse rate of 838500 m),  pling of PREVAH with COSMO-LEPS provides probabilis-
to meet the grid size requirements of the hydrological modeliic hydrological forecasts in terms of a hydrological EPS
The global meteorological ensemble is provided by the(HEPS).
operational global atmospheric EPS of ECMWF and con-
sists of 51 members. The generation of this ensemble i2.3 Set-up of simulations
based on singular vectors to create optimally perturbed ini-
tial states Buizza and Palmen995. This global ensemble Hindcasts were conducted daily for both years, 2005 and
is downscaled by the limited-area EPS COSMO-LER&r( 2006, and for the deterministic forecasts as well as the en-
sigli et al, 2005 Montani et al, 2003. Due to computational Semble set-up. The deterministic forecasts from COSMO-7
constraints, the operational COSMO-LEPS refines a subsanfrovide a forecast range of 72h (3 days) and are initialized
ple of 10 (16 from February 2006) representative global en-at 00:00 UTC.
semble members On|y, selected by a cluster anam'meni The meteorological EPS forecasts are initialized at
et al, 2001). Prior to the clustering analysis, the preceding 12:00 UTC and span 132h (120 h until June 2005). The first
global EPS simulation from the previous day is combined 12 h are not considered for the hydrological coupling, which
with the actual forecast. Hence the clustering is applied tds initialized at 00:00 UTC, resulting in a forecast range of
a recombined ensemble consisting of 102 members. Thid20h (108 h) for HEPS. This cutoff considers the temporal
procedure, using “old” forecast information, generally re- availability of the operational ensemble forecasts and eases
sults in a widening of the spread of the reduced ensemblecomparison to the deterministic forecast. To ensure consis-
The clustering identifies similar circulation patterns basedtency for the differing HEPS forecast ranges over the consid-
on the analysis of wind, geopotential height and humidity €red time period, the analysis of HEPS was restricted to 96 h
on three pressure levels (500 hPa, 700 hPa, 850 hPa) for twd# days).
lead times (96 h, 120 h). From the resulting 10 (16) clusters, For the quantitative analysis we focus on daily runoff val-
the respective representative cluster members (RMs) are séles. The hindcasts are chained for the respective forecast
lected and dynamically downscaled over a domain coveringanges (0-24 h, 24-48h, 48—72h, 72-96 h), resulting in four
central and southern Europe. These ensemble members afé@ree for HDET) daily time series, which are accounted
run on a rotated spherical grid with a horizontal grid-spacingfor separately and compared to each other. In the case of
of 0.09x0.09, equivalent to about 1010 kn?, and with HEPS, we therefore get four time series consisting of daily
32 (40 from February 2006) model levels. The meteorolog-€nsembles derived from the summed up hourly values of the
ical variables of the resulting high-resolution meteorological respective individual ensemble member within the forecast
ensemble are treated analogous to the COSMO-7 variablesanges. All calculations, e.g., the estimation of the ensem-

The cluster sizes can optionally be used to weight the repreble interquartile range (IQR) are based on these daily values.
sentative members of COSMO-LEPS. Examples of chained daily runoff hindecasts are shown in

Fig. 2ato Fig. 3.
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2
2.4 Validation methodology L s k

RPS=Y | pyi =Y poj| . @
To evaluate the skill of the forecasts, score measures are ap- k=11j=1 j=1
plied. These are complemented by the evaluation of general

ensemble properties to verify the statistical appropriatenes%",hergK ist;ths.lnumb;er of forecast catego(rjim,j iithebpre—
of the probabilistic forecast.@io and Tameza2007). icted probability in forecast categogy andpo; the obser-

Yearly discharges were estimated for all catchments, invation in category; (0=no, 1=yes). The RPS is bounded

order to assess the representation of runoff volumes by th@Y 26ro andk —1. While a perfect forecast would result in
model chain. To test the general performance of the enRPS=0, less accurate forecasts receive hlghersores_. By aver-
semble, a method used by the ECMWF for meteorologicalagmg the RPS over a number of forecast—observation pairs,

EPS verification was adoptetidlaurette et aJ.2005. As-  "€Se can be jointly evaluated, resulting in the mgins.
suming a perfect probabilistic forecast with symmetric er- 1€ RPSSis finally obtained by relating ttRPS of the
ror quantiles, the following spread skill relation should be forecast to théRPSer) of a reference forecast according to

found: the absolute difference between the ensemble me- (RPS
dian and the verifying simulation should exceed half the in-RPSS=1— (RPSol)’
terquartile range (referred to as spread) in exactly 50% of the ef
cases. Therefore, for a theoretical perfect probabilistic fore-The RPSS can take values in the rangeo<RPSS<1.
cast, averaging over spread categories should result in a dWhereas RPSO0 indicates an improvement over the refer-
agonal relationship. Evaluating HEPS, deviations from thisence forecast, a forecast with RRSSBlacks skill with re-
diagonal relationship will show whether the ensemble pro-spect to the reference forecast.
duces too high/low spread to cover the associated ensemble In this paper we chose climatological quantiles derived
median error. As the assumption that error quantiles are symfrom 10 years of runoff data as catchment specific thresh-
metrical is not met in this application, positive and negative olds for the RPSS categories. Apart from the quartiles (0.25,
errors are accounted separately (dlaurette et a).2005. 0.5, 0.75) we additionally selected the 0.95 quantile to better
Other methods for spread-skill evaluations, e.g. conducted byesolve higher runoff occurrences. F&PSes) we use the
Scherrer et al(2004, are based on the use of a skill score, climatological probabilities of the mentioned quantiles.
e.g. the ensemble RMSE or the Brier skill score, which is  For the two years of forecasts considered (2005 and 2006),
compared to a measure of spread. The resulting relationshipve are faced with different ensemble sizes (10 and 16, re-
is then interpreted with respect to the relationship which re-spectively). FromMauller et al.(2005), it is known that the
sults from a "perfect” forecast (e.g. from a toy model). RPSS is negatively biased for ensemble prediction systems

In addition to the spread-skill evaluation, the rank his- with small ensemble sizes. The influence of the differing en-
togram @nderson 1996 of the probabilistic runoff fore-  semble sizes is assessed by the additional use of a debiased
cast is evaluated, to check whether the ensembles includegersion of the RPSS (RPSSd, aftieigel et al, 20073.
the observations being predicted as equiprobable members Other probabilistic evaluation methods such as the Brier
(consistency condition). If rank uniformity is not met, this skill score (BSS, the probabilistic equivalent to the mean
can reveal deficiencies in ensemble calibration, or reliabil-squared error), the reliability diagram or the relative oper-
ity (Wilks, 2009. In difference to the spread-skill relation, ating characteristic (ROC), as describeilks (2006, are
the rank histogram allows a distinction between bias andnot considered as they require a single evaluation threshold,
under-/overdispersion, but does not account for relative enwhereas the categorical evaluation by the RPSS allows a bet-
semble error. ter judgement of the evolution of the hydrograph over an ex-

To perform a probabilistic verification of the time series tended time period.
within the time window considered, we use the ranked prob-  For evaluation of the deterministic hydrological forecast
ability skill score (RPSS) described Wilks (200§. This  HDET, the Nash-Sutcliffe coefficient (ENash and Sutcliffe
score is widely used for the evaluation of probabilistic fore- 1970 is applied, which is widely used for hydrological ver-
casts in meteorological sciences (e\ygigel et al, 2007a fication purposesl(egates and McCabd999. The usual
Ahrens and Walse2008.The RPSS is based on the ranked formulation of E is given by
probability score (RPS). The RPS is a squared measure that
compares the cumulative density function of a probabilistic S (o — yi)?
forecast with that of the corresponding observation over E=1- N, 52 @)

. . - . Z =1 (0r —0)
given number of discrete probability categories. Thus the !
RPS measures how well the probabilistic forecast predictsyherey, ando, denote the forecasted and observed time se-
the category in which the observation is found. For a givenries, respectively, anglthe mean of the observations over the
forecast-observation pair, the RPS is defined as forecast period. E can take values in the range<E<1,

with E>0 indicating an improvement over a forecast with
the observed mean discharge, whitke@Eshows no additional

2
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skill. E can also be interpreted as the coefficient of determi-lation HREF to eliminate the additional uncertainties intro-
nation, representing the fraction of variability én that is  duced by the hydrological model.
contained iny;.

Direct comparison of the performance of HDET and HEPS
is difficult to achieve. An evaluation of HDET by means 3 Results and discussion
of the RPSSd is not carried out, as the RPSSd does not di-
rectly quantify whether a specific forecast is more skillful, 3.1 Analysis of a selected catchment
but rather is a measure for the gain in potentially usable en-
semble information\eigel et al, 2007h. The RPSSinturn  Figures2ato c allow us to discuss important features of
suffers most from its negative bias in the deterministic caseprobabilistic hydrologic forecasts. Daily hindcasts (using
(“one member ensemble”). An evaluation based on a deHEPS) were conducted for the years 2005 and 2006, which
terministic skill score like E implies the conversion of the were then chained for selected forecast ranges. As an ex-
probabilistic forecast into a deterministic one, e.g., by use ofample, graphs of chained daily hindcasts for the ranges 72—
the ensemble median. As such a conversion implies a los86 (Fig.2a), 48-72 (Fig.2b) and 24-48 (Fig2c) hours are
of valuable forecast information and can bias the ensemblgéhown at the Brugg (Aare) gauge for 2005. The ensemble
performance in specific cases, it should not be applied folQR generally encompasses the reference simulation driven
the sake of a simplified forecast interpretativvilks, 200§. by observed meteorological inputs and also the measured
Nevertheless we carry out a comparative deterministic evalfunoff. Also, the ensemble range is much larger during flood
uation of the HEPS median against HDET. If this evaluation peaks, representing the additional uncertainties during unsta-
reveals that the HEPS median performs equal or better thahle weather situations.

HDET over an extended time period, a first indication of an Comparisons against the area-mean precipitation of the
added value of the ensemble forecast system is given. ensemble members (used as input for the hydrologic model,
To further challenge the ensemble forecast system, it wagiot shown) show the expected reduction in variability and
tested against an artificial ensemble (HART) by means of theamplitude due to hydrological processes. Note that there
RPSS. HART is based on the climatological properties ofdoes not appear to be a problem with an overprediction of
HEPS, assuming a linear correlation between the ensembl#ood events (e.g., an event with a return period of two years
median and the individually sorted ensemble members (sepis forecasted with some probability a few times in 2005) or a
arately for the different catchments and lead times). Thatconstantly large spread. For decreasing lead times, the HEPS
means, for a specific catchment and lead time, as an exaniull range and HEPS interquartile range decrease gradually

ple, the daily forecasts are sorted by runoff values in ascendand constrict around the reference simulation as expected.
ing order. Correlating the lowest member (second lowest,..., Figure3 shows the chained daily hindcasts with HART for
highest) of all daily forecasts with the according HEPS me-the same catchment as in FRafor the forecast lead time of
dian results in a linear relationship. Applying these linear 72-96 h. Compared to the corresponding R2g. peaks in
correlations, the daily artificial members are then constructedspread and range are less distinctive. While the uncertainty
by use of the HEPS median. Consequently, spread and rangeems to be well covered during runoff peaks, it remains con-
of the artificial ensemble mainly depend on the actual runoffstantly high during recession periods, as the simple synthetic
guantity of the HEPS median. ensemble construction cannot distinguish between inclining
This evaluation reveals whether the ensemble forecast pernd declining phases of the runoff peaks.
formance is better than a deterministic forecast with climato-
logical ensemble spread. If HEPS shows no advantage ove3.2 Evaluation of yearly discharge
HART, the value of the ensemble forecast is at least ques-
tionable with regard to a deterministic forecast system that~igure4 shows the yearly discharges for two example catch-
considers some sort of uncertainty information. Please noténents (C12, C21) and catchment C23, which captures the
that this evaluation only reveals the minimal added value, asut-flow from all catchments and can therefore be used as
the median of the ensemble is used as base for HART. Conan indicator for the entire study area. Yearly discharge sums
sequently, HART contains ensemble information that is notof daily range, IQR, and median for different lead times (0—
available in the case of a deterministic forecast. 24 h, 24-48h, 48-72 h, 72-96 h) are compared to the respec-
If the HEPS median outperforms HDET (in terms of E) tive values of HDET, HREF and measured runoff values.
and HEPS outperforms HART (in terms of RPSS), we canFigure4 summarizes Fig2ato Fig. 2c and allows for sim-
confidently state an added value of the ensemble forecagile and straightforward comparison between catchments and
system, provided that the probabilistic evaluation of HEPS lead times.
including the general ensemble performance, shows positive While HEPS IQR nicely encompasses HREF and HDET,
results. the HEPS IQR does not contain the observations ideally. The
Apart from direct evaluations against runoff observations,yearly bias in volume from HREF to OBS visible in Figjis
we substitute the runoff observations by the reference simu+5% for catchment C12 and10% for catchment C21. The
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Fig. 2. Chained daily runoff hindcast at the gauge Brugg (Aare, 11 5$kwith a lead time ofa) 72-96 h,(b) 48—72h andc) 24-48h

in 2005. Measured runoff is plotted in blue. The light red area shows the full range of the HEPS simulation (HEPS range) and the red area
represents the IQR of the same simulation (HEPS IQR). Spatially interpolated observed precipitation is plotted from the top. In (b) and (c)
HDET is additionally marked in black. HQ 2 marks the two year recurrence period.
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Fig. 3. Same as Fig2a, but for HART instead of HEPS.

overall bias (median over catchments C1 to C23)-&%, — ons —
which is reflected in the bias of catchment C2306). HREF

HDET and the HEPS median show very similar perfor- S S
mance when compared to HREF, with a slightly pronounced
tendency of HDET to overforecast for the lead time 48-72 h.

Comparing 2005 and 2006 gives qualitatively very similar
results, differing mainly in the observed yearly runoff sum
(median increase of 3.5% from 2005 to 2006), changes in the
bias of HREF to OBS (reflecting the skill of the hydrological
model itself), a wider total range of the 16 member HEPS =
compared to the 10 member HEPS, but very similar IQR.
As the relative positions of HREF, HDET and HEPS do not g | .—:r.z .
change between 2005 and 2006, the change of the HREF bias = T%Il
should not be neglected for inter-annual comparison of the
forecast performance (compensation/amplification through
overforecasting when compared to measured runoff).

For catchment C23, spread of HEPS shows a distinct re- c12 c21 c23
duction in ensemble spread and error for all lead times (2005

and 2006), which is visible in Figt as well as after normal- i 4. Total discharge for 2005. The observed runoff (blue), HREF

ization by measured runoff (not shown). On the one hand(green), HDET (red), and ensemble forecasts (black) are shown for

this indicates the overall decrease in uncertainty for forecastshree catchments (C12, C21 and C23). The ensemble forecasts are

over larger areas (i.e., differences in forecasts for small catchillustrated by box-whisker-plots. All displayed forecasts are shown

ments even out over larger areas). On the other hand this is \&ith resp. lead times (1, 2, 3 and 4 days from left to right).

result of the increase in the time of concentration. In the case

of a forecasted large scale event (or a local event in the north-

ern part of Switzerland), the contributing catchment area for3.3  Verification of general ensemble properties

C23 grows quickly and shows up in the (small) ensemble

spread. A forecast of a local event in an alpine catchmentrhe scatter diagram for runoff comparing the ensemble

will not be reflected in the ensemble spread of C23 (for shortspread and absolute error of the HEPS median is given in

lead times due to the time of concentration, for longer leadFig. 5afor observed runoff and in Figb for HREF. Both fig-

times due to averaging). However, this is the real forecasires show daily values for the year 2005 (72—96 h lead time).

situation and as we treat all forecasts the same way, none k|| catchments (cf. Tabld) are included. Analogous to the

them should benefit. results from the EPS verificatiohglaurette et a).2005, the
coherence between ensemble spread and error exists for both
choices of runoff reference (HREF and OBS). Large day-to-
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Fig. 5. The HEPS median error from observed runoff is compared to the half interquartile HEPS range for daily runoff (72—-96 h hindcasts)
for catchments C1 to C23 in 200&) shows the evaluation against observed rur(bifagainst HREF. The empty blue circles represent the

daily values, while the filled red circles show the means of the spread categories, averaged over 100 daily values. Positive and negative error:
are considered separately.

day variations occur within the shown relation, but the sta-negative errors. The analysis for the year 2006 yields very
tistical relationship that should exist, when gathering a largesimilar results for the lead time of 72—-96 h, although spread is
sample of cases with similar spread (81 spread categoriegverestimated for large negative errors with HREF. The over-
each containing 100 daily values from the 23 consideredestimation in spread remains with shorter lead times, which
catchments), holds and the distribution of errors within eachmight be a result of the changed ensemble configuration.

spread category is centered around the diagonal. This eval- Note that the considered period for evaluation of general
uation shows that additional uncertainty is reasonably repreensemble properties is to short to allow for robust statistics.

sented by an increase in spread (also cf. E&).

A closer examination reveals that Fifa shows a ten-

As shown above, features of the relation can be dominated
by single events or catchments. Therefore the spread-skill

dency to underestimate spread in the forecasts (especially fdglation should not be interpreted on its own.

small and negative median errors). This is clearly reduced Figure6ashows that the ensemble forecasts for the year
in Fig. 5b, reflecting the bias of HREF with regard to ob- 2005 do not satisfy the consistency condition (i.e., the en-
served runoff (cf. Fig4). However, even with HREF, large sembles do not reflect equiprobability of observations within
negative errors are still not met by a sufficiently wide en- their distributions). This is also the case for the year 2006
semble spread for longer lead times. This underestimatiorand the following remarks apply to both years considered.
of spread disappears with shorter lead times and results frorfihe U-shaped rank histogram indicates an under-dispersion
a single event (August 2005). Excluding the period of this (over-confidence) of the ensembles, as the observations are
event also removes the underestimation of spread for largéoo frequently falling into the low and high ranks, resulting
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Fig. 6. Modified rank histogram showing combined results for all catchments. The rank of the observed runoff within HEPS is shown for
the leadtime of 72—96 h in 200%a) shows the evaluation against observed rur{blfagainst HREF.

in an overpopulation of the extreme ranks. Evaluation of the The rank histogram for HART with HREF (not shown)
rank histogram of HREF and HEPS (F&)) reveals thatthe features two superimposed characteristics: on the one hand,
overpopulation of high ranks is mostly a result of the uncer-we see the same overpopulation of low ranks as for HEPS,
tainty introduced by the hydrological model. This bias is alsoon the other hand the central ranks are overpopulated too.
visible in Fig.4 for C21 and C23. Still, the overpopulation This indicates an additional overestimation in spread for cer-
of low ranks remains. We argue, that this is not only due totain classes of runoff occurrences. Reviewing the chained
the slight overestimation of HEPS over HREF (F4, but plots for HART (cf. Fig.3), this can be traced back to con-
also a result of the characteristics of the verified variable. Westantly high spread for median runoff occurrences as already
are considering a variable that is non-normally distributed,mentioned in sectioB.1 While spread for HART in Fig3
as the hydrograph and its evolution is bound by the baseflonseems sufficiently wide to cover the peaks, although signif-
Runoff forecasts that lead to an increase in runoff are thereicantly narrower than HEPS spread, the combined spread-
fore less constrained, which explains the overforecasting biaskill evaluation for all catchments indicates an underestima-
in Fig. 6b. This hypothesis is supported by the skewness oftion of HART spread for high runoff occurrences.
HEPS towards lower runoff values in Fig.

For shorter lead times than those shown (72-96h), the3.4 Verification of time series
rank histograms for HREF and observations show an in- ) .
crease in frequencies at the highest rank. Indeed, the spredc®" further performance evaluation, the ranked probability
of the ensemble narrows with reduced lead times. TheSKill scores (RPSS, 1: perfect skill, 0: no skill) of the ensem-
narrowing in spread mostly represents the increase in pret_)le hindcasts against the reference sm_wulatmn and observed
dictability. The indicated overconfidence of the ensemblefunoff were calculated, as describedwilks (2009, sepa-
for shorter lead times is probably an effect of the ensembld@t€ly for different lead times. This allows the temporal evo-
generation method, focusing on optimal spread for midrangdution of the hydrograph to be considered. ,
forecasts. It should be noted that the relative error of the en- AS the ensemble size differs for the two years considered
semble is not accounted for by the rank histogram. While(2005 and 2006), the influence of the change in ensemble
the ensemble with a lead time of 0-24 h is actually overcon-SiZ€ IS assessed by an inter-comparison of the two years. This
fident, this has little effect for practical application, since the INt€r-comparison is restricted to the evaluation against HREF
forecasted ensemble runoff for all members is almost idendn Order to exclude the varying performance of the hydro-
tical to HREF and shows small relative errors. Indeed thel0gic@l model itself (changing biases of HREF from OBS as
associated scatter diagram (not shown) for error and spreagiated in SecB.2). Furthermore the debiased ranked proba-
shows that values group towards the left center for the shortePility skill score (RPSSd) is used in addition to the RPSS.
lead times.
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Table 2. Skill scores for different lead times. On the left, the com- uncert_ainty introduced with the use of meteorological fore-
bined median HEPS RPSS for all catchments for the full evaluationC@Sts is well covered by the ensemble approach, the score
period relative to HREF, OBS and HART. On the right, the com- differences shown represent the bias of HREF against OBS,
bined median Nash-Sutcliffe coefficient (E) for all catchments for i.€., the model uncertainty of the hydrological model and the
the full evaluation period relative to HREF. For HEPS, the ensembleuncertainty in its initial state, which arises from uncertainties

median was used to calculate E. in the observed meteorological input (e.g., from interpolation
uncertainties, cfAhrens and Jayr2007). Note that HREF
evolves freely throughout the evaluation period and is not
RPSS E . .
lead time | HREF OBS HART| HDET HEPS nudged against measured runoff. As HREF is used to gen-

erate the initial conditions for the forecast runs, a nudging
against measured runoff would lead to a substantial increase
in skill score values for HEPS relative to OBS.

While the median of an ensemble should not be applied
for evaluation of single events, it was used for a determinis-
tic evaluation of two continuous years (2005 and 2006). The
comparison of the HEPS median to HDET by means of the
. deterministic skill score E is performed with regard to HREF.

Comparison of RPSSd for the years 2005 and 2006 reyt reveals almost identical numbers for the shortest lead time
veals that other modifications introduced into the atmo-(cf_ Table2). For longer lead times, the skill of the HEPS
spheric model with the increase in ensemble size (mainly thenedian decreases less rapidly than that of HDET. While the
increase in vertical resolution from 32 to 40 levels) do not resyt of this evaluation should not be interpreted on its own
result in a noticeable change in skill (e.g., with alead time of (a5 the probabilistic information of the ensemble is lost), it
48-72h: 0.850 and 0.853 for 2005 and 2006, respectively)gives a clear indication that the ensemble does not fall behind
To test the direct effect of the change in ensemble size, thepeT in performance, even though the underlying meteoro-
RPSS was calculated without the debiasing separately forthﬁ)gica| model features a coarser numerical grid. This may
two years considered. Again, resulting score differences aryot remain true for evaluations based on a shorter (hourly)
minor and cannot be clearly associated to the increase in eRimescale within the first 24 h.
semble size for the year 2006. Considering the minor score The results of the evaluation of HEPS against its climato-
differences and the fact that a separate evaluation of the tWR)gicaI correspondent HART are shown in TaBldt reveals
years yields the same conclusions, we assume that it is valigh5t HEPS performs better in terms of RPSS. For the longest
to evaluate the two years jointly. lead time (72-96 h), HEPS shows a slight decrease in advan-

The debiasing of the RPSS is only used for the inter-annuatage over HART. This is consistent with the expectation that
comparison but not for the evaluation of the full time period, the relative performance of a climatological forecast should
as in the latter case we are primarily interested in the actuaincrease with longer lead times.
skill of the model system and not the theoretically obtainable Taking into account the positive results of the probabilistic
skill score with a perfectly calibrated ensemble (representedvaluation and the verification of the general ensemble per-
by the RPSSdeigel et al, 20071. In Table2 we show re-  formance, we can confidently state an added value of HEPS
sults for the forecast system over the period 2005-2006. Thevith regard to HDET: apart from better “deterministic re-
skill scores show differing results depending on the catch-sults” for longer lead times, the ensemble is better than its
ments, butin general, the RPSS is decreasing with increasingwn median forecast with climatological spread information
lead time (cf. Table?). The decrease of RPSS is consistent and therefore shows the importance of temporal variability in
with the results of the yearly analysis regarding HEPS rangehe ensemble range and spread.
and HEPS IQR for different lead times and quantifies the ad- Weighting of the ensembles with the cluster sizes shows
ditional uncertainty that is associated with longer lead times.only marginal effects for all applied evaluation methods and

In contrast to, e.g.Qlsson and Lindstrm (2007, where  can be neglected for the analysis of the probabilistic hydro-
the use of the global EPS necessitates an additional bias colegical forecast series. This is consistent with the findings
rection, we find high score values using HREF as referencefor precipitation verification byarsigli et al.(2007), but it
This shows the suitability of the substitution of observed should be noted that weighting can improve the skill of the
meteorological variables with forecasted ones and therefordéydrological ensemble for specific cases and higher temporal
the applicability of the coupled forecast system. Evaluationresolution as showed ifaun et al(2008.
against observed runoff (OBS) results in RPSS values which
clearly indicate improved skill of the forecast system over a
climatological forecast. Nevertheless, the difference in skill
between the evaluation against HREF and OBS leaves room
for further improvements of the forecast system. While the

0-24 0.969 0.601 0.17§ 0.996 0.997
24-48 0.902 0.607 0.223 0.898 0.966
48-72 0.870 0.598 0.18§ 0.770 0.910
72-96 0.829 0.582 0.14 na 0.904
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